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THE BIGGER PICTURE The characterization of atomic local environments in a material is important in
many physical and chemical fields. Among various techniques, X-ray absorption spectroscopy (XAS) is
one of the most widely used methods. However, the analysis of XAS is often qualitative and contrastive,
requiring reference spectra from compounds that may not be available. This work introduces a machine-
learning (ML)-based approach that directly predicts the atomic environment labels from the X-ray
absorption near-edge structure (XANES) by training on a large computed XANES dataset. This data-
driven approach shows excellent accuracy exceeding 80% in both computational and experimental tests.
The application of ML models to spectroscopy will likely gather considerable interest in the near future,
with accelerated or even on-the-fly interpretation of spectra directly from experiments. Such ML-acceler-
ated approaches are expected to bring about a transformative leap in the pace of materials discovery
and design.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Analyzing coordination environments using X-ray absorption spectroscopy has broad applications in
solid-state physics and material chemistry. Here, we show that random forest models trained on 190,000
K-edge X-ray absorption near-edge structure (XANES) spectra can identify the main atomic coordination
environment with a high accuracy of 85.4%and all associated coordination environmentswith a high Jaccard
score of 81.8% for 33 cation elements in oxides, significantly outperforming other machine-learning models.
In a departure from prior works, the coordination environment is described as a distribution over 25 distinct
coordination motifs with coordination numbers ranging from 1 to 12. More importantly, we show that the
random forest models can be used to predict coordination environments from experimental K-edge XANES
with minimal loss in accuracy. A drop-variable feature importance analysis highlights the key roles that the
pre-edge and main-peak regions play in coordination environment identification.
INTRODUCTION

X-ray absorption spectroscopy is an important technique for

probing the local environments, i.e., atomic coordination sym-

metries, the number and chemical identities of neighboring

atoms and oxidation states, in a material.1–3 The X-ray absorp-

tion spectroscopy (XAS) spectrum consists of the X-ray absorp-
This is an open access article und
tion near-edge structure (XANES) at low energy and the

extended X-ray absorption fine structure (EXAFS) at high energy.

While quantitative analysis of the EXAFS is relatively mature,

analysis of the XANES is challenging due to its sensitivity to

many factors including coordination number (CN),4,5 orbital hy-

bridization,6 spin state,7 oxidation state,8 and symmetry9 of the

central absorbing atoms. However, the XANES signal usually
Patterns 1, 100013, May 8, 2020 ª 2020 The Author(s). 1
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dominates the XAS and, in principle, provides richer infor-

mation regarding the coordination environments compared

with EXAFS.

A typical analysis of XANES relies on comparisons between

experimentally measured spectra from well-known com-

pounds.10,11 There have been attempts at quantitative inter-

pretations of XANES spectra using principal component anal-

ysis12–14 and linear deconvolution methods.15 These

approaches seek to break down the XANES of a

multi-component system into individual component spectra,

which provide the statistical basis for estimating the presence

and ratios of individual species. However, these techniques

are difficult to apply to systems that do not have well-estab-

lished reference spectra. Theoretical calculations based on

time-dependent density functional theory (DFT),16 full multiple

scattering (FMS),17,18 and Bethe-Salpeter equation ap-

proaches19 provide an alternative means of obtaining the

XANES of any material. Recently, we have developed the

first-of-its-kind large, public database of X-ray absorption

spectra (XASDB).20,21 Based on the FEFF FMS code,18

580,000 K-edge XANES spectra of over 52,000 crystals in

the Materials Project have been calculated and are freely

available in the XASDB at the time of writing.22 This database

not only provides an important reference for experiments but

also opens new avenues for large-scale quantitative XANES

analysis. For example, we have previously shown that an

ensemble-learning spectra matching algorithm can achieve

an 84.2% accuracy in identifying oxidation state and local

environment by matching unknown spectra with computed

spectra in the XASDB.20

The extraction of coordination environment information

from the XANES is akin to that of image recognition, a field

in which machine-learning (ML) techniques have made great

strides. Indeed, there have been attempts to apply ML to

quantitative and qualitative XANES analysis. For example,

Timoshenko et al.23 have demonstrated that neural networks

can predict the CN of Pt atoms from L-edge XANES spectra

of metallic nanoparticles. Carbone et al.24 have also

shown that convolutional neural networks (CNNs) can predict

the coordination environments of 3d transition-metal species

from site-specific K-edge XANES with an impressive

accuracy of 86%. However, the work focused on three types

of well-defined coordination, i.e., tetrahedral, square pyra-

midal, and octahedral, and as acknowledged by the

authors themselves, the dominant octahedral environment

makes up 64% of the total data. In addition, previous works

have reported that material information, such as chemical,

elemental, and geometric information, can be obtained from

the interpretation of calculated oxygen K-edges ELNES/

XANES spectra of metal oxides and SiO2 using decision-

tree methods.25 Very recently, Suzuki et al.26 have used L-

edge XANES or electron energy loss spectra of MnO in

conjunction with a regression model to capture crystal-field

parameters.

