
AWB-GCN: A Graph Convolutional Network
Accelerator with Runtime Workload Rebalancing

Tong Geng1,2, Ang Li2, Runbin Shi4, Chunshu Wu1, Tianqi Wang1, Yanfei Li5,
Pouya Haghi1, Antonino Tumeo2, Shuai Che3, Steve Reinhardt3, Martin C. Herbordt1

1Boston University, 2Pacific Northwest National Laboratory,
3Microsoft, 4The University of Hong Kong, 5Zhejiang University

Abstract—Deep learning systems have been successfully ap-
plied to Euclidean data such as images, video, and audio. In
many applications, however, information and their relationships
are better expressed with graphs. Graph Convolutional Networks
(GCNs) appear to be a promising approach to efficiently learn
from graph data structures, having shown advantages in many
critical applications. As with other deep learning modalities,
hardware acceleration is critical. The challenge is that real-world
graphs are often extremely large and unbalanced; this poses
significant performance demands and design challenges.

In this paper, we propose Autotuning-Workload-Balancing
GCN (AWB-GCN) to accelerate GCN inference. To address the is-
sue of workload imbalance in processing real-world graphs, three
hardware-based autotuning techniques are proposed: dynamic
distribution smoothing, remote switching, and row remapping. In
particular, AWB-GCN continuously monitors the sparse graph
pattern, dynamically adjusts the workload distribution among
a large number of processing elements (up to 4K PEs), and,
after converging, reuses the ideal configuration. Evaluation is
performed using an Intel D5005 FPGA with five commonly-used
datasets. Results show that 4K-PE AWB-GCN can significantly
elevate the average PE utilization (by 2.7×) and demonstrate
considerable performance speedups over CPUs (7569×), GPUs
(80.3×), and a prior GCN accelerator (7.4×).

Index Terms—Graph Neural Network, Graph Convolutional
Network, Sparse Matrix Multiplication, Computer Architecture,
Machine Learning Accelerator, Dynamic Scheduling

I. INTRODUCTION

Deep learning paradigms such as Convolutional Neural
Networks (CNNs) [1] and Recurrent Neural Networks (RNNs)
[2] have been applied to a wide range of applications including
image classification, video processing, speech recognition, and
natural language processing [3]–[7]. These paradigms, however,
are only able to extract and analyze latent information from
euclidean data such as images, video, audio, and text [8]–
[10]. As a result, the adoption of neural networks is greatly
limited in fields with complex relationships among objects.
A large (and increasing) number of applications use non-
Euclidean data structures that are modeled as graphs. Nodes
and edges represent objects and relationships between those
objects, respectively, as appropriate for the application. Most
of these graphs have a tremendously large numbers of nodes;
moreover, the node degree generally varies dramatically, often
following a power law distribution [11]–[17].

The irregularity of the graph data makes most of the existing
Neural Network (NN) algorithms ill-suited; critical feature
extraction operations, such as convolutions, are no longer
applicable. To tackle this issue, Graph Neural Networks (GNNs)
have been proposed, in various forms, to extend deep learning
approaches to graph data [8], [18]–[25]. Among various GNNs,
the Graph Convolutional Network (GCN), an approach that
marries some ideas of CNNs to the distinct needs of graph data
processing, has demonstrated significant potential and become
one of the most important topics in NN-based graph research
[26]–[30].

With the rapid development of GCNs, designing dedicated
hardware accelerators has become an urgent issue [31]. GCNs
have already been investigated in a large number of real-
world applications [8], including electric grid cascading failure
analysis [32], prediction of chemical reactivity [33], prediction
of synthesized material properties [34], polypharmacy side-
effect modeling [35], accurate advertisement in E-commerce
[36], and cybersecurity [37]. Many of these applications pose
stringent constraints on latency and throughput.

Accelerators developed for other domains, such as the
sparse-CNN-accelerator (SCNN) [38]–[40], are not likely to
be optimal as GCN accelerators. There are several reasons.
(i) GCN applications have highly unbalanced non-zero data
distributions: non-zeros can be clustered or appear in only a
few rows. This leads to computing challenges [11]–[13] due to
workload imbalance [14]. Figure 1 compares the distribution of
non-zeros between a typical adjacency matrix in a GCN and a
typical sparse-weight matrix in a CNN: the distribution of non-
zeros is much more balanced in the SCNN. (ii) Extremely high
sparsity. The sparsity of a graph adjacency matrix often exceeds
99.9%, while the sparsity of SCNNs generally ranges from
10% to 50%. Therefore, in GCNs the indices of consecutive
non-zero elements are often highly scattered; this makes it a
major challenge to identify and access sufficient valid non-
zero pairs to feed a massive number of PEs per cycle at an
acceptable hardware cost (see Section 6). (iii) Large matrix
size. Real-world graphs are usually very large. For example, the
Reddit graph has 233K nodes and 12M edges. Its 23K×23K
adjacency matrix requires 1.7Tb storage in dense format or
2.3Gb in sparse format, which usually cannot fit into on-chip
memory. Although neural networks also have large models, the
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Fig. 1. Histograms show ordered non-zero per-row density. Left: Adjacency
matrix of the NELL graph (avg. density: 0.0073%) has most of non-zeros
clustered in 70/66k rows. Right: Unstructured compressed AlexNet weight
matrix (avg. density: 27%) has workload roughly balanced across 384 rows.
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Fig. 2. Adjacency matrix of NELL following power-law distribution: elements
are clustered regionally and in a few rows/cols. The matrix density is 0.0073%.
For better visualization, non-zero dots are enlarged.

matrix of a particular layer is often much smaller, e.g., 1k×1k,
so the working set often can fit easily into on-chip memory.

For these reasons, novel and efficient accelerator designs
are urgently required to accelerate GCN workloads. We
therefore propose AWB-GCN, a hardware accelerator for
GCN inference with workload auto-tuning. It monitors the
workload distribution at three levels at runtime and, accordingly,
rebalances the distribution per round1.

Three techniques are proposed: distribution smoothing, re-
mote switching, and evil row remapping. Distribution smoothing
balances the workload among neighbors. In matrices following
the power-law distribution, non-zero elements are usually
clustered, and, in some cases, appear in just a few rows/columns
(Figure 2). Given only distribution smoothing, it would be slow
and difficult for an autotuner to converge and achieve good load
balance. We solve this problem with remote switching and evil
row remapping. Remote switching shuffles workloads of regions
with the most and least clustered non-zero elements, making
efficient distribution smoothing possible. If a row is observed
to still contain too many elements to be smoothed or balanced
by remote switching, it is designated as an evil row. AWB-
GCN partitions that row and remaps its non-zero elements to
multiple regions (with least clustered elements). Figure 3 shows
the resulting per-round improvement in hardware utilization as
these methods are applied (Nell GCN).

1The calculation of one output matrix column is a round
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Fig. 3. AWB-GCN utilization improvement per round.

This paper makes the following contributions:
• We propose a novel and efficient architecture for accel-

erating GCNs and Sparse Matrix Multiplication (SpMM)
kernels for matrices with a power-law distribution.

• To handle the extreme workload imbalance, we propose
a hardware-based workload distribution autotuning frame-
work, which includes an efficient online workload profiler
and three workload rebalancing techniques.

• We evaluate AWB-GCN using an Intel D5005 FPGA
Acceleration Card with five of the most widely used GCN
datasets. Results show that 4K-PE AWB-GCN improves
the average PE utilization by 2.7× as compared with
the baseline without workload rebalancing. Compared
with CPUs (Intel Xeon E5-2680v3 + PyTorch Geometric
(PyG)), GPUs (NVIDIA Quadro RTX 8000 + PyG), and
prior art, AWB-GCN achieves average speedups of 7569×,
80.3×, and 7.4×, respectively.

