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Abstract—We present an online framework for dense 3D
reconstruction of indoor scenes using sequential Manhattan
keyframes. We take advantage of the global geometry of indoor
scenes extracted by Manhattan frames and pose optimization to
enhance the accuracy and robustness of the reconstructed models.
During sequential reconstruction, a Manhattan frame is extracted
for each keyframe after surface normal adjustment, and used for
a Manhattan keyframe-based planar alignment to initialize the
surface registration while a pose graph optimization is used to
refine camera poses. The final model is created by integrating
the Manhattan keyframes into the unified volumetric model
using refined pose estimations. Experimental results demonstrate
the advantage of our geometry-based approach to reduce the
cumulative registration error and overall geometric drift.

Index Terms—Dense reconstruction, Manhattan keyframe
(MKF), Planar alignment, Pose optimization

I. INTRODUCTION

Acquisition of high-fidelity 3D reconstruction of real-world
scenes has become one of the most highly active research top-
ics in robotics and computer vision. In the robotic community,
the objective is often about Simultaneous Localization and
Mapping and using SLAM-based frameworks to generate 3D
maps with the minimum trajectory error [1], [2], [3], [4], [5].
Contrastively, in the computer vision community, researchers
focus on volumetric reconstruction with the main intention of
acquiring high-quality dense models [6], [7], [8], [9], [10].

With the prevalence of RGB-D sensors, there has been
extensive research on 3D modeling and dense reconstruction.
Many existing methods only use depth information in their
reconstruction pipeline to generate 3D models. On the other
hand, many methods involve both RGB and depth frames in
the same pipeline to improve the accuracy and robustness of
the reconstructed models. All 3D mapping and dense modeling
techniques need an accurate and robust pose estimation in
order to generate drift-free 3D models. This often requires
visual feature matching in conjunction with bundle adjust-
ment or pose graph optimization to minimize the reprojection
error or to refine the pose estimation. These methods can
perform online sequential pose optimization [7], [3], [4] or
can do offline global pose optimization [9], [8]. The online
approaches can produce 3D reconstructions in near real-time,
but they may not have the best quality of the reconstructed
models due to noise, outliers or pose tracking failures. In
contrast, the offline methods can generate more accurate and

Fig. 1. The illustration of the planar alignment between two adjacent
Manhattan keyframes (in red) extracted from two depth keyframes (above). A
partial volumetric reconstructed model is shown below which is superimposed
with the two neighboring Manhattan keyframes.

detailed 3D models, however they may need more processing
time and cannot be used for real-time applications. In this
paper, we develop an online dense reconstruction pipeline
by incorporating only depth information, which simplifies the
computational flow, and by utilizing the geometric similarity
between Manhattan keyframes (MKFs), which facilitates final
sequential registration, as illustrated in Fig. 1. This framework
reduces the cumulative registration error dramatically and
generates a near drift-free 3D model without involving visual
features and explicit loop closure detection. It is distinctively
different from SLAM-based approaches, which involve visual
odometry and use a global loop closure algorithm to correct the
overall drift and generate point-based 3D maps. Our method
outperforms Kintinuous [11], DVO SLAM [4], and SUN3D
SfM [5]. It is also different from and outperforms Manhattan
frame reconstruction (MFR) [12] which adopts Manhattan
frames to create compelling volumetric models, but suffers
from the accumulation of camera drift in the absence of a
global pose optimization. In our most recent work, we have
also proposed a local Manhattan frame growing scheme for
robust reconstruction of indoor scenes [13].

II. PROPOSED METHOD

The pipeline of our approach, MFR with PGO, is shown
in Fig. 2. The preprocessing step takes the raw depth stream
and converts it into 3D points, followed by the estimation of
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surface normals to detect surface orientation. The next step
is surface normal adjustment, which produces more persistent
normal distribution. Then a Manhattan frame is estimated for
each keyframe by finding three dominant orthogonal direc-
tions, and is used for a MKF-based planar alignment, which
provides a reliable initialization for the surface registration.
To reduce error accumulation and overall drift, we optimize
the pose estimation for Manhattan keyframes. The last step
is fusing the Manhattan keyframes into a volumetric repre-
sentation according to the refined camera trajectory using a
MKF-to-model scheme. We present four major steps in detail
below.

