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ABSTRACT: Transition metal dichalcogenides (TMDCs) have garnered much attention recently due to their remarkable
performance for different electrochemical systems. In this study, we report on the synthesis and catalysis of less studied TMDC
nanoflakes (NFs) with a design space comprised of three transition metals (rhenium, ruthenium, and iridium) and three chalcogens
(sulfur, selenium, and tellurium) for the oxygen reduction and evolution reactions (ORR and OER) in an aprotic hybrid electrolyte
containing 0.1 M lithium bis(trifluoromethanesulfonyl)imide salt in 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid and
dimethyl sulfoxide. Our results indicate that among the tested catalysts, ReS2 exhibits the highest current density for both ORR and
OER, beyond those of the state-of-the-art catalysts used in aprotic media with Li salts. We performed density functional calculations
to provide a mechanistic understanding of the reactions in the ReS2 NFs/ionic liquid system. These novel bifunctional catalyst
results could open a way for exploiting the unique properties of these materials in Li−O2 batteries as well as other important
electrochemical systems.

■ INTRODUCTION

Transition metal dichalcogenides (TMDCs) have attracted
worldwide research interest owing to their remarkable
chemical, thermal, and electronic properties.1,2 TMDCs have
also shown interesting electrochemical properties, which make
them promising candidates for energy conversion and storage
applications. For instance, some TMDCs such as MoS2 and
WS2 have been used as catalysts for CO2 reduction,3−6

hydrogen evolution reaction (HER),7,8 oxygen reduction
reaction (ORR), and oxygen evolution reaction (OER).9,10

In particular, ORR and OER in electrolytes containing alkali
salts are of great importance for energy storage as the specific
energy and rechargeability of metal−O2 batteries are governed
by the rates of these reactions at the cathode and their
corresponding overpotentials.11 Of the metal−O2 battery
chemistries, the Li−O2 system is the most well studied and
has the highest theoretical energy density.

Despite the high theoretical energy density of Li−O2

batteries, their low rate capability, poor cyclability, and low
round-trip efficiency have impeded their development. These
drawbacks originate from the sluggish kinetics of ORR and
OER.12 Hence, finding highly active bifunctional materials that
can increase ORR and OER rates is crucial. To date, various
catalytic materials such as carbon allotropes13,14 and their
composites,15 noble metals,16 and metal oxides17,18 have been
investigated for Li−O2 systems. However, all of these materials
are inefficient in practice; either they show low activity for
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ORR and/or OER or they exhibit poor stability upon the long-
term cycling. Our recent work showed that TMDCs including
sulfides, selenides, and tellurides of group V and VI transition
metals exhibit outstanding catalytic performance for both ORR
and OER in an aprotic medium with Li salts.9,10,19 Motivated
by this finding and to broaden the collection of highly efficient
electrocatalysts for ORR/OER, we explore the synthesis,
characterization, and catalytic performance of less studied
TMDCs based on three transition metals, rhenium, ruthenium,
and iridium, and three chalcogens, sulfur, selenium, and
tellurium. Previously, rhenium-based TMDCs such as rhenium
disulfide (ReS2) and rhenium diselenide (ReSe2) have shown
promising behavior in lithium-ion20 batteries and interesting
catalytic characteristics for hydrogen evolution reaction
(HER)21−27 and lithium sulfur25 batteries. Moreover,
ruthenium and iridium in the form of metals and oxides
have shown significant catalytic activity toward OER28−30 and
ORR.31 However, only a few studies have focused on the role
of ruthenium and iridium accompanied by the heavier
chalcogens in electrochemical systems.32−35

