
Multiverse: Dynamic VM Provisioning for Virtualized High Performance
Computing Clusters

Jashwant Raj Gunasekaran∗, Michael Cui†, Prashanth Thinakaran∗, Josh Simons†, Mahmut T. Kandemir∗, Chita R. Das∗
∗ Computer Science and Engineering, The Pennsylvania State University, † VMware Inc.

{jashwant, prashanth, mtk2, das}@cse.psu.edu, {xiaolongc, simons}@vmware.com

Abstract—Traditionally, HPC workloads have been deployed
in bare-metal clusters; but the advances in virtualization have
led the pathway for these workloads to be deployed in virtual-
ized clusters. However, HPC cluster administrators/providers
still face challenges in terms of resource elasticity and virtual
machine (VM) provisioning at large-scale, due to the lack of
coordination between a traditional HPC scheduler and the
VM hypervisor (resource management layer). This lack of
interaction leads to low cluster utilization and job completion
throughput. Furthermore, the VM provisioning delays directly
impact the overall performance of jobs in the cluster. Hence,
there is a need for effectively provisioning virtualized HPC
clusters, which can best-utilize the physical hardware with
minimal provisioning overheads.

Towards this, we propose Multiverse, a VM provisioning
framework, which can dynamically spawn VMs for incom-
ing jobs in a virtualized HPC cluster, by integrating the
HPC scheduler along with VM resource manager. We have
implemented this framework on the Slurm scheduler along
with the vSphere VM resource manager. In order to reduce
the VM provisioning overheads, we use instant cloning which
shares both the disk and memory with the parent VM, when
compared to full VM cloning which has to boot-up a new VM
from scratch. Measurements with real-world HPC workloads
demonstrate that, instant cloning is 2.5× faster than full cloning
in terms of VM provisioning time. Further, it improves resource
utilization by up to 40%, and cluster throughput by up to 1.5×,
when compared to full clone for bursty job arrival scenarios.

Keywords- HPC; virtualization; VM provisioning; cloning;

I. INTRODUCTION
High performance computing (HPC) has evolved over

the years, due to the application demands ranging from
scientific computing to AI/ML-based applications [1]. HPC
system stack is changing rapidly to keep up with the
performance demands of such applications. It is an important
constraint for the HPC cluster administrators to improve
the cluster throughput and utilization, without sacrificing the
application performance. Therefore, in the past these HPC
applications have been traditionally deployed on bare-metal
hardware [2], due to the performance guarantees offered by
native execution.

On the other hand, with the advent of high throughput
computing jobs [3], HPC clusters require massive scaling of
resources while accessing large volumes of data. Towards
this, there have been several advancements for rapid HPC
provisioning such as OpenStack [4], which enables software-
defined HPC infrastructure, that saves the time wasted on
manual configuration and cluster provisioning. This leads to

better infrastructure manageability [5], while ensuring the
native bare-metal performance. However, this performance
guarantee comes at the cost of abysmal bare-metal cluster
utilization, due to lack of fine-grain support in sharing
resource like CPU, memory and network across multiple
tenants [6].

Recent advancements in hypervisor and virtualization
technology can improve the cluster utilization without sac-
rificing the performance while supporting multi-tenant ex-
ecution. Through virtualization, HPC workloads can also
benefit from supporting resource heterogeneity, performance
isolation, improved security, etc., [7]. Moreover, the perfor-
mance overheads of virtualized HPC clusters with respect
to job execution times, have less than 5% overheads for
throughput and non-I/O intensive applications, when com-
pared to bare-metal clusters [8], [9]. Combined with these
numerous benefits, nowadays virtualization of HPC environ-
ments is becoming more prevalent [10], [11]. For instance,
the Johns Hopkins University Applied Physics Laboratory,
transformed their existing bare-metal cluster to a virtual
cluster (vGRID) [12], which led to drastic improvements
in resource utilization by upto 19%, with less than 4%
performance degradation.

Although, virtualization guarantees near-native job ex-
ecution time, private virtualized HPC clusters still face
challenges in terms of cluster management such as, (i)
efficient scalability of the VMs in the cluster, (ii) efficient
cluster utilization with respect to dynamic job arrivals at the
HPC scheduler, and (iii) minimizing the VM provisioning
delays. This is because, the native HPC job schedulers
like Slurm [13] or Torque [14] do not interact with the
hypervisor management layer [15], [16]. Therefore, HPC
cluster administrators/providers need to statically provision
and manage Virtual Machines (VMs) for every incoming job
from the HPC scheduler. Motivated by these observations,
we argue that, there is a need for a framework to dynamically
provision virtualized HPC clusters, which ensures efficient
cluster utilization, with minimal provisioning overheads.

To overcome some of the challenges mentioned above,
several frameworks have been proposed to integrate tradi-
tional HPC schedulers [13], [14], along with VM resource
managers [4], [17], to enable seamless and self-managed
VM provisioning for HPC clusters. Still, a majority of
these frameworks lack support to dynamically provision

ar
X

iv
:2

00
6.

12
56

0v
1

 [c
s.D

C
]

22
 Ju

n
20

20

VM for every job and requires the cluster administrator to
manually intervene during scale-out phase 1 and mapping
the job requirements from the HPC scheduler to the VMs.
Furthermore, in an attempt to reduce the VM provisioning
delays, several optimizations such as image sharing, taking
snapshots of VM [18], [19], etc,. have been proposed. De-
spite these efforts, new VMs still take hundreds of seconds
for provisioning [20], [21]. There have been recent efforts
to reduce VM provisioning latencies using instant clone
technology [22]. Instant clones uses a copy-on-write [23]
feature to drastically reduce the provisioning time when
compared to full clones [24], which has to boot-up a new
VM from scratch. To the best of our knowledge, there are
very few existing works, which have support for dynamic
VM provisioning [20], [21], [25], however, they do not uti-
lize techniques such as instant clone to reduce provisioning
overheads in a virtualized HPC environment.

To holistically address the shortcomings of existing works,
we build a dynamic VM provisioning framework, called
Multiverse, which can spawn new VMs for incoming jobs
using instant cloning in a virtualized HPC cluster. This en-
ables more flexible and cluster utilization-aware VM provi-
sioning. In summary, we make the following contributions:
• We have designed Multiverse, a generic framework that

integrates HPC scheduler with VM orchestrator2 for dy-
namic VM provisioning on a per-job basis. We have
implemented a prototype of the mentioned framework
using Slurm [13] as the HPC job scheduler and VMware
vSphere [26] as the VM orchestrator.

