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Abstract—Electromagnetic exposure from wireless devices is
strictly regulated around the world to ensure the safety of
consumers. Recent studies have demonstrated that multi-antenna
systems can leverage signal-level exposure models to jointly miti-
gate user radiation absorption and achieve high data rates. This is
especially important for millimeter wave technologies, which are
susceptible to power back-off techniques due to high propagation
and blockage losses. However, prior models require significant
overhead in the form of exposure measurements to compute
model parameters and cannot be easily modified to predict
electromagnetic absorption in different testing configurations.
This paper proposes methods to approximate the characteristic
matrix of a quadratic model for two exposure measures in
the millimeter wave band: incident power density and surface
specific absorption rate (SAR). The presented models can be
calculated with a small number of parameters and can be
altered to account for mutual coupling, near-field effects, and
changes in the exposure scenario. Spatial sampling schemes based
on these models are derived to determine how many testing
points are necessary to estimate exposure in a region within a
specified margin of error. Software simulation results with half-
wave dipoles validate the accuracy of the proposed models in a
millimeter wave scenario.

Index Terms—5G communication, millimeter wave commu-
nication, electrogmagnetic absorption, specific absorption rate
(SAR), power density (PD), spatial sampling.

I. INTRODUCTION

Millimeter wave technologies will play a pivotal role in
meeting the large throughput demands of fifth-generation (5G)
wireless communication systems [2]–[4]. Millimeter wave
frequencies are ideal candidates for wireless backhaul and
access in small cell deployments due to the short-range and
highly directional nature of millimeter wave propagation [5],
[6]. Additionally, millimeter wave vehicular communication
systems can take advantage of high data rate transmissions
to exchange raw, high-resolution sensor data obtained from
radars, cameras, and LIDARs (LIght Detection and RAnging)
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[7], [8]. One key consideration for millimeter wave com-
munication is the design of beamforming schemes that are
tailored to the sparse structure of millimeter wave channels
and the hardware limitations at these carrier frequencies. In
this context, a variety of studies have addressed practical and
efficient precoding methods for millimeter wave systems [2],
[5], [9]–[16]. An additional, less explored challenge in the im-
plementation of millimeter wave systems is the measurement
and regulation of electromagnetic exposure to users.

Electromagnetic waves emanating from wireless devices are
absorbed by users. This absorption occurs at all frequencies,
but the level of absorption and its effect on the body is
frequency dependent. Although microwave radiation is non-
ionizing, biological experts generally agree that adverse health
effects can arise from high levels of radio frequency (RF)
energy absorption [17]. Because of this, radiation exposure is
regulated by governing bodies to prevent hazardous operating
conditions for users, and all wireless devices must comply with
exposure limits before becoming available to the public. For
lower frequency systems, both the Federal Communications
Commission (FCC) and the International Commission on Non-
Ionizing Radiation Protection (ICNIRP) have adopted specific
absorption rate (SAR) as the standard metric for regulatory
compliance [18], [19]. SAR measures user electromagnetic
exposure as absorbed power per unit mass, with units W/kg.
At frequencies between 100 KHz and 6 GHz, the FCC SAR
limit for RF exposure from portable devices used by the public
is a 1.6 W/kg average over any one gram of tissue [20].

Millimeter wave absorption behaves differently than absorp-
tion at sub-6 GHz frequencies, and its regulation requires the
use of alternative exposure metrics. The limited penetration of
millimeter waves into the body leads to a large concentration
of energy deposition in thin layers of exposed tissue such as
the skin and the eye, but negligible absorption a few millime-
ters below the surface [21]. As a result, tissue heating from
millimeter wave exposure is largely restricted to a thin tissue
layer and is typically measured with superficial quantities such
as incident power density (PD) and SAR at the tissue surface,
commonly referred to as surface SAR.

Electromagnetic emission management is critical to the
safety and success of millimeter wave systems. Studies have
shown that incident PD levels above several hundred mW/cm2

can cause pain in the skin and even ocular lesions [22].
Recent works related to 5G exposure have addressed the
effects of exposure constraints on millimeter wave devices and
the advantages of exposure-aware system design [23]–[26].
Regardless, exposure constraints are typically ignored during
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system design and later act as secondary power constraints
if absorption measurements exceed existing thresholds. Such
power limits on user-end devices can cause significant degra-
dation to the system performance, especially since millimeter
wave systems need high transmit gains to combat path loss.
Fortunately, multiple-input multiple-output (MIMO) commu-
nication systems can benefit from large exposure variations as
a function of signal design and are able to jointly maximize
the achievable rate under exposure constraints.

A number of studies have addressed the development, vali-
dation, and application of signal-level exposure models. SAR
measurement variations with respect to the phase difference
between two transmit antennas were first addressed in [27],
[28]. Work in [29]–[32] later demonstrated that SAR can be
approximated as a mixed quadratic function of the transmit
signal and introduced the notion of an exposure matrix, which
is the characteristic matrix in the quadratic model. A Fourier
analysis based model for fast SAR and power loss density
estimation was also proposed and validated in [33]. In [34],
[35], a method for determining device compliance with SAR
limits in linear time was derived by exploiting the structure
of the quadratic model. Not only are these models important
for characterizing the exposure induced by wireless devices,
but they also can be incorporated as constraints on signaling
methods to achieve exposure-aware transmissions [1], [29]–
[31], [36]–[39]. While the aforementioned quadratic model
can predict electromagnetic exposure with high accuracy, com-
puting the model parameters requires a significant amount of
overhead in the form of exposure measurements from software
simulations or phantom head setups.
Main Contributions: This work addresses the issue of con-
structing low-complexity models for incident PD and surface
SAR in the millimeter wave band by deriving formulas to
approximate the exposure matrices in the quadratic model
proposed in [29]–[32]. With this goal in mind, we leverage
the relative simplicity of electromagnetic absorption measures
adopted for millimeter wave communication to develop para-
metric expressions that only require a few external measure-
ments and that can easily adapt to the testing configuration.
We note that the proposed models can be applied to other
frequency bands, but the considered exposure scenario and
measures are mostly relevant to millimeter wave systems at
this time, meaning that the efficacy of the proposed model
outside of the millimeter wave band is unclear.

We develop a method to calculate incident PD matrices
by approximating the near-field gain of the transmitter in
terms of basic array parameters and incorporating existing
models for mutual coupling and near-field effects. We also
derive an expression for SAR matrices by modeling the total
electric field transmitted through the air-tissue boundary as the
superposition of incident spherical waves refracted as plane
waves through a planar dielectric. The proposed formulas
for the characteristic exposure matrices demonstrate how the
quadratic model can be represented as a rank-one model in
terms of an effective steering vector, which is defined later.
To validate the model, we simulate a 28 GHz millimeter
wave exposure scenario with a uniform linear array (ULA)
composed of half-wave dipoles and a spherical tissue model.

Our results demonstrate a high degree of agreement between
the quadratic model with the calculated exposure matrices and
the simulation values.

