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ABSTRACT
Tomake daily decisions, human agents devise their own “strategies”
governing their mobility dynamics (e.g., taxi drivers have preferred
working regions and times, and urban commuters have preferred
routes and transit modes). Recent research such as generative adver-
sarial imitation learning (GAIL) demonstrates successes in learning
human decision-making strategies from their behavior data using
deep neural networks (DNNs), which can accurately mimic how
humans behave in various scenarios, e.g., playing video games, etc.
However, such DNN-based models are “black box” models in nature,
making it hard to explain what knowledge the models have learned
from human, and how the models make such decisions, which was
not addressed in the literature of imitation learning. This paper ad-
dresses this research gap by proposing xGAIL, the first explainable
generative adversarial imitation learning framework. The proposed
xGAIL framework consists of two novel components, including Spa-
tial Activation Maximization (SpatialAM) and Spatial Randomized
Input Sampling Explanation (SpatialRISE), to extract both global
and local knowledge from a well-trained GAIL model that explains
how a human agent makes decisions. Especially, we take taxi dri-
vers’ passenger-seeking strategy as an example to validate the
effectiveness of the proposed xGAIL framework. Our analysis on a
large-scale real-world taxi trajectory data shows promising results
from two aspects: i) global explainable knowledge of what nearby
traffic condition impels a taxi driver to choose a particular direction
to find the next passenger, and ii) local explainable knowledge of
what key (sometimes hidden) factors a taxi driver considers when
making a particular decision.
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•Computingmethodologies→ Inverse reinforcement learn-
ing; Neural networks; Markov decision processes.
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1 INTRODUCTION

Figure 1: Applications with Explainable Knowledge from
Human Decision-Making Strategies

Humans make daily decisions, based on their own “strategies”
(such as taxi drivers’ passenger-seeking processes and commuters’
transit mode choices). It is crucial to understand what factors hu-
mans think about when making decisions, which can greatly facili-
tate many applications. As three examples shown in Fig. 1, under-
standing the decision-making strategies from taxi drivers, personal
vehicle drivers, and urban commuters can facilitate the service
providers (e.g., taxi/ride-hailing companies) to better serve the
passengers, and enable the urban planners to design better road
networks and transit routes to meet the needs of urban travelers.

Many real-world humans’ decision-making processes (e.g., taxi
passenger-seeking and transit mode choices) can be modeled as
Markov Decision Processes (MDPs) [14, 15, 18, 19, 23, 27, 30–32]. In
the MDP model, the human agents’ decision-making strategies (e.g.,
the passenger-seeking strategies) can be captured by sequences of
human decisions, which aims to maximize his/her total “rewards”.
In the literature, inverse reinforcement learning (IRL) and imitation
learning (IL) techniques have been applied to recover such reward
functions to learn how humans make decisions. For example, Pan
et al. propose to use relative entropy based IRL to recover linear
reward functions and to dissect drivers’ preference dynamics over
time [19]. Zhang et al. extend Generative Adversarial Imitation
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Learning (GAIL) [10] to conditional GAIL (cGAIL) to unveil taxi
drivers’ policies by transferring knowledge across taxi drivers and
locations [31]. A GAIL model [10] consists of two deep neural
networks (DNNs), i.e., a policy net (learning a non-linear policy
function) and a reward net (learning a non-linear reward function).

However, there are significant limitations in these solutions. The
IRL approaches [4, 33, 34] manually extract features to represent the
linear reward function. It is likely to neglect some counter-intuitive
while effective features [10]. On the other hand, although a GAIL
model [10] is able to integrate high dimensional rich feature sets
and better imitate a human agent’s strategy, it is hard to explain
what knowledge the model has learned from human. This is due to
the “black-box” nature of deep neural networks. Therefore, both
types of approaches are not much helpful in understanding human
agents’ strategies. In recent years, a number of approaches have
been proposed to interpret machine learning models, such as classi-
fier interpretations [20, 21, 26]. However, none of them focuses on
the explanation of knowledge learned by imitation learning models
(e.g., GAIL) from human-generated spatial-temporal data, such as
vehicle trajectories.

In this paper, we make the first attempt to address the above
challenges by proposing xGAIL, a novel explainable Generative
Adversarial Imitation Learning model for learning both i) human
decision-making strategies (as deep neural networks) to mimic how
a human behaves, and ii) human-understandable knowledge to
explain how a human (and the learned model) makes decisions.
The proposed xGAIL framework consists of two novel components,
Spatial Activation Maximization (SpatialAM) and Spatial Random-
ized Input Sampling Explanation(SpatialRISE), which extracts both
global and local knowledge from a pre-trained GAIL model that
has learned a human agent’s decision-making strategy. Especially,
we take taxi drivers’ passenger-seeking strategies as an example to
validate the effectiveness of our proposed xGAIL framework. Our
main contributions are summarized as follows:

• We formulate human agents’ decision-making processes (us-
ing taxi drivers’ passenger-seeking processes as an example)
as Markov Decision Processes (MDPs), and to inversely learn
each agent’s decision-making strategy by a Generative Ad-
versarial Imitation Learning (GAIL) model.

• We propose an explanation framework with both global and
local interpretation mechanisms, i.e., Spatial Activation Max-
imization (SpatialAM) and Spatial Randomized Input Sam-
pling Explanation (SpatialRISE), to explain what knowledge
a GAIL model learns so as to generate a specific decision-
making strategy.

• We conduct a case study using real-world taxi driver’s trajec-
tory data to validate our framework. Our analysis shows in-
teresting results from two facets: i) global explainable knowl-
edge of what nearby traffic condition impels a taxi driver to
choose a particular direction to find the next passenger, and
ii) local explainable knowledge of what key (sometimes hid-
den) factors a taxi driver considers when making a particular
decision. We made our code and unique data set1 available
to contribute to the research community.