Despite these advances, two crucial gaps remain. The main

limitation is that previous works treated coordination environ-

ment identification as a classification problem between mutu-

ally exclusive labels. In reality, the coordination environment

can be represented along a continuum. For instance, when a
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species in a perfect regular octahedron is displaced toward

one of the vertices, its coordination environment becomes

increasingly square-pyramidal-like but still retains features of

octahedral coordination. A rigorous treatment of coordination

environment therefore needs to define how ‘‘square-pyrami-

dal-like’’ and ‘‘octahedron-like’’ the coordination environment

is. A second major limitation is that previous works focus

either on a very narrow set of chemistries or environments us-

ing experimental XANES data23 or a somewhat broader set of

chemistries and environments using computed XANES data

only.24 Given the well-known errors in computed lattice pa-

rameters and XANES, it is unclear how ML models trained

on large and diverse computed XANES can be applied to

experimental XANES.

In this work, we comprehensively address the aforemen-

tioned limitations and develop an approach to identify local

environments in oxides from K-edge XANES using random

forest models. A random forest classification model is an

ensemble model in which a multitude of decision trees are

constructed by using different subsets of the original data,

and the model averages the output from the individual trees

to improve model accuracy and reduce overfitting. In contrast

to prior models, CNs up to 12, and a total of 25 distinct coor-

dination motifs (CMs), which are enumerated in Figure S1, are

considered. It should be noted that while the 25 CMs provide

a reasonably thorough description of local geometry in crys-

tals, they are not exhaustive. The model accuracy is assessed

by correctly predicting the ranking of the coordination envi-

ronments with their probabilities above a certain threshold,

for example, predicting a six-coordinated atom to have octa-

hedral, pentagonal pyramidal, and hexagonal planar, in

decreasing probability. This is a much more comprehensive

yet difficult problem to solve than predicting a single CM;

correctly predicting only the dominant CM (e.g., octahedral),

but not the secondary CMs will still be classified as an inac-

curate prediction under our definition. High prediction accu-

racy of ~85.4% was achieved over 33 cations in oxides,

covering most technologically relevant cation species

including alkali, alkaline, metalloid, transition metals, post-

transition metals, and carbon (Figure 1). Most importantly,

we demonstrate the augmentation of the training data with

broadened/compressed spectra to mimic the effect of DFT

lattice parameter prediction error on spectra. The resulting

models can be directly applied to identify coordination envi-

ronments from experimental XANES with minimal loss of

accuracy.

RESULTS

Dataset Construction
The training data were constructed from the XASDB of

~190,000 site-specific K-edge XANES of ~22,500 oxides in

the Materials Project.20–22 To the authors’ best knowledge,

our dataset represents the broadest coverage of cation ele-

ments to date in the study of XANES. Figure 1 provides a

summary of the total dataset used in this work. Cation ele-

ments with atomic number greater than 52 were excluded

due to the lack of distinguishable K-edge spectral features.

From each spectrum, an energy window of �5 eV to 45 eV
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from the spectral absorption edge was extracted and con-

verted to a vector of 200 intensity values using linear interpo-

lation. The edge energy (E0) was determined from the

maximum of the first-order derivative. This is the strong scat-

tering XANES region covering the pre-edge, main-peak, and

post-peak spectral features.27 All three regions have been

shown to be critical for the identification of local

coordination environments.24 The intensity vector was

then normalized such that the maximum intensity has a value

of 1. The experimentally measurable structure-wise spectra,

i.e., the average of all spectra for a particular absorbing

element in a structure, were also included in the training data.

In our previous work,20 we found that the broadness of the

computed XANES feature is sensitive to the lattice param-

eter. The lattice parameters and bond-length effects on the

XANES features have been previously investigated by Timo-

shenko et al.28,29 whereby bond lengths were varied and sub-

sequent calculations were performed on the distorted struc-

tures. In our case, we have found that simple spectra

augmentation by compressing or broadening the spectra

achieves similar results.20 To improve the robustness of the

classification models, we split the initial dataset into 80%

training and 20% test data and further augmented the

training dataset by randomly sampling 30% of spectra and

applying broadening or compression of ±5 eV in

energy range to mimic the variations in feature broadness.

This spectral-shape distortion corresponds to up to 7%

variation in the lattice parameters, which exceeds the ~5%

systematic errors introduced by the Perdew-Berke-

Ernzerhof (PBE)30 generalized gradient approximation func-

tion used in the Materials Projects for crystal structure

optimization.
For each site, the coordination

environment is defined as the com-

bination of the CN and the CM. Fig-

ure S1 provides a comprehensive

enumeration of the CMs considered in

this work. The number of spectra for

each element is shown in Figure S2.

