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Abstract—Molecular Dynamics simulation (MD) has been
thought a promising FPGA application for many years, especially
with clusters of tightly coupled FPGAs where the large-scale,
general-purpose, low-latency interconnects provide a communi-
cation capability not available with any other COTS computing
technology. Parallelization of one part of the MD computation,
the 3D FFT, has been studied previously; for likely FPGA cluster
sizes, however, the range-limited computation (RL) is more
challenging. The motivation here is that the direct replication
of the single-chip design suffers from inefficient inter-board
bandwidth usage. In particular, although communication in RL
is local, likely bandwidth limitations will constrain performance
unless great care is taken in design and analysis.

In the multi-chip scenario, inter-board bandwidth is the critical
constraint and the main target of this work. We analyze it with
respect to three application restructurings: workload distribution,
data forwarding pattern, and data locality. We describe how
bandwidth can be balanced by configuring workload distribution
and data forwarding paths with respect to the number of on-
board transceiver ports. We also show that, by manipulating
data locality, the multi-chip design is efficiently migrated from
the single-chip design, and the total bandwidth required can be
configured to satisfy the bandwidth limit.

I. INTRODUCTION

Molecular Dynamics (MD) is a critical HPC application,
e.g. playing a key role in the pharmaceutical industry for
drug discovery. There are many production MD codes and
it can be performed on a variety of platforms, with GPUs
being popular [4], [8], [12], [18], [26]. But for the small
molecule simulations (<, say, 100K particles) that dominate
many critical bioapplications, GPU MD has so far failed to
scale beyond even two devices. To address long timescales,
therefore, ASIC-based MD simulators have been developed
[7], [22] and have achieved orders-of-magnitude speed-ups.
But while of great value, these systems none-the-less have
limited availability. An alternative is the FPGA: for MD they
have similar performance per-device to GPUs [27]. But the
essential motivation of using FPGA-centric clusters (FCCs)
for MD is that they couple this per-device performance with
ASIC-quality connectivity.

It is well-known that part of MD’s scalability problem is the
global communication performed during (most instantiations
of) the long-range force computation (LR). Since classical MD
is iteration driven, this results in the strong scaling problem.
To achieve longer timescales, more processors are needed
to reduce the iteration time, but these additional processors

lengthen the communication time until it dominates. ASIC-
and FPGA-centric clusters effectively deal with this problem
with dedicated chip-to-chip communication that can trans-
fer data in < 100ns, at very high bandwidth, and directly
application-layer to application layer with minimal additional
overhead [24], [29].

But while mapping LR onto FCCs has been studied [17],
[23], [24], RL has not. RL consists of 90% of the FLOPs in
MD and requires more data to be transferred [14]. But the fact
that RL communication is local has perhaps made the problem
seem straightforward, at least for small clusters [9]. We have
found quite the opposite to be true.

The evolution from the existing a single-chip RL design to
multi-chip brings multiple scalability problems. Even though
the transceiver bandwidth on commercial FPGA boards is
considerable, we find it still to be insufficient; but only due
to poor data locality in typical MD layouts. If we inherit the
data transmission design directly from the single-chip version,
transceiver bandwidth on the order of Tbps is required or
nearly all scaling is lost. To scale this up to a multi-chip
design, we propose a neighbor data caching method to exploit
data locality for improved data reuse, with negligible hardware
overhead.

Another problem is the irregularity of the inter-board com-
munication pattern, which leads to highly imbalanced loads
on the different transceiver ports. To optimize bandwidth uti-
lization, we take advantage of the topology of the underlying
MD-RL particle interactions. First, particles only interacts
with other particles inside a halo; then, the half-shell method
is used to take advantage of Newton’s 3rd law [5], [21].
For this specific topology, we investigate various workload
distributions (slab, pillar, and block) and their data transfer
patterns. In order to relieve the communication imbalance,
we a propose routing configuration technique, which is able
to improve the inter-chip bandwidth utilization for all three
workload distributions.

The major contributions of this work are as follows. We
propose

« a communication-efficient multi-chip MD-RL design;

« aneighbor data caching technique that improves neighbor

particle data reuse for reduced data movements; and

« arouting configuration technique for improved inter-chip

bandwidth utilization.



o Also, experimental results show the performance of the
proposed design provides at least 10x speedup compar-
ing with the baseline design.