1https://github.com/paperpublicsource/xgail

The remainder of the paper is organized as follows. In Section 2,
we define our problem and outline our system framework. Section 3
presents our approach for data preprocessing. We elaborate GAIL
and the evaluation method for inverse policy learning in Section 4.
Section 5 introduces the xGAIL framework to explain the learned
GAIL model, and Section 6 evaluates our framework. Section 7
presents the related work and Section 8 concludes the paper.
2 OVERVIEW
In this section, we model the sequential human decision-making
process as a Markov Decision Process (MDP) and introduce Genera-
tive Adversarial Imitation Learning (GAIL) model as a way to learn
the human decision-making strategy using deep neural networks.
We also define the strategy explanation problem, and outline our
proposed xGAIL solution framework. Along with the paper, we use
a concrete example, i.e., taxi driver passenger-seeking process as
an example to illustrate the strategy explanation problem. Actually,
without loss of generality, our proposed xGAILmodel can be
applied to any general human sequential decision analysis
problems, such as commuter transit mode choice, etc.
2.1 Sequential Human Decision-Making

Processes as MDPs
Markov decision processes (MDPs) [25] provide a mathematical
framework for modeling decision-making processes. An MDP in-
cludes an agent as the decision maker and an environment that in-
teracts with the agent. An MDP is defined as a 5-tuple ⟨S,A,T ,R,γ ⟩,
where S is the state space,A is the action space,T : S×A×S 7→ [0, 1]
represents the probability P(st+1 |st ,at ) of transiting to state st+1
from st after taking action at , R : S ×A 7→ R is the reward function
of each state-action pair, and γ ∈ (0, 1] is the discount factor. An
agent at a state s ∈ S makes a decision of taking an action a ∈ A
following a memoryless policy π . The memoryless policy π is a
function that specifies a probability distribution on the action to
be executed in each state, defined as π : S × A 7→ [0, 1]. Taking a
passenger-seeking process as an example, a taxi driver makes a se-
quence of decisions about which directions (as actions) to go based
on his/her own decision-making strategy. The MDP components
of a passenger-seeking process are highlighted as follows.

• State s ∈ S : A state of a taxi driver can be uniquely defined
by the spatial location and time stamp.

• Action a ∈ A: There are 9 possible actions that a taxi driver
can choose at a state s , including traveling to 8 neighboring
directions, and staying at the current location.

• Reward R(s,a): The reward that a taxi driver receives follows
an inherent function R(s,a) to evaluate an action a taken at
a state s .

• Policy π (a |s): A policy π (a |s) of a taxi driver is a mapping
from a state s to an action a, i.e., the probability distribution
of choosing an action a given a state s .

As a result, a human agent’s (e.g., taxi driver’s) decision-making
strategy can be characterized by two functions: policy function
π (a |s) controlling how the agent chooses an action, reward function
R(s,a) governing how the agent evaluates states and actions.
Decision-making Strategy Learning with Generative Adver-
sarial Imitation Learning (GAIL). Given a large amount of tra-
jectory data from a human agent (e.g., a taxi driver), each trajectory
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is defined as a sequence of decisions, namely, state-action pairs,
τ = [(s0,a0), (s1,a1), ..., (sL ,aL)], with L as the trajectory length.
Generative adversarial imitation learning (GAIL) [10, 33] was pro-
posed to inversely learn both the policy function π (a |s) and reward
function R(s,a) employed by the agent. As defined in [10], the strat-
egy learning problem can be modeled as the following constrained
optimization problem, namely, finding the policy π with maximum
causal entropy (eq.(1)), and finding the reward function R such that
the expected reward of a trajectory under π matches that under
the empirical policy πE from observed data (enforcing eq.(2)).
MaximumCausalEntropy Inverse Reinforcement Learning
max
R

min
π

: − H (π ), (1)

s.t. : Eπ [R(s,a)] = EπE [R(s,a)], (2)∑
a∈A

π (a |s) = 1,∀s ∈ S, (3)

where H (π ) = Eπ [
∑T
t=0 γ

t (− logπ (at |st ))] is the γ -discounted
causal entropy π , Eπ [R(s,a)] = Eπ

[ ∑T
t=0 γ

tR(st ,at )
]
represents

the expected reward of a trajectory under the policy π , and πE
(empirical policy) represents the policy observed from the collected
data. GAIL [10] proves that the above maximum causal entropy
inverse reinforcement learning problem is equivalent to solving a
minimax problem (eq.(4)) with the objective as a Jensen-Shannon
(JS) divergence as follows.

max
R

min
π ∈Π

−λH (π ) + Eπ [log(R(s,a))] + EπE [log(1 − R(s,a))], (4)

with Π as the policy probability simplex space, guaranteeing con-
straint eq.(3), λ as the Lagrangian multiplayer. As a result, a gen-
erative adversarial networks (GANs) framework [8] is naturally
employed to solve the strategy learning problem with a generator
networkG (equivalent to the policy function π ) and a discriminator
network D (equivalent to the reward function R). However, the pol-
icy and reward functions are learned as two deep neural networks,
thus it is hard to explain what knowledge and aggregated features
the two networks have learned from human agents’ trajectory data,
i.e., depending on what complex factors, human agents make deci-
sions. Below, we formally define the strategy explanation problem
and outline our solution framework.