■ RESULTS AND DISCUSSION
The studied TMDCs were synthesized by the chemical vapor
transport (CVT) method3 in which the transition metals and
chalcogen powders were mixed in their stoichiometric ratios
and placed in sealed quartz ampules. The ampules were then
loaded in a two-zone furnace for the crystal growth process
(Figure 1a). Section S1 of the Supporting Information
describes further the details of the material synthesis process.
To prepare the nanoflakes (NFs) of TMDCs, the as-prepared

powders were exfoliated in isopropyl alcohol (IPA) with high-
energy probe sonication followed by a centrifugation process
(Figure 1b). A typical scanning electron microscopy (SEM)
image of the synthesized materials coated on a gas diffusions
layer (GDL) is presented in Figure 1c, and a higher
magnification image is shown in the inset of Figure 1c. The
images show that the flakes are packed together and positioned
randomly. Atomic force microscopy (AFM) was employed to
determine the thickness distributions of the exfoliated
materials. Figure 1d represents the histogram of the flake
thickness distributions of IrS2, IrSe2, IrTe2, and RuS2 in IPA
obtained from the height profiles of 30−40 random individual
flakes for each material. The thickness of the flakes ranged
from 2 to 40 nm. Moreover, the lateral size of the synthesized
materials was measured by dynamic light scattering (DLS)
experiments. The average of the lateral size of these particles
varies in the range from 116 to 230 nm as shown in Figure 1e.
The AFM images obtained for a selected number of
synthesized TMDCs are shown in the Supporting Information
section S2.
Raman spectroscopy was performed to confirm the

successful synthesis of all CVT-grown TMDC powders. A
laser excitation wavelength of 785 nm was used for all Raman
measurements. The Raman spectra of the ruthenium-
containing TMDCs are shown in Figure 1f. RuTe2 Raman
peaks are located at 156.3, 161.1, and 176.9 cm−1 where the
first and last peaks are attributed to Eg and Ag modes.36 The
Raman spectrum of RuSe2 indicates three distinct peaks at
221.3, 232.01, and 263.2 cm−1. The first and second peaks are
attributed to Eg and Ag vibrational modes.37,38 RuS2 main

Figure 1. TMDC synthesis and characterization. (a) Schematic of the two-zone furnace for the chemical vapor transport method. (b)
Representative photograph of (left) a bulk and (right) an exfoliated TMDC. Scale bar is 0.5 cm. (c) SEM images of deposited TMDC NFs on
GDL. Scale bar is 100 nm. (d) Thickness distributions of TMDC NFs obtained with atomic force microscopy measurements. (e) Dynamic light
scattering results for TMDC NFs lateral size distributions. (f−h) Raman scattering spectra obtained for as-synthesized materials.
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peaks were located at 378.9, 391.8, and 410.1 cm−1. The first
two peaks of RuS2 belong to the Eg or Tg mode, and the 410.1
cm−1 peak corresponds to the Ag mode.39 In Figure 1g, the
Raman spectra of iridium-based TMDCs are shown. IrS2 and
IrSe2 show numerous Raman peaks in the selected range. IrS2
distinct Raman peaks were observed at 100.7, 127.5, 139.9,
153.09, 171.7, 180.44, 269.8, 283.9, 309, 237.2, 339.08, 349.1,
369.2, 379.26, 402.9, 410.2, and 425.29 cm−1. The main
Raman peaks for IrSe2 appeared at 106.1, 118.04, 137.2,
153.09, 165.44, 186.4, 190, 207.3, 220.14, 236.5, 247.4, 264.8,
274.8, 288.5, and 298.5 cm−1. The positions of the peaks are in
good agreement with previously reported Raman spectra of
IrS2 and IrSe2.

40 The main iridium telluride (IrTe2) Raman
peaks were observed at 126.4 and 164.9 cm−1, which
correspond to E2g and A1g vibrational modes.41 Figure 1h
shows the Raman spectra of ReS2, ReSe2, and ReTe2. The
distinctive Raman peaks of ReS2 appeared at 151.5, 160.5,
211.2, 234.2, and 307.04 cm−1, where the peaks at 160.5 and
211.2 cm−1 correspond to in-plane Eg and out-of-plane Ag
vibrational modes, respectively.42,43 ReSe2 has two character-
istic vibrational modes observed at 123.48 and 157.96 cm−1,
where the first one is an Eg-like mode and the latter is an Ag-
like mode.43,44 Distinct Raman peaks of ReTe2 were located at
122.8, 154.5, 236.91, and 311.2 cm−1.
The X-ray diffraction (XRD) experiment was performed on

the synthesized TMDCs (Figure 2). The TMDC NFs were
drop cast on a silicon wafer for this purpose. The strong peaks
recorded for all patterns suggest that the materials are highly
crystalline. The recorded XRD data were matched and indexed
with patterns for the pure compounds extracted from the
powder diffraction database by the International Centre for