The proposed models estimate pointwise exposure and are
therefore not directly compatible with regulatory thresholds,
which are defined as averages over predetermined areas or
volumes. Therefore, a key modeling consideration is how to
sample a spatial region to obtain a robust characterization
of averaged exposure. We first derive upper bounds on the
exposure differential between two testing points based on
the proposed models. This result is used to develop uniform
and non-uniform spatial sampling guidelines which describe
how to separate adjacent sample points so that the difference
in the exposure levels at these points does not exceed a
predetermined threshold. We also discuss how to construct
exposure models for average exposure from the sampled
pointwise models. Finally, we present numerical examples
to demonstrate the application of the developed sampling
methods, and validate the average exposure model.
Organization: This paper is organized as follows. In Section
II, we review prior work on signal-level exposure modeling
and outline our proposed approaches for computing exposure
matrices in the millimeter wave band. The proposed millimeter
wave exposure models are developed in detail in Section III.
Section IV presents software simulation results of a simple
millimeter wave exposure scenario to validate the proposed
models. Spatial sampling techniques and the characterization
of spatially averaged exposure are discussed in Section V.
Notation: A bold lowercase letter a denotes a column vector,
a bold uppercase letter A denotes a matrix, AT denotes the
transpose of A, AH denotes the conjugate transpose of A,
‖a‖ denotes the vector 2-norm of a,‖A‖2 denotes the induced
vector 2-norm of A.

II. PROCEDURES FOR COMPUTING SIGNAL-LEVEL
EXPOSURE MODELS

We briefly review the results of prior exposure modeling
studies in [29]–[33] and define the notion of an exposure ma-
trix. We then present our proposed procedures for calculating
exposure matrices for pointwise incident PD and surface SAR.
The measurements required to compute exposure matrices
with both the prior and the proposed methods are discussed
and compared.

A. Review of Prior Art

Wireless devices sold worldwide are thoroughly tested for
compliance with regulatory standards for maximum user expo-
sure. These limits are often set conservatively to ensure that
electromagnetic radiation absorbed by users does not cause
biologically significant thermal heating. For systems operating
below 6 GHz, exposure measurements are typically expressed
in terms of SAR. SAR is a measure of power absorbed in
human tissue per unit mass at a point p and is expressed as

SAR(p) =
σ
∣∣Em(p)

∣∣2
2ρ

, (1)
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where σ is the tissue conductivity, Em(p) is the electric field
strength, and ρ is the density of the tissue [40].

In a multi-antenna system, SAR values can vary signif-
icantly with respect to the transmit signal. Let N be the
number of transmitter antennas, and let x be the length N
transmit signal vector. Experimental results in [29]–[33] show
that average SAR measurements over a volume V are well
approximated as a quadratic function of the transmit signal x
as

SARV (x) = xHRV x, (2)

where RV is the N×N matrix that characterizes the variation
of SAR with respect to x within the volume. Various studies
have shown that incorporating SAR constraints into signal
design problems by employing the quadratic model yields
significantly higher rates compared to conventional power
back-off schemes which lower the transmit power to satisfy
exposure constraints [29]–[31], [36]–[39].

In (2), the SAR matrix RV is obtained by a fitting method,
such as a least-squares algorithm, on measured SAR data.
Since regulatory agencies place limits on the worst-case ex-
posure, the volume is chosen such that it corresponds to the
maximum region of absorption. Changing the transmission
frequency or the location of the wireless device relative to the
body can change the location of the hotspot [31]. Therefore,
different operating conditions must be modeled by different
SAR matrices, all of which require additional exposure data.

Constructing sub-6 GHz SAR models requiring less mea-
surements/simulations is challenging given the complex nature
of electromagnetic absorption at these frequencies. Electro-
magnetic radiation at lower frequencies can reach past the
dermal and subcutaneous skin layers, and maximum SAR mea-
surements are typically found inside the body. For example,
emissions from a portable device operating near the head often
induce SAR hotspots inside of the skull. Cooling mechanisms
such as blood flow can also significantly reduce intrabody
tissue heating and affect the location of maximum exposure.

p

body model

x

y

z

O

sn

device

transmitter array

p

Fig. 1. A diagram of the considered exposure scenario. A body model lies
close to an N element transmitter array. The position of the n-th element is
sn, and exposure is measured at a point p on the body surface.

In contrast, the submillimeter penetration depths of mil-
limeter waves lead to extremely large local SAR values at
the tissue surface [21]. The superficial nature of millimeter
wave absorption suggests tissue heating is heavily dependent
on incident PD and surface SAR levels, which are markedly

easier to understand and model than SAR readings at points
deep in the body.

In the remainder of this study, we construct and analyze
low-complexity signal-level models for incident PD and sur-
face SAR by exploiting the simple nature of these exposure
measures. Although these models are valid at all frequencies,
the main motivation for this work is to develop signal-level
models that can be easily incorporated into the design of
exposure-aware transmission schemes such as those proposed
in [29]–[31], [36]–[39]. As incident PD and surface SAR are
not robust measures of exposure for lower frequencies, the
proposed models may not be useful for this application for
sub-6 GHz devices. Therefore, we mainly focus on the models
in the context of millimeter wave systems.

B. Proposed Methods for Computing Exposure Matrices

Both incident PD and surface SAR are proportional to the
squared electric field magnitude, therefore either dosimetric
quantity can be characterized as a quadratic function of a
transmit signal x as

EXP(p,x) = xHR(p)x, (3)

where EXP is the exposure measure, p is the measurement
point, and R(p) is the N ×N characteristic exposure matrix
for the point p. We precede the development and justification
of the proposed models by outlining how to compute the
exposure matrix R(p) at a point p. In the considered exposure
scenario, an N element antenna array is in the vicinity of an
arbitrary tissue model and exposure is measured at a point p
on the body surface, as shown in Fig. 1. The position of the
n-th array element and the vector from the n-th element to p
are denoted as sn and pn = p − sn, respectively. The phase
center of the array, given as

∑N−1
n=0 sn [41], is assumed to lie

at the origin for convenience.
Table I lists the necessary model parameters, drawing a

distinction between those which are known or measured, and
those which are calculated. Parameters related to the antenna
gain, such as the gain patterns and the array coupling matrix,
are assumed to be normalized with respect to the transmit
power. Additionally, the transmit signal x is assumed to be
unit-norm. The following procedures provide a step-by-step
guides for calculating the matrix REXP(p).
Procedure for Computing PD Matrices: To compute the PD
matrix RPD(p), follow the steps below:

1) Calculate the near-field steering vector a(p), which is
defined as [41]

a(p) ,
[
γ0e
−jϕ0 γ1e

−jϕ1 ... γN−1e
−jϕN−1

]T

, (4)

where ϕn and γn are given by

ϕn =
2π
(
‖pn‖ −‖p‖

)
λ

, (5)

γn = g1/2n (pn)
‖p‖
‖pn‖

. (6)

If the gain patterns gn(pn) are near-field gain patterns,
then set γn = g

1/2
n (pn).
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TABLE I
LIST OF MODEL PARAMETERS.

Measured/Known DescriptionParameters
λ Transmission wavelength (m)

gn(p) Gain pattern of the n-th antenna element
P Transmit power (W)

α(‖p‖) Near-field gain correction factor
M Array coupling matrix
ε∗ Relative complex tissue dielectric constant
ρ Tissue density (kg/m3)

Calculated
Parameters

a(p) Near-field steering vector
ζin Angle of incidence from n-th source to p
τn Transmission coefficient for n-th source at p

2) If coupling between array elements is to be modeled,
determine a suitable coupling matrix M. Otherwise set
M = I.

3) If the gain patterns gn(pn) were measured in the
far-field, determine an appropriate scaling coefficient
α(‖p‖) to correct for differences between the near-field
and far-field gains. Otherwise set α(‖p‖) = 1.