2.2 Strategy Explanation Problem and Solution
Problem Definition. We aim to extract human understandable
knowledge from the learned policy (π ) and reward (R) nets in the
GAIL model to understand why and how a human agent (e.g., a
taxi driver) makes a certain decision a at a state s .
Solution Framework. The proposed strategy explanation prob-
lem is challenging, because the policy function π learned from
GAIL is a deep neural network (DNN), which as a blackbox model
is hard to explain. Fig. 2 outlines our proposed explainable genera-
tive adversarial imitation learning (xGAIL) framework (using taxi
driver passenger-seeking strategy as an example). xGAIL takes two
sources of data as inputs and consists of three stages, including (1)
data preprocessing, (2) GAIL, and (3) Strategy Explanation Module,
which will be detailed below from Sec 4 to Sec 5.
3 STAGE 1: DATA PREPROCESSING
In this section, we take a taxi driver passenger-seeking process as
an example to illustrate the data preprocessing mechanism. The

Figure 2: xGAIL Solution Framework
novelty of the data preprocessing is our design of the state obser-
vation. Note that the data preprocessing approaches can be easily
applied to other scenarios, such as commuter transit mode choice,
personal vehicle route choice, etc.

3.1 Data Description
We employ two datasets, the GPS dataset and the road map dataset,
in this study.
GPS dataset. Taxi trajectory dataset records were collected from
July to September in 2016 in Shenzhen, China. The dataset recorded
the traces from 17, 877 unique taxis. For each taxi, a GPS point
was collected every 30 seconds on average. There were a total of
51, 485, 760 GPS points generated in a day. Each GPS point contains
five attributes, a unique taxi ID, a timestamp, a latitude, a longitude,
and a passenger indicator. The passenger indicator is a binary value
with 1, indicating the taxi was occupied, and 0, indicating it was
vacant.
Road map dataset. The road map data were collected from Open-
StreetMap [1] for the region of Shenzhen in China, ranging from
22.44◦ to 22.87◦ in latitude and 113.75◦ to 114.63◦ in longitude.
There are 455, 944 road segments collected in this region.

3.2 Map and Time Quantization
The human agents (i.e., taxi drivers) traverse the spatial and tempo-
ral spaces when seeking and serving passengers. We define those
states that a driver can visit by i) dividing and discretizing Shen-
zhen city into equal side-length (spatial) grid cells with a given
side-length l = 0.01◦ in latitude and longitude, ii) a day into 288
five-minute (temporal) intervals. By eliminating grid cells in the
ocean and unreachable regions in the city, there are a total of 1, 934
remaining cells that are well-connected by the road network. Each
cell is represented as ℓ = (x ,y), where x and y are longitudinal and
latitudinal cell indexes, respectively. A spatial-temporal state s is
then uniquely defined by a spatial gird cell ℓ, a time interval t , and
the day of the week d , i.e., s = (x ,y, t ,d).

3.3 State Observation of A Human Agent
Each human agent makes a sequence of decisions to traverse geo-
graphical locations over time when seeking for passengers. Each
decision (e.g., which direction to go) made by the driver is based on
various features (such as traffic) in the surrounding urban environ-
ment of the nearby area, referred to as the state observation of the
driver. Given a spatial-temporal state s , we model a taxi driver’s ob-
servations as the state observation Os = [O1,O2,O3,O4,O5], with
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Figure 3: GAIL model with a policy net π and a re-
ward net R trained as a GAN.

five statistics for the surrounding 15 × 15 grid cells of s , including
O1 the number of pickups, O2 the traffic volume, O3 traffic speed,
O4 the waiting time; and O5 the distances to points of interests
(POIs), such as train stations, airports, shopping malls, ports, and
hospitals in the city. For example, Fig. 4a shows an example of the
traffic volume observation map O2 of a state (the blue box at the
center).

4 STAGE 2: STRATEGY LEARNINGWITH
GAIL

Now, we introduce the structure of the generative adversarial im-
itation learning (GAIL) model [10] for leaning a human agent’s
decision-making strategy (from his/her generated data).

A GAIL model trains a generator network for the policy function
π (a |s), and a discriminator network for the reward function R(s,a)
(see Fig. 3).
The generator network (i.e., policy) takes the state observation Os ,
the high dimensional feature maps, as the input, and outputs the
decision-making policy π (a |s). Based on the learned policy, an
action (namely, a direction to go to find the next passenger) is then
randomly chosen.
The discriminator network (i.e., reward) takes both the state obser-
vation Os of state s , and the sampled action a as input, and outputs
the reward signal which indicates to what degree the generated
state-action pair matches the demonstrated trajectories.

When implementing GAIL, we employ convolutional neural
networks [13]. For the policy and reward nets, they both consist of
three convolutional layers with ReLU activation functions. Given
the input state observation with the size of 5 × 15 × 15 (5 channels
are the number of pickups, traffic volume, speed, waiting time, and
distances to POIs), we use a kernel size of 3×3 for the convolutional
layers with padding of size 1. The sampling process for actions
makes the entire network no longer differentiable, so that it is not
trainable by backpropagation [9]. We, thus, use the Reinforcement
Learning (RL) based approach [25] to train the network, i.e., using
the output of reward net as signals to update the policy net.
5 STAGE 3: STRATEGY EXPLANATIONWITH

xGAIL
The trained GAIL model recovers the taxi driver’s strategy. Given a
state and its state observation, the policy net predicts an action just
as the driver does. However, the policy and reward nets both are
“black boxes”. The inscrutable internal processes cause considerable
difficulty in explaining why and how the nets generate that spe-
cific strategy and make that specific action. In other words, what

(a) Real state
π (a1) = 0.30

(b) AM
π (a1) = 0.98

(c) L2 AM
π (a1) = 0.42

(d) SpatialAM
π (a1) = 0.41

Figure 4: O∗
2 obtained from different AM approaches

"knowledge" the nets learned remains unknown. To solve this prob-
lem, in this section, we formally propose Explainable Generative
Adversarial Imitation Learning (xGAIL), a strategy explanation
framework to extract human understandable knowledge from the
trained nets. Our xGAIL framework is designed to provide both
global and local explanations for the learned policy and reward
nets. We use the policy net as an example to illustrate xGAIL. The
xGAIL framework consists of the global explanation and the local
explanation. The global explanation aims to reveal the state obser-
vation O∗

s (a) which leads to the highest probability of choosing a
target action a, and the local explanation extracts the most effective
local features.