II. BACKGROUND
A. MD Review

MD is the iterative application of Newtonian dynamics to
ensembles of charged particles. Each iteration consists of two
phases: computing the forces among the particles and applying
the forces to obtain new motion/displacement values for each
particle. The second phase is O(n) and requires no interaction
so we ignore it here. The force computation has several parts,
the most important of which are Coulombic, van der Waals
(LJ), and bonded. As with the motion update, the bonded force
is O(n) and local so is not considered further here.

The starting point in improving performance is to reduce
the O(n?) complexity of the non-bonded force computation.
It is convenient to define a cut-off radius R. around each
particle and partition the Coulombic and LJ terms into non-
overlapping components: one for inside R. (range limited or
RL), the other for outside (long range or LR). This partition
conveniently allows different methods to be applied: for LR
O(nlogn) transforms (studied elsewhere [23], [29]), for RL
O(n) cell lists plus filtering as described below.

B. Range Limited Force

RL force describes the interaction between electrically neu-
tral atoms or molecules, and often refers to the force intro-
duced by Lennard-Jones potential and the rapidly decaying
component from Ewald summation for Coulombic force. The
resultant force on particle ¢ is
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where t; and t; are particle types, o and € are parameters
which depend on particle type, and r; is a unit vector pointing
from particle j to particle .

In RL force computations, cutoff radius R, is defined as the
minimum distance between which two particles’ interaction is
beyond the current data precision. Therefore, a particle only
pairs with particles within the cutoff radius, and the computa-
tional complexity is O(NN), with a multiplicative constant of
100-300, instead of all-to-all O(N?).

C. Modeling

Once the force is calculated, it is translated into the incre-
ment in velocity and displacement based on the formulae be-
low. By convention, the force is a constant during a simulation
time interval (approximately 10~'® seconds).

v(t+ At) =v(t) + a(t)At (2)
r(t+ At) =r(t) + v(t + %)At 3)

We only consider particles that form a micro-canonical (NVE)
ensemble. Therefore, it is convenient to divide the overall
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Fig. 1. 3-d particle interaction pattern in a 2-d view. (a), (b) and (c) are
three layers stacked on x direction. The halo represent the interaction range
of particle A. Orange: the home cell of particle A. Grey: Ignorable regions
based on Newton’s 3rd law. Green: Cells that may contain valid neighbor
particles. White: Cells out of range.

simulation space into small static cells. The simulation space
is cubic and obeys the periodic boundary condition. Since the
side length of a small cell can be arbitrarily determined, it is
reasonable to set it as K. to minimize the number of cells
involved in interactions.

Figure 1 shows the particle interaction pattern of three cell
layers along the x axis. The reference particle A interacts
with particles in at most 27 cells, including its home cell
(orange). Thanks to Newton’s 3rd law, only half of the 27
cells (13 green neighbor cells and 1 orange home cell) need
to be accessed from a reference particle’s perspective. Typical
particle relations are illustrated in (b). Green cells are searched
for particles that are within A’s cutoff radius through particle
filtering. B and A form a valid pair while C-A pair is invalid.
Particle D and E are not taken into account when A behaves
as the reference particle, even if E is inside the halo. In CPU
implementations each particle has its own neighbor list of valid
particles, which is updated periodically. In ASICs and FPGAs
this is impractical. Instead particles in the home and valid
neighboring cells are filtered on-the-fly by distance [5].

D. Parallel RL

To the first approximation parallel RL is a version of the
halo problem. Each node NN is responsible for some number of
home cells. Neighbor cells may be on /N or on a neighboring
node. These halo cells must be exchanged. There are certain
complications, however. First, the optimization for Newton’s
3rd Law makes the halo asymmetric. Second, the number
of particles within the cut-off in the neighboring cells varies
drastically. Third, the halo is comparatively heavy or thick. In
typical stencil problems it may be a single row or column of
a large 2D array; here it is some number of complete cells.

