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Abstract—5G is considered as the ecosystem to abet the
ever growing number of mobile devices and users requiring an
unprecedented amount of data and highly demanding Quality
of Experience (QoE). To accommodate these demands, 5G
requires extreme densification of base station deployment, which
will result in a network that requires overwhelming efforts
to maintain and manage. User mobility prediction in wireless
communications can be exploited to overcome these foregoing
challenges. Knowledge of where users will go next enables
cellular networks to improve handover management. In addition,
it allows networks to engage in advanced resource allocation and
reservation, cell load prediction and proactive energy saving.
However, anticipating the movement of humans is, in itself,
a challenge due to the lack of realistic mobility models and
insufficiencies of cellular system models in capturing a real
network dynamics. In this paper, we have evaluated Artificial
Intelligence (AI)-assisted mobility predictors. We model mobility
prediction as a multi-class classification problem to predict
the future base station association of the mobile users using
Extreme Gradient Boosting Trees (XGBoost) and Deep Neural
Networks (DNN). Using a realistic mobility model and a 3GPP-
compliant cellular network simulator, results show that, XGBoost
outperforms DNN with prediction accuracy reaching up to 95%
in a heterogeneous network (HetNet) scenario with shadowing
varied from 0dB to 4dB.

Index Terms—Mobility prediction, AI, self- organizing net-
works (SON), Deep Neural Networks, XGBoost, HetNets.

I. INTRODUCTION

The volume of capacity-hungry devices is expected to rise

exponentially with the increase in bandwidth demand from

the end-users. To cope with the anticipated challenge of

providing a 1000x increase in capacity, network densification

has emerged as the primary method future networks will rely

on. The deployment of heterogeneous types of base stations

(BS) such as macro cells and smalls cells will be necessary

to alleviate the issue. However, as dense deployments of

heterogeneous types of cells become the norm, intricacy in

managing the network mounts. This complexity will affect

all aspects of cellular network management from resource

allocation, mobility, and energy saving to the associated

increase in mobile operators capital expenditures and oper-

ational expenditures (CAPEX/OPEX) .

To address these challenges, Self-Organizing Networks

(SON) have arisen as the go-to solution. With SON, man-

ually executed operations, such as network configuration,

optimization, and maintenance, can now be automated. How-

ever, current SON solutions are reactive in nature - that is

SON functionalities will only intervene once a problem has

occurred. This characteristic contradicts with 5G’s ambitious

quality of service which requires a proactive mode of opera-

tion for SON functions. Achieving this proactivity is possible

by anticipating the movements of users and forecasting the

future network state using information readily available in the

network which referred to as Big Data. Given these proactive

predictive capabilities, a more effective and efficient method

of network resource allocation can be put in place [1].

To predict where a user will go next is one of the key com-

ponents of a proactive SON. This can be done by forecasting

the future locations of the users in terms of the associated

base stations. This mobility prediction relies on the notion

that activities and movements of mobile users are predictable

to a certain extent as verified by the work [2]. According to

this study, user’s daily mobility has a regularity with a 93%

average predictability despite the randomness of individual

trajectories.

The majority of the current studies in mobility predic-

tion leverage analytical-based techniques, particularly Markov

chain. Its popularity can be attributed to minimal space/time

complexity relative to other techniques. One particularly

promising work [3] harnesses semi-Markov model capabilities

for spatiotemporal mobility prediction in cellular networks.

A maximum prediction accuracy of 90% is achieved in

the experimental evaluation utilizing actual network traces.

However, considering the computational resources available

in the present-day, AI-based mobility predictors are viable

alternatives. Works [4] and [5] exploit Machine Learning

(ML) for classification of the spatial trajectories through

supervised learning using Support Vector Machines (SVMs).

Results show that accuracy of the predictions reach more than

90% using regular mobility movements. Using deep learning,

authors in [6] propose a mobility prediction in mobile ad-hoc

networks. The best performance of their mobility predictor

shows a mean square error (MSE) of 5.29e-08 in the validation

set.

Although results are auspicious, the suitability for practical

applications is inadequate for two reasons. First, [4], [5] and,

[6] all use unrealistic mobility models. [6] uses the random

waypoint model (RWP) which clearly fails to capture the

mentioned degree of regularity in human movement. Though

[4] and [5] incorporate models better than RWP, they design

the users to roam around a cellular network following no

realistic route. In addition, [4] and [5] both adopt unrealistic

cellular system models. In [4], the cellular network used is



composed only of omnidirectional base stations, while in

[5] base stations are represented by irregular polygons, both

insufficiently reflect a modern cellular network setup.