Diffraction Data (ICDD). The patterns generally showed a
good match to the theoretical reflections as well as data in the
literature and no evidence of impurity phases, with the
exception of an unidentified peak at 24°, 2θ, for ReSe2.

45−52

The pattern of ReTe2 deviated from the crystallographic data
for the polymorphs reported in the literature,53−55 but no
obvious signs of impurities, such as the initial elemental
reagents and their respective oxides, were found.56−59 It is
possible that a new polymorph of ReTe2 was made in these
conditions.53 This possibility will be further explored in follow-
up reports. The diffraction pattern of ReS2 only showed (00l)
reflections, implying the exfoliated particles were preferentially
oriented along the c axis. The XRD results of ReS2 NFs coated
on GDL are also presented in section S4 of the Supporting
Information as representative of the actual cathode used in the
electrochemical experiments.
Furthermore, the chemical states and composition of

synthesized TMDCs were verified using X-ray photoelectron
spectroscopy (XPS) experiments. Section S5 of the Supporting
Information shows the XPS results of synthesized MX2 NFs
(M = Re, Ru, and Ir and X = S, Se, and Te).
To investigate the electrochemical performance of the

synthesized catalysts for ORR and OER, a standard three-
electrode electrochemical cell was used (see section S6 of the
Supporting Information). Cyclic voltammetry (CV) experi-
ments were carried out in an O2-saturated electrolyte including
0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)
dissolved in 1-ethyl-3-methylimidazolium tetrafluoroborate
(EMIM−BF4) ionic liquid and dimethyl sulfoxide (DMSO)
with an optimized 1:3 volumetric ratio.10 The current density
results were recorded by a sweeping potential with a scan rate

Figure 2. X-ray diffraction spectroscopy. (a) Rhenium-, (b) ruthenium-, and (c) iridium-based TMDCs. XRD patterns were matched with ReS2
(ICDD card 00-052-0818), ReSe2 (PDF card 00-052-0828), RuS2 (ICDD card 01-080-0669), RuSe2 (ICDD card 03-065-3328), RuTe2 (ICDD
card 00-019-1108), IrS2 (ICDD card -00-046-1207 IrS2), IrSe2 (ICDD card 01-085-0486), and IrTe2 (ICDD card 01-076-0411). Diffraction
pattern is truncated at the (001) reflection for ReS2, ReSe2, and IrTe2 to show all of the peaks. ICDD and PDF stand for International Centre for
Diffraction Data and Powder Diffraction File, respectively.
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of 20 mV/s in the potential window from 2.0 to 4.2 V vs Li/
Li+. For cathode preparation, the GDL substrates were coated
with each of the synthesized TMDC NFs. We used GDLs in
three-electrode cell experiments to mimic the real conditions
occurring in the Li−O2 battery assemblies.9,10,19 The CV
profiles of the synthesized TMDC NFs are presented in the
Supporting Information section S6. The obtained current
densities at the ORR and OER cutoff potentials are presented
in Figure 3a and 3b for each family of synthesized TMDCs.
The reported current densities are normalized based on the
geometric surface area of the electrode. Among the nine
different TMDCs and at a potential of 2.0 V, ReS2
demonstrates the highest current density of 44.37 mA/cm2