We make one significant assumption: the number of devices
is less than or equal to the number of cells. The remaining case
is not likely to be practical for FCCs any time soon and would
use other methods than those presented here.

III. MULTI-CHIP BASELINE DESIGN

In this section, we first briefly introduce the architecture
of a prior art single-chip design [28]. Second, we propose a
multi-chip direct extension of this design which we refer to as
the baseline; in Section IV we compare it with our optimized



multi-chip designs. Finally, we present the communication
bottleneck of the baseline design and discuss the causes for it.
A. Prior-art Single-chip Design

The prior art single-chip MD architecture is illustrated in
Figure 2. The particles in a simulation space are partitioned
into ¢ cells. The force, position, and velocity information
of the particles in each cell are stored in 3 caches (force,
position, and velocity), respectively. Force Evaluation Units
(FEU) are in charge of force calculation. Each FEU evaluates
the force applied on the particles in a unique cell. To evaluate
forces, FEUs first read position data from position caches
and then identify valid particle pairs. Subsequently, the partial
forces between valid particle pairs are computed and sent to
proper accumulation units through an arbitration network and
so complete the force computation. Newly accumulated force
results update the force caches until the complete forces are
calculated.

There are two types of data movement which dominate
inter-chip communication in multi-chip design. In position
data forwarding neighbor particle position data are broadcast
to FEUs that work on the related home cells for data reuse.
Each piece of position data is broadcast to 14 force pipelines
based on the half-shell topology. Upon evaluation, neighbor
particle position data are traversed for a single reference
particle; when this is finished, the evaluation to the next
reference particle begins.

In force write back, since each FEU receives positions of
particles from multiple cells, the force writing requests from
different FEUs may target the same force cache. To resolve
the conflict, each FEU is equipped with a multi-bank force
writeback buffer. Each bank stores the partial force results of
a unique destination cell. The forces are then selected by force
writeback arbitrators and sent to the accumulation unit of the
destination.
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(a) MD-RL Overview

(b) Force Pipeline Architecture

Fig. 2. Architecture of the single-chip design. (a): The general architecture
of the iterative force evaluation and motion update. (b): Architecture of force
evaluation pipelines

B. Baseline Multi-chip Design

We extend the prior art single-chip design introduced in
Section III-A to multi-chip with obvious augmentations for

the support of inter-chip data exchange. The position data
forwarding and force write back both require inter-board
communication. For position data forwarding, in the baseline
design, the broadcast of neighbor particle position data can be
across FPGA boards. Similarly, the destination cells of force
writeback can be mapped to other FPGAs as well.

Inter-board force data transactions can be very frequent,
resulting in high data production versus low data consumption.
It is common for the baseline design that the data can be
sent less frequently whenever the bandwidth is not sufficient,
i.e. when the communication-computation ratio is > 1. To
compensate for the long communication latency, a scheduling
mechanism is adopted in the baseline design. The evaluated
partial forces, which are directly computed from single particle
pairs, are saved in an additional local buffer to schedule
the inter-board transmission (see the scheduling buffer in
Figure 3).

Also, the partial forces are only accumulated after being
selected by the arbitration network, thus the select signal
from remote arbitration network brings high latency. Some
modifications are made from the single-chip design to target
this problem, as Figure 3 shows. Instead of saving the returning
neighbor forces in output buffers locally, the buffers are
located in destination nodes. The straightforward benefit is that
there is no need to send the force writeback arbitration result
between nodes; thus the ~100ns per transaction is spared.
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Fig. 3. Force output buffers are re-located to prevent high latency caused
by data dependency. The scheduling buffer is added in case the bandwidth
bottleneck is met.

C. Communication Bottleneck of Baseline

We note that the neighbor particle position data are dis-
carded after being used on a single reference particle. They are
therefore repeatedly sent from neighboring cells to home cells.
This low data reuse leads to tremendous bandwidth demand.
The mere data transmission between two cells costs ~10Gbps
bandwidth at 100MHz operating frequency, let alone there are
~100 cell-to-cell communications between nodes, which sums
up to 1Tbps requirement.