This paper will overcome these limitations by leveraging

the core idea of [3] using AI instead of semi-Markov model.

Moreover, instead of using unrealistic human movement pat-

terns, realistic traces are generated using a traffic simulator

named Simulation of Urban Mobility (SUMO). Combined

with these realistic mobility patterns, is a realistic cellular

network system created using a Python-based cellular network

simulator called AI4Networks Simulator.

The main contributions of this paper can be summarized as

follows:

1. A novel set of input feature combination composed

of base station camping history, current cell association and

sojourn time which refers to the period a user stayed in one

cell. Additionally, handover locations are also used to further

improve the prediction accuracy.

2. Current papers on mobility prediction use unrealistic

mobility patterns of human movements. In this paper, mobility

model used, though synthetic, captures a realistic movement

of users. In addition, a real road topology is also used for

simulation.

3. The cellular network setup is also realistic using a HetNet

scenario with base station association based on received

signal strength and incorporates shadowing. Current papers

on mobility prediction use only one type of base station and

do not consider the effect of shadowing.

The rest of the paper is organized as follows: Section II de-

scribes the Mobility prediction model; Results are illustrated

and evaluated in Section III; and Section IV concludes the

paper.

II. REALISTIC MOBILITY PREDICTION

FRAMEWORK

The suitability and practical application of the results from

this paper to a real-world scenario are achieved in three ways:

1) by using a synthetic but highly realistic mobility pattern,

2) by incorporating a realistic cellular network scenario which

captures events like handover and incorporates shadowing and

3) ease in modeling the mobility predictor leveraging the

power of AI. The process of future base station association

prediction is shown in Figure 1. This part of the paper will

discuss the user mobility model and cellular model as well

as the applied AI techniques used to capture mobile user

mobility.

Figure 1: Realistic AI- Assisted Mobility prediction frame-

work

A. Realistic User Mobility Model

SUMO is a free, open source traffic simulator which

supports network importing and demand modeling [7]. Other

traffic simulators are available, but SUMO’s ability to create a

realistic mobility model using activity-based traffic scenarios

sets it apart. Location traces extracted from SUMO exhibit

high dynamic characteristics that are intrinsic to fashion a

realistic mobility prediction.

Figure 2: Creating Realistic Road Map from SUMO

To generate mobility traces, SUMO needs two mandatory

inputs, a network file and a population definition file. A

network file describes roads and intersections where the

simulated vehicles will travel. Road topology can either be

created manually or automatically by converting an open

source map (OSM) network into a SUMO network as shown

in Figure 2. The second input needed contains a description

of the population inside the network. This general statistical

information includes the number of households, the locations

of houses, schools and workplaces, free time activity rate, etc.

By default, population activities involve travel from home to

work or school. However, additional trips can be generated

using the ‘free time activity rate’ attribute. This attribute

corresponds to the probability that in a given day, a household

will have free time activity. Values can be set from 0 to 1.

The higher the value, the more likely that the population will

perform free time activities which can be considered as a

proxy for increasing randomness in trajectories.

Populations inside the network are set to follow a shortest-

path, also called optimal path, model. This means that the

simulated vehicles will traverse the route that will take them

to the destination the fastest. However, to add randomness,

the option exists to assign weights randomly by a factor µ. By

doing so, edge weights for routing are dynamically distorted

in a random manner. The degree of randomness will depend

on the value drawn uniformly from [1, µ]. Every time an edge

weight is determined, the randomization is performed so that

a vehicle could select a diverse path. This randomness is a

good way to simulate the use of alternative routes.

B. Realistic Cellular Network Model

AI4Networks Simulator is a cellular network simulator built

in Python for 5G and beyond networks in compliance with

3GPP Release 15 [8]. It is a modular, flexible and versatile

simulator supporting advanced features like adaptive numerol-



ogy, handover and futuristic database-aided edge computing

to name a few.

A representative cellular network system, as shown in Fig-

ure 3, can be created by defining the base station parameters

in the site information, such as location, type (macro or

small cell), height and transmit power. Aside from that, to

capture the dynamics of a real network, shadowing can be

incorporated in the site information. AI4Networks Simulator

supports mobility models, such as random waypoint, SLAW,

and Manhattan, however, traces from external sources like

SUMO can easily be converted into a simulator readable

format before importing for simulation. Using AI4Networks

Simulator, mobility traces from SUMO can be converted into

a realistic base station association that is used for mobility

prediction.