for ORR (Figure 3a). ReSe2 shows the second highest ORR
current density of 42.61 mA/cm2. At a potential of 4.20 V and
at the end of OER, the ReS2 catalyst also exhibits the highest
current density of 6.89 mA/cm2 (Figure 3b). The IrS2 has an
OER activity similar to ReS2 (current density of 6.85 mA/
cm2). According to the results of the CV experiments, ReS2
was found to be the best catalyst among the nine TMDCs,
showing a significantly higher catalytic activity for both ORR
and OER.
Figure 3c and 3d shows the CV results for the ReS2 catalyst

during ORR and OER in comparison with our previously
obtained results for MoS2

19 and the reported state-of-the-art
catalysts in aprotic media with Li salts, including noble metals
(e.g., Au, Pt),16,60,61 metal oxides (e.g., Mn3O4),

62,63 perovskite

(e.g., La0.5Sr0.5CoO2.91),
64 and doped carbon nanomaterials

(e.g., N-doped graphene).65 This comparison shows that
during ORR, at a potential of 2.00 V vs Li/Li+, the current
density of ReS2 catalyst reaches 44.37 mA/cm2, which is more
than 14 times higher than current densities achieved by noble
metals or oxide catalysts.62 Moreover, the obtained ORR
current density at 2.00 V vs Li/Li+ is considerably higher than
that of MoS2 NFs (35.4 mA/cm2), which has been reported as
a highly active TDMC catalyst for ORR.19

As shown in Figure 3d, the OER current density of ReS2
reaches 6.89 mA/cm2 at a potential of 4.20 V. This exceeds the
current density of mesoporous ZnCo2O2 NFs,66

La0.5Sr0.5CoO2.91 nanoparticles (NPs),64 and mesoporous
La0.5Sr0.5CoO2.91 at the same potential.64 We note that the
OER onset potential of ReS2 (approximately 3.40 V) is much
lower than that of La0.5Sr0.5CoO2.91 (approximately 4.0 V), as
shown in Figure 3d. Compared to MoS2, which has a current
density of 8.26 mA/cm2 at 4.2 V vs Li/Li+,19 the ReS2 catalyst
shows slightly less OER activity.
To examine the chemical stability of the ReS2 catalyst, we

performed XPS after 10 h of chronoamperometry experiment
at 2.7 V vs Li/Li+. The XPS spectra are shown in section S7 of
the Supporting Information. Our results indicate that the ReS2
characteristic peak intensities and positions do not change after
the long-term experiment. A new peak with a very low intensity
was also observed in the sulfur region at a binding energy of

Figure 3. Comparison of ORR−OER activity of synthesized TMDCs. Current density results of CV experiments in O2-saturated IL, DMSO, and
lithium bis(trifluoromethanesulfonyl)imide salt with a scan rate of 20 mV/s for (a) ORR, (b) OER, and (c and d) ORR and OER current densities
of ReS2, MoS2, and reported catalysts in aprotic media with Li salts.16,50−56
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168.9 eV, which matches with the binding energy of sulfur in a
sulfate group.67

In this study, the ReS2 NFs were further characterized using
high-resolution scanning transmission electron microscopy
(STEM) to identify the structure of ReS2 NFs, which is then
used to create realistic atomic configurations for our density
functional theory (DFT) calculations. Low-magnification TEM
images obtained for a selected number of TMDCs are also
presented in section S2 of the Supporting Information. Figure
4a shows the atomic resolution high-angle annular dark-field
(HAADF) image from the edge of the ReS2 nanosheet in the
[001] zone axis, where Re atomic columns are clearly resolved.
Figure 4b shows a magnified image from the selected area as
well as a Fourier transformation (FFT) of the image shown as
an inset. The spots in the FFT image showing hexagonal

symmetry are indexed according to the distorted T phase (T′)
of ReS2 in the [001] zone axis orientation (see Figure S4(d)).
The patterns match the XRD pattern shown in Figure 4c as
well as the calculated structural model of ReS2 in the [001]
zone direction (see Figure 5). X-ray energy-dispersive
spectroscopy (XEDS) and mapping data acquired from the
selected area in Figure 4a further confirm the atomic ratio for
Re and S elements in the ReS2 sample (see section S3 of the
Supporting Information).
To further understand the enhanced ORR rates for ReS2 in

comparison to MoS2, we performed DFT calculations (see
Supporting Information section S8). Previously, we used
constrained DFT (CDFT) to shed light on the role of electron
transfer in the ORR and OER on MoS2 cathodes in ionic liquid
and its relationship to catalytic activity.19 We found that the