On the other hand, not all ports on FPGA boards are
completely utilized, and the imbalanced port utilization may
eventually cause severe performance loss. For example, a node
with 6 ports holds 8x6x4 cells, where the 6 ports are connected
to 6 neighbor nodes on X, y, and z directions. Assuming
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Fig. 4. Position reading and force writing architecture (only 2 position caches
in 2 nodes are shown for demonstration). (a): Baseline position reading. (b):
New position reading. (c): Baseline force writing. (d): New force writing. Red
arrows: Reference data paths. Blue arrows: Neighbor data paths.

that the port with the highest bandwidth demand is fully
utilized (U,=100%), a common scenario is that U,=78%, and
Uy=59%, leading to an 80% overall port utilization, meaning
20% of data transmission opportunity is lost compared to
perfect utilization. This situation may get worse for different
number of ports on board. As a result, a way to balance the
workload among different directions is important.

IV. OPTIMIZED MULTI-CHIP DESIGN

The optimized described in this section aims to relieve the
communication bottleneck of the baseline. Two techniques,
Neighbor Data Caching and routing configuration, are dis-
cussed to solve the two problems presented in section III-C
respectively. Motion update is briefly discussed at the end of
this section, as it also introduces inter-chip data exchange.

A. Neighbor Data Caching

A current high-end FPGA board may support ~100s Gbs
inter-chip data transmission rate. However, a rate of Tbit/s
is required in our baseline design, i.e. neighbor particles are
broadcast non-stop and the force is written back every cycle.
Our solution is to trade the reference particles’ temporal
locality for the neighbor particles’ temporal locality.

1) Neighbor Particle Position Caching: For the data
reusability optimization, reference particles are traversed for
incoming neighbor particles instead, as Figure 4(b) illustrates,
where the neighbor particles are cached in registers. The
position reading architectures are compared in Figures 4(a)
and (b). In the new design, position data are only transmitted
once a few cycles.

(a) (b) (@

Fig. 5. Workload distribution patterns in a cuboid simulation space. Grey:
The cells evaluated on other nodes. Blue: Cells in which particle pairs are
formed without external memory involved. Yellow: Cells in which data from
a neighboring FPGA are needed or delivered (1 hop). Orange: 2 hops. Red:
3 hops. (a): Slab distribution. (b): Pillar. (c): Block.

2) Neighbor Particle Force Caching: In the baseline de-
sign, reference forces (partial forces applied on a reference
particle) are accumulated before read-modify-write. Now that
the reference particle to be evaluated changes every cycle,
the reference forces are no longer accumulated beforehand.
That is, the accumulator on the red path in Figure 4(c)
is removed in (d). Instead, the partial reference forces are
directly accumulated in the destination force caches without
conflict and with throughput guaranteed. Therefore the force
arbitration network in Figure 2(a) is not needed.

On the other hand, although the temporal locality of the
reference particles is lost, it is gained by the neighbor forces.
In Figure 4(d), the partial forces for neighbor particles are reg-
istered and accumulated in situ. All neighbor forces share the
same accumulator since only one neighbor force is produced
in a FEU per cycle. The accumulated result is stored back
in registers. Once all neighbor partial forces are accumulated,
they are sent back to their original nodes and accumulated in
corresponding force caches.

B. Routing Configuration

Various data/workload distributions show different data
transfer patterns. We discuss 3 basic scenarios: slab, pillar,
and block. The data transfer patterns of the three distributions
can be modified to different degrees separately, which may
cause workload imbalance. To address this problem, a software
approach proposed to automatically configure routing paths
based on the cell distribution and the number of ports.

1) Workload Distribution: The workload is spatially dis-
tributed so that device memory only contains data from a
group of cells in Euclidean space. In this section, three
typical distribution patterns are studied and the theoretical total
bandwidth usage is given.

Figure 5 illustrates slab, pillar and block distributions. For
small simulation spaces, slab and pillar are the first picks
because of their advantage in local data access, whereas the
block holds the highest generality. If a slab of cells is assigned
to a node, the home FPGA only communicates with two
FPGAs next to it. For the pillar distributions, cells on the sides
require or receive data that arrives after up to two hops. For
block distributions, corner cell communications are involved
and requires data to be transmitted three hops away.