II. MOTIVATION

In this section we briefly introduce the GCN algorithm and
discuss data characteristics of power-law graphs.

A. Graph Convolutional Network Structure

Equation 1 shows the layer-wise forward propagation of a
multi-layer spectral GCN [8], [29]:

X (l+1) = σ(AX (l)W (l)) (1)
A is the graph adjacency matrix with each row delineating
the connection of a vertex with all the other vertices in the
graph. X (l) is the matrix of input features in layer-l; each
column of X represents a feature while each row denotes a
node. W l is the weight matrix of layer-l. σ(.) denotes the
non-linear activation function, e.g., ReLU [1]. In general A
needs to be normalized: Ã = D−

1
2 × (A+ I)×D−

1
2 where I is

the identity matrix, and Dii = ∑Ai j. The reason is that, without
normalization, multiplying the feature vector X (l) by A will
change its scale: those nodes with more neighbors tend to
have larger values under feature extraction. Note that during
both training and inference of GCN, Ã remains constant. Since
Ã can be computed offline from A, in the remainder of this
paper we use A to denote the normalized Ã. In general A
is multiplied only once per layer. However, when multi-hop
neighbor information is to be collected, A can be multiplied
twice or more (i.e., A2, A3, etc.) per layer.

Equation 1 is derived from graph signal processing theory:
convolutions on a graph can be converted to a multiplication of
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Fig. 4. Illustration of a GCONV layer in GCNs.

signal x ∈ RN (i.e., a scalar for each node) and a filter g ∈ RN

in the frequency domain via the Fourier transform:
CONV (g,x) = F−1(F (x)�F (w)) =U(UT x�UT g) (2)

where � denotes the Hadamard product. U is a collection
of eigenvectors for the normalized graph Laplacian L =

IN −D−
1
2 AD−

1
2 = UΛU . The diagonal matrix Λ comprises

the eigenvalues. If a frequency domain filter gW = diag(W ) is
defined, then Equation 2 can be simplified [27] as:

CONV (gW ,x) =UgWUT x (3)
Equation 3 can be further simplified by defining the filter as
the Chebyshev polynomials of the diagonal matrix Λ [28], [29]
to obtain Equation 1.

Figure 4 illustrates the structure of a Graph Convolutional
layer (GCONV). Each GCONV layer encapsulates the hidden
features of nodes by aggregating information from neighbors
of nodes. By multiplying A and X (l), information from 1-hop
connected neighboring nodes are aggregated. By multiplying
AX (l) with W (l), and going through the non-linear activation
function σ(·), we obtain the output of this layer, which is also
the feature matrix for the next layer X (l+1). The matrix A will
normally be the same in different layers. After multiple layers,
the GCN is able to extract very high-level abstracted features
for various learning purposes.

B. Characteristics of Power-Law Graphs

Real-world graphs in many critical domains typically follow
the power-law distribution [14]–[17], which states that the
number of nodes y of a given degree x is proportional to
x−β for a constant β > 0. This implies that in the adjacency
matrix A, a small number of rows (or columns) include the
majority of non-zeros whereas the majority of the rows (or
columns) contain only a few non-zeros but are not empty.
Figure 5 shows the distribution of non-zero elements for the
five publicly available datasets that are widely used for GCN
evaluation [29]. The power-law effect is prominent for Cora,
Citeseer, Pubmed and Nell.

Table I lists the density and dimension of matrices in the five
GCN datasets used in this paper. Note that adjacency matrix
A is always very sparse (≥ 99%). Matrix X is also sparse. For
the first layer, the sparsity (X1) is usually larger than 90%. As
the weight matrix W is usually dense, the output of AXW is
also dense. However, because of the ReLU activation function,
the final output X2 (also the input of the next layer) becomes
sparse but with sparsity usually less than 50%. The sizes of
the matrices in GCNs depend on the dataset and can range
from thousands to millions or more. A can be extremely large
and is stored in a sparse format.

TABLE I
MATRIX DENSITY AND DIMENSIONS OF 5 WIDELY-USED GCN DATASETS.

CORA CITESEER PUBMED NELL REDDIT

Density

A 0.18% 0.11% 0.028% 0.0073% 0.043%
W 100% 100% 100% 100% 100%
X1 1.27% 0.85% 10.0% 0.011% 51.6%
X2 78.0% 89.1% 77.6% 86.4% 60.0%

Dimension Node 2708 3327 19717 65755 232965
Feature 1433 3703 500 61278 602

TABLE II
OPERATIONS REQUIRED UNDER DIFFERENT EXEC ORDERS.

Layer Order CORA CITESEER PUBMED NELL REDDIT

Operations (A×X)×W 62.8M 198.0M 165.5M 258G 17.1G
A× (X×W ) 1.33M 2.23M 18.6M 782M 6.6G

III. GCN BASELINE ARCHITECTURE

This section introduces the multi-core baseline architecture
for GCN acceleration. This baseline supports efficient process-
ing of power-law graphs with ultra-high sparsity and large sizes.
This design alone cannot address the workload imbalance issue
of power-law graphs, but builds a foundation for its further
augmentation, described in the next section, which achieves
near-optimal workload balancing.

A. Matrix Computation Order

To compute AXW at each GCONV layer, there are two
alternative computation orders: (A×X)×W and A× (X×W ).
The choice is significant as it dictates the volume of non-
zero multiplications. Based on profiling, A is ultra sparse and
large, X is generally sparse and usually has a large number
of columns, and W is small and dense. For (A× X)×W ,
since multiplying A and X requires complex sparse-sparse-
matrix-multiplication and produces a very large dense matrix,
multiplying their product by another dense matrix W leads to
significant computation workload and long delay. Alternatively,
for A× (X×W ), both are sparse-dense matrix multiplications
(SpMM) and the scale of computation is drastically smaller.
Table II lists the amount of computation for the five datasets
following the two approaches. Since the difference is quite
obvious, in this design we first perform X×W and then multiply
with A.

B. SpMM Execution Order and Mapping

We perform column-wise-product-based SpMM [41]–[43]
as described as follows. Given S×B =C, if S is (m×n), B is
(n× k), and C is (m× k), then we can reformulate C as:

C = [
n−1

∑
j=0

S jb( j,0),
n−1

∑
j=0

S jb( j,1), . . . ,
n−1

∑
j=0

S jb( j,k−1)] (4)

where S j is the jth column of S and b j,k is an element of
B at row- j and column-k. In other words, by broadcasting
the jth element from column-k of B to the entire column- j
of S, we can obtain a partial column of C. Essentially, B is
processed in a streaming fashion: each element b( j,k) finishes
all computation it involves at once and is then evicted. In this
way, we reuse the entire sparse matrix S for each column of C
(k times in total). To reduce off-chip memory access for matrix
S, we apply inter-layer data forwarding and matrix blocking
techniques (discussed in Section 3.4).

3



Fig. 5. Non-zero distribution imbalance of Adjacency matrices in Cora, Citeseer, Pubmed, Nell and Reddit datasets.

Fig. 6. (A) SpMM computation order: Column-wise-product; (B) Matrix
partitioning & mapping among PEs.

This design has additional advantages when S and C are
stored in Compressed-Sparse-Column (CSC) format. Further-
more, it provides opportunities to pipeline multiple SpMM
operations, as is discussed in Section 3.4. Moreover, column-
wise-product brings massive opportunities of workload distri-
bution autotuning which is key to achieving high performance.
Figure 6(A) shows the column-wise order for calculating C.
The columns of S and elements of B in the same color are
multiplied and stored as partial results in C with the same
color.