• We incorporate an admission control system and a dy-
namic load balancer using sqlite3 database [27], which
ensures efficient VM placement decisions in cluster.

• We have characterized the performance and scalability of
the Multiverse framework for two types of VM cloning
mechanisms on a 220 core HPC cluster.

• Our experimental analysis using different job arrival sce-
narios shows that, instant cloning is 2.5× - 7.2× better
than full cloning, in terms of VM provisioning time.
Further, our results show that instant cloning can provide
up to 40% better resource utilization, and 1.5× better
cluster throughput, when compared to full cloning.

II. BACKGROUND AND MOTIVATION

A. Why Virtualization for HPC?

Despite the fact that virtualization having proved to be
cost effective, scalable and reliable in majority enterprise
infrastructures, HPC applications are still executed on bare-
metal, non-virtualized clusters (for most cases), to achieve
maximum performance. This suffers from major challenges
such as (i) lack of support for dynamic load balancing and

1Scale-out indicates that, we have more incoming jobs than available
VMs.

2We use the terms orchestrator and resource manager interchangeably.

migration, and (ii) lack of isolation and security among
multi-tenant workloads. However, virtualization can trans-
form HPC infrastructure by overcoming these challenges
by enabling (i) proactive VM migrations during failure
and load imbalance, (ii) micro-segmentation using network
virtualization for fine-grain isolation.

HPC Job Mix

Hypervisor

Jo
b

1

Jo
b

4

Jo
b

2

Jo
b

3 HPC Scheduler

Resource
Orchestrator

Hypervisor
VM1 VM2 VM3 VM4

Hypervisor
VM1 VM2

Hypervisor
VM1 VM2 VM3

Hypervisor
VM1 VM2 VM3 VM4

M
ultiple virtual com

pute clusters

Login VM
Controller VM

Operating System
HPC Scheduler

1

AInteraction

Figure 1: Overview of a Virtualized HPC framework.

B. Overview of Virtualized HPC framework

Figure 1 illustrates the architecture of virtualized HPC
framework. All physical nodes in the cluster are virtualized
using a VM hypervisor (VMware ESXi or kvm [28]). The
hypervisor which directly runs on the physical nodes in
privileged mode provides abstraction for VMs to run while
mapping host resources such as CPU, memory, storage,
and network to each VM. The original login node, master
node for job scheduling, and compute nodes now run as
VMs on the existing login, controller, and compute nodes,
respectively, within the same cluster. In addition, a VM
orchestrator (VMware vCenter or Opennebula) [17], [26]
runs inside a VM on one controller node and provides
centralized management of the hosts and VMs, coordinating
resources for the entire cluster. In this paper, we propose a
dynamic VM provisioning framework for allocating VM(s)
for every incoming job in such a virtualized HPC cluster.

C. Challenges in Dynamic VM Provisioning

In case of a large HPC cluster with hundreds to thousands
of nodes, where many jobs can arrive within a short span of
time, cluster administrators face fundamental challenges to
statically allocate and manage VMs for those jobs. Dynamic
provisioning would be better in such scenarios and also
lead to better resource utilization, because it avoids over-
provisioning of VMs. Typically, VM provisioning is handled
by resource managers such as VMware vSphere, OpenStack
or KVM [17], [26], [28]. However, traditional HPC sched-
ulers do not have support to provision and manage VMs
(as shown in Figure 1 A). Therefore, there is a need to
integrate HPC schedulers to work collectively with VM
resource managers and make such integration transparent
to the user. We explain the challenges in such a design and
how we achieve this integration in Section IV.

D. VM Cloning Types

Fast and agile dynamic provisioning of VMs is directly
impacted by the time taken to provision a new VM. Typi-
cally, virtualized environments use cloning [24], to provision
new VMs. A clone is a copy of an existing VM, which is
called the parent of the clone. There are two well known
types of clone (i) full clone, which is an independent copy of
a virtual machine that shares nothing with the parent virtual
machine after the cloning operation, and (ii) linked clone,
which is a copy of a virtual machine that shares virtual disks
with the parent virtual machine.

Recent interest in container-based resource provisioning
has led to the developments of a new cloning technique
called instant clone [22]. Instant clone uses rapid in-memory
cloning of a running parent VM, and leverages copy-on-
write to rapidly deploy VMs. They are much faster when
compared to full and linked clones but a significant amount
of time needs to be spent to configure and customize the
network. We explore the opportunity to use instant clone
and compare its performance with full clones for different
inter-arrival times of jobs. The results of the characterization
are presented and discussed in Section VI.

III. OVERALL DESIGN OF Multiverse

In this section, we first discuss the challenges in our
proposed design to integrate HPC schedulers with VM
orchestrators. Subsequently, we explain the in detail the
design of Multiverse framework that effectively addresses
the challenges.

A. Design Challenges

It is not trivial to enable the integration of HPC schedulers
along with VM resource managers due to the following
reasons. First, we need to hide the virtualization integration
from the user. Second, multiple jobs might share the same
parent VM/image while cloning new VMs. This leads to
potential issues related to disk management (snapshots) and
concurrency in cloning. Third, VMs have to be customized
as specified in the job requirements file submitted to the
HPC scheduler. This requires support for availability of
multiple different VM images when using instant clone.
Finally, the resource orchestrator needs to have policies
for dynamic load balancing and admission control of VMs.
Typically this would be handled by the HPC scheduler for
all jobs, since we override the scheduler functionalities to
support integration with VM resource orchestrators, it is
the responsibility of resource orchestrator to handle load
balancing and admission control.

B. Design Choices

We explain the design of Multiverse with respect to over-
coming the challenges mentioned in the previous section.
First, to retain the original job submission behaviour of
users, we need to customize the job submission workflow

in the HPC scheduler. Typically, jobs go through different
stages within the scheduler starting from job submission
to resource selection to job allocation. We modify each of
these stages as follows. During the job submission, we parse
all the job requirements so that, later we can dynamically
provision a new VM based on the requirements. In the
resource selection stage, we make the job wait until the
VM for the job has been provisioned and, finally, in the
job allocation stage, we ensure that the job is allocated to
the corresponding VM.

Second, to support launching VMs for concurrent
job submissions, our system needs to be thread safe.

queued

spawning

spawned

allocated

2

3

4

1

Figure 2: State ma-
chine used in our
Multiverse design.