Coordination environment determination

for a known structure was carried

out using the algorithm by Zimmermann

et al.,31 as implemented in pymatgen32

and matminer.33 The algorithm consists

of two steps. The first step identifies

the number of bonded neighbors to

an atom based on the Voronoi tessella-

tion method. The solid angle weights of

all neighbors are used to determine a

site CN order parameter (OP) that

describes how consistent a site is

with a certain CN. The CN OP values

range from 0 to 1, with 1 representing

perfect resemblance. An OP vector p
!

is constructed for each site for CNs ranging from 1 to 12,

as follows:

p
! = fp1;p2;p3;p4;.;p12g; where

X12
i = 1

pi = 1; (Equation 1)

where pi denotes the OP for a CN of i. CNs greater than 12 are

not considered due to their extremely low counts in the data-

set, as shown in Figure S3. p
!

is a more robust statistical rep-

resentation of a CN compared with using a single CN value.

For example, a site may have p4 = 0.2 and p6 = 0.8, indicating

that it mostly resembles a CN of 6 and shares some similarity

with a CN of 4. This is in contrast to a single-valued CN that is

sensitive to radius cutoffs used to determine neighbors and

classification. In practice, the CN labels are generated by

setting a cutoff for pi and then concatenating the probability-

sorted CNs (see Figure 1). In the second step, the CM is deter-

mined by matching the neighbors identified in the first step to

prototype motifs. For example, the 6-fold coordination can

result from hexagonal planar, octahedral, and pentagonal py-

ramidal coordination. Again, a vector of OPs q! based on 25

prototype motifs is computed for each site, as follows:

q! =
�
qsingle bond 3 p1;.;qtetrahedron 3 p4;qoctahedron

3 p6;qhexagonal planar 3 p6;qpentagonal pyramidal

3 p6;.;qcuboctahedra 3 p12

�
;

where qi denotes the OP for a CM prototype of i. The CNOPs are

factored into the vector of CMOPs q!. The CMs are not mutually

exclusive and hence their OP sum will not be 1. In this step, we

did not consider CN9, CN10, and CN11, since they do not
Patterns 1, 100013, May 8, 2020 3
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have dedicated CMs. Similarly, the CM labels are generated by

setting a threshold for CM and concatenating the probability-

sorted CMs, as shown in Figure 1. Our strategy of using ranking

labels provides a rich representation of the coordination environ-

ment. The ranking labels of CMOPs were encoded for a specific

type of CN. For example, we took into account only

fqoctahedron 3p6;qhexagonal planar 3p6;qpentagonal pyramidal 3p6g for

generating CM ranking label of CN = 6 (see Experimental Pro-

cedures for details).

The coordination environment classification task can then be

divided into two sequential steps powered by two separate

models for each element. In the first step, theCNmodel identifies

the CN ranking label from the spectra, and in the second step the

CM model identifies the CN-specific CM ranking label. The

models are trained for each element as the characteristic XAS

absorption edge energy follows a power law with atomic number

and is well separated.34 The absorbing species can be identified

with 100% accuracy from simply examining the spectral energy

range. This domain knowledge significantly reduces the problem

complexity and is expected to improve model accuracy. Eventu-

ally, the coordination environment recognition problem becomes

a two-step multi-label classification problem, whereby an ab-

sorption spectrum might reflect a statistical ensemble of more

than one coordination environment. This is an attractive problem

transformation approach that provides both scalability and flex-

ibility35 to handle most off-the-shelf multi-label classification al-

gorithms.36–38

Machine-Learning Models
Figure 1 provides an overview of the coordination environment

classification workflow. As some elements are found only in spe-

cific local environments,39 the knowledge of elemental types

would already significantly narrow the range of possible local en-

vironments. Indeed, a ‘‘baseline’’ model can be constructed that

merely assigns a CN-CM classification based on the dominant

environment for that element. Such a baseline model has a

high classification accuracy of 70%–80% on the first-row transi-

tion-metal cations from Sc to Ni, an intermediate accuracy of

~60% for the post-transition metals and metalloid, and a rela-

tively low accuracy of 17%–58% for the alkali and alkaline earth

cations (see Figure 3). Any reasonable ML models, therefore,

have to achieve substantial improvements over this ‘‘baseline’’

model across all chemical classes.

In the next steps, optimized element-specific ML models

sequentially identify firstly the CN ranking label, followed by the

CN-specific CM ranking label, from the spectra. Five ML models

were assessed in terms of the performance in CN and CM clas-

sification, namely k-nearest neighbor (kNN), random forest,

multi-layer perceptron (MLP),40 CNN,40 and support vector clas-

sifier (SVC). Five-fold cross-validation was used for model fitting

and hyper-parameter optimization. During the optimization pro-

cess, we performed a grid search to identify optimal values for

keyML parameters that are directly related to the classifiers’ per-

formances. These parameters include k in the kNN model, num-

ber of trees in the random forest model, number of neuron/layers

and choice of activation function in MLP and CNN, and the pen-

alty parameterC and the kernel coefficient (g) for the SVC. For all

the other parameters, we used the defaults within the scikit-learn

package.38 Previous works have shown that the performance of
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the CNN-based model in the classification of XAS is insensitive

across different neural network structures.24 The same hyper-

parameter space was adopted in the optimization of ML models

for each classification subtask (see Experimental Procedures for

details).