Figure 4. Crystal structure of synthesized ReS2 NFs. (a) Atomic resolution TEM images of a ReS2 NF. Scale bar is 2 nm. (b) Magnified TEM
image of the selected area (scale bar is 0.5 nm). FFT pattern is also indicated in the inset. (c) XRD results of ReS2 NFs deposited on silicon
substrate. XRD pattern was matched with ReS2 (ICDD card 00-052-0818).45

Figure 5. Calculated bulk structures and ionic liquid adsorption on MoS2 and ReS2 edges. Bulk structures from DFT calculations on (a) MoS2 and
(b) ReS2. Black boxes indicate the primitive bulk unit cell viewed in the [001] direction, where the ReS2 primitive cell is defined by more atoms due
to symmetry lowering caused by formation of Re dimer-like configurations in the lattice. (c) Adsorption of (EMIM+ + e−) pairs on metal-
terminated MoS2 and ReS2 catalyst edges, where 2/3 of the metal sites are covered by the EMIM+ cations, exposing isolated metal sites. (d)
Adsorption of (EMIM+ + e−) pairs on MoS2 and ReS2 where all metal sites are covered by EMIM+ cations, likely to be more relevant at low
voltages (or high ORR overpotentials).
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OER proceeds via diabatic charge transfer from the Li2O2
charge product, whereas ORR proceeds via adiabatic charge
transfer, which helped to explain why OER rates are
considerably lower than ORR rates for MoS2 and the other
TMDC materials studied in ref 19. These calculations could
help to explain OER and ORR activities for ReS2 by comparing
the results with MoS2. Since the OER rate for the ReS2 catalyst
is similar to that of MoS2,

19 it presumably has a similar diabatic
electron transfer mechanism and helps to explain its lower
activity than ORR. It also suggests that ORR will have
adiabatic charge transfer similar to MoS2, which can account
for the high ORR activity of ReS2. We also note that the
catalytically active sites required to reduce O2 are on edge sites
as described in work from our groups3,9,10 as well as others in
studies of electrocatalytic CO2 reduction68 and hydrogen
evolution reactions.69,70 Following charge transfer from the
TMDC catalyst to reduce O2, O2

− anions react with Li+ ions in
solution to form LiO2 monomers that gradually undergo a
disproportionation-based nucleation and growth mechanism to
form the Li2O2 discharge product as described in our previous
work.9

Figure 5a and 5b shows the theoretical models for a single
layer of two-dimensional MoS2 and ReS2 for DFT calculations.
While each material adopts a similar bulk structure, our high-
resolution STEM results (Figure 4b) show that there is a
Peierls distortion for the ReS2 lattice that reduces the bulk
symmetry which was also shown in a recent computational
study.71 This effect leads to Re-ion dimerization in comparison
to the presence of six equivalent Mo−Mo nearest neighbor
distances in 2H MoS2. As shown in previous work, cationic
EMIM+ ionic liquid components tend to migrate to cathode
surfaces.19,72,73 On MoS2, (EMIM++ e−) pairs bind strongly as
suggested by the low energy of EMIM+ states interacting with
the MoS2 edge in the electronic density of states.9 On MoS2,
O2 is reduced upon binding to edge Mo ions, while the edge is
protected from oxidation by O2 dissociation due to the
presence of strongly bound EMIM+ ions. Given the cocatalytic
nature of the MoS2/EMIM+ that leads to high ORR rates on
MoS2, we also consider (EMIM+ + e−) pair binding to the edge
of ReS2. Figure 5c shows the structures of (EMIM+ + e−) pairs
bound to the edges of MoS2 and ReS2 where two-thirds of
metal ions on the edge are covered by the cationic ionic liquid
fragments, exposing isolated metal sites that are catalytically
active for O2 reduction.