Though, the schedulers themselves
are thread safe for multiple job sub-
missions, the changes we make to ev-
ery stage in the scheduler should en-
sure the same. Our design makes use
of an explicit state machine, which
is thread safe, for maintaining the
different states of a job, as shown in
Figure 2. Once a job is submitted,
it enters into queued state 1 , and
continues to exist in that state until
a VM spawn3 process is initiated for
that job. Then, it moves to spawn-
ing state 2 , while the VM is being
spawned and configured. Once the
spawning is complete, the job moves
to a spawned state 3 . Next the job should be scheduled on
the newly-spawned VM. However, the scheduler is unaware
about which VM to allocate the job, because there could
be multiple VMs with similar configuration that can satisfy
for a job. Hence, we need a mechanism to enforce the
scheduler to allocate a job on to a specific VM, which was
spawned for the job. To do so, we make use of job-feature
parameters (predominantly supported in all HPC schedulers)
within every job and VM, to enable a unique job-to-VM
mapping. After the job is allocated on the VM, it moves
to the allocated state 4 . We explain in detail about the
implementation of the state machine in Section IV.

Apart from being thread-safe, we also need to ensure
that, multiple VM clones from the same parent image does
not add additional overheads on disk management. This in
turn leads to clone failures. To mitigate such clone failures,
we make use of a rate-limiter mechanism, which can limit
the number of clones per parent VM for a given time.
Through our characterization study, we set the rate-limiter
at 15 clones per minute and 200 clones per second for full
clone and instant clone, respectively. Note that instant clone
supports more concurrent clones as it shares both disk and
memory with the parent VM.

Third, to support different customizations of the VM in

3We use the terms launch and spawn interchangeably.

Hypervisor

VM1 VM3 VM4 VM2

Hypervisor

VM1 VM2

Hypervisor

VM1 VM2 VM4

Hypervisor

VM1 VM2 VM3 VM3

Multiple virtual compute clusters

Controller VM

Operating System
HPC Scheduler

Resource
Orchestrator

HPC Job Mix

Operating System

Jo
b

1

Login VM

Jo
b

2

Jo
b

3

Jo
b

4

VM
configuration

toolkit

U
til

iza
tio

n
Ag

gr
eg

at
or

Ad
m

is
si

on
 co

nt
ro

l a
nd

 L
oa

d
Ba

la
nc

in
g

Figure 3: A high level overview of Multiverse framework.
The VM configuration toolkit acts as an interface between
scheduler and resource manager. Utilization aggregator
(shown in red) sends real-time cluster utilization metrics
to the VM resource manager (shown in green).

accordance to the job requirements, we provide a baseline
VM image (based on the OS used) which is used for cloning
of VMs. Any application-specific libraries which might be
required by the users can be made available on a shared file
systems (like NFS) and this file system is mounted on the
cloned VMs. We also have to enable the scheduler specific
configurations such that, the new VM will be added to the
scheduler’s node pool. This is done by using customization
scripts which are executed on the VM right after cloning.

Fourth, to enable admission control and load balancing,
we design an utilization aggregator to store physical node-
specific metrics like CPU, memory utilization, number of
active VMs, etc,. This database can be queried by the
resource orchestrator using custom APIs, to check current
resource utilization against specific admission control poli-
cies. Also, by leveraging the resource utilization metrics
from the database, we design two load balancing policies,
to enable fair resource allocation in the cluster. The detailed
implementation of the system is given in Section IV-C.

C. Multiverse workflow

The overall workflow of the Multiverse framework is
shown in Figure 3. Users submit a job to a login node, which
is extracted by the controller node. The controller node
decides job scheduling and placement based on specified
policies. As briefly discussed in the previous subsection,
we override this functionality of the controller, to spawn
a VM for every job submitted and allocate the job on the
spawned VM. To achieve this design, we make use of custom
scheduler plugins to extract the job requirements, spawn a
new VM based on the requirements, allocate the job and
delete the VM after job completion. For all the VM specific
interactions, we need to use a VM configuration toolkit
which can interface with the resource orchestrator. The re-
source allocation and management of the VMs on to physical
nodes is handled by the resource orchestrator/manager by
leveraging the cluster specific metrics, which are exposed to
a database using our utilization aggregator.

Job submit

Schedule

Resource
Select

Allocate Job

Job configuration
captured

Job prioirty
set

Select Suitable
Node

- Get job
requirement

- Create job
folder

- Hold job
- Change state to

Queued

- Wait until node
ready.

- Update node
and job features

- Release job

Remove from queue

Jobs

Job Queue

vm_launch
daemon

job_lock

acquire
lock acquire

lock

- spawn VM
- configure job
- restart controller

job_completion
daemon

- delete VM
- update slurm conf

S
lu

rm
 c

on
tr

ol
le

r
S

ys
te

m
 D

ae
m

on
s

b

Job _epilog
(Spank)

a

c

d

Figure 4: Plugin-based implementation of Multiverse frame-
work, showing the various steps of interaction. The system
daemons are shown in blue and the Slurm plugins are shown
in yellow. Job lock (shown in red) is shared between the plugins
and daemons.

IV. IMPLEMENTATION METHODOLOGY

We explain in detail about the implementation of our
proposed Multiverse framework. While our implementation
is with respect to Slurm scheduler and vSphere resource
manager, Multiverse is generic to be extended to work with
most HPC schedulers and VM resource managers.

A. Augmenting Slurm

As shown in Figure 4, we make use of four custom Slurm
plugins to enable support for dynamic VM provisioning. The
details of these plugins are given below.

1) Job Submit Plugin: Job submit a is called by Slurm
controller right after submitting the job and before schedul-
ing resource allocation. This plugin can override the existing
job_submit method, to give user-defined controls and
change the configuration parameters of the job. We use this
plugin to create a job config file and copy the following
information to it: job name, number of CPUs, required
memory, minimum number of nodes, submit time and other
job related metrics. The job config file has a uniquely
identifiable name, which is a concatenation of job name with
submission timestamp.

2) Scheduler plugin: Scheduler plugin b

is called after the job_submit and before
resource (VM/node) selector. We override
the slurm_sched_p_initial_priority function
using scheduler plugin, which sets the initial priority for
the job. We set the priority value such that, all incoming

jobs will be on hold and will not be eligible to schedule
(we name this as sched_hold). This is essential, because
the VMs for allocating the jobs are spawned only after job
submission. Also, in the same function, we update the job
information (job name and Slurm generated job_id) to a
file named queued_jobs. We employ a locks to ensure
atomic writes to the file by multiple jobs.

3) Resource Select Plugin: The resource select plugin c

is invoked after the job_submit and scheduler plugin to
check if there are any available resources (VMs) to run the
job. Since the VMs for the job are spawned after submission,
they might not be ready during this phase of scheduling.
Therefore, we modify this plugin to return true for VMs
selection by default, though there are no available resources.