In the baseline design, with the assumption that non-zeros
are evenly distributed among the rows, we use a direct and
static mapping from matrix rows to PEs to avoid expensive
parallel reduction in hardware as illustrated in Figure 6(B).

C. Design of Baseline Architecture

Figure 7 illustrates the baseline design for SpMM calculation
with efficient support of skipping zeros. The architecture com-
prises the modules sparse-matrix-memory (SpMMeM), dense-
column-memory (DCM), task-distributor & Queue (TDQ), PE-
array, and accumulation-buffers-array (ACC Buffer). SpM-
MeM buffers the input sparse matrix S (from off-chip) and
feeds non-zeros and their indices to TDQ. DCM buffers the
input dense matrix B and broadcasts its elements to TDQ. TDQ
distributes tasks to the PEs. The PE-array performs concurrent
multiplication of non-zero pairs, partial result accumulation,
and data exchange with the ACC Buffers. Finally, the ACC
Buffers cache the partial results of the resulting matrix C for
accumulation and send them to the next SpMM engine at
the completion of a whole column calculation. Depending on
the sparsity and storage format of S, i.e., CSC, we have two
alternative designs for TDQ:

TDQ-1 (Figure 7-left) is used when S is generally sparse
(sparsity < 75%) and stored in dense format. We perform
the direct row partition as discussed and map non-zeros to
the input buffer of the corresponding PEs (Figure 6(B)). In
each cycle, NPE/(1−Sparsity) elements are forwarded to the
PE array. Only non-zeros are kept in the queues. Here NPE
denotes the number of parallel PEs. Given evenly distributed

non-zeros, each PE receives one non-zero per cycle to calculate.
In practice, however, the distribution can be very imbalanced
and each PE has the chance to receive at most 1/(1−Sparsity)
in one cycle. Therefore, each PE is equipped with multiple
Task Queues (TQs) guaranteeing enough concurrency to cache
all valid data. As shown in Figure 7-(left), in each cycle a PE
can receive up to 4 non-zero elements (sparsity < 75%). Each
PE has four task queues to buffer them.

In each cycle, an arbiter selects a non-empty queue, pops
an element, checks for a Read-after-Write (RaW) hazard, and
forwards it to the PE for processing. Since the computations
are all floating-point, the pipelined multiply-accumulate-unit
(MAC) usually takes several cycles to process, but can still
accept new tasks while processing. If the new task tries to
accumulate the same partial result of C (i.e., from the same
row of A), it actually fetches a stale partial result from the
ACC buffer and a RaW hazard occurs. To avoid this hazard,
we implement a stall buffer of size T, where T is the delay
of the MAC units. We track the row indices currently being
processed by the MAC and check whether the current element
is targeting the same row in the RaW-check-unit. If so, we
buffer that job and delay until the hazard is resolved. The RaW
hazard is detected by checking the row index of the coming
data.

TDQ-2 (Figure 7-right) is used when S is ultra-sparse and
stored in CSC format. Since in CSC the non-zeros are
contiguous in a dense array, if we can directly process the
dense array, we gain from avoiding all the zeros. However, we
suffer from the overhead of navigating to the correct PE as
the indices of neighboring elements are highly scattered. We
use a multi-stage Omega-network for routing the non-zeros
to the correct PE according to their row indices. Each router
in the Omega-network has a local buffer in case the buffer of
the next stage is saturated. This design attempts to balance
the data forwarding rate and the processing capability of the
PEs by sending NPE non-zeros per cycle. This is achieved
when non-zero elements are distributed evenly among rows.
Compared with a global crossbar network, the Omega-network
design scales better and incurs lower hardware complexity.

When a PE receives a new non-zero pair [d1,d2] from
TDQ, it (1) performs the new multiplication task with d1,d2,
(2) fetches the corresponding partial results [d acc] of output
matrix C from the ACC buffers according to the newly received
row index, (3) accumulates the multiplication result and d acc,
and (4) updates the ACC buffers with the new accumulation
result. Each PE is coupled with a bank of ACC buffer to store
the rows of C it accounts for. A PE has two units: a MAC and an
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Fig. 7. Architecture of the proposed baseline SpMM engine.

Address-Generation-Unit (AGU) for result address generation
and forwarding. Since C is a dense matrix and stored in dense
format, the rows of C are statically partitioned among ACC
buffers. Synchronization is only needed when an entire column
of the resulting matrix C is completely calculated.

Overall, for each layer of GCN, we first execute SpMM
on X×W . Since X is generally sparse (except the first layer)
and stored in dense format, we use TDQ-1. The result of XW
is dense. We then compute A× (XW ) which again is SpMM.
However, as A is ultra-sparse and stored in CSC format, we use
TDQ-2. The result is dense, but after ReLU, a large fraction
of the entries become zero, and we again have a sparse matrix
as the input feature matrix for the next layer.

D. Pipelining SpMM Chains

Intra-Layer SpMM Pipelining: One can exploit the paral-
lelism between consecutive SpMMs (i.e., X×W and A×(XW ))
in a layer through fine-grained pipelining. This is based on
the observation that A is constant for the inference of a
certain graph. Once a column of (XW ) is calculated, we can
start the multiplication of this column with A immediately
without waiting for the entire XW (see Figure 8). This design
has two major benefits: (i) we gain extra parallelism and
reduce the overall latency through this fine-grained pipelining,
and (ii) instead of requiring off-chip storage to cache the
big resulting XW matrix, we only need to buffer a single
column of XW ; this can be done on-chip. This method can be
reused within a GCONV layer if (AXW ) is left-multiplied by
any other sparse matrices. For example, some GCNs collect
information from 2-hop neighbors so the layer formulation
becomes A× (A× (X×W )) and the three multiplications can
be pipelined and processed in parallel.
Inter-Layer SpMM Pipelining: SpMMs from different layers
can also be pipelined. To avoid pipeline bubbles and large
intermediate buffers, we allocate hardware resources (PEs) in
proportion to the workload of each layer (Figure 8). In this way,
the output generation of the previous layer matches the data
consumption of the current layer, so that the execution time of
different layers is similar, given optimal workload balance and
PE utilization. Pipelining SpMMs from different layers has
two benefits. First, it exploits inter-layer parallelism. Second,
since A is shared for all GCONV layers in the inference of
a particular graph, it can be reused by SpMM engines across
the layers, so off-chip accesses of A are only required by the

Fig. 8. Pipelined SpMMs: data production and consumption rates match
across consecutive SpMMs by allocating PEs in proportion to workload sizes.

first layer. This is done by forwarding elements of A through
the layers.

Bandwidth Analysis: Off-chip data access of the big Adja-
cency matrix A can be a concern. However, as AWB-GCN
always requests and consumes data with continuous addresses,
the off-chip memory bandwidth and the burst mode access can
be efficiently utilized. Also, we use three extra methods to
reduce the off-chip bandwidth requirement: (1) as mentioned
above, A is reused across layers; (2) matrix blocking is used
to improve the data locality and reuse of matrix A. Figure 9
illustrates how the proposed matrix blocking works without
affecting the efficiency of the rebalancing techniques which
are discussed in the next section. The numbers in the figure are
execution orders. A is partitioned into multiple blocks. Instead
of calculating each column of A(XW ) by multiplying all blocks
of A and the corresponding column of (XW ), we calculate t
columns of A(XW ) in parallel. The calculation of a certain
block of A will not start until the previous block is reused t
times and finishes calculating its intermediate results of all t
columns of the resulting matrix. By doing so, the data reuse of
matrix A is improved by t times. Note that this optimization will
not hurt the efficiency of the autotuning rebalancing of AWB-
GCN, as the sub-SpMM of each block of A is still following
column-wise product order. (3) AWB-GCN is equipped with
a scratchpad memory to cache parts of A on-chip as much as
possible. For example, the A and X1 of Cora can be entirely
stored on-chip.