As shown in Figure 1, this work focuses only on elements in

rows 2–5 of the periodic table, excluding the noble gases; ele-

ments in row 6 and beyond, including the rare earth elements,

were not investigated because of the lack of resolution in the

K-edge absorption spectra for elements with atomic number

greater than 52.
Computational Spectra Classification Performance
Figures 2A and 2B compare the accuracy and Jaccard index

(see Experimental Procedures for definitions), respectively, of

the optimized five classifiers broken down into the six elemental

categories. The accuracy captures howwell eachMLmodel per-

forms in predicting the top-ranked coordination environment,

i.e., the combined CN-CM score with the highest value. The Jac-

card index, on the other hand, captures howwell eachMLmodel

performs in identifying all relevant coordination environments

related to the absorbing species, i.e., all CN and CM with non-

zero OPs. See Experimental Procedures for all element cate-

gories the random forest classifiers outperform the other classi-

fiers, with an overall accuracy of 85.4% and a Jaccard score

of 81.8%.

One key observation from Figures 2A and 2B is that classifica-

tion performance is highly dependent on the elemental category.

While the performances of all classifiers are relatively high (>90%

accuracy) for carbon, the performances on the alkali metals are

comparatively poor. To elucidate the origin of the performance

variations, we have plotted the classification accuracy for the

best-performing random forest model against training dataset

size and label entropy in Figures 2C and 2D, respectively.

Here, the label entropy,41 which is an informational measure of

the diversity of the coordination environment labels in each

elemental category, is computed using the following expression:

S = �
X
i

Pi log2Pi; (Equation 2)

where Pi is the probability of a ranking label i out of all ranking la-

bels. The label entropy S is high if the variability of the label

values is high, i.e., an element exists in a spectrum of coordina-

tion environments with similar probabilities. For example, the al-

kali metals Li, Na, and K have high label entropy because they

exist in a variety of local environments—tetrahedral, octahe-

dral—with relatively high probabilities, while the transitionmetals

have low label entropy because they exist mainly in the octahe-

dral coordination, with the exception of the higher oxidation

states of V and Cr that almost always exist in tetrahedral coordi-

nation.39 The Jaccard index with data size and label entropy is

shown in Figure S4, which shows a trend similar to that of the

accuracy.

From Figure 2C, it may be observed that there is no clear rela-

tionship between classifier performance and training dataset

size. However, a clear inverse relationship between classifier

performance and the label entropy can be seen in Figure 2D.

These observations suggest that data size is not the dominating
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Figure 2. Performance of Five ML Classi-

fiers—kNN, Random Forest, CNN, MLP,

and SVC—on Coordination Environment

Classification

(A and B) Accuracy (A) and Jaccard score (B) for the

five ML classifiers broken down by elemental cate-

gories, namely alkali metals, alkaline earth metals,

transition metals (TM), post-transition metals, met-

alloids, and carbon (see Figure 1 for color-coded

categories).

(C)Relationship between the random forestmodel’s

classification accuracy and the dataset size.

(D) Relationship between the random forestmodel’s

classification accuracy and the training label en-

tropy.

kNN, k-nearest neighbor; CNN, convolutional neu-

ral networks; MLP, multi-layer perceptron; SVC,

support vector classifier.

Cation elements with classification accuracy less

than 0.85 are labeled in (C) and (D).
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factor, and the current data size for each element seems suffi-

cient to reach convergent results. The decrease in performance

with an increase in label entropy is expected, given that it is much

more challenging for a classifier to distinguish between several

equi-probable environments as opposed to identifying a single

dominant label. This explains the especially poor performance

on the light alkali elements (Li, Na, and K). In this case, the in-

crease in training dataset size generally leads to an increase in

the classification accuracy. For example, the label entropy

values of all three light alkali cation elements are all close to 4,

while their dataset sizes differ greatly. The training dataset size

(25,450) of Li is one magnitude higher than the training dataset

size (1,451) of K, and the classification accuracy of Li is 0.12

higher than K. For alkaline earth metals (Be, Mg, Ca, Sr) the co-

ordination environment becomes more diverse as the ionic

radius increases, and performance drops accordingly. In the da-

taset, Be2+ is always four-coordinated while Mg2+, Ca2+, and

Sr2+ are found to be four-, five-, six-, seven-, or eight-

coordinated.

As a comparison, Figure S5 shows CNN’s prediction accu-

racy as a function of label entropy values. The CNN classifier

fails to deliver classification performances comparable with

the random forest classifier. This can be attributed to the rela-

tively small data size per element-CM, with an average of ~110

(Figure S6), since it is known that neural networks-based

models generally need more data to train. Unsurprisingly,

CNN model performance shows a more notable positive rela-

tionship with the data size (Figure S5B). In addition, the CNN
classifier shows a greater decrease in

prediction accuracy as label entropy

increases.

Figure 3 shows a comparison of the ac-

curacy of the random forest models with

the ‘‘baseline’’ models. The accuracy of

the random forest models are well over

80% for the majority of elements and ex-

ceeds 55% even in the more challenging

alkali elements. In general, the random for-

est models far outperform the ‘‘baseline’’
models. High Jaccard indexes are also achieved across the pe-

riodic table, as shown in Figure S7.