9 Not only do the (EMIM+ + e−) pairs
bind to the ReS2 edge despite the aforementioned bulk
distortions of Re ions but also the results further suggest that
the binding is significantly more exothermic (by 0.71 eV per
EMIM+) in comparison to MoS2.
We note that since the reaction of an (EMIM+ + e−) pair

with the catalyst edge involves a charged species and electron
transfer, the absolute binding energy is always dependent on
the electrochemical potential.57 More specifically, cation
binding energies become more favorable for lower potentials
(or higher ORR overpotentials) as the electrode prefers to
adopt a more negative charge due to shifting of the Fermi level
to higher energies. To further probe these differences between
ReS2 and MoS2, we performed DFT calculations considering a
higher coverage of the ionic liquid. Figure 5d shows (EMIM+ +
e−) pairs binding at full coverage, where all metal ions are
covered by the EMIM+ cations. The results show that at higher
coverage (EMIM+ + e−) pairs still bind more strongly to ReS2
in comparison to MoS2 (by 0.61 eV per EMIM+). This
suggests that there is an enhanced driving force for full

coverage of EMIM+ ions on the edge of ReS2 at low potentials
under ORR conditions.
The full coverage of edge Re ions by EMIM+ ions at low

voltage has implications for ORR catalysis, since the availability
of metal ions at the TMDC edge are necessary for oxygen
reduction to occur. Despite the stronger binding and thus
higher coverage of EMIM+ ions to the ReS2 edge, it maintains
a higher activity than MoS2

19 at higher potentials (see Figure
3c). In order to explain the reactivity of ReS2 catalysts, we
assess whether O2 reduction may still be feasible in the limit of
full EMIM+ coverage on both the MoS2 and the ReS2 catalysts.
Figure 6 shows the adsorption of O2 of MoS2 and ReS2 edges

with full coverage of EMIM+ cations, where O2 binding is
exothermic in each case (by 1.65 and 1.25 eV for MoS2 and
ReS2, respectively). This suggests that O2 reduction could
occur despite full coverage of metal-ion edge sites by ionic
liquid. Moreover, while O2 binding is exothermic in the limit of
high EMIM+ coverage for both catalysts, the stronger binding
to MoS2 may suggest slower desorption following O2
reduction, as suggested by higher ORR activities for ReS2 in
comparison to MoS2. Given that O2 may adsorb on metal top
sites or bridge sites for coverages of Θ = 2/3 or 1 ML,
respectively, this corresponds to one active site per adsorbed
EMIM+ ion. Considering this within the context of the
stronger relative binding energies of EMIM+ ions on ReS2, we
speculate that more metal ions may be active for ORR per edge
length on ReS2 in comparison to MoS2 as the ORR
overpotential is increased.

■ CONCLUSIONS
In summary, a new family of TMDCs was successfully
synthesized based on rhenium, ruthenium, and iridium through
the CVT method. Various characterization methods such as
DLS, Raman spectroscopy, XPS, STEM, and XRD were
performed for the bulk and exfoliated NFs of these materials.
The catalytic activity of these catalysts was examined for ORR
and OER reactions in the aprotic electrolyte (DMSO/IL) with
lithium LiTFSI salt. Although excellent performance was
observed in both ORR and OER for all of the prepared
catalysts, ReS2 showed the highest current densities of 44.37
mA/cm2 during ORR and 6.89 mA/cm2 during OER. DFT
calculations show that in the presence of EMIM+ cations,
binding of O2 to the catalytic TMDC edges is still highly