Based on our experiments, with the proposed optimizations,
the AWB-GCN accelerator requires at most 459 Gbps off-chip
bandwidth to keep the hardware busy with 1024 PEs for the 5
datasets evaluated. This bandwidth demand can be generally
satisfied by current platforms (e.g., Intel D5005 FPGA board
provides 614 Gbps DDR bandwidth; VCU-128 FPGA provides
3680 Gbps HBM bandwidth; NVIDIA V100 provides 7176
Gbps HBM bandwidth).
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Fig. 9. Matrix Blocking Optimization to reduce the off-chip bandwidth
requirement. The sub-SpMM of each pair of blocks is performed in column-
wise-product order. The numbers represent execution orders.
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Fig. 10. PE utilization waves of 256-PE Baseline SpMM engine processing
A× (XW ) of Nell and Citeseer.

E. The Workload Balance Problem

The baseline architecture works well when non-zeros are
evenly distributed among the rows of A. However, when this
assumption does not hold, the performance of the baseline ar-
chitecture can degrade considerably due to workload imbalance
among PEs. Figures 10(A) and (B) illustrate the utilization
of 256 PEs processing SpMMs with Adjacency matrices of
the Citeseer and NELL datasets. As mentioned in Section
1, evil rows and regionally clustered non-zeros in power-law
graph matrices bring the inefficiency. The existence of evil
rows keeps only a few PEs busy while all others idle most of
the time, resulting in significant major crests in the utilization
waves; the regionally clustered non-zero elements result in the
minor crests; the differences in the numbers of non-zeros in
neighboring rows result in other fluctuations.

A common software approach for dealing with sparse data
structures is to profile the structure, e.g., with symbolic analysis,
and then use that information to guide the “real” processing. For
GCNs, however, it has been demonstrated that the preprocessing
stage can take 10× more time than the inference itself [31].
In this work, we dynamically adjust hardware configurations
for workload rebalancing. This design can be applied to a
variety of specialized accelerators for processing sparse data
structures.

IV. AWB-GCN ARCHITECTURE

In this section, we describe the AWB-GCN architecture.
The core is the handling of load balancing at three levels
of granularity: distribution smoothing for local utilization
fluctuations among PEs, remote switching for the minor crests,
and row remapping for the major crests.

Figure 11 illustrates autotuning with 24 PEs performing
SpMM on a power-law matrix. The gray bars at the top show the
execution time of parallel PEs; the length changes dynamically
through the process. The narrower bars at the bottom show
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the static density-per-row of the matrix. Ideally, at the end of
autotuning, all bars on the top becomes short and have the
same length. Each round of autotuning includes two phases:
First, data processing and distribution smoothing in phase 1;
then remote switching and row remapping.

Figure 11 (a)&(b) illustrate the first round of autotuning.
The progression from Figure (a) to (b) shows the first phase.
Figure (a) gives estimated execution time without distribution
smoothing; Figure (b) shows the actual execution time with
distribution smoothing applied. During phase 1, PEs keep
offloading workloads to their less busier neighbors, resulting
in a more flat and smooth execution time wave (shown in (b)).
Meanwhile, the execution time of PEs at the wave crests and
troughs is recorded by the Autotuner.

After all the PEs have finished, phase 2 starts. The Autotuner
partitions and remaps evil rows to PEs at troughs and switches
workloads of the PEs at the minor crests with the ones at
the troughs. The green and blue arrows in (b) show evil row
remapping and remote switching decisions, respectively. After
these decisions are made, the second round of autotuning starts
(Figures (c)&(d)). With remote switching and row remapping
determined in the first round, the initial workload distribution
among PEs at the start of the second round (shown in (c)) can
be more efficiently balanced by distribution smoothing (shown
in (d)). The blue arrows in (d) show that remote balancing
not only finds new pairs of PEs to switch workloads, but also
adjusts the switch fractions determined in the previous round.
After several rounds, the system converges to optimal balanced
status; this is then used for the remainder of the computation.

All profiling and adjustment are performed at runtime. We
now present design details.
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A. Distribution Smoothing

At the start of processing, rows are evenly distributed among
PEs as introduced in Section 3.2 (as shown in Figure 6(B)).
During the calculation of each round, we employ distribution
smoothing by averaging out the workloads among neighbors.
The architecture is able to monitor the runtime PE utilization
information by tracking the number of pending tasks in TQs
and keep offloading the work of PEs with more pending tasks
to their less busy neighbors. However, the offloaded work
needs to be returned for aggregation after processing. Due to
chip area and design complexity restrictions, we may offload
workloads among direct neighbors, 2-hop neighbors, or even
3-hop neighbors, but not farther ones.

Figure 12 illustrates the hardware design of 1-hop distribution
smoothing for TDQ-1 and TDQ-2.

TDQ-1: Before a new task is pushed into the TQ of a PE,
the PE compares the number of pending tasks with those in
the neighboring TQs. The task is then forwarded to the TQ
with the fewest pending tasks. If forwarded to a neighbor, the
result needs to be returned to the ACC buffer of its original
PE after accumulation (see Figure 12-(B)). The calculation of
valid return address and accumulation of partial results are
done in the neighbor PE.

TDQ-2: The final layer of the multi-stage Omega network
handles neighbor task forwarding. As shown in Figure 12-(C)
(also in Figure 13), multiple PEs share the same final-layer
switch; we refer to these PEs as a group. AWB-GCN keeps
tracking the usage of TQs of the final layer. Once a new task
is forwarded to the final-layer switch, the TQ usages among
neighbors are compared and then the task is routed to the PE
with the lowest TQ usage. To enable PEs on the group edge
(i.e., the leftmost or rightmost PEs per group) to communicate
with their out-of-group neighbors, we augment the Omega-
network by adding 2 extra links per switch in the final layer, as
shown in Figure 12-(D). Note that Figure 12-(D) shows sharing
only among 1-hop neighbors. By considering more distant hop
neighbors, a more balanced design is obtained at the cost of
higher hardware complexity and area. This is discussed in the
evaluation section.

Distribution smoothing helps remove local utilization fluc-
tuations (Figures 11(a) to (b)), but is not sufficient when (1)
non-zeros are clustered in a region across many PEs, so that
neighbors are mostly busy and have no chance to help each
other, resulting in a minor utilization crests (PE20,21,22 in
Figure 11(b)); or (2) most non-zeros are clustered in only a
few rows so that the major crests cannot be eliminated even if
all neighboring PEs help (PE9 in Figure 11(b)).

B. Remote Switching

To address regional clustering, we propose remote switching.
This process partially or completely exchanges the workloads
between under- and overloaded PEs, i.e., at centers of utilization
wave troughs and crests, respectively. The switch fraction is
determined at runtime by an autotuner and is based on per-
round PE utilization. As the sparse matrix A is reused during

Fig. 12. Simplified architecture of distribution smoothing.

the processing per round, the switch strategy generated in
prior rounds is valuable in the processing of later rounds. The
accelerator remembers the switch strategies used in the current
round and incrementally optimizes them based on the utilization
information obtained in the next round. In this way, remote
switching is able to flatten the crests and troughs; after several
rounds of autotuning, the switch strategy best matching the
sparse structure of A is obtained, and is used for the remaining
rounds for almost perfect PE utilization.