5.1 SpatialAM: Global Explanation Method for
GAIL

Design Goal.Given a policy net π , the goal of the global explanation
is to extract the state observation O∗

s (a) that maximizes the proba-
bility of a target action a in policy π (a |s) among all the actions. It
thus can be formulated as below,

O∗
s (a) = argmax

Os

π (a |Os ). (5)

Limitations of state-of-the-art works.This objective function has been
extensively studied in the literature as an activation maximization
(AM) problem [17, 24, 28]. For example, the AM model from [24]
aims to find the image that maximizes the likelihood of being clas-
sified as a goose, which introduces an L2 regularization term to
guarantee the obtained image is close to a real image, without over-
fitting. The optimal input can be obtained by gradient ascent via
back propagation.

However, for our policy net explanation problem, the input traf-
fic state observations possess intrinsic geographic characteristics,
i.e., spatial auto-correlations across grids. As a result, the activa-
tion maximization model with L1 and L2 norm regularization can-
not preserve these spatial auto-correlations in the obtained O∗

s (a).
Fig. 4(b)(c) show O∗

s (a) (in traffic volume distribution) obtained
using AM without regularization and with L2 norm regularization.
Comparing to the real state observation in Fig. 4(a), neither of them
captures the real traffic volume distribution. To tackle this problem,
we propose Spatial Activation Maximization (SpatialAM).
Spatial Activation Maximization (SpatialAM). To enable activation
maximization to outputO∗

s (a) that preserves the spatial auto-correlation
pattern presented in the real world observations, we introduce a
new spatial regularization term into the AM problem (to capture
the realness of a state observation) as

Realness(Os (a)) = −Dist(Os (a), Ōs (a)), (6)
whereDist(Os (a), Ōs (a)) is themean square distance ofOs (a) from
Ōs (a), which is the mean state observation from the demonstration
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Figure 5: SpatialAM Figure 6: SpatialRISE

data, and captures what a real state observation looks like. And the
objective function of SpatialAM is

O∗
s (a) = argmax

Os

{π (a |Os ) + λ · Realness(Os )}, (7)

where λ is the weight of the regularization term. The introduced
spatial regularization term guides the activation maximization prob-
lem to find a state observation that maximizes the probability of a,
and minimizes the difference to the mean state observation Ōs (a).
Fig. 4(d) shows O∗

s (a) obtained by SpatialAM, is clearly closer to
the real state observation (and with a higher probability of 0.41 for
the target action a).

5.2 SpatialRISE: Local Explanation Method for
GAIL

Post-hoc local interpretation approaches help us learn the local
explanations of neural networks. We aim to answer the question
“which areas of the input layer play important roles in producing
the policies in the learned policy and reward nets”. One of the basic
ideas behind the local explanation is to generate an importance map,
which can show how important each entry of the input is to the
prediction of the model.

5.2.1 Spatial randomized input sampling explanation. Randomized
Input Sampling Explanation (RISE) [20], as a local interpretation
approach, can discover the importance map of the input by probing
the model with randomly masked versions of the input image and
obtaining the corresponding outputs. The masks are then aggre-
gated into the importance map according to the corresponding
outputs. However, when being applied to the GAIL model that
learns spatial features, RISE has two limitations. First, it does not
segment the input observation map based on intrinsic geographic
characteristics. As a result, the high importance areas identified by
RISE are large and do not align meaningfully with the functional
region of the city. Second, RISE employs a bi-linear interpolation
method to generate the mask values, which ignores the spatial auto-
correlation of the features. This may lead to drastically different
importance values being assigned to highly similar locations in the
same functional region of the city. To deal with these challenges,
we propose a novel spatial importance discovery model named Spa-
tialRISE to discover the importance of geographic regions with
respect to a specified output in the learned GAIL model. It consists
of three steps: map segmentation, mask generation, and importance
map generation.

5.2.2 Map segmentation. As LIME [21] tries to discover the im-
portance of the meaningful super-pixels in the image, we want to
discover the importance of the functional regions of the city. To

Algorithm 1 Observation map segmentation
Input: observation map O, threshold Git of |Gi∗ |;
Output: Clusters C for all grids;
1: C = {}, k = 0;
2: Calculate Gi∗ for each grid дi based on O;
3: for Each grid дi in the observation map do
4: if |Gi∗ | > Git then
5: if дi is neighboring to any grid in an existing cluster c j (0 <

j ≤ k) and have the same sign of Gi∗ then
6: Add дi to the cluster c j ;
7: else
8: k = k + 1;
9: Create a new cluster with дi as the first grid in the

cluster ck ;
10: end if
11: else
12: k = k + 1;
13: Consider дi itself as an independent cluster ck ;
14: end if
15: end for
16: Return the clusters C = {c1, ..., ck } for all grids.

do this, we first segment the map into functional regions. Within
each functional region, the observation values are expected to have
strong spatial auto-correlation.