4) Spank Plugin: The spank plugin d is used to define
any user-defined functions which is called during various
steps in Slurm execution depending upon the context during
which it is called. We use this plugin in job_epilogue
context to call a cleanup function. This function will notify
the controller node that the job has been complete. The
state of compute VM (the newly spawned VM for executing
the job) is marked as “down" to prevent future jobs to be
scheduled on this VM. Also, the job output and error logs
are copied to master and login node.

B. Custom system daemons

Apart from customizing the Slurm plugins, we also design
and implement two custom system daemons which will
handle the tasks of VM creation, job launch and VM
deletions. They are described in detail below.4

1) VM launch daemon: The primary purpose of this
daemon, is to initiate a VM launch for all submitted jobs to
Slurm. The daemon is designed to work like a state machine
(as shown in Fig 2) where every job can be in one of the
following four states.
• Queued 1 : The job is added to Slurm queue and is updated

in queued_jobs file by the scheduler plugin. For jobs in
this state, the daemon calls the corresponding function to
start spawning a new VM as per the job requirements
which were captured using the job_submit plugin. The
new state of the job is changed to spawning.

• Spawning 2 : The daemon calls vm_launch script for a
previously queued job. Now the job will be periodically
queried to see if VM spawning is complete. The daemon
takes necessary actions (re-spawn or cancel) if the spawn-
ing fails due to some reason.

• Spawned: If the VM spawning for the job is complete, the
daemon changes the state of the job to spawned. For all
jobs in spawned state 3 , the daemon updates the slurm
config file to include details of the newly spawned VM.
It releases the jobs from Slurm hold so that the job can
be allocated 4 to the corresponding VM for execution.

4The circled annotations in each subsection are with respect to Figure 2.

Also, after adding any new nodes to slurm config file, the
Slurm controller has to be restarted. This is due to the
inherent design of Slurm. Hence, the daemon also restarts
the controller, for the VM allocation to be successful for
all spawned jobs.

• Pending: Since we use locks to ensure serialized write to
the queued_job file, the job_lock has to be acquired by
the Slurm scheduler plugin and the VM_launch daemon.
Hence, in the Slurm scheduler plugin, if the job_lock is
busy, it updates the job information to a pending_job file.
The daemon constantly extracts jobs from this file and
initiates the VM_launch function. Hence the pending state,
is an auxiliary state used when the job_lock is busy.
2) Job completion daemon: This daemon, constantly

monitors the state of all the compute VMs. Recall from
our spank job_epilog plugin, the state of VMs after
job completion is marked to be “down". For all such VMs,
the job completion daemon calls a cleanup function which
will ensure the following two steps. First, it clears the node
information from Slurm config file. Second, it deletes all
the job configuration details captured during submission and
also deletes the VM which was spawned for running the job.

C. Admission control and load balancing

We developed a python-based api which can query the
real-time information about all hosts in a cluster and main-
tain the information in a sqlite [27] database. We use this
api in the VM_launch function to get a compatible host for
cloning new VMs. This is a convenient API which can be
extended to develop different admission control and load
balancing schemes. The API exposes basic functionalities
such as (i) initializing a database with existing cluster infor-
mation, (ii) update the database based on new allocations/de-
allocations, and (iii) get a compatible host for the new
clone request Using these functionalities of the API, we
designed an admission control and load balancing policy
for the Multiverse framework.

1) Admission control: We enforce two types of admission
control. If all the resources of the hosts are currently utilized
or there is not enough room to accommodate a new request,
the job waits in the queue until resources become available.
If the required resources of the job are more than the
physical capacity of the host, the job is revoked from
execution. In the former case, to avoid starvation of the
jobs due to unavailability of resources, we make sure that
newly incoming jobs are queued behind the delayed job
inside the internal queued_jobs file used by vhpc_launch
daemon. There is still scope to improvise this policy by
enforcing rules for starvation. For example we can set a
limit on how many times the job can be re-queued, or how
long the scheduler can run other smaller jobs until the bigger
jobs keep waiting for resources.

2) Load balancing: We have two different policies for
load balancing the VMs across the hosts. In the first pol-

icy, we chose the first compatible host by doing a linear
search across all hosts. In this context, "compatible" means
that the host has enough resources to be allocated for
the VM requirements. However, there can be more than
one compatible host in the cluster. Hence we implement
a second policy, where we randomly select a host from
the list of compatible hosts. This incurs additional overhead
compared to the first_available policy but can ensure better
load balancing across the cluster.

D. Software specifications

1) Scheduler and APIs: We use Slurm version 19.05 as
our HPC scheduler. All the Slurm plugins are written in
C-language and generated as shared library (.so) files,
which are dynamically linked to the scheduler. The system
daemons are bash files which are hosted as systemctl
service in Linux. We also design our VM_launch and
cleanup scripts as bash files. For implementing mutex locks
we make use of Flock [29] Linux utility which is available
in both bash and C. vHPC toolkit [30] was developed using
Python which makes use of pyVmoi [31] and pyVim
python packages that enable access to vSphere APIs. We use
this toolkit for VM configuration based on job requirements.

2) Clone configuration: We need to generate a clone
configuration file for spawning a new VM using vHPC
toolkit. For full clone, the template VM can reside in any
node in the cluster. But in the case of instant clone, we
cannot instantiate clones on different hosts, other than the
template VM. Therefore we have a template VM on every
node of the cluster and based on the chosen host given by
our load balancer, we initiate the instant clone on that host.

In addition, for instant clone the CPU and memory cannot
be dynamically configured , because it uses VMFork [22]
to fork off a new VM from the template. Essentially, the
same hardware configuration of the template VM would be
retained for the cloned VM. In the case of diverse jobs
which have different memory and CPU requirements, we
can have different-sized template VMs on each host and
select a closest matching compatible template VM.

E. Assumptions and Limitations

As soon as a user submits a job to slurm, the job would
be waiting to get scheduled until a VM is spawned for the
job. Hence, the additional time incurred to clone new VMs
is accounted along with the total waiting time of the user.
However the cloning time would not affect other running
jobs because it is implemented as background process that
can be executed in parallel with other processes. Due to the
inherent design of slurm, each time a new VM is added to
the configuration file, we have to restart the Slurm controller
daemon. This overhead can be avoided if we use other HPC
schedulers like PBS [32] or Torque [14], wherein new nodes
can be added online without restarting controller daemons.