Coordination Environment Identification from
Experimental XANES Spectra
We evaluated the random forest classifiers using 28 high-qual-

ity normalized XANES experimental spectra obtained from

the XAFS Spectra Library42 and EELS database,43 supple-

mented by six high-quality experimental XANES spectra of

V2O5, V2O3, VO2, LiNiO2, LiCoO2, and NiO from previous

studies.44,45 These 28 spectra comprise a diverse dataset

covering 13 chemical species for classifiers’ performance

assessment. For spectra from the EELS database and XAFS

Spectra Library without available structural information, we

assumed that they correspond to the ground-state structures

in the Materials Project database with the same chemical

composition.

We selected the spectral region from �5 eV to 45 eV with

reference to edge energy (E0) determined by the MBACK algo-

rithm.46 As the PBE functional usually leads to up to 5% lattice

parameter overestimation error,47,48 the expanded spectral re-

gion encompasses this artificial spectral feature difference be-

tween computational and experimental XANES. We used linear

interpolation to convert the experimental spectra to vectors of

200 intensity values and normalized them to the maximum in-

tensity value. It should be stressed, however, that the experi-

mental spectra were not used in the training of the random for-

est models.
Patterns 1, 100013, May 8, 2020 5



Figure 3. Comparison of Accuracy of Opti-

mized Random Forest Models with the Base-

line Model for All Elements Studied

In general, the random forest models outperform

the baseline model by significant margins (color of

rectangles indicates the level of improvement). Tc,

Ru, and Rh are excluded due to the lack of data.
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The random forest classifier successfully identified 23 of the

28 top coordination environment ranking labels, with a coordina-

tion environment prediction accuracy of 82.1% and a Jaccard

score of 80.4%. These accuracies are comparable with those

achieved on the computational test set. The random forest clas-

sifiers failed to predict the correct coordination environment for

two phases of V2O5, ZnO, Na2O, and CuO from the experimental

spectra, although the models predicted the dominant CN (CN

with highest pCN) with 100% accuracy. For V2O5, the classifier

successfully predicts the dominant CM, i.e., trigonal bipyra-

midal, but does not predict the correct order of secondary and

tertiary CMs (a failure by our strict definition). The likely reason

for this failure is the small difference in OPs between the second

(i.e., qpentagonal planar) and third (i.e., qsquare, pyramidal) ranked CMs

of ~0.029. In ZnO, the coordination environment of Zn does not

resemble any target CMs, i.e., all CM OPs are <0.22. Here, the

relatively low resemblance between the absorbing atom’s coor-

dination pattern and target motifs seems to be the critical issue.

For Na2O, the failure of the model may be attributed to the

possible contamination of the experimental sample.20 Finally,

for CuO, the Cu2+ has a four-fold coordination with oxygen that

is matched with five target motifs. The OPs of three of the

matched CMs—rectangular see-saw-like, see-saw-like, and

square co�planar—exceed 0.5. In this case, the use of EXAFS

may be required to identify the local environment with sufficient

resolution.

Model Insights
We performed feature importance analysis to gain insights into

the contribution of different regions of the K-edge XANES

spectra to coordination environment information. The studied

cases include CN = 2–8 for all 33 elements in this work. We

divided each K-edge XANES spectrum into three regions, the

pre-edge, main-peak, and post-peak, with energy ranges of 0–

15 eV, 15–30 eV and 30–45 eV, respectively, referenced to the

spectral onset. A robust brute-force drop-variable importance

approach was used, whereby part of the input features was sys-

tematically dropped to assess the change in model prediction

accuracy. In this approach, a baselinemodel was first trained us-

ing the entire spectra. Each spectrum was then divided into

several regions and certain regions were dropped from the spec-

trum. The remaining incomplete spectra were used to train new

models. In principle, dropping more important regions would

lead to poorer model performance. The advantage of the drop-

variable importance measure is that it provides the ground truth
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feature importance compared with alter-

native importance measures.49 Both sin-

gle and combined regions, i.e., ‘‘Pre +

Main’’, ‘‘Pre + Post.’’ and ‘‘Main + Post,’’

were investigated.
The normalized spectral regional feature importance of all ele-

ments in predicting certain CN is shown in Figure 4. The x axis

denotes the CN grouped by the spectral region as shown by

the labels on the top of the graph, and the y axis shows the

grouped elements. For elements that do not have certain CNs,

the feature importance is set to 0. Unsurprisingly, the ‘‘Pre +

Main’’ region of the features plays a key role in all corresponding

CNs and, in general, joint spectral regions have higher feature

importance than single ones. The high feature importance for

joint spectral regions implies that full spectral characteristics

are necessary for accurate coordination environment identifica-

tion, consistently with previous studies.24 Even for CN4, the

highest feature importance is achieved using ‘‘Pre +Main’’ spec-

tral regions followed by ‘‘Pre + Post.’’ In addition, ‘‘Main + Post’’

becomesmore important with increasing CN, in good agreement

with previous studies.8,4,24

For the first-row (3d) transition metals, the pre-edge plays an

important role. This is due to the well-known fact that 3d transi-

tion metals with tetrahedral geometries tend to have strong pre-

edge intensity due to the hybridization of unoccupied p and

d states.50,51 In addition, the early 3d transition metals tend to

have stronger pre-edge effects than late ones. Our data-driven

approach is able to capture this relationship known from group

theory analysis. Figure 5 provides an illustration of how the

feature importance can be observed in the K-edge XANES for

various six-coordinated transition metals. In Co, Zr, and Ni,

changes in the local environment predominantly affect the pre-

edge, main-peak, and post-peak regions, respectively.