We measure the strength of spatial auto-correlation at each loca-
tion using a Local Getis-Ord Gi∗ statistic[7]. The local Gi∗ statistic
can be calculated via eq.(8),

Gi∗ =

∑n
j=1wi, jx j − X̄

∑n
j=1wi, j

S

√
n
∑n
j=1w

2
i, j−(

∑n
j=1wi, j )2

n−1

, (8)

where x j is the observation value at location j, wi, j is the spatial
neighborhood indicator between location i and j, and n is the total
number of locations, X̄ =

∑n
j=1 x j/n, and S =

√∑n
j=1 x

2
j /n − (X̄ )2.

In this work, wi, j = 1 if i and j are geographically neighboring
to each other, otherwisewi, j = 0. A large positive local Gi∗ score
indicates a hotspot (high observation values clustered), and a small
negative local Gi∗ score indicates a coldspot (low observation val-
ues are clustered). Thus, we can segment the map into clusters
according to the local Gi∗ scores of the grids given cut-off thresh-
old. The cluster algorithm is shown in Algorithm 1.

5.2.3 Mask generation. With the segmented observation maps, we
are able to take the spatial auto-correlation into consideration to
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(a) Learning curves with different λ’s (b) Impact of λ in SpatialAM

Figure 7: SpatialAM evaluation results Figure 8: Importance map evaluation

generate masks. The mask values within each cluster have strong
spatial auto-correlation. To generate mask values for the grids in
each cluster, we first randomly sample an overall trend tr ∈ {1, 0}
for each cluster, i.e., preserving or covering the original observation
values, with the covering probability p. Then, inside each cluster,
we assign mask value,m(i), to grid i according to eq.(9),

m(i) =

{
1 − α ∗ random(0, 1), if tr = 1;
α ∗ random(0, 1), if tr = 0,

(9)

where α ∈ (0, 1) is the weight of the randomness. The mask gener-
ation method can adapt to all kinds of random distributions. In this
paper, we employ uniform distribution to generate random values,
which makes sure that the mask values of the grids in the same
cluster are within an expected range.

5.2.4 Importance map generation. Once we generate a set of masks,
we can estimate the importance map for each observation map.
Since we introduce randomness in each cluster, the importance
map produced by our proposed SpatialRISE can tell the pixel-wise
importance.

The framework of SpatialRISE is shown in Fig. 6. The input
of the policy net is Is , and π (a |Is ) is the output of the policy net
regarding action a. Letm : Λ → [0, 1] be a random mask, and M
be the population of all possible masks following distribution D.
Is ⊙m is the masked input. Then the importance map IptIs ,π ,a of Is
regarding the output of action a in policy net π can be calculated by
the weighted sum of the masks with the model output π (a |Is ⊙m)

as the weight for each maskm:
IptIs ,π ,a =

1
E(M)

∑
m∈M

π (a |Is ⊙m) ·m · P[M =m]. (10)

The intuition is that π (a |Is ⊙m) is high if entries of Is preserved
by maskm are important. Empirically, we can estimate IptIs ,π ,a by
sampling a set of N masksM ′ according to D:

IptIs ,π ,a ≈
1

E(M ′) · N

∑
m∈M ′

π (a |Is ⊙m) ·m. (11)

6 EVALUATION: A CASE STUDY ON
PASSENGER-SEEKING STRATEGIES

In this section, we evaluate our xGAIL framework on a pre-trained
GAIL model to interpret what knowledge the policy net (learned
from GAIL) has learned. We have released our code and data2 to
support the reproducibility.
2https://github.com/paperpublicsource/xgail

6.1 Model Performance Evaluation
We conduct experiments to evaluate the effectiveness and efficiency
of our proposed SpatialAM and SpatialRISE.

6.1.1 SpatialAM model evaluation. We evaluate SpatialAM algo-
rithm by comparing it with baselines and examining the impact of
the choice of regularization weight λ.
Comparison with Baselines. We first compare our SpatialAM
model with two baseline models, including Activation Maximiza-
tion with L1-norm and L2-norm regularization terms [2]. Fig. 7
shows the comparison results about the learned policy and the real-
ness of state observation (measured by the realness regularization
term Realness(O∗

s (a))) with different regularization weight λ rang-
ing from 1 to 100. It clearly indicates that when increasing λ, the
policy probability π (a |O∗

s ) decreases, and the realness of state ob-
servation increases for all methods, which makes sense because λ
controls how much to maximize the policy vs. maximize realness
of the solution state observation. However, note that when λ is suf-
ficiently large (i.e., λ ≥ 98), all three approaches tend to the similar
high realness, but SpatialAM can always find state observations
with higher policy probability than the baselines. The comparisons
show that SpatialAM can generate like real state observations with
higher policy probabilities, thus, it provides a better view of the
global explanation of what an ideal state observation looks like for
the human agent to choose a target action a.
Impact and Choice of λ. Fig. 7a shows an example of the learning
curve of SpatialAM with λ = 1, 20, and 98, respectively, the y-axis
is the output of the objective function defined in eq.(7), the x-axis
is the number of iterations. The results illustrate that the learning
process of our proposed SpatialAM converges to a state observation
O∗
s with monotonically increased objective function by gradient

ascent.
λ is designed to balance the trade-off between maintaining the

spatial auto-correlation in the generated state observation, and
obtaining maximum output policy. Fig. 7b shows the optimal out-
put with different settings of λ, which illustrates that, with the
increase of λ, the maximum policy π (a |O∗

s ) obtained by SpatialAM
decreases, and the realness regularization term Realness(O∗

s (a)) in-
creases. Fig. 7b shows that when λ is sufficiently large, i.e., λ ≥ 98,
the spatial regularization term converges to a large realness regular-
ization term Realness(O∗

s (a)) ≥ −5e−3, i.e., small distance from true
state observation. On the other hand, the policy π (a |O∗

s ) converges
to 0.41. As a result, we select λ ≥ 98.
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Table 1: Gap between the maximum policy from real states
and the policy from SpatialAM

Mean gap Max gap Min gap
0.2882 0.3885 0.1113

To better illustrate the ability of SpatialAM in generating like-
real observations and maximizing the policy probability of a target
action, Table 1 summarize the statistical results, by comparing the
maximum policy obtained by SpatialAM vs that from the dataset.
Overall different target actions, SpatialAM can generate observa-
tions with on average 0.2882 (i.e., the mean gap) more policy prob-
abilities than that from the dataset.