4) Calculate the PD matrix RPD(p) as

RPD(p) =
Pα(‖p‖)
4π‖p‖2

MHa(p)aH(p)M. (7)

Procedure for Computing Surface SAR Matrices: To com-
pute the surface SAR matrix RSAR0(p), follow the steps
below:

1) Calculate the PD matrix RPD(p).
2) Determine angles of incidence (AoIs) ζin from the

sources to the point p based on the tissue model.
3) Calculate the corresponding transmission coefficients τn

assuming the incident wavefronts are plane waves, and
define the diagonal N ×N matrix T as

T = diag(τ0, τ1, . . . , τN−1). (8)

For TE and TM polarized radiation, τn is given as

τn,TE =
2 cos ζin

cos ζin +
√
ε∗ − sin2 ζin

,

τn,TM =
2
√
ε∗ cos ζin

ε∗ cos ζin +
√
ε∗ − sin2 ζin

.

(9)

4) Calculate the surface SAR matrix as

RSAR0(p) =
η0σ

ρ
THRPD(p)T, (10)

where η0 is the intrinsic impedance of free space given
by 377 Ω. Note that the tissue conductivity σ can be
calculated from ε∗ = ε′ − jε′′ as

σ = ωε0ε
′′, (11)

where ω is the transmission angular frequency and ε0
is the permittivity of free space given by 8.85× 10−12

F/m.

Apart from ε∗, all of the non-calculated parameters involved
in these procedures are related to the transmitter and can be
easily obtained from standard array measurements/simulations.
Tissue permittivity measurements in the millimeter band are
sparse due to technical limitations, but some studies have
addressed models for human skin complex permittivity at
millimeter wave frequencies [42]–[45]. Note that the measured
parameters do not depend on the location of the user relative
to the transmitter. Therefore, exposure matrices for various
operating conditions can be computed with the same set of
parameters.

III. MILLIMETER WAVE EXPOSURE MODELING

In this section, we derive the formulas for calculating
exposure matrices provided in Section II-B. The problem of
modeling pointwise incident PD and surface SAR is equivalent
to estimating the incident and transmitted electric field across
the body surface. Therefore, our objective is to approximate
the near-field array pattern and the transmission of energy
through the air-tissue boundary.

A. Incident Power Density

PD measurements are typically estimated by converting field
strength measurements to plane wave equivalent PDs, and can
be calculated as

S(p) =

∣∣Em(p)
∣∣2

2η0
=

∣∣Hm(p)
∣∣2

2
η0, (12)

where Em(p) is the electric field strength, Hm(p) is the
magnetic field strength. Throughout this paper, it is assumed
that PD refers to plane wave equivalent PD. Incident PD
limits are often referred to as maximum permissible exposures
(MPEs) in regulatory standards [18]. We derive an expression
to compute the incident PD matrix RPD(p) for the quadratic
model

S(p,x) = xHRPD(p)x (13)

at a point p located near the transmitter array.
Since incident PD is proportional to

∣∣Em(p)
∣∣2, calculating

PD matrices requires minimal work if the variations in the
transmitter array’s radiated electric field as a function of p
and x are known. However, this information is not always
readily available and can be difficult to measure. Therefore,
we focus on a more practical scenario in which only the far-
field gain patterns of the antenna elements are known. The
initial assumptions for the model development are as follows:

(A1) p is in the far-field of the antenna elements.
(A2) the antenna elements in the array are uncoupled.

Far-field conditions are dependent on the transmission wave-
length λ and the array size. The general conditions for (A1)
to hold are ‖p‖ > 2W 2

max/λ, ‖p‖ � Wmax, and ‖p‖ � λ,
where Wmax is the maximum linear dimension of the antenna
elements. Some cases where (A2) holds include arrays with
inter-element spacing that is large relative to λ and arrays fed
by decoupling networks.
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Incident PD at a point p can be expressed in terms of array
parameters as

S(p,x) =
PG(p,x)

4π‖p‖2
, (14)

where P is the transmit power and G(p,x) is the array gain.
In cases where (A1) and (A2) hold, the far-field array gain is
given by the principle of pattern multiplication [46]. Here, we
use this principle to approximate the near-field array gain as

G(p,x) ≈
∣∣∣aH(p)x

∣∣∣2 , (15)

where a(p) is the length N transmitter steering vector and x
is the unit-norm length N transmit signal. The term aH(p)x
is often referred to as the array factor. Note that (15) is an
approximation because it assumes that the electric field vectors
radiated by the antennas are roughly aligned, which may not
hold at certain points near the array. This assumption is needed
since we only know the far-field antenna gain patterns.

Steering vectors typically represent the set of phase delay
differences corresponding to the radiated fields from each
source and ignore path loss differences between wavefronts.
This is only applicable far from the array, as the path lengths
from each transmitter element to p may differ significantly
when the point of interest is close to the array. These path
length variations result in non-negligible attenuation differ-
ences between the waves which must be accounted for to
calculate the array gain at p. The steering vector is therefore
constructed to represent the relative amplitudes and phase de-
lays differences between spherical wavefronts as they impinge
on p and is therefore defined as in (4). Note that a(p) is given
in a general form that adapts to both the array geometry and
the elements’ gain patterns.

A characteristic matrix RPD(p) for the quadratic model of
ideal PD can be defined using the expressions above as

RPD,ideal(p) ,
P

4π‖p‖2
a(p)aH(p). (16)

The matrix RPD,ideal(p) is a Hermitian, positive semi-definite
matrix by construction. Note that the dominant eigenvector of
the ideal PD matrix is a scalar multiple of the near-field array
steering vector a(p), and maximum exposure occurs when x
is aligned with a(p). This agrees with the intuition that plane
wave equivalent PD is directly proportional to the array gain.

The characteristic matrix given in (16) is accurate under
(A1) and (A2), but many exposure scenarios do not fall
under these assumptions. Both near-field field components
and mutual coupling can significantly affect array patterns
and radiation emissions. We add correction factors to (16) to
address both of these issues.

The near-field region of an array is characterized by com-
plex field components that decrease with distance faster than
1/‖p‖. This results in gain patterns whose shape can vary
significantly with distance from the source. In antenna mea-
surement procedures where far-field conditions cannot be met,
a gain pattern Gnf(p) is measured in the near-field and the far-
field gain pattern is approximated from the model

Gff(θ, φ) ≈ α−1(‖p‖)Gnf(p), (17)

where θ and φ are the elevation and azimuth angles of
p, respectively, and α(‖p‖) ∈ R>0 is the near-field gain
correction factor (NFGCF) [47]. This only gives an estimate
for the far-field gain since the NFGCF only varies with
distance, but the error between the near-field and far-field gain
patterns may have a directional dependence. The near-field
gain converges to the far-field gain at large distances, there-
fore lim‖p‖→∞ α(‖p‖) = 1. The NFGCF can be estimated
empirically by comparing measured data with theoretical gain
curves that decay as 1/‖p‖2 [47].