DISCUSSION

In summary, we have demonstrated that random forest models

trained on FEFF-computed K-edge XANES can be used to

directly predict the coordination environment—both CN and

CM—with high accuracy. In contrast to prior works, we eschew

a rigid classification of coordination environments into mutually

exclusive labels, opting instead for a more rigorous, mathemat-

ical definition of coordination environment based on multiple la-

bels with order parameters.

Prior works on identifying coordination environments from

XANES have primarily focused on deep-learning models, i.e.,

MLP and CNN.23,24 While such deep-learning models perform

respectably, especially for transition metals, one major finding

of our work is that the random forest models outperform them

by significant margins. The likely reason is that deep-learning



Figure 4. Normalized Feature Importance of Different Regions of

Spectra for Predicting a Given CN for Each Element

The drop-variable feature importance is normalized with respect to the

maximum importance of a spectral region for each element. The x axis is ar-

ranged by spectral regions (i.e., pre + main, pre + post, and so forth) followed

by increasing CN within each spectral region. The y axis is arranged by

elemental category (i.e., starting from the top, alkali, alkaline earth, 3d TM, 4d

TM,metalloid, post-TM, andC) followed by ascending atomic numbers in each

elemental category.
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models are notoriously data hungry; for many elements, there is

insufficient data to train such models properly. On the other

hand, the accuracy of the optimized random forest models

show little to weak dependence on data size and much stronger

dependence on label entropy, suggesting that the random forest

models are limited by task difficulty as opposed to data

limitations.

We also strongly advocate the development of baseline

models for the evaluation of ML models in materials science.

The commonly used ‘‘accuracy’’ metric means little without

this context. As is evident from Figure 3, many elements, the

3d transition metals being a notable category, have very high

probabilities of being in a particular coordination environment,

i.e., information content/label entropy is low. For instance, any

ML model that achieves anything less than 89% accuracy in

classifying the coordination environment of Ti is, in effect, under-

performing relative to a trivial model that always identifies Ti as

being in a six-coordinated octahedron environment. Indeed,

the random forest models yield far more substantial accuracy

improvements in coordination environment identification over

the baseline model for elements that exist in many different envi-

ronments with high probability, e.g., Cu, Zn, C, and the alkali

metals. For the 3d transition metals, the accuracy improvement

is a relatively modest ~20%, even though high absolute accu-

racies exceeding 90% are achieved in all instances.

Most importantly, we demonstrate a data-augmentation

approach that enables the random forest models trained on

computed data to be directly applied to experimental K-

edge XANES with minimal loss in accuracy. The models
achieved an outstanding accuracy of ~82.1% in identifying

the dominant coordination environment over a diverse exper-

imental spectra test set comprising 28 experimental K-edge

XANES of 13 chemical species. To illustrate the importance

of augmenting the site-specific training data with site-aver-

aged spectra and broadened/compressed spectra, we have

constructed random forest models with and without the inclu-

sion of site-averaged spectra and with and without the inclu-

sion of broadened/compressed data. Table 1 shows the per-

formance of the different models. Among the four types of

spectra sources, the highest performance is achieved when

both site-specific and site-averaged spectra augmented with

distorted spectra are used. Interestingly, the model perfor-

mance suffers with data augmentation when only site-specific

data are used. We surmise that this is due to the fact that site-

specific spectra are very different from site-averaged spectra

(what experiments measure) for most structures, which have

more than one symmetrically distinct site for an element. We

have also performed tests of the random forest models’ per-

formance on the energy resolution and presence of noise in

the experimental spectra. As can be seen from Figure S8,

the performance is generally robust against changes in energy

resolution and noise.

This work addresses a critical gap in ML-based K-edge

XANES analysis. High-quality experimental XANES data are diffi-

cult and expensive to obtain (see the excellent review by Asakura

et al.52 on the challenges in constructing an international XAFS

database). High-throughput computations are currently the

only approach to generate large and diverse XANES datasets.

Being able to develop a coordination environment identification

ML model using the latter that can be applied to the former is

therefore of major value, and represents a transformative

advance in the application of ML to coordination environment

identification. We further note that the existing MLmodels repre-

sent a proof of concept and can always be retrained with the in-

clusion of experimental XANES from high-throughput XAS ex-

periments when they become available. We expect that these

future developments will further increase the accuracy of the

models.

We conclude by noting a few limitations in the current work.