6.1.2 SpatialRISE model evaluation. We first quantitatively evalu-
ate the importance map generated by SpatialRISE, then we compare
spatialRISE with RISE, PixelRISE, and SolidRISE, respectively. Im-
portance map evaluation. The question we aim to answer in this
evaluation is, “Is the important region found by SpatialRISE
really important to the maximum policy?” The more impor-
tant a region is, the greater its impact on the output policy should
be. We propose a measurement that the impact of a region on the
output policy can be quantified by the drop amount of the output
policy when covering the region in a channel, i.e., a state obser-
vation obtained by SpatialAM. Therefore, we make comparisons
in the output policy drops between covering the most important
regions found by SpatialRISE and covering other regions. Fig. 8
shows the results of the output drops when covering different re-
gions. The x-axis is the number of channels, i.e., state observations,
where the most important regions found by SpatialRISE are covered.
For example, “3 chs” means that in 3 out of 4 channels the most
important regions found by SpatialRISE are covered, while in the
remaining channel a region other than the most important one
is covered. Since there are multiple regions other than the most
important one, we just show the maximum output drops as the
y-axis in Fig. 8. The results prove that covering the most important
regions in all 4 channels leads to the most significant output policy
drop. In other words, the impact of the SpatialRISE detected regions
is much greater than the impacts of other regions. Thus, the im-
portant region found by SpatialRISE is the key to the maximum
policy.
Comparison experiments. We compare our proposed Spatial-
RISE with the following baselines:

• RISE [20]: masks are generated with bilinear interpolation;
• RISE with pixel-independent masks(PixelRISE): The
mask value in each grid is independent with each other;

• RISE with solid cluster masks(SolidRISE): We first par-
tition the underlying spatial region into clusters using Algo-
rithm 1. The masks are generated with respect to the clusters,
such that all grids in the same cluster are assigned with the
same random number.

Comparison Results. For all baselines, we set the zero mask value
probability p = 0.3. Taking the observation channel of “the number
of pickups” as an example, Fig. 9a shows the importance map gener-
ated from the original RISE. Although it provides the importance of
grids, it does not take the underlying geographic information into
consideration. Thus, the city functional regions, such as Dalang

(a) RISE (b) PixelRISE (c) SolidRISE (d) SpatialRISE

Figure 9: Importance map on O1 from different methods

business center and Longhua Market marked by the red boxes in
Fig. 9a, cannot be detected. Fig. 9b is the importance map generated
by RISE with pixel-independent masks, which scatters noise with
no reliable information of importance. The reason is that the pre-
trained policy net is not sensitive to the change of individual pixels
with the pixel-independent masks. Fig. 9c represents the impor-
tance map generated via RISE with solid cluster masks. The clusters
extracted by Algorithm 1 (the white boxes in Fig. 9c) identify the
two nearby functional regions, as highlighted in Fig. 9a. However,
since the mask values in the same cluster are the same, the results
can only provide cluster-level importance, rather than pixel-wise
importance interpretation in finer granularity. Fig. 9d is the impor-
tance map using our proposed spatialRISE. It is able to distinguish
the geographic functional regions, as well as provide the pixel-wise
importance, i.e., the importance score of each pixel integrates both
region-level and pixel-level importance information.

6.2 Explainable knowledge Learned from
Passenger-Seeking Strategies

To interpret how the input observations affect the taxi driver’s
passenger-seeking policy, we generate optimal state observations
O∗
1 ,O

∗
2 ,O

∗
3 ,O

∗
4 in different locations, which maximize the policy

on a target action via SpatialAM, and use SpatialRISE to generate
importance maps for state observations. By examining the results
using SpatialAM and SpatialRISE for different locations, we observe
and present three interesting findings which explain how human
taxi drivers make decisions for seeking passengers.

6.2.1 Experimental results of SpatialAM. Fig. 10a-d & Fig.10i-l
present the generated observation maps maximizing the policy
at location loc1 on action a1 (northeast direction) and loc2 on ac-
tion a5 (southwest direction) respectively. Taking Fig. 10a as an
example, Fig. 10a-d are four observation maps of O∗

1 (a1) (number of
pickups), O∗

2 (a1) (traffic volume), O∗
3 (a1) (traffic speed), and O∗

4 (a1)
(waiting time), respectively. Except for the unreachable grey area,
the color map spanning from white to red corresponds to the small
to large observation values. For example, a grid cell in Fig. 10a
with white color means that in this grid cell the number of pickups
is close to 0, and a grid cell with red color means the number of
pickups in it is close the the maximum of the map. These plots show
the global observations of the four input features under which the
driver’s likelihood to go northeast at loc1 and southwest at loc2 is
the highest.

6.2.2 Experimental results of SpatialRISE. The importance maps
produced by SpatialRISE for the observations generated by Spa-
tialAM at location loc1 on action a1 and loc2 on action a5 are shown
in Fig. 10e-h & Fig.10m-p. Except the unreachable grey area, the
color map spanning from white to blue indicates the importance
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Figure 10: Results of SpatialAM and SpatialRISE

value ranging from 0 to 1. A grid cell in Fig. 10e, for example, with
dark blue color (value close to 1) means that the value of O∗

1 (a1)
at this grid cell is quite important for obtaining the maximum pol-
icy on action a1, namely, the taxi driver considers the number of
pickups in this particular grid cell heavily, when making decisions.