Array elements are often mutually coupled and act as
parasitic elements that absorb and reradiate outgoing waves. A
popular and simple method for modeling the field pattern of
a coupled array is through an N × N coupling matrix M
[48]–[50]. Let {En,uc(p)}N−1n=0 denote the uncoupled three-
dimensional electric field pattern of the array elements ob-
tained from a unit excitation. The coupled array field pattern
can be found as

Ec(p) = Euc(p)Mx, (18)

where Euc = [E0,uc, . . .EN−1,uc]. In general, the coupling
matrix cannot be determined exactly and must be estimated
as in [48], [49]. Additionally, the coupling matrix M may
vary depending on p. However, we assume that M remains
relatively constant over the exposed region of interest.
Incident PD Model: With the above models for ideal PD,
near-field gain, and mutual coupling, the corrected character-
istic exposure matrix to compute incident PD as xHR(p)x is
defined as

RPD(p) , α(‖p‖)MHRPD,ideal(p)M

=
Pα(‖p‖)
4π‖p‖2

MHa(p)aH(p)M,

which is (7). The corrected matrix better approximates incident
power density in non-ideal scenarios as shown in Section IV-B.
It can also be seen that the corrected and uncorrected models
agree under (A1) and (A2) since RPD(p) = RPD,ideal(p)
when α(‖p‖) = 1 and M = I. The model in (7) is able to
predict pointwise exposure with only prior knowledge of array
parameters which are typically measured during the transmitter
design. Note that the model not only predicts PD as a function
of the transmit signal, but also as a function of space.

It can be seen that the PD matrix is rank-one by construc-
tion, and therefore it can be expressed as the outer product
of its dominant eigenvector as RPD(p) = r(p)rH(p). In the
ideal PD model, this eigenvector is colinear with the array
steering vector a(p), whereas the coupling matrix and NFGCF
rotate and scale the a(p) in the non-ideal scenario. In both
cases, maximum exposure occurs when the transmit signal
is aligned with the dominant eigenvector of the PD matrix,
which can be expressed as a linear transformation of a(p).
This motivates the notion of an effective array steering vector
for a given exposure measure, which is defined as the vector
âEXP(p) such that

EXP(p,x) =

∣∣âH(p)x
∣∣2

‖p‖2
. (19)
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Note that for the proposed PD matrix, the effective array
steering vector is given as

âPD(p) =

√
Pα(‖p‖)

4π
MHa(p), (20)

and so incident PD can be defined as the rank-one model

S(p,x) =

∣∣âHPD(p)x
∣∣2

‖p‖2
. (21)

PD calculations are relatively easy to perform for com-
pliance, but they do not contain information about energy
absorption in tissues. Incident electromagnetic waves are par-
tially reflected when incident on dielectric media, which leads
to significant differences in absorption for oblique incidence
versus tangent incidence. Because of this, we consider SAR at
the tissue surface as an alternative measurement for radiation
absorption.

B. Specific Absorption Rate

Unlike incident PD, SAR must be measured, not calculated,
with the device operating in its intended manner at full trans-
mit power. Current methodologies require measuring SAR
levels in a phantom head while the wireless device is held in
a variety of operating conditions. Although current averaging
volumes for SAR may not yield measurements that are useful
for determining compliance in millimeter wave systems, SAR
values at the tissue surface may serve as a suitable measure
of energy deposition.

For a plane wave with power density S(p,x) incident on a
point p on the surface of planar tissue, the pointwise surface
SAR, denoted as SAR0 is given as

SAR0(p,x) =
2TS(p,x) cos ζi

ρδ
, (22)

where T is the power transmission coefficient of the skin, ζi

is the angle of incidence (AoI), and δ is the skin depth [42].
The skin depth is defined as the distance that electromagnetic
radiation travels into a material before its power decreases to
exp(−2) of its surface value and is given by

δ =
λ

−2πIm(
√
ε∗)

, (23)

where ε∗ is the complex dielectric constant of the tissue [51].
Small penetration depths also lead to radiation absorption in
tissue decreasing exponentially from the skin as

SAR(p,x, ξ) = SAR0(p,x)e−2ξ/δ, (24)

where ξ is the depth from the tissue surface [42]. Maximum
exposure occurs at the surface of the tissue and quickly decays
within the skin.

The expression in (22) is heavily dependent on the AoI ζi.
Far from the array, this can approximated as the AoI from
the center of the array to p because all path lengths ‖pn‖ are
approximately the same. We denote the surface SAR model
in (22) with ζi calculated in this manner as the single plane
wave (SPW) SAR model, since the incident radiation at p is
assumed to be a plane wave with power density S(p,x).

The approximations of the SPW model may lead to poor
SAR estimates when p is close to the array. For example, if p
is much closer to one of the array elements than to any other
antenna, then ζi cannot be estimated as above. Moreover, the
assumption that the incident wavefront behaves like a plane
wave may not hold in general. Rather than computing surface
SAR by finding the incident field at p, we propose finding
the total transmitted field as a superposition of the transmitted
fields from each source.

. . .

tissue

incident wavefronts

transmitted wavefront

array

Fig. 2. Diagram of the considered electromagnetic radiation transmission
scenario with array elements located near a planar tissue model. The radiated
field from the n-th source impinges on the tissue surface at an angle of
incidene ζin and contributes to the total transmitted field.

Consider the scenario in Fig. 2, where the transmitter array
is a short distance away from a planar tissue surface. We
assume all electromagnetic fields involved are time-harmonic
and can therefore be represented in phasor form. For the n-th
source, let ζin be the AoI of the incident wavefront and E in(p)
be the complex complex magnitude of the incident electric
field at point p. The transmitted electric field amplitudes can
be expressed in terms of the incident field amplitudes and
transmission coefficients τn as

Etn(p) = τnE in(p), (25)

where the superscript t denotes the transmitted portion of the
electric field. The total transmitted field can then be found as
the sum of the individual fields as Et(p) =

∑N−1
n=0 τnE in(p).

Transmission coefficients are dependent on the field polar-
ization, the shape of the incident waves, and the geometry
of plane of incidence. Here, we assume that the incident
waves and surface of incidence are planar. In this case, the
transmission coefficients for TE and TM polarization are given
as in (9).
Surface SAR Model: Since SAR is proportional to

∣∣Et∣∣2 and
incident PD is proportional to

∣∣E i∣∣2, the surface SAR matrix
is defined in terms of the PD model as

RSAR0
(p) ,

η0σ

ρ
THRPD(p)T,

which is (10), where T is a diagonal matrix with the transmis-
sion coefficients τ0, τ1, . . . , τN−1 in its diagonal. This SAR
matrix can then be used to predict surface SAR at a point p
as xHRSAR0(p)x. Furthermore, the exponential decay model
in (24) indicates that reducing average SAR measurements in
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M(2) =
[

0.69 + j0.03 0.07 + j0.13
0.07 + j0.13 0.69 + j0.03

]
, M(4) =

 0.48 + j0.03 0.06 + j0.08 −0.03− j0.03 0.02 + j0.02
0.06 + j0.08 0.47 + j0.04 0.05 + j0.08 −0.03− j0.03
−0.03− j0.03 0.06 + j0.08 0.47 + j0.04 0.05 + j0.08
0.02 + j0.02 −0.03− j0.03 0.05 + j0.08 0.48 + j0.03

 (26)

millimeter wave systems can be simplified to reducing surface
SAR measurements. Note that RPD is calculated with the
proposed PD model as in (7), so the proposed surface SAR
model is valid even when (A1) and (A2) do not apply. It can be
seen that the SAR matrix is also characterized by an effective
array steering vector, given as

âSAR(p) =
η0σ

ρ
TH âPD(p), (27)

and surface SAR can be modeled as

SAR0(p,x) =

∣∣âHSAR(p)x
∣∣2

‖p‖2
. (28)

In this case, the rotation of the steering vector is dependent
on p through T.