TABLE I
DATA CLASSIFICATION (BANDWIDTH UNIT: wg f)

Pillar Block
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For the three distributions the total bandwidth is We now assume that all nodes use the same data forwarding
pattern so that the data flow in opposite directions is symmet-
818 . . . . . - .
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where Iz, Iy, and [, are the numbers of cells covered by a cdges vertives

node on x, y and z dimensions, wy is the width of a piece
of data to be sent from a cell to another, and f is the data
transmission frequency of a position cache or a force cache.
The factor of 2 signifies that this includes both position send
and force receive.

For example, let 256 cells be mapped to a node. Then a
slab is configured as 1x16x16, a pillar as 4x16x4, and a
block as 4x8x8; the pillar prevails in total bandwidth. It
can be problematic, however, for a board with 6 transceiver
ports to send data to 4 directions, but it becomes an advantage
for boards with 4 transceiver ports. Users can decide which
distribution best suits their hardware and problem.

2) Data Path Analysis: In this section, we explore how
data are transmitted across nodes and how the data forwarding
paths can be configured. The data path for the slab pattern is
trivial, since an FPGA only sends data to the node at = =1
and receives data from the node at x = —1 (see Figure 1).
The data path can vary in the pillar and block cases. It is also
shown in Figure 1 that for an FPGA node located at z = 0,
data from nodes at z = —1 are not needed. This indicates that
a node sends data to, or receives data from, 5 neighboring
nodes for the pillar layout and 17 neighboring nodes for the
block layout.

The /O bandwidth requirement of an intermediate FPGA
node on a data forwarding path is inevitably increased. Fig-
ure 6 shows examples of data transfer patterns corresponding
to pillar and block distributions. A piece of 2-hop data can
be obtained from 1-hop data, and 3-hop data can be obtained
from 2-hop data for data reuse. The bandwidth along different
directions can be re-configured, see the different data forward-
ing paths in (a) and (b) for pillar, and (c) and (d) for block.

3) Bandwidth Balancing: Since the number of cells on a
single node is limited, the amount of data being forwarded
two hops or three hops away is considerable compared with
the data forwarded directly (one hop). As previously shown,
the 2-hop and 3-hop data forwarding paths can be adjusted
so that the data flow on different paths. This property can be
exploited to achieve balanced communication workload in all
directions and, ultimately, balanced data flow through all ports.

For 2-hop data transmissions along the « direction, data
on the sides with cell dimension lg and I, can only be
sent via neighbor nodes on the + and 3 directions separately
first, then forwarded along the a direction. This behavior is
abstracted into the 2nd and the 3rd term. To achieve balance,
the bandwidth bottleneck must be minimized as shown here

B} (8)

where B}, is the bandwidth demand for the ith port, based
on routing configurations. The bandwidth is naturally balanced
for a slab since data transmission workload can be uniformly
distributed. However, slab and pillar distributions have scal-
ability issues: they may be overwhelmed by an oversized
simulation space. Based on the distributions in Figure 5,
position/force data to be transmitted are classified spatially
in Table L.

1-hop data paths are not configurable since the destinations
are just next to the origin. In the 2-hop and 3-hop cases, how-
ever, the data widths can be re-configured to any corresponding
direction. For example, for the first data width entry [, in Pillar,
2-hop can be included in total =, bandwidth or y bandwidth.
Entries under Block have more freedom for configuration since
more path combinations are available. In the following section,
we demonstrate that up to 30% more data can be transmitted
compared to average.
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C. Motion Update Conflict

The number of cycles for motion update is exactly the
number of particles N, while for force evaluation, the number
is %, where « is the average number of neighbor particles
that can form valid pairs with a reference particle. Based on
our assumption that N, < N, or Np = N,

>

Np
is obtained. Amdahl’s law suggests that it is reasonable to
deploy only one motion update module in a single node.