6.2.3 Knowledge learned from SpatialAM and SpatialRISE results.
Integrating the results of SpatialAM and SpatialRISE, we observe the
following interesting findings which explain what human agents
(i.e., taxi drivers) think about when making decisions:
Finding 1: Taxi drivers prefer the regions with large num-
bers of pickups. Take the case of location loc1 and action a1 as
an example, Fig. 10a shows that there are many pickups in the
grids in the direction of the northeast. Fig. 10e indicates that the
taxi driver pays her attention to the grids in the direction of the
northeast where there is Longhua Market. Recall that both Fig. 10a
and Fig. 10e are based on the maximized policy of the action to-
wards northeast, and generated time slot for the state observation
in Fig. 10a is 6:50 pm- 6:55 pm which is the evening rush hours.
Thus, the taxi driver prefers northeast direction primarily because
of a large number of pickups near Longhua Market in the evening.
A similar observation can be found in the case of loc2 and action
a5 from Fig. 10i & Fig. 10m.
Finding 2: Taxi drivers prefer to avoid visiting regions with
high traffic volume and long waiting time. For the case of loca-
tion loc1 and action a1, Fig. 10b and Fig. 10d suggest that the traffic
volume and waiting time in the direction of the southeast are high.
Fig. 10f and Fig. 10h show that the driver cares much about the grids
in the southeast direction, where there is Shenzhen North Railway
Station. As a result, the high traffic volume and waiting time near
the railway station propel the driver choosing to go another direc-
tion (northeast in this case). The possible reason is that the high
traffic volume and long waiting time indicate traffic jams near the
railway station. The driver wants to avoid approaching these areas.
A similar finding can be interpreted in the case of location loc2 and
action a5 from Fig. 10j & l and Fig. 10n & p.
Finding 3: Taxi drivers do not prefer regions with high traf-
fic speeds. From the case of location loc1 and action a1, Fig. 10c
and Fig. 10g indicate that the high traffic speed in the southwest

direction leads the driver to go to another direction, i.e., northeast.
This is somehow counter-intuitive because a high traffic speed
usually means a good traffic condition, which taxi drivers should
prefer. However, in fact a high traffic speed probably also imply
that the path is for vehicles only, such as highway and expressway.
Therefore, there are few pedestrians. Taxi drivers know that they
are unlikely to find passengers.

7 RELATED WORK
In this section, we summarize the literature from two related areas,
imitation learning (IL) and explainable artificial intelligence (XAI).

Imitation learning (IL), also known as learning from demon-
strations, inverse reinforcement learning (IRL), inversely recovers
the agent’s policy and reward functions from the collected demon-
strations. IL approaches [4, 33, 34] have been proposed based on dif-
ferent principles, including maximum entropy, maximum causal en-
tropy, and relative entropy principles [4, 33, 34]. All the approaches
assume that the underlying reward function is a linear function and
features have to be manually extracted. Generative adversarial imi-
tation learning (GAIL) [10], and its extension works cGAIL [31] and
adversarial IRL [6] learn the non-linear policy and reward functions
as two deep neural networks (DNNs), with theoretical connections
to generator and discriminator in generative adversarial networks
(GANs) structure. These works either rely on manually extracted
features or learn policies through black-box models (i.e., DNNs)
which make the processes hard to explain the key features human
agents are considering. In this work, we make the first attempt to
tackle this challenge.

Explainable artificial intelligence (XAI) as an emerging topic
has been extensively studied in recent years [5, 16, 29], which all
aim to provide explanations of what DNNs capture. In the category
of post-hoc global explanation, Activation Maximization (AM) aims
to generate an input that maximizes the activation of a neuron in
a network [17, 24, 28]. Karpathy et al. provide an analysis of Long
Short-Term Memory (LSTM)’s representations, predictions, and
error types through character-level language models [12]. Kádár
et al.’s word level interpretation approach estimates the amount
of contribution of individual tokens in the input to the final pre-
diction [11]. Augasta et al. introduce a new neural network rule
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extraction algorithm RxREN to overcome the lack of explanation
capability of neural network models [3]. The algorithm prunes the
insignificant input neurons and constructs the classification rules
only with significant input neurons based on reverse engineering
technique [3]. In addition, other research focuses on local expla-
nation. Ribeiro et al. identify an interpretable model, LIME, over
the interpretable representation of a binary vector indicating the
presence or the absence that is locally faithful to the classifier [21].
Petsiuk et al. establish RISE which can generate the importance
maps through tons of pixel masks [20]. Ribeiro et al. put forward
high-precision rules representing local “sufficient” conditions for
predictions [22]. Differing from these works, we focus on a frame-
work to explain what GAIL model learned from human-generated
spatial-temporal data.