The hardware design is shown in Figure 13. The over-loaded
and under-loaded PEs are identified by using the PE Status
Monitor (PESM) of Autotuner during Phase one of autotuning.
Recall that each TQ has a counter to track the number of
pending tasks; these can trigger an empty signal when reaching
zero. These empty signals are connected to the PESM. At each
cycle, the updated empty signals are xored with their values
recorded on the previous cycle. The XOR results indicate which
PEs are newly finished; this information is stored in the Switch
Candidate Buffer.

At the start of each round (after A is totally sent to TDQs),
the arbiter scans the buffer and record IDs of newly done PEs
until enough under-loaded PEs have been found. The number
of PE tuples for switching at each round can be customized.
In Figure 13, four tuples of the most over- and under-loaded
PEs are selected for remote switching. After the arbiter finds
the first 4 idle PEs, it stops scanning the buffer and instead
waits for the completion signal (bit−AND all empty signals)
from the system, which implies all PEs have become idle.
Meanwhile, the Switch Candidate Buffer caches the newly idle
info of the most recent cycles. Whenever the arbiter receives
the completion signal it starts to scan the buffer and continues
until the four most over-loaded PEs have been found. Note
that the arbiter does not select neighbor PEs continuously; this
guarantees that PE tuples selected by PESM are at different
crests and troughs of the utilization wave.

To avoid thrashing, we only exchange a portion of the
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Fig. 13. Overall architecture of SpMM engine in AWB-GCN with three rebalancing techniques: distribution smoothing, remote switching (red bordered) and
evil row remapping (purple bordered). Here every 128 PEs has one Super-PEs and four Labor-PEs. These numbers can be customized.

workload between PEs. We use the following equation to
calculate the number of jobs (i.e., rows of A) to be switched
in the i-th round (i.e., a column of B), Ni init:

Ni init = Gi/G1× (R/2) (5)
where Gi is the workload gap of the selected PE tuple at the
i-th round, and R is the number of rows per PE under equal
mapping. Here, workload gap is approximated as the difference
of execution cycles to finish all tasks.

In the i+1-th round, new PE-tuples are selected and their
switch fractions are calculated. Meanwhile, the autotuner also
tracks the post-switching utilization gaps of PE-tuples selected
in the prior rounds and uses them as feedback to adjust the
switch fraction Ni init; this minimizes the utilization gaps
further. The workload switching fraction for each tracked PE-
tuple is adjusted for two or more rounds and is highly likely
to converge to the optimal distribution. Equation 5 can now
be rewritten as follows:

Ni, j =

{
Gi/G1× (R/2) i f j = 0
N(i−1),( j−1)+Gi/G1× (R/2) i f j > 0

(6)

where j denotes the number of rounds of fraction update.
Ni, j indicates that the current PE-tuple is in its j-th update
and its initial fraction to switch was calculated in the i− j-th
round. The number of rounds tracked simultaneously can be
customized and depends on the size of the tracking window in
the PESM; this is an area/performance tradeoff. In Figure 13,
two consecutive rounds are tracked.

Calculation of Equation 6 is done in the Utilization Gap
Tracker (UGT in Figure 13). To reduce the hardware cost
of calculating Gi/G1 × (R/2), we use a hardware-friendly
approximation with threshold-based counting and table lookup;
when the most under-loaded PE is found, the left CNTs in
UGT start counting. The execution cycle gap (G1) at the first
round is right-shifted by g bits (the granularity for division
approximation). The result is used as a threshold. Whenever
the left CNTs reach the threshold, they get back to 0 and the
right CNT adds 1. When the most over-loaded PE is found, the
counting stops. Assuming the right CNT counts to q, we know
the execution time gap at the current round is approximately
q×G1/(2g).

Using q as the address to access the Table for Switch Fraction

Lookup (TfSFL), we know the approximate number of rows
that needs to be switched. More details are omitted due to
space limitations. Once the number of rows to be switched is
known, it is forwarded to the Workload Distribution Controller
(WDC) together with the corresponding PE IDs. At the start
of the next round, the destination PE of these rows is updated
in the Shuffle Switches (SS). By doing so, the non-zeros in
these rows will be forwarded to the post-switching PEs in the
coming rounds.

Furthermore, in order to reduce the workloads of overloaded
PEs more efficiently, all operations related to the main-diagonal
elements at the rows assigned to these PEs are skipped during
processing. Instead of performing these operations, when the
required elements of the dense matrix reach TDQs, they will
be directly forwarded to the ACC Buffers of the post-switching
PEs and be accumulated just before the final accumulation
results are sent to the next kernel.

Remote switching followed by distribution smoothing is
efficient on getting rids of most of crests of utilization waves.
However, for the major crests resulted from evil rows which
have too many non-zeros to be shared only by neighbors, extra
effort is required.

C. Evil Row Remapping

We address evil-row clustering by building row remapping
support into the remote switching hardware. With row remap-
ping, the evil row is distributed to the most under-loaded PEs in
troughs; in this way the neighbors of these PEs can help. Row
remapping is triggered based on demand at the end of each
round. The autotuner calculates the utilization gaps between the
most over- and under-loaded PEs and determines whether their
gaps are too big for remote switching to handle. If yes, row
remapping is performed. The workloads of the PE overloaded
in the current round are switched (temporarily) with a Super-
PE in the next round. During processing of the next round, the
Super-PE counts the numbers of non-zeros per row and finds
the evil rows containing the most non-zeros. In the round after,
the workloads of each evil row are partitioned and distributed
to a set of Labor-PEs controlled by the Super-PE.
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Fig. 14. Overall performance and PE utilization of 1K-PE AWB-GCN with five design choices.

Fig. 15. Per-SpMM performance and PE utilization of 1K-PE AWB-GCN with five design choices.

After evil rows are remapped to labor-PEs, the original
workloads of the labor-PEs can still be swapped with the most
under-loaded PEs via remote switching; this ensures that even
if the labor-PEs are overloaded originally, they do not become
new crests after row remapping. If a labor-PE itself is found
to have an evil row, evil row remapping will first map its
workload to the master-PE, and then distributively remap the
evil row back to labor-PEs, including the one which has the
evil row originally. By remapping evil rows statically to certain
PEs instead of dynamically to random ones, the aggregation of
partial results becomes hardware efficient. If row remapping is
not triggered, Super- and Labor-PEs serve as regular PEs.

The existence of evil rows is generally the most critical
bottleneck, especially when utilization is lower than 50%.
The proposed row remapping technique makes it possible for
the autotuner to find the optimal workload distributions and
achieve high utilization. As evil row remapping is normally
triggered during the first few rounds, the utilization of the
system increases rapidly right at the start and the autotuner
generally converges quickly.

Figure 13 illustrates the hardware support of row remapping.
For clarity, only one Super-PE and its four Labor-PEs are shown.
The Labor-PE has an architecture similar to the normal PE, but
they are connected to an adder tree for result aggregation. The
aggregated results of evil rows are cached in a small separate
ACC buffer. The super-PE is much bigger than other PEs, as
it serves as a profiler to find the evil rows. It is equipped
with two extra modules: a parallel sorting circuit that tracks
the rows with the most non-zeros; and a non-zero counter
(including a local buffer) that records the number of non-zeros
per row. Workload remapping between Super-PE & Labor-PEs
and workload switching between Super-PE & the PE-with-evil-

rows are handled by augmenting the Autotuner as follows. First,
the UGT module is equipped with a comparator to identify
whether evil row remapping is required; if it does, then the
UGT will send the information to WDC. The WDC knows
the IDs of the Super-PE and Labor-PEs. If row remapping
is triggered or an evil row is found, the entries of the Super-
and Labor-PE at Distribution Switch Table in the WDC are
updated. This enables workload switching and remapping in
the coming round.