First, XANES is commonly used to characterize amorphous ma-

terials and disordered crystals, as well as ordered crystals. In

amorphous materials, the atomic coordination environments

are highly diverse, i.e., very high label entropy. We therefore

do not expect the current ML models trained on crystalline local

environments to perform well on such materials. We do, how-

ever, expect the MLmodels to perform reasonably well on disor-

dered crystals, insofar as the local environments in the disor-

dered crystals are represented within the existing data, which

comprise mainly relaxed ordered crystals from the Materials

Project. Second, the set of CMs used in the present work is

not exhaustive and limited by the algorithm used—e.g., the

CN6 trigonal prismatic motif is not present. Nevertheless, we

fully expect that this limitation can be addressed with the inclu-

sion of order parameters for additional motifs in future and re-

training of the models. Finally, although temperature can have

a pronounced effect on XANES,53 we did not explicitly consider

its effect in this work, although we expect that the data-augmen-

tation procedure would have accounted for it to some extent.
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A B C Figure 5. Feature Importance Examples for

Six-Coordinated Transition Metals

The most important spectral regions for Co (A), Zr

(B), and Ni (C) are pre-edge, main-peak, and post-

peak, respectively. The top CM label is annotated.
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EXPERIMENTAL PROCEDURES

Construction of Coordination Environment Ranking Labels

Given a real-valued vectordOP˛RL, the ith OP represents how closely the site’s

local coordination environment resembles a CN condition or a specific CM. A

threshold t is applied to dOPs to create a bipartition of relevant and irrelevant

CN and CM labels. The multi-label prediction by can be obtained as

byj =

(
1 if dOPjRt

0 if dOPj<t
: (Equation 3)

Instead of using an arbitrary threshold like 0.5, we adopted the concept of

label cardinality (LCard) and calibrated the threshold t to minimize the possibil-

ity of a spectrum being assigned to the no-label set. The LCard54 is a standard

measure of ‘‘multi-labeled-ness,’’ which is simply the average number of labels

associated with each example. For N examples and L labels, the LCard mea-

sure can be calculated as:

LCard =
1

N

XN
i = 1

XL

j =1

yij : (Equation 4)

The threshold t1 for CN and threshold t2 for CM were calibrated using the

same procedure, as follows:

t = argmin
t

kLCardðDsite�specificÞ � LCard
�
Dsite�averaged

�k; (Equation 5)

where Dsite-specific and Dsite-averaged are the dataset of ~110,000 site-specific

and ~36,000 site-averaged computed K-edge XANES spectra, respectively.

The site-averaged spectral dataset was also considered here, as experimen-

tally measured XANES spectra are the averaged absorption coefficients. The

OPs of site-averaged spectra were obtained by averaging site-specific OPs of

the same element. The calibration procedure aims at minimizing the difference

between label cardinality of site-specific spectra and that of site-averaged

spectra. This calibration approach has been found to be more effective and

efficient in reducing the probability of empty-set prediction issues.35

We evaluated the threshold value t1 and t2 from 0 to 0.4 at 0.01 intervals. The

average number of CN labels associated with each spectrum dropped below 1
Table 1. Classification Accuracy and Jaccard Score of

Experimental Dataset with Different Training Spectra Source and

whether the Training Data Are Augmented with Broadened/

Compressed Spectra

Spectra Source Augmented? Accuracy Jaccard Score

Site and averaged yes 0.821 0.804

Site and averaged no 0.786 0.768

Site-specific yes 0.643 0.625

Site-specific no 0.714 0.696

The site-specific spectra are direct outputs from the calculations and the

averaged spectra are site-averaged structure-wise spectra.

8 Patterns 1, 100013, May 8, 2020
when t1 exceeded 0.4, and this was set at the upper limit. For the CN label set,

we found that the LCard difference between the site-specific dataset and site-

averaged dataset is minimized at t1 = 0.2. The average number of CN labels

associated with each spectral example was ~1.2. For the CM label set, the dif-

ference in LCard between the two datasets reaches a minimum at t2 = 0.05.

The average number of coordination environment labels associated with

each spectrum was ~3.2.

After applying the calibrated thresholds, we then encoded the CN and CM

label sets into the form of ranking labels in terms of descending OPs. Using

0.2 as cutoff for CNOPs, the average number of CN ranking labels per element

was 10. Note that the labels contain joint labels such as CN4 to CN6. In the CM

classification task, the average number of CM ranking labels is 5 per element

per CN. As expected, the distribution of relevant CN labels, i.e., CNwith pCNR

0.2, was inhomogeneous (Figure S3). For each element, there are a few domi-

nant CNs with an order of magnitude more data points than the other CNs. In

the CM classification problem, we therefore restricted our consideration to

those most abundant CN cases of each elemental group. Only CNs %8

were considered for the CM classification task, as no target CM was provided

for CN = 9–11 and only one CM was provided for CN = 12.

For each absorbing species, we excluded CN and CM ranking labels with

less than 30 samples. After applying this rule, all Tc, Ru, and Rh ions are six-

coordinated. Therefore, we removed the K-edge XANES from the first step

CN classification task’s training dataset. For the CM classification task, we

repeated this operation and excluded those sub-datasets (see Table S1) asso-

ciated with only one CM label from the training dataset as well. The final CNs in

each elemental group that were subjected to the coordination environment

classification task are given in Table 2.