IV. MODEL VERIFICATION RESULTS

In this section, we validate the proposed formulas for
exposure matrices in (7) and (10) by simulating a simple
millimeter wave exposure scenario in ANSYS High Frequency
Structure Simulator (HFSS) software. The following examples
demonstrate that the quadratic signal-level models can predict
exposure values from software simulations with high accuracy,
even in non-ideal settings.

A. Dipole Array Parameters and Head Model

We consider N element uniform linear arrays (ULAs) of
half-wavelength dipoles placed on the x-axis transmitting at 28
GHz. In all simulations, the inter-element spacing of the array
is λ/2 and the system transmit power P is 10 mW. Simulations
were performed with both ideal and non-ideal dipoles. The use
of ideal dipoles indicates that the antennas were implemented
as cylindrical sources with the theoretical radiation pattern of a
linear antenna in both the near-field and the far-field. Note that
simulations with ideal dipoles fall under (A1) and (A2). Non-
ideal dipoles were also modeled in HFSS in order to validate
the proposed models in the presence of mutual coupling and
near-field effects.

The parameters for the ideal and non-ideal dipoles are
shown in Table II. At the operating frequency of 28 GHz,
the ideal and non-ideal dipoles achieved a maximum gain of
1.64 and 1.76, respectively, in the xy-plane. For simplicity, all
exposure testing points in the validation results are assumed
to lie in the xy-plane. The coupling matrices were calculated
with the array Z-parameters as described in [48]. This resulted
in the normalized coupling matrices M(2) and M(4) shown in
(26), for a two-element and four-element ULA, respectively.
The NFGCFs were obtained by comparing the predicted and
actual array gain at a point 5 mm away from the transmitter

TABLE II
DIPOLE ANTENNA PARAMETER SPECIFICATIONS.

Parameter Specifications
Ideal Dipole Non-ideal Dipole

Total Length (mm) 5.353 5.065
Radius (mm) 0.01 0.01

Source Length (mm) N/A 0.05
Source Impedance (Ω) N/A 71.18

at boresight, giving the factors α(2) = 1.43 and α(4) = 2.91
for arrays of two and four elements, respectively.

For SAR simulations, we consider a hemispherical head
model with a 20 mm radius centered on the y-axis at a point 5
mm away from the origin, as seen in Fig. 3. The head tissue is
assumed to be homogeneous with complex dielectric constant
ε∗ = 19− j19.26 approximately based on Gandhi’s model in
[42] at a frequency of 28 GHz, giving a tissue conductivity
of σ = 30 S/m. The tissue density is assumed to be 1 g/cm3.
SAR values in HFSS were obtained at a depth of 0.2 mm.

20 mm

p 5 mm

body tissue

dipole
array

0.2 mm

x

y

Fig. 3. HFSS setup for SAR simulations. The dipole array is placed 5
mm away from a hemispherical tissue model with radius 20 mm, complex
dielectric constant ε∗ = 19−j19.26, and tissue density 1 g/cm3. SAR values
are obtained at a depth of 0.2 mm from the surface point p.

Since the SAR simulation results were obtained below the
tissue surface, we scale the proposed SAR model and SPW
model by a constant β to properly account for absorption
losses. To determine β, we simulated a plane wave traveling in
the −y direction and measured pointwise SAR on the y-axis
at a depth of 0.2 mm below the tissue surface. This SAR
reading was compared to the predicted surface SAR value
obtained from (22) to compute β. For the head model with
parameters as discussed above, this procedure resulted in a
scaling coefficient β = 0.7024. The same scaling coefficient
was used for all SAR scenarios.

B. Incident PD Model Validation

In the first example, we compare incident PD values ob-
tained from simulations to the quadratic PD model. A beam



8

0 45 90 135 180 225 270 315 360

ψ (Deg.)

0

2

4

6

8

10

P
D

(m
W

/
cm

2
)

Simulated PD

Proposed PD Model

0 45 90 135 180 225 270 315 360

ψ (Deg.)

0

2

4

6

8

10

P
D

(m
W

/
cm

2
)

Simulated PD

Proposed PD Model

(a) (b)

0 45 90 135 180 225 270 315 360

ψ (Deg.)

0

2

4

6

8

10

P
D

(m
W

/
cm

2
)

Simulated PD

Proposed PD Model

0 45 90 135 180 225 270 315 360

ψ (Deg.)

0

2

4

6

8

10

P
D

(m
W

/
cm

2
)

Simulated PD

Proposed PD Model

(c) (d)

Fig. 4. Plane wave equivalent PD values from HFSS simulations and the quadratic model xHRPD(p)x, with PD matrices calculated as in (7), vs. the beam
sweep angle ψ of the transmit signal x in (29). The point p is located 5 mm from the array center and at 30◦ from boresight. Results with half-wave dipole
ULAs are shown in the ideal case with (a) N = 2 and (b) N = 4, and in the non-ideal case with N = 2 and N = 4 in (c) and (d), respectively. The dipole
antenna parameters are given in Table II, and the array coupling matrices are given in (26).

sweep is performed by setting the transmit signal as

x =
1√
N

[
1, ejψ, ej2ψ, . . . , ej(N−1)ψ

]T

, (29)

and varying ψ. Plane wave equivalent PD values were obtained
from HFSS at a point p located 5 mm from the center of
the array at 30◦ from boresight. These results were compared
to the PD model xHRPDx for various values of ψ. The PD
matrices were calculated in terms of the simulation parameters
and the point p using (7). For example, the matrix for a two-
element ULA with ideal dipoles was computed as

R
(2)
PD =

[
2.87 0.68 + j4.41

0.68− j4.41 6.95

]
. (30)

Fig. 4 (a) and (b) demonstrate a high agreement between
the proposed PD model and the simulation results in the
ideal case. The PD model also demonstrates high accuracy
in estimating the simulated exposure values in a non-ideal
scenario as seen in Fig. 4 (c) and (d). Note that in both the
ideal and non-ideal cases, the error between the model and

the simulated values may be larger in cases where p is far
from the xy-plane but is still relatively close to the array since
the radiated electric field vectors from the antenna elements
may be misaligned. However, these points will in general
experience lower exposure than points in the xy-plane due to
the dipole gain patterns, and therefore are of less importance.

C. Surface SAR Model Validation
In the second example, we consider the surface point

p = [3.47, −5.30, 0]T mm on the head model in Fig. 3.
Fig. 5 shows the comparison between simulated measurements
from HFSS and both the SPW SAR model and the proposed
SAR model xHRSAR(p)x with RSAR(p) found as in (10). For
example, the scaled SAR matrix βRSAR(p) for a two-element
ULA with ideal dipoles was determined to be

R
(2)
SAR =

[
5.20 −0.20 + j13.49

−0.20− j13.49 35.04

]
. (31)

In the non-ideal case, we found an error between the ampli-
tude of the proposed model and the simulated SAR even when
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Fig. 5. SAR values from HFSS simulations, the SPW SAR model in (22), and the quadratic model xHRSAR(p)x, with SAR matrices calculated as in
(10), vs. the beam sweep angle ψ of the transmit signal x in (29). The exposure scenario is shown in Fig. 3. Non-simulated values were scaled by a factor
of 0.7024 to account for absorption losses. Results with half-wave dipole ULAs are shown in the ideal case with (a) N = 2 and (b) N = 4, and in the
non-ideal case with N = 2 and N = 4 in (c) and (d), respectively. The dipole antenna parameters are given in Table II, and the array coupling matrices are
given in (26). In the non-ideal cases, the proposed model was scaled by a factor of K = 1.203 and K = 1.423 in (c) and (d), respectively.

taking the absorption coefficient into consideration. These
discrepancies could be caused by a variety of unaccounted
factors, such as coupling between the antennas and the head
model, the curvature of the head model, and the depth at
which SAR is simulated. To address this issue, the predicted
SAR values were scaled by a constant K, which was chosen
to minimize the error between the proposed model and the
simulated values. We note that this scaling constant was only
used in the case of the non-ideal dipoles.