V. EVALUATION

In this section, we evaluate AWB-GCNs with different design
choices and compare them with other platforms processing the
same networks.

A. Evaluation Configuration

We implement AWB-GCNs in Verilog HDL and measure
PE utilization, performance, energy efficiency, and hardware
resource consumption on Intel acceleration card D5005 which
is equipped with a Stratix 10 SX FPGA. Note that the FPGA
is only used as an evaluation platform to demonstrate the
performance of AWB-GCN. The design is a general architecture
that does not leverage any FPGA-specific features.

To measure utilization, we add a counter to each PE to track
the number of idle cycles. The number of operating cycles (i.e.,
execution delay) is also measured with a hardware counter. The
hardware consumption and operating frequency are reported
by Quartus Pro 19.4 after synthesis and implementation. To
perform fair cross-platform comparisons, we implement GCNs
with the state-of-the-art and famous software framework, PyG
[44], and run them on Intel Xeon E5-2680-V3 CPU and
NVIDIA RTX 8000 GPU. We also compare AWB-GCN with
prior work on GCNs such as HyGCN [31].
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Fig. 16. (A) Hardware resource consumption normalized to the number of
ALMs and (B) On-chip storage demand of 1K-PE AWB-GCN.

The datasets used for evaluation are Cora, Citeseer, Pubmed,
Nell and Reddit; these are the five most widely used publicly
available datasets in GCN research.

B. AWB-GCN Evaluation

Design efficiency is evaluated by comparing the performance,
hardware resource consumption, and PE utilization of the
1K-PE baseline design without any rebalancing techniques
(i.e., Baseline) with the four different design choices of
1K-PE AWB-GCNs: (i) 1-hop distribution smoothing (i.e.,
Design(A)), (ii) 2-hop distribution smoothing (i.e., Design(B)),
(iii) 1-hop distribution smoothing plus remote switching and
row remapping (i.e., Design(C)), and (iv) 2-hop distribution
smoothing plus remote switching and row remapping (i.e.,
Design(D)). The only exception is for Nell where we use 2-
hop and 3-hop distribution smoothing (rather than 1-hop and
2-hop) due to its extremely clustered distribution.

Figure 14 compares the end-to-end GCN inference latency
and average utilization of PEs for the five designs over the
five datasets. The lines show the overall PE utilization. The
bars show the breakdown of execution cycles of different
GCN layers. The latency of ReLU is too low to show in the
figure. The off-chip memory access latency is overlapped with
computation. We also mark the latency lower bound assuming
theoretically ideal PE utilization. For Cora, Citeseer, Pubmed,
Nell and Reddit, comparing to Baseline, Design(B) can improve
PE utilization from 38%, 56%, 44%, 7.1% and 90%, to 79%,
77%, 86%, 39%, and 99%, respectively, leading to 1.94×,
1.25×, 1.56×, 5.93×, and 1.10× performance improvement.
Enabling remote switching can further improve PE utilization
to 88%, 88%, 93%, 88%, and 99%, bringing performance gain
to 2.11×, 1.41×, 1.62×, 8.75×, and 1.10×. The results show
that AWB-GCN always provides high utilization and close to
theoretical peak performance for datasets with various levels
of power-law distribution.

In AWB-GCN, hardware resources allocated to different
layers are in proportion to their volume of operations. Thus,
when perfect utilization is achieved, the same execution delay
is observed for all layers. As shown in Figure 14, the green
and red bars have similar lengths at Design(D), while their
lengths vary significantly for the Baseline.

The shaded area in Figure 14 represents the performance
overhead of the proposed rebalancing techniques. Distribution
smoothing is performed during the processing of PEs incurring
no overhead so Designs(A)&(B) are not shaded. For De-
signs(C)&(D), most of the tasks for remote switching and row
remapping are also performed in parallel with the processing of
PEs, e.g., all tasks at PESM and the utilization gap calculation
at UGT. However, the table lookup for switch fraction at
UGT and data update at WDC must be done sequentially
between the processing of two consecutive iterations (columns).
They introduce negligible overheads (shaded area of bars
for Design(C)&(D)), before the system converges to optimal
balanced status. The shaded areas are only visible for Cora
and Citeseer whose workloads are relatively lighter.

Figure 15 further breaks down the numbers of execution
cycles and shows results for every SpMM kernel; this demon-
strates the benefits of AWB-GCN on kernels with various
sparsity, size and distributions. The shaded area of the bars
represents the Sync cycles due to workload imbalance; the
unshaded area represents the Ideal cycles assuming perfect
workload balance. The bars in different colors represent the
execution cycles of the four SpMM kernels in the two-
layer GCNs [8], [29]: A× (XW ) and X ×W at Layer 1
and 2. The lines show the corresponding PE utilizations. As
shown in Figure 15, Design(D) significantly minimizes the
synchronization overheads for all kernels of the 5 GCN models.

Comparing SpMM kernels, utilization improves significantly
for A× (XW ) at both layers and X ×W at Layer-1. As for
X ×W at Layer-2, although X is also sparse after activation
is performed, its sparsity is much lower than that of the X
at Layer-1 and its non-zero distribution does not follow the
power-law (similar to that of the sparse matrices in SCNNs);
utilization is thus high even with the baseline design.

Figure 16(A) compares the hardware resource usage of
the five designs over the five datasets. To show comparable
breakdowns to ASIC implementations, the results of hardware
resource usage are reported by Quartus Pro 19.4 after synthesis
(therefore, FPGA-specific optimizations are not included) and
are normalized to the number of Adaptive Logic Modules
(ALMs). ALM is the basic component of Intel FPGAs. In an
ASIC design the analogue would be the number of transistors.
The blue segments represent the resource usage for the modules
of the baseline design including MAC units in PEs, other
modules in PEs, task queue control logic, and omega/shuffle
networks. The green and red segments refer to the hardware
overheads for the support of distribution smoothing and remote
switching + row remapping. Note that in practical FPGA
implementations, MAC units in PEs are instantiated with
floating-point DSP slices. In order to show the area breakdown
more clearly, we normalize the DSP slices to ALMs. As shown
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Fig. 17. AWB-GCN PE (1K) average utilization per round of workload autotuning.

Fig. 18. Scalability evaluation: PE utilization and overall performance of Baseline, Design(B) and Design(D) of AWB-GCNs with 512, 1K, 2K and 4K PEs.

in Figure (A), the overheads of 1-hop and 2-hop distribution
smoothing are on average 3.5% and 6.7%, respectively, which
is acceptable; the overhead of remote switching and row
remapping is, on average 0.9%, which is negligible.

Figure 16(B) compares on-chip storage demand. That of
Task Queues in the Omega-Network is in blue; the buffers for
remote switching + row remapping are in red; the others are in
green. As shown in Figure (B), the overall storage demands of
AWB-GCN with Design(D) are even lower than the baseline.
This is largely due to dramatically reduced per-PE Task
Queue size under more balanced workloads. With much more
balanced workload distributions in Design(D), the congestion
and backpressure in Omega-Network are significantly relieved,
making the TQs narrower and shallower.

Finally, Figure 17 shows the utilization improvement due
to iterative workload autotuning. Rebalancing can be accom-
plished within 10 iterations. This means that most of the
iterations can benefit from operating under the converged
optimal strategy. Note that the utilization of Nell has a sharp
improvement in round 3 due to effective evil row remapping.