Fig. 2. Overview of our framework

A. Manhattan Frame Estimation

The representation of the structured indoor environments
using Manhattan world (MW) assumption provides the reli-
able geometric properties for use in 3D reconstruction and
scene understanding applications. In our work, we used the
Manhattan frame (MF) estimation method proposed in [14] by
finding the best 3D rotation matrix to transform the surface
normals and align them with the principal directions in the
scene. Due to noise and depth discontinuities that cause errors
in normal computation, the direction of the surface normal
vectors needs to be regulated. We utilize a surface normal
adjustment to change the direction of the normal vectors to-
wards the sensor location, leading to a more consistent normal
distribution, which facilitates the MF estimation process. The
main intention of the MF estimation is to convert normal
vectors into the sparsest set of directions as follows:

MF = min
R,X

1

2
||(R ·N −X)||2F + λ||X||1,1 , (1)

where N ∈ IR3×m is the matrix of the original surface
normals, R ∈ SO(3) is the rotation matrix, and X is the
sparse matrix result of applying R to matrix N . The second
term in the objective function is the sum of the `1 norms of the
columns in X and acts as a regularizer, and λ is the tradeoff
parameter between sparsity and error sensitivity. The local
minimum in this non-convex optimization is attainable via
alternating optimization, where the solution for two variables
R and X is updated iteratively, while the other one is kept
fixed. Finally, the best estimated rotation matrix will be applied
to align the surface normals to the three principal axes.

B. MKF-based Pose Graph Optimization

The odometry drift in extended scale scene reconstructions
is prone to error due to the accumulation of the registra-
tion error between frames, quantization error, and noise in
depth data. To alleviate error accumulation and prevent scene
modeling from drifting, pose graph optimization was used
to refine the pose estimations and to provide the global
consistent alignments between Manhattan keyframes. For this
optimization, we first construct a pose graph incrementally,
where the nodes of the graph represent the estimated poses
and the edges represent the relative transformation between
two consecutive poses. These relative transformations between
successive frames provide odometric constraints, which are
used for pose optimization. In our work, we do not involve
visual features nor handle loop closures. We take advantage
of the geometric similarity between Manhattan keyframes to
reduce the cumulative registration error. Our approach is faster
than traditional SLAM-based approaches that rely on visual
odometry and loop closure detection to refine the camera
trajectory recursively. We optimize the pose graph through
minimizing the following cost function:

E(T ) = argmin
X

∑
i,j

eTijΩijeij , (2)

eij = f(xi, xj)− dij (3)

where x = {x0, .., xn} is a set of camera poses, f(xi, xj)
is the relative transformation between two consecutive poses
calculated from camera pose tracking, dij is an observed
constraint derived from two adjacent Manhattan keyframes,
and Ωij represents uncertainty and is the covariance matrix of
the relative transformation between consecutive frames. The
main purpose of the residual cost function is to correct the
pose drift by minimizing the error between the calculated
measurement and observed measurement of the poses. We use
Ceres Solver [15] to optimize this problem and minimize
sequential constraints between frames.

C. MKF-based Planar Alignment

In the final stage of dense reconstruction, we propose a
MKF-to-model registration based on the Manhattan keyframes.
The dominant orthogonal directions of the scene are obtained
based on the Manhattan world assumption and a Manhattan
frame is extracted for each candidate keyframe, which is
selected when a significant rotation or translation in camera
poses is identified. Adopting Manhattan keyframes provides
reliable geometric constraints, which helps to reduce the
sequential registration error and generate an accurate dense
model with minimal camera drift. A pose ID for each keyframe
is stored as a retrieval index for the final recall of refined pose
estimation. The pose graph optimization provides a consistent
camera trajectory, which returns refined poses for all frames.
For each Manhattan keyframe, the refined pose estimation is
retrieved and kept for the following sequential registration.
First, we perform geometric registration to efficiently align
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dominant planes in two consecutive keyframes fki and fkj . For
the MKF-based planar alignment, the metric distance between
the point set on two surfaces is minimized by solving:

Tij = argmin
Tij

∑
i,j

||Tij .(pi)− pj ||2, (4)

where (Pi, Pj) is a pair of dominant planes located in two
consecutive keyframes fki and fkj , pi ∈ Pi and pj ∈ Pj

are the point sets on two dominant planes, and Tij is the
transformation matrix that minimizes the distance between two
planar surfaces. This MKF-based planar alignment enhances
the speed and robustness of the final point-to-plane surface
registration by providing a reliable initialization.