Throughout the motion update process, a particles can
migrate to another cell in another node. Rarely but possibly,

9)
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Fig. 6. Reconfigurable force data forwarding pattern examples for pillar and block distributions. (a) and (b): Pillar. (c) and (d): Block. Yellow, Orange and
red represent the 1st hop, 2nd hop and 3rd hop separately. Blue node: Home FPGA node. Grey node: Neighbor FPGA node.

the remote update can cause a conflict with local motion
update when they are being written to a same cache. The
solution is to pause the local update and let the remote update
finish first. Given the fact that all cells have a similar number of
particles, the motion update units are almost synchronized and
the conflict between two remote updates is nearly impossible.
If more motion update units are added for more parallelism,
the conflict becomes a problem and extra input buffers can be
deployed to resolve the conflict.

V. EVALUATION

In this section, we first evaluate independently the benefits
of routing configuration and neighbor data caching. We then
evaluate the overall speedup of the proposed communication-
efficient MD design with respect to the baseline. The metric
is execution time per iteration.

A. Evaluation of Routing Configuration

The discussions above show that bandwidth balancing is
affected by various variables and can be optimized through
different ways. In this section, we evaluate bandwidth bal-
ancing by taking into consideration the number of transceiver
ports per board, the workload distribution pattern, and the cell
distribution pattern.

Currently FPGA boards with high-bandwidth transceivers
are common. For example, 2x, 4x and 6x QSFP28 transceiver
ports are available on various of boards; some even have 12x
ports. The bandwidth balancing mechanism can be adopted
for any workload partitioning of simulation spaces, but we
only demonstrate some representative cases here. To justify
the effectiveness of the configurations discussed, transceiver
port utilization is defined:

Bideal

- — (10)
Bbottleneck x N

Uports =
where B;geq; 1S the overall bandwidth budget (equation (4),
(5), and (6)), and N is the number of ports. For convenience,
we assume that at least one of the ports is fully utilized,
otherwise the data transmission frequency can be increased
to satisfy this condition. In other words, high port utilization
leads to a high data transmission frequency bottleneck.
Figure 7 illustrates port utilization cases with conspicuous
dependency on the number of ports and the distribution of
cells on chip, and reveals the problem that ports may stay
idle for a significant amount of time if the routing path is
randomly configured. We use as a baseline the average of all
routing paths. In Figure 7(a), the highest utilizations can be

Routing Configuration for Pillar Distribution
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Routing Configuration for Block Distribution
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Fig. 7. The port utilization due to the best routing configuration (Max Util)
and the average utilization (Avg Util) of all routing configurations for 3 typical
pillar (a) and 4 typical block (b) distribution cases. Such cases indicate that
the utilization caps can be heavily affected by distribution patterns for various
numbers of ports. Error bar: Standard deviation

achieved when the 6 x4 x N, cases are higher than 0.9, except
for when there are only 4 ports (N, is the number of cells
along z direction, which is redundant for pillar evaluation).
However, the utilization of 4 ports surpasses 6 ports by 25%
for the 4x8 distribution, indicating that 4x8 is one of the
optimal choices when only 4 ports are available. The last
case shows that the 6x6 distribution can be fully exploited
for 10-port boards, but not 4-port or 8-port boards. All those
boards have significant weaknesses except for 12-port boards,
for they lack sufficient configurability. On the other hand, the
highest utilization possible exceeds the average by 3% to 9%,
meaning that the data transmission efficiency is boosted by
these amounts for free.

Similar phenomena occur in block distributions, as Fig-
ure 7(b) shows. 6-port, 6 and 8-port, 8-port, and 10-port boards
behave badly in those cases. It is worth noting that the amount
of data transmission can be increased by 10% to 30%, for



TABLE II
THROUGHPUT OF A 2X2X2 FPGA CLUSTER. THE DESIGN RUNS AT 350MHZ FREQUENCY, WITH 50 PARTICLES IN EACH CELL. PARTICLE: LIQUID
ARGON. CUTOFF RADIUS: 8.5A. NUMBER OF PORTS: 6. BANDWIDTH OF EACH PORT: 100GBPS. DATA SIZE PER PACKET: 120 BITS

Cell distribution 8x6x4 8x4x4 6x6x6 4x8x6
baseline | new | baseline | new | baseline | new | baseline | new
Force evaluation time (us) 3784 76 2621 76 3051 76 2586 76
Overall time per iteration (us) 3854 147 2573 123 3130 156 2656 147
Max frequency supported (MHz) 7.0 434 9.2 527 8.7 502 10.3 595
Communication/Computation Ratio 26.2 0.42 20.9 0.41 20.1 0.34 18.1 0.30

multiple possible routing paths can be taken, which gives more
importance to the route configuration.