The results demonstrate that the proposed model can predict
the simulated SAR values with high accuracy. More impor-
tantly, the shape of the curves produced by the proposed
model closely match that of the simulation results, especially
compared to the SPW model curves. This suggests that the
model can predict which transmit signals result in relatively
high and low exposure values. Therefore, the model can still
be applied to design transmission schemes which minimize
exposure levels even if K cannot be determined accurately.

In addition, any amplitude offset between the proposed model
and actual SAR measurements can be lumped into the effective
transmit power of the device and controlled through power
control settings.

V. EXPOSURE MODEL ANALYSIS AND APPLICATIONS

Given a wireless device and a model for the exposed body,
the proposed models for incident PD and surface SAR enable
systems to estimate pointwise exposure over regions in space.
Let P be a set of testing points or a region over which exposure
is regulated, such as a superficial area on a head model or a
region surrounding the transmitter array. Then an exposure
constraint over P can be expressed as

EXP(p,x) ≤ Q, ∀p ∈ P , (32)

where Q is the regulatory exposure threshold. However, if P
is defined as a contiguous area or volume, it is unfeasible
to directly incorporate this constraint into signal design algo-
rithms to mitigate electromagnetic absorption. In this section,
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we present methods for sampling P in order to characterize
exposure over the entire testing region within a certain error
threshold with a finite number of points. We then leverage
this sampled representation to obtain a method for calculating
exposure matrices for predicting average exposure, rather than
pointwise exposure.

A. Sampling Methods

Let p and p̃ be two points in the region P . We first examine
the relationship between the maximum difference in exposure
levels at these points, given as

dEXP(p, p̃) = max
x:‖x‖=1

∣∣EXP(p,x)− EXP(p̃,x)
∣∣ , (33)

and inter-point distance ‖p− p̃‖.
Note that the highest levels of exposure occur at points

which are closest to the array and which lie in the direction of
the highest array gain. These characteristics can be captured by
the minimum distance to the array over P , denoted as rmin, and
the maximum directivity over P among the antennas, denoted
as Gmax. The minimum distance rmin is defined as the smallest
distance from a point in P to any antenna element and is given
as

rmin = min
p∈P

rmin(p), (34)

where rmin(p) is smallest distance to p over the array ele-
ments,

rmin(p) = min
n=0,1,...,N−1

‖pn‖ . (35)

Likewise, the maximum directivity Gmax can be defined in
terms of the individual gain patterns as

Gmax = max
n=0,1,...,N−1

max
p∈P

gn(pn). (36)

These parameters correspond to a worst-case scenario in terms
of exposure, and are therefore useful in bounding dEXP(p, p̃).

We now state the following lemma as a preliminary step in
characterizing an upper bound on dEXP(p, p̃).

Lemma 1. Let p and p̃ be distinct points in a set P not
containing the origin. Assume that gn(pn) is constant over
P . Then we have that for any non-zero transmit signal x,∣∣∣∣∣∣

∣∣aH(p)x
∣∣2

‖p‖2
−
∣∣aH(p̃)x

∣∣2
‖p̃‖2

∣∣∣∣∣∣ < ε (37)

as long as ‖p− p̃‖ < ∆/‖x‖2, where ∆ is given as

∆ =
εr2min

2N2Gmax

(
4π

λ
+

1

rmin

)−1
. (38)

The proof is found in Appendix A. The constant gain assump-
tion can be satisfied by choosing P to be sufficiently small.

Although Lemma 1 only bounds the difference in a quantity
closely related to PD, the structure of the exposure models
allow this result to be applied to both the PD and SAR
models. As demonstrated in Section II, both PD and surface
SAR matrices can be characterized by an steering vector, and
exposure at p can be modeled as a rank-one quadratic as in
(19). The effective steering vector âEXP(p) can be expressed

as a spatially dependent linear transformation on a(p) of the
form

âEXP(p) = kEXPD(p)Wa(p), (39)

where kEXP is a constant of proportionality dependent on the
exposure measure, D(p) is an N×N diagonal matrix defined
as a function of p, and W is a N ×N matrix. For example,
the PD effective steering vector âPD(p) can be obtained by
setting kPD =

√
P/4π, D(p) = α1/2(‖p‖)I and W = MH .

For simplicity we assume that the region of interest is small
enough so that D(p) can be approximated by a constant matrix
D over P .

The linear transformation in (39) and Lemma 1 can then be
applied to show the following result.

Lemma 2. Let p and p̃ be distinct points in a set P not
containing the origin. Assume that gn(pn) is constant over P
and that W is full rank. Then

dEXP(p, p̃) < ε (40)

as long as

‖p− p̃‖ < ∆EXP ,
∆

k2EXP‖WD‖22
, (41)

where ∆ is given as in Lemma 1.

Proof: By substituting (19) into the definition of
dEXP(p, p̃), we have that

dEXP(p, p̃) = max
x :‖x‖=1

∣∣∣∣∣∣
∣∣âHEXP(p)x

∣∣2
‖p‖2

−
∣∣âHEXP(p̃)x

∣∣2
‖p̃‖2

∣∣∣∣∣∣ . (42)

Since effective steering vectors in (42) are linear transforma-
tions of a(p), dEXP(p, p̃) can be expressed as

dEXP(p, p̃) = max
x :‖x‖=1

∣∣∣∣∣∣
∣∣aH(p)x̂

∣∣2
‖p‖2

−
∣∣aH(p̃)x̂

∣∣2
‖p̃‖2

∣∣∣∣∣∣ , (43)

where x̂ is the effective transmit signal given as

x̂ = kEXPW
HDHx. (44)

Applying Lemma 1 with the effective transmit signal x̂, we
have that if

‖p− p̃‖ < ∆

maxx :‖x‖=1 ‖x̂‖2
=

∆

k2EXP‖DW‖22
, (45)

then dEXP(p, p̃) < ε as desired.
The previous results not only imply that the maximum

exposure differential dEXP(p, p̃) can be guaranteed to lie
below the error threshold ε if the two testing points are
sufficiently close, but also give an explicit expression for the
maximum allowable distance between the two points. The
assumption that W is full rank, which is equivalent to M
having full rank, corresponds with the notion that non-zero
transmit signals cannot induce an eletric field of zero over
P and is thus reasonable in the context of this study. These
bounds are now applied to formulate uniform and non-uniform
sampling methods which allow us to characterize pointwise
exposure over P in terms of a finite number of points at the
cost of a predetermined margin of error.
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Uniform Sampling: A direct application of Lemma 2 yields
a method for uniformly sampling the region P . Let ε be the
desired maximum exposure variation between adjacent points.
Then sampling points in P at a maximum distance of ∆EXP

guarantees that the exposure differential between two adjacent
points is at most ε. Note that this criteria only gives a guideline
for the allowable distance between sample points, since the
specific manner of sampling should be determined based on
the body tissue geometry. However, we provide a numerical
example in Section IV-C to demonstrate how to sample a
relatively simple region.
Non-uniform Sampling: A shortcoming of the uniform sam-
pling method is that it does not leverage the decay of
electromagnetic field strengths with distance from sources.
Intuitively, exposure values should follow a downward trend as
points move farther from the transmitter and thus the distance
between sampled points should be allowed to increase without
penalty. This dependence can be seen in the term ∆EXP, which
increases with r3min. Additionally, other model parameters
which are dependent on location, such as the transmission
coefficients and the NFGCF, also affect the sampling distance.
The uniform sampling approach restricts ∆EXP to a constant
value based on the point closest to the array, but a non-uniform
method can be developed by adaptively adjusting the sampling
distance.