C. Scalability of AWB-GCN

We evaluate the scalability of AWB-GCN by running GCN
inference of the five datasets on the baseline as well as Designs
(B) and (D) of AWB-GCN and varying the number of PEs
from 512, 1024, 2048 to 4096. In Figure 18, the bars represent
the performance speedup comparing with the baseline design
with 512 PEs. The lines represent average PE utilizations.

As shown in Figure 18, the PE utilization of the baseline
design drops dramatically with increasing number of PEs. This
is because more PEs means fewer rows per PE, highlighting the
imbalance among PEs: they have fewer opportunities to absorb
inter-row imbalance. Due to the dropping PE utilization, the
performance speedup shows poor scalability. For AWB-GCN
with only distribution smoothing, PE utilization also drops but
more slowly than baseline. Nell is an outlier as the utilization
of baseline with 512 PEs is too low to drop. In contrast, the PE

utilization of the complete version of AWB-GCN, Design(D),
is high and stable. The performance scales almost linearly with
increasing number of PEs.

D. Cross-platform Comparison

We evaluate five scenarios: (i) AWB-GCN Design-(D) with
4096 PEs, (ii) PyG-based implementation on Intel Xeon E5-
2680v3 CPU (PyG-CPU), (iii) PyG-based implementation on
a NVIDIA RTX 8000 GPU (PyG-GPU), (iv) 4096-PE baseline
AWB-GCN without workload rebalancing, and (v) SCNN
[45] reproduction with 4096 multipliers (we build a system-
C-based cycle-accurate simulator for SCNN). We use the five
datasets: Cora, Citeseer, Pubmed, Nell, and Reddit for the
evaluation. The GCN model configuration follows the original
GCN algorithm papers [29], [46], [47]. We label these GCNs
“Standard networks”.

As shown in Table III, despite running at a relatively low fre-
quency, AWB-GCN achieves, on average, speedups of 6017×
and 135.5× over the well-optimized PyG implementations on
high-end CPUs and GPUs. It achieves a speedup of 6.0× over
the baseline design without workload rebalancing. For the Nell
dataset, the speedup over the baseline is 18.8×, demonstrating
in particular the impact of workload balancing. Reddit fails on
GPU due to out-of-memory. AWB-GCN achieves from 2.4×
to 19.7× (on average, 7.6×) speedup compared with SCNN.
SCNN is inefficient when working with GCNs because it uses
Cartesian Product-based SpMM which requires massive and
highly irregular reduction of intermediate results, especially
when the matrices are very big, sparse, and follow power-
law. SCNN also requires very high off-chip bandwidth for the
reduction. In our evaluation, we assume SCNN is equipped with
a High Bandwidth Memory (HBM) which provides sufficient
off-chip bandwidth. If DRAMs are used, the performance of
SCNN would be even lower.

The tremendous speedups over PyG-CPU and PyG-GPU
originate from AWB-GCN’s dedicated architecture which uses
features not available on general-purpose CPUs and GPUs: (a)

11



TABLE III
COMPARISON WITH CPU, GPU AND BASELINE PROCESSING STANDARD NETWORKS. OOM: OUT OF MEMORY.

Platform Standard networks Cora CiteSeer Pubmed Nell Reddit
Intel Xeon E5-2680 (PyG) Latency (ms) [speedup] 2.51 [1×] 3.66 [1×] 13.97 [1×] 2.28E3 [1×] 2.94E5 [1×]

Freq: 2.5GHz Energy efficiency (graph/kJ) 6.68E3 3.88E3 1.03E3 6.99 5.43E-2
NVIDIA RTX8000 (PyG) Latency (ms) [speedup] 0.69 [3.6×] 0.68 [5.4×] 0.69 [20.2×] 90.50 [25.2×] OoM

Freq: 1395MHz Energy efficiency (graph/kJ) 1.06E4 1.29E4 1.11E4 89.06 OoM
SCNN (Cartesian product, 330MHz) Latency (ms) [speedup] 1.6E-2 [158.2×] 2.6E-2 [142.3×] 7.2E-2 [194.5×] 31.47 [72.4×] 28.23 [10415.8×]

Baseline Intel D5005 FPGA Latency (ms) [speedup] 1.3E-2 [191.8×] 9.0E-3 [406.0×] 6.7E-2 [207.6×] 30.09 [75.8×] 13.96 [21036.7×]
Freq: 330MHz Energy efficiency (graph/kJ) 6.86E5 9.75E5 1.22E5 3.28E2 6.19E2

AWB-GCN Intel D5005 FPGA Latency (ms) [speedup] 2.3E-3 [1062.6×] 4.0E-3 [913.2×] 3E-2 [465.8×] 1.6 [1425.4×] 11.20 [26220×]
Freq: 330MHz Energy efficiency (graph/kJ) 3.08E6 1.93E6 2.48E5 4.12E3 5.98E2

TABLE IV
COMPARISON WITH THE PRIOR ART, HYGCN, PROCESSING HYGCN NETWORKS CUSTOMIZED IN HYGCN PAPER [31].

Platform HyGCN networks Cora CiteSeer Pubmed Nell Reddit
Intel Xeon E5-2680 (PyG) Latency (ms) [speedup] 13.07 [1×] 15.73 [1×] 2.19E2 [1×] 3.17E3 [1×] 8.05E5 [1×]

Freq: 2.5GHz Energy efficiency (graph/kJ) 1.23E3 9.36E2 70.61 4.59 0.02
NVIDIA RTX8000 (PyG) Latency (ms) [speedup] 0.69 [18.9×] 0.69 [22.8×] 1.31 [166.8×] 100.18 [31.7×] OoM

Freq: 1395MHz Energy efficiency (graph/kJ) 1.16E4 1.09E4 6.46E3 79.81 OoM
HyGCN TSMC 12 nm Latency (ms) [speedup] 2.1E-2 [627.2×] 0.30 [52.1×] 0.64 [341.5×] NA 2.89E2 [2786.9×]

Freq: 1GHz Energy efficiency (graph/kJ) 7.16E6 4.94E5 2.33E5 NA 5.17E2
AWB-GCN Intel D5005 FPGA Latency (ms) [speedup] 1.7E-2 [767.5×] 2.9E-2 [548.0×] 0.23 [948.4×] 3.25 [977.89×] 19 [42361.7×]

Freq: 330MHz Energy efficiency (graph/kJ) 4.39E5 2.71E5 3.17E4 2.28E3 3.75E2

the dynamic autotuning techniques ensure balanced workload
and high PE utilization (Section 4); (b) all the SpMM kernels
of the GCN layers are deeply pipelined, leading to reduced on-
chip storage demand (Figure 8); (c) inter-layer data forwarding
and matrix blocking (with column-wise-product sub-SpMM
execution Figure 9) improve data reuse and guarantee that
off-chip memory accesses are to consecutive addresses.

We also compare AWB-GCN with existing GCN accelerators.
Prior to this work, to the best of our knowledge, the design
proposed by Yan et al., HyGCN [31], is the only reported
accelerator of GCN inference. However, HyGCN customizes
the hidden layer of all GCN models to 128 channels, which
is distinct from the original settings [29], [46], [47]. We refer
to the HyGCN-customized models as HyGCN networks. Also,
the HyGCN report does not give absolute performance but,
rather, relative speedups over a E5-2680v3 CPU. To compare
AWB-GCN with HyGCN, we realize the HyGCN networks
on the same E5-2680v3 CPU, adopting the same software
framework (PyG [44] – HyGCN also uses PyG for the testing
on CPU). The PyG-CPU result is thus a common baseline for
comparing the relative speedups. Table IV shows the results.