Figure 3: Sample heterogeneous network layout with sector-

ized BSs, omnidirectional BSs (square), small cells (triangle)

and UEs (dots).

C. AI-Based Classification Techniques

In this paper, future base station association is modeled

as a multi-class classification problem. With classification,

labels of the data points are predicted by mapping input

features (X) to discrete labels (y). In our study, the user’s

trajectory is converted into corresponding cells it camps on

during its course. Input features (X) include the history of

cell camping, sojourn time (the period a user stays on a cell),

and handover location while next BS cell IDs are the discrete

classes (y). Two techniques are evaluated to predict the user’s

next cell association. One is Machine Learning (ML) based

called Extreme Gradient Boosting (XGBoost) and the other

falls under the Deep Learning (DL) family known as Deep

Neural Networks (DNN). These two techniques are chosen

due to their promising prediction accuracy as verified by the

work in [9].

a) Extreme Gradient Boosting (XGBoost): XGBoost is a

popular type of gradient boosting algorithm which belongs to

a ML category known as ensemble learning. Techniques under

this category train several learners to perform the same task.

In XGBoost, multiple regression trees, called weak learners,

are trained and then converted into a single superior learner,

which is the combination of the decision results of all the

weak learners. Mathematically this can be expressed as [10]:

ŷi =

K∑

k=1

fkxi, fk ∈ F (1)

where F is the set of all possible weak learner and K is the

total number of weak learners.

XGBoost searches for the optimal parameters by minimiz-

ing the loss function given by:

L =
∑

i

l(ŷj , yi) +
∑

k

Ω(fk) (2)

where Ω(fk) = γT +
1

2
λ‖ω‖2 (3)

where l is the loss function that calculates the difference

between the target value yi and the predicted value ŷj , Ω
is the regularized term which measures the complexity of the

model, T is the total number of leaf nodes with ω representing

the weight of the leaf nodes, γ is the learning rate, and λ is the

constant coefficient controlling the degree of regularization of

fk.

Training the ensemble model in an additive manner is

more efficient and avoids the complexities of using traditional

methods in Euclidean space, therefore, we will need to add

ft in order to optimize which forms a new loss function. At

time step t:

L(Θ)(t) =

n∑

i=l

l(yi, ŷ
(t−1) + ft(xi)) + Ω(ft) (4)

L(Θ)(t) =

n∑

i=l

[gift(xi +
1

2
hif

2
t (xi)] + γT +

1

2
λ

T∑

j=1

ω2
j

(5)

where y
(t)
L represents the prediction of the i-th instance at

the t-th iteration, while the first and second order gradient

statistics on the loss function are given as gi and hi respec-

tively.

In this paper, we used grid-search to find the optimal

performance of XGBoost. Based on the results, best prediction

accuracy is observed using the minimum child weight value

of 5, maximum depth of 3, column sample of 0.8, step size

of 50 and shrinkage value of 0.01. Shrinkage η supervises

the learning rate and controls over fitting. Other parameters

used are set to their default values.

b) Deep Neural Networks (DNN): Deep Neural Net-

works belong to the family of Artificial Neural Networks

(ANN) composed of multiple hidden layers between input

and output layers. In this paper, we have implemented a feed-

forward deep neural network to predict the next base station

mobile users will enter. In a feed-forward network, the flow

of information is unidirectional. This means information flow

is from input going to the hidden layers and finally to the

output layer without any loop and not forming any cycle.

Performance of DNN depends on the choice of activation

functions. In our model, we have used the Rectified Linear



Unit (ReLU) activation function on the input and hidden

layers and softmax function on the output layer. One particular

advantage of ReLU is that it speeds up the training of the

neural network by rapidly accelerating the convergence of

stochastic gradient descent compared to the other functions

like sigmoid and tanh. Mathematically, ReLU is represented

as:

f(x) = max(0, x) (6)

where f(x) is the activation, x is the input data, and the

function max(0, x) is a non-linearity that is applied element-

wise. Simply say, if x < 0 , f(x) = 0 and if x >= 0 , f(x)
= x.

On the other hand, softmax is typically the preferred activa-

tion function for the output layer especially for classification

tasks. For multi-class classifications, decimal probabilities

are assigned to each class using softmax. The sum of all

decimal probabilities should be equal to one which is not the

case in other activation functions such as sigmoid function.