8 CONCLUSION
Generative adversarial imitation learning (GAIL) achieves great
success in learning human decision-making strategies from demon-
strated data using deep neural networks (DNNs). However, such
DNN-based models are hard to explain what aggregate knowl-
edge the models learned from data. To bridge this gap, we propose
the explainable generative adversarial imitation learning (xGAIL)
framework which includes two novel techniques, namely, Spatial
Activation Maximization (SpatialAM) and Spatial Randomize Input
Sampling Explanation (SpatialRISE). They can learn global and local
explainable spatial-temporal features, respectively. In particular,
we take taxi drivers’ passenger-seeking strategy as an example to
validate the effectiveness of the xGAIL framework. Our analysis
of a large-scale real-world taxi trajectory data shows interesting
results from two perspectives i) global explainable knowledge of
what nearby traffic condition impels a taxi driver to choose a par-
ticular direction to find the next passenger, and ii) local explainable
knowledge of what key (sometimes hidden) factors a taxi driver
considers when making a particular decision. All the knowledge
we found sheds light on how to promote taxi drivers’ well-being
and improve the quality of taxi services, e.g., reducing the waiting
time, etc. Moreover, our proposed xGAIL framework can be nat-
urally applied to other urban decision-making processes, such as
commuter transit mode choice, and personal vehicle route choice.
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A APPENDIX FOR REPRODUCIBILITY
We have released our code and data3 to support the reproducibility.
Our experiments are running on Red Hat Enterprise Linux 7.2
with a GPU of K40 and CPU of E5-2680. The code released is in
Python 3.7.3. The implementation of neural networks is based on
PyTorch 1.0.14. We also employ Numpy 1.16.4 and Scipy 1.3.0 in
the implementation.

A.1 Details of Data Preprocessing
The road map data includes 21, 000 road segments with six levels
as shown in Fig. 11a. We set a bounding box of Shenzhen city from
22.44◦ to 22.87◦ in latitude and 113.75◦ to 114.63◦ in longitude,
and divide the city into 1km × 1km grids. After filtering out those
grids that taxis cannot reach, there are 1934 valid grids as shown
in Fig. 11b.

(a) Shenzhen road map (b) Map gridding

Figure 11: Shenzhen map data

We collect the information of 23 places of interests (POIs) in
Shenzhen as shown in Fig. 11b, including 5 train stations, 1 airport,
5 popular shopping malls, 8 ports and checking points, and 4 major
hospitals. Based on these POIs, we calculate the Euclidean distance
from the location of each state to the POIs as observation O5 for
each state.

A.2 Detailed Settings of Strategy Learning with
GAIL

Settings of the generator network
The generator net consists of 3 convolutional layers and 3 fully-
connected layers, and between each 2 consecutive convolutional
layers, there is a max pooling layer with filter size of 2 × 1. We use
a kernel size of 3 × 3 for the convolutional layers with padding of
size 1. The output dimensions of the 3 fully-connected layers are
120, 84, 10.
Settings of the discriminator network
In the discriminator network, the input is an input state os size
5 × 15 × 15 and a policy of size 10, before the covolutional layers,
we use a fully-connected layer to map the input to the dimension of
5 × 15 × 15. Then following the same 3 convolutional layers, 2 max
pooling layers as in the generator network. The output dimensions
of the 3 fully-connected layers are 36, 18, 1.
Parameters for training GAIL
During the training process, we apply batch gradient descent ap-
proach to update the generator network and discriminator network,
with a predefined 200 epochs. We employ ADAM with a learning

3https://github.com/paperpublicsource/xgail
4https://pytorch.org/get-started/previous-versions/

rate of 2e−6 to update the parameter of both the generator and the
discriminator networks.

A.3 Detailed Settings of Strategy Explanation
with xGAIL

Implementation of SpatialAM
When implementing SpatialAM, given the location loc of a state s
and a target action a, first, we calculate the distance to POIs based
on the location, and put the coordinates of the location and distance
to POIs in the first channel of the 5 × 15 × 15 state observation Os .
Then, we initialize the rest entries ofOs to 0. For the regularization
term, we extract all of the state observations at loc and calculate
the mean state observation Ōs (a). In the experiments, we employ
λ = 98 if not specified.
Baselines of SpatialAM

• L1 AM: The objective function of L1 AM is shown in Eq.(12).
In the experiment, we employ λ = 0.05.

O∗
s (a) = argmax

Os

{π (a |Os ) − λ · | |Os | |1}, (12)

• L2 AM: The objective function of L2 AM is shown in Eq.(13).
In the experiment, we employ λ = 0.05.

O∗
s (a) = argmax

Os

{π (a |Os ) − λ · | |Os | |2}, (13)

• AM: The objective function of AM is shown in Eq.(14), which
is simply finding the O∗

s (a) to maximize π (a |Os ).
O∗
s (a) = argmax

Os

{π (a |Os ), (14)

The SpatialAM and the baselines are trained using Adam opti-
mizer with an initial learning rate of 5e−3.
Implementation of SpatialRISE
When implementing SpatialRISE, given an input state observa-
tion, first, we obtain the map segmentation by using Algorithm 1
with the threshold Gt

i = 0.8, 0.75, 0.45, 0.5 for O1,O2,O3,andO4
respectively. For mask generation, we employ the weight of the
randomness α = 0.3.
Baselines of SpatialRISE:

• RISE: The original RISE employs bilinear interpolation to
generate masks, there are 2 parameters, i.e., H (H ≥ 15), the
side length of the map after interpolation, and h (h ≤ H ), the
side length of the seed mask. RISE first randomly assign 0 or
1 to each entry of the seed map, then, bilinear interpolation is
used to extend the seed mask to the mask with a side length
of H , finally, the mask with a side length of 15 is cropped
from the mask with a side length of H with random indents.
Here, we employ H = 17 and h = 7 in the experiments.

• PixelRISE: In each entry of the mask, the value of 0 or 1 is
assigned randomly and independently.

• SolidRISE: First, SolidRISE employs the same map segmen-
tation algorithm to obtain the clusters, then, it randomly
assign 0’s or 1’s to all entries inside each cluster. The settings
of the parameters for map segmentation is the same as that
in SpatialRISE.

In SpatialRISE and the baselines, we generate N = 3000 masks,
and calculate the weighted average of the masks to obtain the
importance map according to eq.(11).
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