With the HyGCN networks, AWB-GCN achieves on average
9120×, 25.3×, and 7.4× speedups over PyG-CPU, PyG-GPU,
and the HyGCN design, respectively. The performance im-
provement is attributable, in part, to the features of AWB-GCN
as discussed, and one additional reason: HyGCN scheduling
is coarse-grained block-wise, while that of AWB-GCN is fine-
grained element-wise. This avoids redundant data access and
results in more benefit from a balanced workload.

As this design is implemented on an FPGA, it is difficult to
compare energy efficiency to HyGCN, which is implemented
as an ASIC. Comparing to ASIC, the reconfigurable routing
switches on FPGA chip consume extra energy, making the
energy efficiency of FPGA design lower (approximately 14×
according to the numbers reported by Kuon [48]). To compare
the performance fairly, we limit the number of multipliers used
and make it comparable to HyGCN. In particular, we use 4k

32-bit floating-point multipliers and HyGCN uses 4608 32-bit
fixed-point multipliers. Floating-point multipliers also consume
more energy than fixed-point ones.

VI. RELATED WORK

GNN studies use neural network algorithms to address
problems in graph processing. The first GNN model was
proposed by Gori et al. [18]. In the past decade, work has
continued on optimizing GNN algorithms exploring new neural
network approaches [8], [19], [20], [22]–[25]. More recently,
inspired by CNNs that achieve great success with euclidean
data, GCNs are proposed for hidden feature extraction of non-
euclidean data. In 2013, Bruna et al. [27] proposed the first
GCNs for spectral graph theory; this was developed further in
a number of variants [26], [28], [29]. GCNs are at the center
of the research on neural-network-based graph processing [30].

There have been many efforts on accelerating sparse CNNs
[38]–[40], [45], [49]–[52]. We summarize them and explain
why they fall short when applied to GCNs. Kung et al. condense
the sparse parameter matrix through column grouping [50]. In
case of conflict, only the most significant parameters are kept,
others are discarded. Essentially, some accuracy is sacrificed for
performance. Kim et al. [40] address the workload imbalance
problem of sparse CNNs, but use information from design-time
profiling and pre-scanning. Han et al. [38] propose EIE, an
SpMV accelerator that addresses imbalance with row-direction
queuing. The design is not feasible in GCNs due to their large
data size and power-law distribution. In EIE, weight matrices
of SCNNs are distributively pre-stored on-chip in local buffers
of PEs. This avoids off-chip non-zero accesses and online
workload distribution, but is not possible for GCNs. Also,
single-direction queuing fails to balance the workload of power-
law matrices, which have serious imbalance on both directions.
Zhang et al. [39] propose Cambricon-S with efficient index
matching to identify and multiplex non-zeros and feed them
to massively parallel PEs. Again, these proposed architectures
are not feasible for processing GCNs due to the ultra-low
sparsity of power-law graphs which leads to highly scattered
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indices of neighboring elements. Given the adjacency matrix
of Nell and a 1024-PE Cambricon-S, multiplexing enough
non-zero pairs to feed all PEs per cycle would require 1024×
13699:1 multiplexers for single-precision floating point; this is
not viable given likely chip technology.

Besides work on sparse CNNs, researchers also propose
architectures for general SpMM. Zhuo and Prasanna [53]
present an SPMV design for FPGAs. Pal [54] proposes an
outer-product-based SpMM architecture. This work focuses on
reducing redundant memory accesses to non-zeros and does
not essentially address the ultra-workload-imbalanced issue
faced with GCNs. In their results, load-imbalances during the
merge phase and the uneven data sharing patterns during the
multiply phase lead to degraded speedup for the dataset with
highly-unbalanced non-zero element distribution.

SIGMA [55] and ALRESCHA [56] are recent high-
performance architectures for SpMM and SpMV. We mainly
discuss SIGMA, as SIGMA focuses on SpMM kernels and is
equipped with more efficient optimizations for SpMM, while
ALRESCHA has higher flexibility to support various kernels
through switch reconfiguration. SIGMA uses an element-wise
smart global controller to distribute every pair of non-zeros to
the proper PEs dynamically through a Benes network. By doing
so, PEs work with high utilization and the operations are evenly
distributed among all multipliers so that workload imbalance is
eliminated. SIGMA is highly efficient for general SpMMs, but
needs some augmentation to work with GCNs. First, for a very
large and sparse matrix, the type of bitmap compression format
introduces significant overhead. Second, similar to Cambricon-
S, the multiplexer required to get source/destination pairs would
become very large, which limits the performance significantly.
Third, for the extremely large and sparse matrices common in
GCN usage, the efficiency of the element-wise global controller
decreases significantly when performing tasks such as matrix
scanning and element filtering/counting which determines the
number of Flex-DPEs.

To eliminate workload imbalance without using a global
element-wise controller (as used in SIGMA), AWB-GCN uses
auto-tuning-based rebalancing hardware, which is essentially
also a “controller”, to dynamically distribute tasks. In contrast
to the controller used in SIGMA, AWB-GCN’s is more coarse-
grained and lighter weight. In particular, the distribution
smoothing function is a local element-wise controller which,
similarly to SIGMA, distributes non-zero pairs to proper PEs.
However, in contrast to SIGMA, in AWB-GCN the destination
PEs must be local, meaning that they must within a few
hops of the PE assigned in the initial mapping. Also, remote
switching+row remapping is effectively a global row-wise
controller which can distribute tasks to any proper PEs without
range limit, rather, with granularity of rows/fraction of rows
instead of elements. To make the proposed hybrid and light-
weight controller handle workload imbalance as well as a global
element-wise controller, we use auto-tuning. The proposed auto-
tuning-based controller is designed especially for SpMMs with
power-law matrices. For general SpMMs, a global element-wise
controller can be more efficient.

Another active area of research is graph processing. Song
et al. [57] and Zhang et al. [58] propose GraphR and GraphP,
which are both based on Processing In Memory (PIM), to
accelerate low-precision graph tasks. However, they do not
support complex floating-point operations. Ham et al. [59]
propose Graphicionado, a vertex-centric acceleration framework
for graph analytics applications. It focuses on simple graph
analysis applications. Ozdal et al. [60] propose a System-C
based template for graph analytics applications. Ozdal’s work
and Graphicionado both use crossbars for data exchange which
limits their scalability. None of these can directly support GCNs
without significant modifications.

Researchers also conduct software optimizations for SpMM
on GPUs and general-purpose multicore CPUs [61]–[65]. These
software solutions, however, do not meet the strict timing
requirements of GCNs because of significant overhead in pre-
scanning [31], [61]–[63] which is avoided in AWB-GCN. Also,
adjacency matrices evolve at runtime, making offline processing
even less useful.

VII. CONCLUSION

In this paper, we propose AWB-GCN to accelerate GCN
inference. To tackle the major performance issues derived from
workload imbalance, we propose a hardware-based autotuning
framework including three runtime workload rebalancing
techniques: distribution smoothing, remote switching, and row
remapping. The proposed rebalancing methods rely on hardware
flexibility to realize performance autotuning with negligible
area and delay overhead. This is the first accelerator design for
GCNs that relies on hardware autotuning to achieve workload
rebalancing for sparse matrix computations. We evaluate AWB-
GCN using an Intel FPGA D5005 Accelerator Card with 5
widely used GCN datasets. Results show that AWB-GCN
can achieve, on average, 7569×, 80.3×, and 7.4× speedups
over high-end CPUs, GPUs, and other prior work respectively.
Although FPGAs are used as a demonstration in this paper,
the proposed architecture does not rely on any FPGA-specific
features. And although AWB-GCN is designed for GCNs, it is
generally efficient for GNNs whose major arithmetic primitives
are also SpMMs, e.g., GraphSage [66], GINConv [67], and
GTN [30].
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