This additional restriction helps in a more rapid training

convergence period. Mathematically, the softmax function is

given by:

softmax(z) = σ(z)j =
ezj
K∑

k−1

j = 1, ...,K (7)

where input z is defined as:

z = w0x0 + w1x1 + ...+ wmxm =

m∑

i=0

wixi = wTx (8)

where x is the feature vector of a single training sample,

w is the weight vector, and w0 is the bias unit.

For mobility prediction, a DNN with a depth of 4 hidden

layers and a width of 60 neurons each is used. Several other

combinations of depth and width are evaluated but none

exceeds the performance of the final model. The size of the

output layer depends on the number of the output classes.

Predictive performances of the models are evaluated using k-

fold cross-validation with k = 4 and n = 2. This helps in

judging how the trained model will perform when feed with

unseen data. Models are run with a batch size of 32 and 300

epochs for best test accuracy rate.

D. Mobility Prediction Model

The first step in our mobility prediction is to generate

realistic mobility traces. To do so, SUMO is utilized. A

population is initially configured with activities involving only

trips from home to work and vice versa using the shortest

path. This is done by configuring a population all made up of

working adults, setting the unemployment rate to 0 and setting

car preference equal to 1. With this setting, all individuals in

the population will go to work using their cars. This set up

is the baseline scenario, tagged as Scenario 1, which reflects

the regular human mobility in deterministic trajectories. In

this scenario, no randomness is involved in terms of the

population’s activity or routes traversed. In addition, two more

scenarios are created. In Scenario 2, we added an additional

trip each day aside from the regular home to work routine by

setting the free time activity rate equal to 1. The destinations

of these additional trips are chosen randomly. This captures

the randomness in real human movement accounting for other

activities outside their routines such as shopping, visiting

friends or leisure. Thus, we describe Scenario 2 as having

medium randomness. However, the route from home to work

still follows a shortest-path model. To capture the randomness

on the path a real human might take outside its regular route,

for example taking a detour due to traffic congestion or road

construction, Scenario 3 is created. Here, a factor of 10 is

used to update the weights of each edge every time the vehicle

passes by. With this, high randomness is expected for Scenario

3.

Figure 4: System Model of the Mobility Prediction.

A network or road map, 800m x 800m in size, is initially

used. This grid-type map which the vehicle can traverse

is our baseline network. An example of one user’s origin

and destination location is illustrated in Figure 4. This base

network is used for simplified extraction of traces and model

training. However, realistic roads are not always grid-like. For

this reason, we have also used a real map of size 1.6km x

1.6km from Figure 2 including the University of Oklahoma -

Tulsa campus. This setting will test how effective our models

will perform in a real road network.

SUMO is run initially to generate the populations mobility

traces equivalent to 10 days with one-second granularity. In

addition, to test the effect of increasing the size of input data,

we run simulations which provide the equivalent of 30-days

and 60-days of population movement.

Using AI4Networks Simulator, two sets of cellular network

models are created. The first is composed of 7 omnidirectional

macro cells and the second set is a HetNet consisting of 7

macro cells, each with 3 sectors and 3 uniformly distributed

small cells per sector. This results in a total of 85 base stations,

21 macro cells and 64 small cells as shown in the system

model in Figure 4. The first setup is used to identify the

best input feature combination and determine additional input

features to help further improve the prediction accuracy. The



second setup is used to test the mobility prediction model in

a more realistic cellular system. To capture the dynamics of

a real cellular network, values of shadowing is varied using

values of 0dB, 2dB and 4dB.

Mobility traces from SUMO are fed into the AI4Networks

Simulator to get the base station association at every time step.

The output cell association of the AI4Networks Simulator is

then processed and is used for mobility prediction. Approxi-

mately 90% of the data are used for the training set, and the

remaining 10% are utilized to test the prediction accuracy. The

training data set is further split into two for training (75% of

90%) and validation (25% of 90%) by using four-fold cross-

validation. The cross-validation uses one-fold for the testing

set and the union of the rest of the folds for the training set.

For both prediction techniques, we have simulated different

input features combinations of current location, sojourn time

and previous cells to determine the best one. Then, handover

location is incorporated to determine if it will increase the

prediction accuracy before finally testing the models in a

HetNet setup and using a real road network.