The main idea of the non-uniform sampling algorithm is to
sample the closest points to the array first and move outwards
while adaptively adjusting the sampling distance. Given a
spatial region P , we first sample the closest point to the
transmitter array, given as

p0 = argmin
p∈P

rmin(p). (46)

Based on Lemmas 1 and 2, a positionally dependent sampling
distance can be defined as

∆EXP(p) ,
εr2min(p)

2N2Gmaxk2EXP

∥∥WD(p)
∥∥2
2

×
(

4π

λ
+

1

rmin(p)

)−1
. (47)

According to the uniform sampling criteria, the next sample
points should be located at a distance of ∆EXP(p0) from
p0. Let p1 be one of those points, and let ∆EXP(p1) be
the sampling distance corresponding to p1. Since exposure
at points closer to the array than p1 is characterized by the
sample at p0, the remaining sample points will be located
farther from the array than p1. Therefore, the next sample
point, p2, is chosen to lie at a maximum distance of ∆EXP(p1)
from p1, as doing so ensures that the conditions of Lemma
2 are still satisfied and the exposure differential between p1

and p2 is bounded as dEXP(p1,p2) < ε. This procedure is
repeated until the entire region is sampled.

B. Spatially Averaged Exposure Model

As previously mentioned, regulation agencies measure spa-
tially averaged exposure rather than pointwise exposure in
order to determine whether wireless devices comply with

exposure thresholds. The sampling methods developed in the
previous section allow us to characterize modeled exposure
over a region P with a finite number of points. We now
show how this representation can be used to estimate spatially
averaged exposure over P , given as

EXPavg(P) =

∫
P EXP(p,x)dp

|P| , (48)

where |P| is the area or volume of P , with a quadratic model
xHRavg(P)x. For simplicity, we shortly drop the dependence
of the exposure function on the transmit signal x.

Let P be the region over which measurements are averaged
and let

Ps =
{
p(0), p(1), . . . , p(M−1)

}
(49)

be the M sample points obtained by applying either of the
proposed sampling methods on P . The region P can be
divided into subregions corresponding to each sample point
as

P(m) =

{
p ∈ P : p(m) = argmin

p̃∈Ps

‖p− p̃‖
}
. (50)

The m-th subregion consists of the points in P lying closest to
the m-th sample point, and these subregions define a partition
of P . Therefore, average exposure over P can be written as

EXPavg(P) =

∑M−1
m=0

∫
P(m) EXP(p)dp

|P| . (51)

Assuming there are no discontinuities in the electromagnetic
field over P , the integral Mean Value Theorem gives us that
the average exposure over each subregion P(m) is equal to
the exposure value at some point p̃(m) in the subregion. This
relationship can be formally stated as

EXP(p̃(m)) =

∫
P(m) EXP(p)dp∣∣P(m)

∣∣ . (52)

Note that the point p̃(m) belongs to the m-th sample point’s
subregion. Moreover, the distance between pm and p̃m must
be less than the distance between pm and its neighboring
sample points. Thus, Lemma 2 ensures that

dEXP(pm, p̃m) < ε. (53)

Combining the expressions (51) and (52) with the bound in
(53), we have that average exposure over the entire region can
be approximated as

EXPavg(P) ≈
∑M−1
m=0

∣∣∣P(m)
∣∣∣EXP(p(m))

|P| . (54)

If P is sampled such that each subregion is of the same size,
average exposure can be approximated as the arithmetic mean
of the sample points as

EXPavg(P) ≈ EXPavg(Ps) ,
1

M

M−1∑
m=0

EXP(p(m)). (55)

In this case, the maximum error between the approximation
in (55) and the true averaged exposure, given as

dEXP(P,Ps) = max
x :‖x‖=1

∣∣EXPavg(P)− EXPavg(Ps)
∣∣ , (56)
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will also be bounded by ε. The approximation for average
exposure given in (55) can also be written in terms of the
signal-level model as

EXPavg(Ps,x) =
1

M

M−1∑
m=0

xHREXP(p(m))x (57)

= xH

 1

M

M−1∑
m=0

REXP(p(m))

x (58)

, xHREXP, avg(P)x, (59)

where the matrix REXP, avg(P) now characterizes average
exposure over P . In general, the average exposure matrix can
be written as a weighted average of the exposure matrices for
each sample point as

REXP, avg(P) =
1

|P|
M−1∑
m=0

∣∣∣P(m)
∣∣∣REXP(p(m)). (60)

In practice, average exposure matrices R0, R1, ... ,RL−1
corresponding to L different body regions and/or gestures can
be calculated offline to model exposure over a variety of
operating conditions. A worst-case constraint on the system
can then be defined as

max
`=0,1,...,L−1

xHR`x ≤ Q. (61)

This constraint is identical to those examined in [1], [30], [31],
[36]–[39], therefore the signaling schemes developed in these
studies can be applied to jointly maximize the far-field rate
performance while controlling near-field exposure.

C. Numerical Examples of Sampling Methods

We present a numerical example to demonstrate the appli-
cation of the proposed sampling guidelines. We consider a
scenario similar to that in Fig. 3, but with a spherical head
model with a radius of 90 mm at a distance d away from a
transmitter equipped with N ideal half-wave dipoles operating
at a frequency of 28 GHz. We assume an incident power
density constraint is placed on the surface of the head model
in the xy-plane, where maximum exposure occurs.

The surface of the head model was sampled for N = 2
and d = 10 mm according to the uniform and non-uniform
sampling guidelines as seen in Fig. 6. For illustrative pur-
poses, the transmit power was set to P = 10 mW and the
variation threshold ε was set to 25 mW/cm2. The sampled
area corresponds to an arc of length 94.25 mm centered at
boresight from the center of the transmitter. Note that although
the uniform sampling forces points to be located in close
proximity, the non-uniform approach allows sparser sampling
at points relatively far from the transmitter. It takes 51 points
to uniformly sample the region, whereas the region can be
sampled with only 17 points using the non-uniform method.

The number of sample points required to sample the region
from the previous example with a variation threshold of
ε = 1 mW/cm2 for various combinations of values for N
and d are shown in Tables III. In all cases, non-uniform
sampling requires a significantly smaller number of points
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Fig. 6. Plots of the sampling points obtained from the (a) uniform and (b)
non-uniform sampling approaches over the surface of a spherical head model
with radius 90 mm at a distance of 10 mm from a two-element ideal dipole
ULA. Sampling was performed with an error parameter of ε = 25 mW/cm2.

TABLE III
NUMBER OF SAMPLE POINTS FOR DIFFERENT CHOICES OF N AND d.