Our proposed design changes to Slurm might affect its in-
herent job scheduling features. For instance, Slurm supports
different scheduling policies like backfill, priority etc. Since
the scheduling policies now depends on the VM scheduler
used by vSphere, administrators can use the corresponding
scheduling policies in vSphere, which reflect the same be-
haviour as Slurm. Moreover, the original scheduling policies
of the HPC scheduler can be retained if we do not tag every
job to its respective VM. Its easier to customize this change
into other HPC schedulers, when compared to Slurm.

V. EXPERIMENTAL SETUP

A. Hardware Configurations

1) Cluster: We use a cluster of five Dell PowerEdge R630
nodes, with 44 cores and 256 GB memory in each node
The cluster has a 72 TB shared datastore with 5 physical
network adapter of 10Gbps for each node. We use ESXi-6.7
hypervisor along with vSphere-6 resource manager.

2) Master node: Slurm controller is initiated from a
master VM which is preallocated on the cluster. It runs on
Centos 7 with 8 vCPUs and 16 GB memory which is large
enough to handle our input job sequence.

3) Login node: Users submit jobs via login node which
is also a VM configured with 2 vCPUs and 4 GB memory.

B. Workload Generator

We generate a workload for a job-sequence modeled
after Poisson inter-arrival times using a mean job arrival
rate of λ = 10 for 100 jobs. The jobs are associated
with one of the three benchmarks which are (i) High-
Performance Conjugate-Gradient (HPCG),a simple addi-
tive Schwarz, symmetric GaussâĂŞSeidel preconditioned
conjugate-gradient solver [33], (ii) High Performance Lin-
pack (HPL) [34] which measures the performance solving
a dense linear equation system, and (iii) MPIRandom-
access [35] which measures peak capacity of the memory
subsystem while performing random updates to the system
memory.

We configure two types of jobs. First, we configure a
short job which uses 2 vCPUs and 4 GB memory. Second,
we configure a large job which uses 8 vCPUs and 16 GB
memory. Both jobs only use 1GB of local storage (disk)
space. We randomly sample from both the jobs for the
sequence of 100 jobs. The HPCC and HPCG input files are
modified accordingly to generate sufficient load for the given
CPU and memory configuration. Each job has a running time
ranging from 140s to 350s depending on the benchmark.

VI. EVALUATION AND RESULTS

A. Evaluation Methodology

We perform our evaluations from two complemen-
tary angles. First, we compare the overall job comple-
tion time in terms of cloning time, other overheads (ex-
plained below) and actual job running time for two types

Table I: The overheads incurred by Multiverse framework for
VM provisioning and allocation.

Overhead Type Description

schedule_clone Time taken to start the clone script
by VM_Launch daemon.

get_host Time taken to get a compatible host
from load balancer.

network_configuration Time taken to configure and customize
the network.

slurmd_customization Time taken to copy the Slurm config files
and restart the slurmd node daemons.

slurm_restart Time taken by VM Launch daemon to
restart slurmctld after VM is ready.

slurm_schedule Time taken to assign the job to the VM
after restarting the controller.

of cloning techniques. Second, we individually charac-
terize every overhead incurred in our framework. The
overheads and their description are shown in Table I.

0

10

20

30

40

0 50 100

Su
bm

it
tim

e(
s)

Job Number

Figure 5: Poisson arrival rate
fora sequence of 100 jobs with
λ = 10.

We evaluate two differ-
ent job arrival scenar-
ios as shown in Fig-
ure 5, (a) The first 50
jobs of the Poisson dis-
tribution, such that the
cluster is fully utilized
(workload-1) and (b) all
the 100 jobs of the Pois-
son distribution, with 2x
CPU over-commitment
enabled in the cluster
(workload-2). Further to
characterize the bottle-
neck with full clone with

respect to concurrent cloning, we also use a constant inter-
arrival time of 10s, for jobs such that they all don’t arrive
within a short span of time.

B. Results and Analysis

Figure 6a and 6b shows the breakdown of the overall job
completion time for 50 jobs using full and instant clone
respectively. It can be seen that instant clone is extremely
fast in provisioning VMs with an average cloning time of
10s. On the other hand, full clone takes about 150s on
average with a maximum clone time of 450s in some cases.
This is because, full clones do not share any resources
with the parent VM and require a lot more time for disk
provisioning. Instant clone, on the other hand, are forked
off of the parent VM and hence are very fast. However,
from Figure 7b which shows the break down of individual
overheads, the network configuration overhead is very high
for instant clones. Since they share the same network config
as the parent VM after cloning, the network has to be re-
configured. However, instant clones (36s on average) are still
7.2× faster compared to full clones (260s on average), with
respect to overall VM provisioning time.

The overhead to restart the Slurm controller by the VM
launch daemon is in the order of 20s. Majority of this time
is spent within Slurm to complete the restart after being
initiated by the daemon. Since a lot of jobs are running
on the system, the scheduler spends significant amount
of time for the restart. The other overheads apart from
network_config and slurmctld_restart are minimal and very
similar for both clone types (shown in Figure 7a and 7b).
Figure 9 plots the job running time using both instant and
full clone. The running times are fairly similar with a few
variations. We can infer that running time does not get
affected due to type of clone used.

Figure 8 shows the breakdown of job completion and
other overheads for a constant inter-arrival (10s) between
jobs. The total cloning time is within 75s, and the overall
provisioning time including other overheads is within 140s
for all the jobs. In this case, full clone performs very
similar to instant clone in terms of overall job completion
time. This is because, the number of concurrent clone
operations handled by vSphere is significantly reduced.
vSphere can handle up to 200 concurrent instant clones
but it incurs higher latency for concurrent full clones.
However, the overall provisioning time using instant clone
(36s on average) is still 2.5× faster than full clone (87s on
average). Note that, the job running times are much lower
for constant arrival when compared to bursty arrival. This
is due to the fact that, the cluster is not 100% utilized
for a constant arrival, which consequently leads to lesser
interference among VMs.