B. Evaluation of Neighbor Data Caching

The efficiency of neighbor data caching depends on the
number of particles per cells. Since the reference particles are
traversed as in Figure 4(b), neighbor position data are cached
for the same number of cycles as the number of reference
particles. Therefore, the bandwidth demand reciprocally de-
pends on the number of particles per cell. Assuming that each
particle participates in at least one valid pair,

B o Bbaseline
new — N
max

where N, is the largest number of particles of a cell among
all cells, as all position broadcasts must be synchronized.

The neighbor data caching mechanism also brings the op-
portunity for routing configurations. The same amount of force
data is sent in return for each piece of position data received.
Therefore, the symmetry of position reading and force writing
is reserved, which makes the routing configuration work for
both position and force paths; i.e. the bandwidth requirement is
the same for both reading and writing. Otherwise, uncertainty
occurs in force packets’ return, since destinations of the
packets are random.

Y

C. Overall Performance Evaluation

To avoid too much overhead in synchronization, a 2x2x2
FPGA cluster is chosen to demonstrate the overall speedup
due to the optimizations. Each FPGA has six transceiver ports
(QSFP28). Table II illustrates the amount of time used in
force evaluation per iteration, and the time needed for an
entire iteration for four different cell distributions (block).
For further improvements, the maximum supported frequen-
cies are also listed, i.e. the highest frequency at which the
communication latency can be entirely hidden by computation.
The communication-computation ratio is listed as well for
more straightforward comparison. In the baseline design, the
communication latency exceeds the computation latency by a
factor of 10. Also, with a reasonable operating frequency, the
communication latency can be hidden completely.

For simplicity, the number of FEUs per node is set to
be the same as the number of cells, and only one motion
update unit is used. Therefore, for our optimized design, the
force evaluation time remains unchanged. For all four cell
distributions, the performance roofline of the baseline design
is data transmission, while the roofline of the optimized design
is the operating frequency (350MHz), which is below the

maximum frequency supported. It is evident that by solving
the bandwidth problem alone, the overall performance can be
increased by a factor of 10, compared with the baseline.

VI. RELATED WORK

MD on FPGAs has been studied for many years [1], [2],
[6], [11], [15], [20]. The first complete MD systems on FPGAs
accelerated the Range-limited (RL) force computations and
used a CPU for the rest [10], [15], [19]. Khan accelerated
NAMD with four FPGAs, but they were used as independent
accelerators [13].

When we broaden prior work to ASICs, a variety of spatial
decomposition methods have been studied more than a decade
ago by D.E. Shaw Research [21], where zonal methods [3] are
discussed in detail. Among the zonal methods, the neutral-
territory method and, specifically, tower-plate method, is used
in their first Anton system [16] because of its low import
volume. In this study, however, since a large amount of
resources are available on modern FPGA chips and most data
can be consumed locally, we chose half-shell decomposition
so the data locality is naturally preserved.

Load balancing was further refined during the development
of Anton 2 [25] where data forwarding routes can be adjusted
at runtime. In this study we have chosen not to use in-network
reduction since an FPGA only exchanges data with nearby
neighbors. As a result, the force and position packets can be
scheduled and the data forwarding route can be determined
offline.

VII. CONCLUSION

This work demonstrates data forwarding and communica-
tion patterns of the slab, pillar, and block distributions for a
range-limited MD system. Data in transmission are classified
into 1-hop, 2-hop and 3-hop cases. We exploit the symmetry
in data flow and illustrate that 2-hop and 3-hop data paths
can be re-configured to balance the I/O bandwidth of FPGA
nodes. We also conclude that by configuring the routing path
and the cell distribution, the data transmission efficiency (or
transmission frequency bottleneck) can be 30% higher than
average. Apart from bandwidth balancing, the total bandwidth
cost is much lowered with neighbor particle localization. By
taking advantage of both methods, the overall performance
can be potentially increased by a factor of 10 compared to the
baseline design with the communication latency completely
hidden.
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