Parameters # Sampling Points
Uniform Non-uniform

d = 10 mm, N = 2 1251 343
d = 10 mm, N = 4 5003 1359
d = 5 mm, N = 2 5357 787
d = 5 mm, N = 4 21425 3133

than the uniform method but the sampling distance must be
recalculated at each iteration, increasing the computational
complexity of this approach. Although the amount of sampling
required in all cases seems onerous, this is due to the restrictive
bound we have placed on the maximum difference between
pointwise exposure measurements. For practical applications,
the sample points should be used to compute average exposure
matrices as discussed in Section IV-B.
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D. Average Exposure Model Validation

In order to validate the average exposure model, we consider
two arcs, denoted as P1 and P2, on the surface of a head
model of radius R = 90 mm next to a 2-element dipole array
at distance of d = 5 mm from the head, as shown in Fig.
7. These regions were sampled uniformly and non-uniformly
according to the proposed guidelines. As in Section IV, we
assume that the transmitter is equipped with a two-element
non-ideal half-wave dipole array with a transmission frequency
of 28 GHz and a transmit power of 10 mW, and.

In Fig. 8, we perform a beam sweep as in Section IV
and compare the simulated average PD from HFSS with the
average PD predicted by the model in (55). The regions were
uniformly sampled with ε = 10 mW/cm2, resulting in 45 and
29 sample points for P1 and P2, respectively. The proposed
model approximates the simulated values well even though the
value of ε is relatively large.
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Fig. 7. Two regions considered in the validation of the average exposure
model. Each region is an arc of measure 5◦ on the surface of a spherical head
model with radius 90 mm at a distance of 5 mm from the center of the array.

We also studied the convergence of the average exposure
matrix in (60) as M increases for both uniform and non-
uniform samplings of the regions P1 and P2. In this case,
we consider an ideal two-element half-wave dipole array and
compute average PD matrices. For each region P , the limit
as M →∞ of the average PD matrices, denoted as R(P), is
taken to be REXP, avg(P) from (60) with ε = 0.1 mW/cm2. In
Fig. 9, we compare the mean-square-error (MSE) between the
average PD matrix RPD, avg(P) from (60) and R(P) versus
the number of samples used to compute RPD, avg(P). Since
the sampling procedures are defined in terms of ε rather than
the number of samples, there is a range of values of ε for
which a sampling of P will result in a fixed M . Therefore, for
any given M we take the MSE above to be the average MSE
among all ε which result in M samples. The plot shows that
non-uniform sampling leads to a lower MSE than uniform-
sampling in both regions. This is because the non-uniform
sampling procedure allocates more samples to the portions of
a region which have a larger effect on the average PD matrix
than to the portions which are less impactful.

0 45 90 135 180 225 270 315 360

ψ (Deg.)

0

10

20

30

40

50

60

A
v
er
a
g
e
P
D

(m
W

/
cm

2
)

Simulated PD, P1

Average PD Model, P1

Simulated PD, P2

Average PD Model, P2

Fig. 8. Average PD values obtained from HFSS simulations using (48), and
the proposed average exposure model in (55), vs. the beam sweep angle ψ of
the transmit signal x in (29) on the regions P1 and P2. Values were obtained
for a non-ideal two-element dipole array. For both regions, the proposed model
was calculated using a uniform sampling with ε = 10 mW/cm2.
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Fig. 9. Mean-square-error (MSE) between the average PD matrices
RPD, avg(P) from (60) and R(P) vs. the number of samples M . Com-
putations were performed for an ideal two-element dipole array.

VI. CONCLUSION

In this study, we examined exposure models for two major
measures of electromagnetic absorption at millimeter wave
frequencies. We developed expressions to approximate the
pointwise exposure matrices for both incident PD and surface
SAR and showed that both exposure measures are character-
ized by an effective steering vector. The proposed models only
require a relatively small number of parameters to be computed
and can predict exposure over contiguous regions without
additional measurements. Software simulations demonstrate
that the exposure models can estimate pointwise exposure with
high accuracy.

The models were then analyzed in order to provide insights
into how to sample them to obtain an accurate representation
of exposure over a spatial region. The proposed uniform
and non-uniform sampling guidelines indicate what inter-point
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sampling distance is required to ensure that spatial exposure
variations lie beneath a chosen threshold. A numerical example
showing the application of the sampling algorithms demon-
strates that non-uniform spatial sampling results in signifi-
cantly fewer sample points. The sampling methods can further
be applied to the problem of calculating quadratic models for
spatially average exposure. Simulation results demonstrate that
these models can effectively approximate average exposure.
can be directly incorporated into exposure-aware signal design
algorithms in the literature to achieve high data rates while
remaining compliant with regulatory exposure standards.

VII. APPENDIX

A. Proof for Lemma 1

Let r =‖p‖ and r̃ =‖p̃‖, and denote a(p) and a(p̃) as a
and ã, respectively. The n-th element of a is expressed as

an = g1/2n (pn)
r

rn
exp (−jϕn), (62)

where ϕn is given as in (5), and similarly for ãn. Since
the points p and p̃ are nonzero, the desired bound can be
expressed as

A =

∣∣∣∣∣r̃aHx
∣∣−∣∣rãHx

∣∣∣∣∣
rr̃

∣∣r̃aHx
∣∣+
∣∣rãHx

∣∣
rr̃

< ε. (63)

We first derive an upper bound on A in terms of the inter-
point distance ‖p− p̃‖. An application of the reverse triangle
inequality and the Cauchy-Schwarz inequality gives an upper
bound on A as

A ≤ BC‖x‖2 ,

[‖r̃a− rã‖
rr̃

] [‖r̃a‖+‖rã‖
rr̃

]
‖x‖2 . (64)

For clarity, we bound B and C separately.
Through repeated applications of the triangle inequality and

the Cauchy-Schwarz inequality, it can be shown that the term
B can be bounded as

B≤ G1/2
max

N−1∑
n=0

∣∣∣∣exp(jϕn)

rn
− exp(jϕ̃n)

r̃n

∣∣∣∣
≤ G1/2

max

N−1∑
n=0

(
1

rn

∣∣exp(jϕn)− exp(jϕ̃n)
∣∣+

∣∣∣∣ 1

rn
− 1

r̃n

∣∣∣∣
)

= G1/2
max

N−1∑
n=0

 2

rn

∣∣∣∣∣sin
(
ϕn − ϕ̃n

2

)∣∣∣∣∣+

∣∣∣∣ r̃n − rnrnr̃n

∣∣∣∣


(a)
< G1/2

max

N−1∑
n=0

(
2π

λrn
|rn − r + r̃ − r̃n|+

∣∣∣∣ r̃n − rnrnr̃n

∣∣∣∣
)

≤ G1/2
max

N−1∑
n=0

(
2π

λrn

(
|rn − r̃n|+|r − r̃|

)
+

∣∣∣∣ r̃n − rnrnr̃n

∣∣∣∣
)

(b)

≤ G1/2
max

(
4πN

rminλ
‖p− p̃‖+

N

r2min

‖p− p̃‖
)
, (65)

The bound sin(y) < y for y > 0 is used in (a), and (b)
results from the definition of rmin. Similarly, the term C can

be bounded as

C≤ G1/2
max

N−1∑
n=0

(∣∣∣∣exp(jϕn)

rn

∣∣∣∣+

∣∣∣∣exp(jϕ̃n)

r̃n

∣∣∣∣
)

≤ 2NG
1/2
max

rmin
. (66)

Combining the bounds for B and C, we have that

A <
2N2Gmax‖x‖2

r2min

(
4π

λ
+

1

rmin

)
‖p− p̃‖ . (67)

Therefore, A < ε if

‖p− p̃‖ < εr2min

2N2Gmax‖x‖2
(

4π

λ
+

1

rmin

)−1
. (68)
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