Figure 6. Oxygen adsorption and reduction on TDMC edges in the
high EMIM+ coverage limit. DFT-calculated structures and
adsorption energies for O2 adsorption on (a) MoS2 and (b) ReS2
with EMIM+ coverage of Θ = 1 ML in an upright configuration with
one oxygen atom forming bonds between two metal ions.
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favorable for both ReS2 and MoS2, which explains their high
ORR activities. DFT calculations suggest that, in comparison
to MoS2, stronger binding of EMIM+ cations to ReS2 may
increase the density of active metal ions on the catalyst edge
that participate in ORR under the reaction conditions. The
dynamic nature of the voltage-dependent coverage of ionic
liquid cationic fragments highlights the cocatalytic effects
between the TMDCs and the electrolyte. The bifunctional
ORR and OER rate capabilities exhibited by TMDCs in ionic
liquid present opportunities for implementing 2D electro-
catalytic materials for various energy conversion and storage
applications, such as metal−O2 batteries.

■ EXPERIMENTAL PROCEDURES
Materials Synthesis. One gram of transition metal and chalcogen

powders with a 1:2 stoichiometric ratio was mixed and loaded in an
evacuated and sealed quartz ampule. The ampule was then placed in a
two-zone furnace. During 24 h, the temperature of both zones was
raised to 1080 °C. The temperature of the cold zone gradually
decreased to 950 °C in 4 days, while the temperature of the hot zone
was maintained at 1080 °C. The furnace was cooled down to room
temperature in 24 h. The NFs of TMDCs were obtained using a
liquid exfoliation method via a 30 h ultrasonication process (Vibra
Cell Sonics 130 W) on the synthesized TMDC powders disrpersed in
IPA followed by centrifugation.
Raman Specroscopy. The Raman spectroscopy was performed

using a Horiba LabRAM HR Evolution confocal Raman microscope
with a 785 nm laser wavelength and 50x objective using a Horiba
Andor detector.
X-ray Diffraction (XRD). The samples were prepared through

drop casting of TMDC NFs on silicon substrates. Powder XRD was
performed for all of the nine TMDC NFs on a Bruker D8 Advance
(40 kV, 40 mA) using a Cu Kα (λavg = 1.5418 Å). The diffraction
pattern was recorded from 10° to 70° (2θ).
X-ray Photoelectron Spectroscopy (XPS). A Thermo Scientific

ESCALAB 250Xi instrument was utilized to carry out XPS
experiments. A calibration was performed in all of the obtained
spectra based on the peak position of the C−C bond located at 284.8
eV. Thermo Avantage software was used to anaylze and process the
data.
Atomic Forced Microscopy (AFM). A Bruker ICON Dimension

was used to obtain the topography maps of drop-cast flakes and the
statistical flake thickness distributions. Exfoliated TMDC dispersions
in IPA were drop cast on silicon substrates. The substrates were
carefully washed by acetone, IPA, and deionazied water. They were
evantually annealed under a temperature of 120 °C for 1 h.
Dynamic Light-Scattering Measurement (DLS). Measure-

ments of the lateral size of the flakes were performed using the
Malvern Zetasizer Nano ZSP system at 25 °C. A 10 mW
semiconductor laser with 633 nm emission is used in this instrument.
Transmission Electron Microscopy (TEM). The TEM experi-

ments were performed using the aberration-corrected JEOL JEM-
ARM200CF STEM operating at an acceleration voltage of 200 kV.
The high-angle annular dark-field (HAADF) images were acquired
using a convergence semiangle of 23 mrad and a collection angle from
90 to 175 mrad. The atomic resolution images were recorded using
pixel dwell time of 31 μs. The chemical composition of the ReS2
sample is obtained via XEDS using a windowless silicon drift detector
X-MaxN 100TLE.
Electrochemical Experiments. A standard three-electrode cell

was used to evaluate the catalytic activity of the synthesized TMDCs
(Supporting Information S6). To prepare the working electrodes,
TMDC NFs were coated on GDL with a loading of 0.1 mg/cm2

(Sigracet 25 BC, purchased from FuelCellsEtc).
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