1) Scalability using CPU Over-commitment: We con-
duct another set of experiments where we use 2x over-
commitment of CPU in the cluster (i.e), the cluster will be
running jobs with total vCPUs equal to twice as many as
available CPUs. We use a the same Poisson based arrival
sequence, but for 100 jobs. Figure 10 plots the breakdown
of job completion time for instant and full clone. It can
be seen that, instant clone scales well for 100 jobs as the
cloning time is well within 15s (Figure 10b) for all the jobs.
For the last few jobs from 86 to 91, the overheads are higher
because the cluster is already full with no more available
vCPUs to allocate for VMs. This is shown in Figure 11b,
that the get_host time for these jobs are very high. On the
other hand, for full clone, the time taken to clone is very
large (shown in Figure 10a). This is because concurrent full
clones are very slow to handle. As described in Section III,
we use a rate-limiter of 15 clones per minute. This can be
seen in Figure 11a, where the schedule_clone increases in
multiples of 15s. The performance degradation due to clone
overheads is very large for jobs starting from 51, because
more and more jobs are queued in vSphere to be cloned.
Note that, for instant clone, some jobs (41, 42 etc shown in
Figure 11b) take a longer time to complete than the average.
This is because, the 2x CPU over-commitment causes a CPU

0

200

400

600

800

1 5 9 13 17 21 25 29 33 37 41 45 49

Ti
m

e(
s)

Job Number

clone time other_overhead running time
1000

(a) Full clone.

0

100

200

300

1 5 9 13 17 21 25 29 33 37 41 45 49

Ti
m

e(
s)

Job Number

clone time other_overhead running time
350

(b) Instant clone.

Figure 6: Workload-1: Breakdown of Job Completion time in terms of cloning time, other overheads and job running time.

0

20

40

60

80

100

1 5 9 13 17 21 25 29 33 37 41 45 49

Ti
m

e(
s)

Job Number

schedule_clone get_host network_configuration
slurmd_customization slurm_restart slurm_schedule

(a) Full clone.

0

20

40

60

80

100

1 5 9 13 17 21 25 29 33 37 41 45 49

Ti
m

e(
s)

Job Number

schedule_clone get_host network_configuration
slurmd_customization slurm_restart_overhead slurm_schedule_overhead

(b) Instant clone.

Figure 7: Workload-1: Breakdown of other overheads for 50 jobs.

0
50

100
150
200
250
300
350

1 5 9 13 17 21 25 29 33 37 41 45 49

Ti
m

e(
s)

Job Number

clone time other_overhead running time

(a) Breakdown of Job Completion time in terms of cloning time,
other overheads and job running time.

0

10

20

30
40

50

60

70

1 5 9 13 17 21 25 29 33 37 41 45 49

Ti
m

e(
s)

Job Number

schedule_clone get_host network_configuration
slurmd_customization slurm_restart slurm_schedule

(b) Breakdown of other overheads.

Figure 8: Constant job arrival for 50 jobs using full clone.

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41 46

Ti
m

e
(s

)

Job Number

instant_clone full_clone

Figure 9: Workload-1: Comparison of Job running time for
full and instant clone for 50 jobs.

pressure on the physical hosts as we have more allocated
virtual CPUs than available CPUs. We repeat the experiment
for same job configuration but using a constant inter-arrival
time of jobs for full clone. As seen in Figure 12a, the

cloning time is much faster compared to workload-2 and
the overall job completion is very similar to instant clone.
As stated earlier, this is because increasing the inter-arrival
time between jobs leads to fewer concurrent clones executing
in the cluster. Also there are no straggler jobs towards the
end as in instant clone because, all the 100 jobs are equally
spaced out in the cluster and do not run concurrently. We
can conclude that, instant clone is best suited in case of
bursty job arrivals as opposed to full clone, which would be
suitable for a constant job arrival rate. Furthermore, we can
build an mixed system that can use a combination of instant
and full clones, depending on the difference in job arrival
rate over time.

2) Cluster Utilization and Throughput: Figure 13
plots the CPU utilization for workload-2 using both
full and instant clones. The utilization numbers are

0

200

400

600

800

1000

1 10 19 28 37 46 55 64 73 82 91 100

Ti
m

e(
s)

Job Number

clone time other_overhead running time

(a) Full clone.

0

200

400

600

800

1000

1 10 19 28 37 46 55 64 73 82 91

Ti
m

e(
s)

Job Number

clone time other_overhead running time

100

(b) Instant clone.

Figure 10: Workload-2: Breakdown of Job Completion time in terms of cloning time, other overheads and job running time with
2x CPU over-commitment enabled in the cluster.

0

100

200

300

400

1 10 19 28 37 46 55 64 73 82 91 100

Ti
m

e(
s)

Job Number

schedule_clone get_host
network_configuration slurmd_customization
slurm_restart slurm_schedule

(a) Full clone.

0

100

200

300

400

1 10 19 28 37 46 55 64 73 82 91
Ti

m
e(

s)
Job Number

schedule_clone get_host network_configuration
slurmd_customization slurm_restart slurm_schedule

100

(b) Instant clone.

Figure 11: Workload-2: Breakdown of other overheads with 2x CPU over-commitment enabled in the cluster for both clone types.

0

100

200

300

400

1 10 19 28 37 46 55 64 73 82 91

Ti
m

e(
s)

Job Number

clone time other_overhead running time

100

(a) Breakdown of Job Completion time in terms of cloning time,
other overheads and job running time.

0

20

40

60

80

100

1 10 19 28 37 46 55 64 73 82 91

Ti
m

e(
s)

Job Number

schedule_clone get_host network_configuration
slurmd_customization slurm_restart slurm_schedule

100

(b) Breakdown of other overheads.

Figure 12: Constant job arrival with 100 jobs using full clone.

collected periodically every 10s for the entire work-
load execution time. It can be seen that the av-
erage CPU utilization for instant clone, initially is

0

20

40

60

80

100

1 41 81 121 161 201 241

C
PU

 P
er

ce
nt

ag
e

Time (interval of 5s)

cpu_instant_clone
cpu_full_clone

Figure 13: Average CPU utiliza-
tion.

60%; but, starting from
time-step 21, it is very
high ranging from 80-
100%. This clearly in-
dicates that all the 100
jobs are scheduled as
soon as they arrive and
are executing concur-
rently in the cluster.
On the other hand for
full clone, the maximum
cluster CPU utilization
never goes beyond 50%.

This is because most of
the jobs spend a lot of time to get a cloned VM before they
can start executing. This reduces the number of concurrent
jobs in the system. Further, the system throughput using
instant clone is 1.5× better than using full clone. This is
because, the total time taken for job completion is 581s (end
of dotted-red line) for instant clone, when compared to 868s
(end of dashed-green line) for full clone.

3) Comparison with bare-metal deployments: To ensure
that, the job performance is not affected due to virtual-
ization overheads, we conduct another set of experiments
by executing the jobs in a bare-metal cluster managed by
Slurm. Figure 14 shows the comparison of job running
times for both bare-metal and virtualized deployments. The
running/execution times are fairly similar without significant
variations. Hence, we can conclude that virtualization can

deliver near-native bare-metal performance for jobs.