III. RESULTS AND DISCUSSION

Using the base setup composed of 7 omnidirectional macro

cells with no randomness in the population’s mobility, Sce-

nario 1, we identified the best input feature combination that

will yield the highest prediction accuracy. As seen from the

results in Figure 5, using the current cell alone to predict the

next cell will not produce desirable results. Adding sojourn

time as an input feature will result in a prediction of higher

accuracy. However, knowledge of the previous cell the mobile

user camped provides the biggest leap in accuracy. Adding

more previously visited cells does not affect the prediction

accuracy substantially. Based on the results, one previous

cell, the current cell and the sojourn time are the best input

features combination in predicting future cell association. It

is notable that the performance of the prediction models is

greatly affected by shadowing. From more than 98% accuracy

in 0dB shadowing, it drops to 88% and 82% if 2dB and

4dB of shadowing are incorporated respectively. It is also

apparent that performance of the two classification algorithms

are almost equal once we added previous cell/cells as an input

feature.

Figure 5: Determination of best input feature combination.

A study [11] uses location coordinates as one of the input

features to model taxi drivers’ behavior to predict their future

destinations. Inspired by the usefulness of this idea, we have

added the handover location, expressed as coordinates, as an

input feature to determine its effect. Using Scenario 1 and

the best input features identified, the effect of incorporating

handover location on prediction accuracy is evaluated. Based

on the results in Figure 6, a 2% to 4% increase in the accuracy

can be achieved with 2dB and 4dB shadowing by adding

handover location. Accuracy with 0dB shadowing is already

very high but even higher results are obtained.

Best input features plus handover location are the input

features used in mobility prediction in a HetNet cellular

network. With a HetNet, more base stations are involved

resulting to more categories to choose from, and thus it is

more challenging to predict the next base station. Figure 7

shows the mobility prediction accuracy results of the two

algorithms in 3 different randomness scenarios. Similar to the

previous results, the effect of shadowing in the accuracy is

pertinent. As randomness in trips made is added (scenario

2), accuracy of prediction decreases to 58.54%-84.92% and

further reduces to 54.07%-80.07% when randomness in route

used is incorporated (scenario 3). However, the most interest-

ing result is XGBoost outperforming DNN for all shadowing

values and all scenarios simulated. This observation conforms

with results in [9] where the authors conclude that XGBoost is

the current technique of choice for mobility prediction. Also

from [9], authors conclude that DNN’s performance stabilizes

by adding more input features. In our case, as the number of

classes increases, i.e., a HetNet with 84 classes, DNN will

require more input features to perform better.

Figure 6: Effect of incorporating HO location in the mobility

prediction.

The effect of increasing the training data can be reflected in

the results shown in Figure 8a. Results of a 10-day simulation

with 4dB shadowing are compared with the results of 30-days

and 60-days of mobility traces. Results show that increasing

the training data will increase the prediction accuracy. Im-

provement is greater in XGBoost as neural networks tend to

require more input features with the increase in the input data.

Figure 8b shows the result of prediction accuracy using a

real road topology. Using Scenario 3 with high randomness,



Figure 7: Mobility prediction model performance in HetNets.

Figure 8: a) Effect of increasing the data set b) Prediction

performance in a real road network

and mobility traces run for 60 days, XGBoost performs better

than DNN. It can also be noticed that 73.72% accuracy can

be achieved with 4dB shadowing, higher than 69.88% using

a synthetic grid-type map. This result is because the shortest-

path from origin to destination using the realistic road map has

fewer edges. This means a fewer number of turns is required

than in the grid type map making it more predictable.

Figure 9: Training and Prediction Time Comparison

Comparison of the training and prediction time of the two

algorithms shown in Figure 9 shows that XGBoost is faster in

both training and prediction duration. This happens as training

a DNN needs a repeated scanning of the entire training data

set before reaching the asymptote.

IV. CONCLUSION

In this paper, we evaluated two mobility prediction models

leveraging the power of AI in the form of XGBoost and

DNN. Experimental results show that using one previously

camped-on BS, current BS association and sojourn time as

input features yield the best prediction accuracy. Moreover,

incorporating the handover location and increasing umber of

training sample further improve the performance of the mod-

els. Comparison of the performances of the two algorithms

show that XGBoost and DNN perform similarly when using a

smaller number of base stations, however, XGBoost triumphs

against DNN in a HetNet scenario where more base stations

are involved. XGBoost also showed dominance when using

an actual road topology with accuracy of 74% to 95% in a

scenario with high randomness.

For future works, we will analyze how the models will

perform on a much larger scale together with testing different

variations of train-test data split like 70%-30% and 80%-20%

partition. We will also evaluate our models using real data

from a live network. In due course, we will apply the findings

in this paper to some practical applications, such as proactive

handover management, load-balancing and energy saving.
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