To validate the necessity of using ranking labels to represent the absorp-

tion elements’ coordination environments, we visualized the joint distribu-

tions of the CN and CM OPs of the alkali and the transition-metal elemental

group (Figure S9). From Figure S9, we observe that there are correlations

across different CN OPs or CM OPs and that multiple coordination environ-

ments coexist. We also note that the correlation between CM OPs is quite

substantial and that most six-coordinated transition-metal ions’ coordina-

tion patterns resemble two or more CMs with OPs exceeding R0.4. These

findings emphasize that labeling the absorbing sites’ coordination environ-

ments with one label cannot adequately represent the full coordination

environment.

Hyper-parameter Optimization of Machine-Learning Algorithms

In this work, we use the top-1 accuracy and Jaccard index as metrics to eval-

uate the performance of classifiers. The top-1 accuracy of a classifier is eval-

uated by its ability to yield the top-ranked coordination environment.

A =
1

N

XN
n= 1

�
l1n = =bl1n�; (Equation 6)

where l1n denotes the top-1 label for the nth spectrum in a total of N

spectra, and the bl1n is the estimated top-1 label from models. The same

equation is used for element-wise accuracy and the overall accuracy

computations.

The Jaccard index measures the overlaps between the true CN-CM labels

and the predicted CN-CM labels. Let yn be the ground true CN-CM label set



Table 2. Coordination Number for Each Elemental Group

Subjected to Coordination Environment Classification Task

Element Group CN

Alkali 3–8

Alkaline earth 4–8

Metalloid 3–4

Carbon 2–4

Transition metal 4–6

Post-transition metal 4–6
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of the nth spectrum and byn be the predicted CN-CM label made by a classifier.

The Jaccard index can be computed based on the number of labels in the

intersection set divided by the number of labels in the union set:

Jðyn; bynÞ =
jynXbynj
jynXbynj

: (Equation 7)

The Jaccard index yields a number (0%–100%) indicating how well a given

classifier identifies all relevant coordination environments compared with the

correct coordination environments.

The hyper-parameter spaces investigated for eachMLmodel are as follows:

1. kNN: the k-nearest neighbors classifier was optimized with respect to

the number of neighbors (N) and the distance metric (p). The values

of N examined were 10, 20, 30, and 50. The minimum value of N = 10

was set to avoid overfitting and increase the generalizability of models.

The Manhattan distance and Euclidean distance were used to assess

the distance metric effects.

2. Random forest classifier: the number of trees in the forest was tested at

values 10, 20, 30, 50, 100, and 200. The rest of the parameters were

kept at the default settings of scikit-learn package.38

3. MLP: for the MLP classifier, the number of hidden layers (L) was varied

from 1 to 3 and the number of neurons in each hidden layer was varied

from 10 to 100. The activation functions tested were the logistic, tanh,

and ReLU functions.

4. SVC: the penalty parameter C was drawn exponentially from 0.001 to

100.0. The maximum value of C was set at 100.0, as high C is prone

to overfitting. Two kernel coefficient (g) values were tested: (a) 1

divided by the number of features (g = 0.005) and (b) 1 divided by

the number of features multiplied by the variance of the spectral ab-

sorption coefficients (g x 0.013). The radial basis function (RBF)

kernel was set as the number of observations that is one to two or-

ders of magnitude higher than the number of features in the training

data. In addition, a previous study55 has shown that it is unnecessary

to consider the linear kernel if the model selection is conducted us-

ing the RBF kernel.

5. CNN: the two-layer CNN classifier was used. The two layers were

fully connected, with feedforward hidden layers with 50 and 100 neu-

rons, ending with a softmax output layer. The number of neurons in

the output layer equals the number of target ranking labels.

For CN ranking labels classification, we found that the model using 10

nearest neighbors and Manhattan distance performs the best for kNN

models. The random forest classifier’s performance converged at 30 trees

for all elemental groups. For the MLP classifier, the two-layer neural

network architecture with ReLU activation function outperformed the rest

of the models with tanh or logistic sigmoid neurons. The best MLP model

had 50 neurons in the first hidden layer and 100 in the second hidden layer.

We found that further increasing number of hidden layers has a detrimental

effect on classification performance. For the RBF SVC classifier, the model

with C = 100 and gx0:013 performed the best.

For the CM ranking labels classification task, the optimum CN classifiers’

parameter configurations were the best sets for kNN classifier, MLP

classifier, and RBF SVC classifier as well. We found that the random forest
classifier performed the best when the number of trees in the forest

equaled 50.

DATA AND CODE AVAILABILITY

The K-edge XANES data are available from Materials Project website under

the XAS app (https://materialsproject.org/#apps/xas/). The models presented

in this work are available in the maml python package (https://github.com/

materialsvirtuallab/maml) developed by the Materials Virtual Lab, and the cor-

responding web app is deployed at https://xas.crystals.ai.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100013.
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