D. MKF-based Model Reconstruction

For the final model reconstruction, we adopt a MKF-to-
model registration scheme based on the Manhattan keyframes
to integrate the incoming depth keyframe to the reconstructed
TSDF (Truncated Signed Distance Function) model. The
TSDF is represented in GPU memory on a volumetric grid
by an array of voxels. Each voxel at location p contains a
signed distance TSDF value υ(p) and a voxel weight w(p).
To integrate an ith incoming Manhattan keyframe into the
reconstructed model, the value of each voxel is updated by:

υi(p) =
υi−1(p)wi−1(p) + υi(p)wi(p)

wi−1(p) + wi(p)
, (5)

where wi(p) denotes the surface measurement uncertainty and
is defined by

wi(p) = min(wi−1(p) + wi(p), wmax), (6)

In our experiments, we set wi(p) = 1, as a simple average,
and wmax = 128. After Manhattan keyframe integration, the
final 3D model is reconstructed using the new pose estimation
results retrieved from optimized camera trajectory, resulting in
a volumetric surface representation of the scene.

III. EXPERIMENTAL RESULTS

We evaluated our approach on the augmented ICL-NUIM
dataset provided by [9], which augments the synthetic models
of two indoor scenes, a living room and an office created by
[16]. Our results are compared against Kintinuous [11], DVO
SLAM [4], SUN3D SfM [5], and MFR [12]. To provide a
quantitative comparison, the CloudCompare [17] is used
to align our reconstructed models to the ground-truth surface
provided by [16] for the living room, and to the dense point-
based surface model provided by [9] for the office. We have
compared our computed mean distances with errors measured
by [9], as shown in Table I. The quantitative results show that
our approach outperforms Kintinuous, DVO SLAM, SUN3D
SfM, and MFR. In addition to the online sequential imple-
mentation, it shows that our approach significantly reduces
the average mean distance of the reconstructed models (near
56% improvement over Kintinuous, 42% over DVO SLAM,
30% over SUN3D SfM, and 42% over MFR). We additionally

compared our performance with robust reconstruction [9] as
a reference. The models generated by our online framework
have comparable quality and our method is also on par with
this offline pipeline in terms of accuracy, as shown in Fig. 3.

IV. CONCLUSION

We presented an efficient approach for indoor scene dense
reconstruction by taking advantage of the Manhattan frame
estimation and pose graph optimization. The Manhattan frames
are only estimated for a small set of keyframes and a MKF-
based planar alignment is used to provide a reliable initial-
ization for the final surface registration. The final model re-
construction is accomplished by using the sequentially refined
camera poses by integrating the Manhattan keyframes into a
unified TSDF model, leading to a volumetric representation of
the scene. Experimental results show the effectiveness and ro-
bustness of our proposed approach to reduce the accumulative
registration error and overall geometric drift and to generate
globally consistent and reliable dense 3D models.
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Fig. 3. Reconstructed models of Living Room1 (top) and Office1 (bottom), by Kintinuous [11], DVO SLAM [4], SUN3D SfM [5], Offline Robust Reconstruction
[9], MFR [12], and our proposed MFR with PGO. Our approach has also a better performance in preserving the geometry of the planar surfaces (red circles).

TABLE I
MEAN DISTANCE OF THE RECONSTRUCTED MODELS TO THE GROUND-TRUTH SURFACE (IN METERS)

Dataset Kintinuous
[11]

DVO SLAM
[4]

SUN3D SfM
[5]

MFR
[12]

MFR with
PGO

Offline Robust
Reconstruction

[9]
Living Room1 0.22 0.21 0.09 0.11 0.07 0.04
Living Room2 0.14 0.06 0.07 0.09 0.07 0.07

Office1 0.13 0.11 0.13 0.12 0.04 0.03
Office2 0.13 0.10 0.09 0.17 0.06 0.04
Average 0.16 0.12 0.10 0.12 0.07 0.05
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