0

50

100

150

200

1 5 9 13 17 21 25 29 33 37 41 45 49

T
im

e(
s)

Job Number

virtualized bare_metal

Figure 14: Job running times of virtualized deployment com-
pared to bare-metal deployment.

C. Overheads of Multiverse

We explain in detail the overheads incurred with respect
to the different components of multiverse.

1) Clone Overheads: Despite instant clone being faster
than full clone, the network overhead incurred by instant
clone is significantly high. This is because, they replicate the
same network configuration as the parent VM. We need to
manually set the IP address (or use DHCP) and reconfigure
the network of the cloned VM. This incurs about 10-20s of
the total VM start-up time.

2) Controller Restart Overheads: As explained in Sec-
tion VI-B, restarting the slurm controller takes around 20s
on average. This overhead can be significantly minimized by
(i) increasing the size (CPU and memory allocations) for the
slurm controller VM, and (ii) multiple slurm controllers can
be used in parallel to share the load of managing the slave
VMs. We also mention in Section IV-E that restarting the
controller can be avoided if we use other HPC schedulers
like PBS or Torque.

3) Job Concurrency Overheads: Our Workload-1 does
not have any interference from jobs because, it consists of
stream of 50 jobs that can entirely fit in the physical capacity
(CPU and memory) of the 220-core cluster. However, in
Workload-2 the overall job requires 2x of available physical
capacity (2x over-commitment). Therefore there is certain
degree of performance degradation in terms of job running
times (Figure 10b vs Figure 6b). We can further characterize
the tolerance of over-commitment ratio with respect to job
performance, but that is beyond the scope of this paper.
For constant job-arrival, there is no impact of interference
because the jobs are equally spaced without any contention
for resources.

VII. RELATED WORK

Dynamic VM Provisioning for HPC: With the prevalence
of virtualization into the HPC community, some prior works
have attempted to integrate a dynamic VM provisioning
model using HPC scheduler like Slurm and Torque [20],
[25]. However, these frameworks are neither robust nor

eliminate manual user intervention. The most relevant work
to Multiverse is proposed by Zhange et al [21] called v-
slurm. However, they do not characterize the other overheads
apart from VM provisioning. We provide a detailed char-
acterization of all overheads associated with the Multiverse
framework. Moreover, Multiverse is the first work to employ
instant clone based rapid dynamic VM provisioning in a
HPC environment.
Agile VM Provisioning: There are several prior works
which have proposed quick and agile VM provisioning
mechanisms. Some of them require live VMs [22], while the
rest try to minimize the VM disk size [36]. However, none of
these have been adopted by a majority of mainstream HPC
private clusters. There has recently been an increased interest
in running containers such as Docker inside VMs [37]. One
of the major benefits of such an approach is fast environment
startup – in the order of seconds. Containers, however, have
dependency on their hosting OS, due to their process-based
nature. This makes container migration difficult. On the
other hand, instant clones used in Multiverse are very fast,
and comparable to container based provisioning times.
HPC in public cloud: There has been significant advance-
ments in HPC provisioning by the union of cloud system
stack along with HPC, enabling IaaS-based provisioning of
HPC infrastructures. In this context, many dynamic VM
provisioning schemes have been proposed using Microsoft
Azure, AWS EC2, etc, [38]. However, HPC clusters are
largely hosted in private datacenters for security, tractability,
and fault tolerance. Our work primarily focuses on mitigat-
ing the bottlenecks of virtualized HPC in a private setting.
Also, some of the ideas proposed in the context of public
cloud, [39]–[42] can also be leveraged by Multiverse, as
our framework is a generic implementation by setting up a
platform for further enhancements.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we identify several challenges in developing
a dynamic VM provisioning framework for virtualized HPC
clusters. We design and implement Multiverse, which inte-
grates an HPC scheduler with a VM orchestrator, to dynam-
ically spawn VMs for incoming jobs in a virtualized HPC
cluster. This enables more flexible and cluster utilization
aware VM provisioning. We further explore the potential of
using instant cloning compared to full cloning in terms of
VM provisioning overhead, resource utilization and cluster
throughput. Experimental results with HPC workloads indi-
cate that instant cloning on an average is 2.5× - 7.2× faster
than full cloning in terms of VM provisioning time. Further,
instant cloning improves cluster utilization by up to 40%
and cluster throughput by up to 1.5×, when compared to full
clones for bursty job arrivals. On the other hand, full cloning
is comparatively better for constant job arrivals with large
inter-arrival times. In our future work, we plan to compare
instant clone based VM provisioning against a container-

based provisioning. Towards this, we plan to integrate a
docker hypervisor with the Slurm scheduler and analyze the
job completion times with our Multiverse framework.

ACKNOWLEDGMENTS

We are indebted to Na Zhang, Anup Sarma and Cyan
Mishra for their insightful comments on several drafts
of this paper. This research was partially supported by
NSF grants #1931531, #1629129, #1763681, #1629915,
#1908793, #1526750 and we thank NSF Chameleon Cloud
project CH-819640 for their generous compute grant. We
also thank Mohan Potheri for providing us with a compute
cluster from VMware to conduct all the experiments.

REFERENCES

[1] Y.-T. Tsai, “An overview of machine learning and hpc in open
sources for bioinformatics,” in 2018 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM).

[2] P. Rad, A. Chronopoulos, P. Lama, P. Madduri, and C. Loader,
“Benchmarking bare metal cloud servers for hpc applications,” in
2015 CCEM.

[3] R. Arora, Conquering Big Data with High Performance Computing.
Springer, 2016.

[4] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an
open-source solution for cloud computing,” International Journal of
Computer Applications, 2012.

[5] I. Kureshi, C. Pulley, J. Brennan, V. Holmes, S. Bonner, and Y. James,
“Advancing research infrastructure using openstack,” International
Journal of Advanced Computer Science and Applications(IJACSA),
Special Issue on Extended Papers from Science and Information
Conference 2013.

[6] W. Huang, J. Liu, B. Abali, and D. K. Panda, “A case for high
performance computing with virtual machines,” in ICS, 2006.

[7] J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: High per-
formance and flexible networking using virtualization on commodity
platforms,” IEEE Transactions on Network and Service Management,
2015.

[8] M. Potheri, J. Ling, N. Zhang, shawn Kelly, and J. Simons, “Virtual-
izing High-Performance Computing (HPC) Environments,” VMware,
Tech. Rep., 2018.

[9] N. Zhang and J. Simons, “Running HPC and Machine Learning
Workloads on VMware vSphere,” VMware, Tech. Rep., 2018.

[10] Q. Ali, V. Kiriansky, J. Simons, and P. Zaroo, “Performance evalu-
ation of hpc benchmarks on vmwareâĂŹs esxi server,” in European
Conference on Parallel Processing. Springer, 2011.

[11] A. Gupta, O. Sarood, L. V. Kale, and D. Milojicic, “Improving hpc
application performance in cloud through dynamic load balancing,”
in CCGrid, May 2013.

[12] J. Simons, E. DeMattia, and C. Chaubal, “Virtualizing HPC and Tech-
nical Computing with VMware vSphere,” VMware, Johns Hopkins
University Applied Physics Laboratory, Tech. Rep., 2017.

[13] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Workshop on Job Scheduling Strategies
for Parallel Processing. Springer, 2003.

[14] D. Klusáček, V. Chlumskỳ, and H. Rudová, “Planning and optimiza-
tion in torque resource manager,” in HPDC, 2015.

[15] D. Beserra, F. Oliveira, J. Araujo, F. Fernandes, A. AraÃžjo, P. Endo,
P. Maciel, and E. D. Moreno, “Performance evaluation of hypervisors
for hpc applications,” in 2015 IEEE International Conference on
Systems, Man, and Cybernetics, Oct 2015.

[16] H. A. Hassan, S. A. Mohamed, and W. M. Sheta, “Scalability
and communication performance of hpc on azure cloud,” Egyptian
Informatics Journal, 2016.

[17] D. Milojičić, I. M. Llorente, and R. S. Montero, “Opennebula: A
cloud management tool,” IEEE Internet Computing, 2011.

[18] J. Li, Y. Zhang, J. Zheng, H. Liu, B. Li, and J. Huai, “Towards an ef-
ficient snapshot approach for virtual machines in clouds,” Information
Sciences, vol. 379, 2017.

[19] Y. Zaslavsky, O. Frenkel, and M. Kolesnik, “Creating a virtual
machine from a snapshot,” Jun. 2 2015, uS Patent 9,047,238.

[20] C.-H. Li, T.-M. Chen, Y.-C. Chen, and S.-T. Wang, “Formosa3:
A cloudenabled hpc cluster in nchc,” World Academy of Science,
Engineering, and Technology Journal, 2011.

[21] J. Zhang, X. Lu, S. Chakraborty, and D. K. D. Panda, “Slurm-v:
Extending slurm for building efficient hpc cloud with sr-iov and
ivshmem,” in European Conference on Parallel Processing. Springer,
2016.

[22] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin,
S. M. Rumble, E. De Lara, M. Brudno, and M. Satyanarayanan,
“Snowflock: rapid virtual machine cloning for cloud computing,” in
Eurosys. ACM, 2009.

[23] J. Bhimani, Z. Yang, M. Leeser, and N. Mi, “Accelerating big data
applications using lightweight virtualization framework on enterprise
cloud,” in 2017 IEEE High Performance Extreme Computing Confer-
ence (HPEC). IEEE, 2017.

[24] “Vm cloning,” "https://www.vmware.com/support/ws5/doc/ws_clone_
overview.html", 2019.

[25] K. Meier, G. Fleig, T. Hauth, M. Janczyk, G. Quast, D. Von Su-
chodoletz, and B. Wiebelt, “Dynamic provisioning of a hep computing
infrastructure on a shared hybrid hpc system,” in Journal of Physics:
Conference Series. IOP Publishing, 2016.

[26] N. Marshall, M. Brown, G. B. Fritz, and R. Johnson, Mastering
VMware VSphere 6.7. John Wiley & Sons, 2018.

[27] M. Owens, The definitive guide to SQLite. Apress, 2006.
[28] H. D. Chirammal, P. Mukhedkar, and A. Vettathu, Mastering KVM

virtualization. Packt Publishing Ltd, 2016.
[29] “Flock,” https://linux.die.net/man/1/flock.
[30] “Virtualized hpc configuration toolkit,”

"https://github.com/vmware/vhpc-toolkit", 2019.
[31] F. Liu and Z. Yang, “Design of vmware vsphere automatic operation

and maintenance system based on python,” in ICAMechS. IEEE,
2018.

[32] H. Feng, V. Misra, and D. Rubenstein, “Pbs: a unified priority-based
scheduler,” in SIGMETRICS, 2007.

[33] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems,” The International Journal of High
Performance Computing Applications, 2016.

[34] J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack benchmark:
past, present and future,” Concurrency and Computation: practice and
experience, vol. 15, no. 9, pp. 803–820, 2003.

[35] S. Saini, R. Ciotti, B. T. Gunney, T. E. Spelce, A. Koniges, D. Dossa,
P. Adamidis, R. Rabenseifner, S. R. Tiyyagura, and M. Mueller,
“Performance evaluation of supercomputers using hpcc and imb
benchmarks,” Journal of Computer and System Sciences, 2008, per-
formance Analysis and Evaluation of Parallel, Cluster, and Grid
Computing Systems.

[36] K. Razavi, G. Van Der Kolk, and T. Kielmann, “Prebaked µvms:
Scalable, instant vm startup for iaas clouds,” in 2015 IEEE 35th
International Conference on Distributed Computing Systems, 2015.

[37] J. Zhang, X. Lu, and D. K. Panda, “Performance characterization
of hypervisor-and container-based virtualization for HPC on SR-IOV
enabled infiniband clusters,” in IPDPS Workshops 2016.

[38] S. K. Garg, A. N. Toosi, S. K. Gopalaiyengar, and R. Buyya, “Sla-
based virtual machine management for heterogeneous workloads in
a cloud datacenter,” Journal of Network and Computer Applications,
2014.

[39] C. Kotas, T. Naughton, and N. Imam, “A comparison of amazon web
services and microsoft azure cloud platforms for high performance
computing,” in ICCE, 2018.

[40] J. R. Gunasekaran, P. Thinakaran, M. T. Kandemir, B. Urgaonkar,
G. Kesidis, and C. Das, “Spock: Exploiting serverless functions for
slo and cost aware resource procurement in public cloud,” in IEEE
CLOUD, 2019.

"https://www.vmware.com/support/ws5/doc/ws_clone_overview.html"
"https://www.vmware.com/support/ws5/doc/ws_clone_overview.html"
https://linux.die.net/man/1/flock

[41] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir,
and C. R. Das, “Kube-knots: Resource harvesting through dynamic
container orchestration in gpu-based datacenters,” in IEEE CLUSTER,
2019.

[42] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and
C. R. Das, “Phoenix: A constraint-aware scheduler for heterogeneous
datacenters,” in ICDCS. IEEE, 2017.

