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Abstract—Millimeter wave technology is an essential compo-
nent of most solutions that address the coverage and throughput
demands of next-generation cellular networks. To overcome the
high propagation losses however, it is necessary to deploy large
antenna arrays for spatial localization of energy by beamforming.
This imposes a significant communication overhead, especially
when channel reciprocity does not hold. In this work, we study the
problem of successive one-bit feedback-assisted beam alignment.
We exploit the sparse nature of the millimeter wave channel
to pose the beamforming problem as a questioning strategy.
We consider both adaptive (closed-loop) and non-adaptive (open-
loop) channel sounding techniques which are robust to erroneous
feedback signals caused by noisy quantization. In the adaptive
case, we formulate new sounding signals by drawing a parallel
with the well known Ulam’s problem. In the non-adaptive case,
the beams are designed in accordance to an open-loop code. We
demonstrate that multiple paths can also be resolved by using
ideas from group testing. Finally, we show the efficacy of our
proposed techniques via simulations.

Index Terms—Millimeter wave, beamforming, Ulam’s problem,
Channel estimation, Antenna Arrays, Closed-Loop

I. INTRODUCTION

It is estimated that by 2021, there will be up to 1.5 billion
wireless devices with cellular connections [2]. The current
efforts for 5G standardization have thus proposed for use of
frequencies in the 20 to 100 GHz range commonly referred to
as millimeter wave (mmWave) frequencies [3]. The millimeter
wave spectrum affords extremely wide channel bandwidths
(up to 1 GHz) which would provide the necessary capacity
increase and enable high data rates as envisioned in 5G.

Communication at mmWave frequencies suffers from higher
isotropic path loss, attenuation due to rain, reduced diffraction
around obstacles, sparse scattering, and sensitivity to block-
ages [4]–[6]. It is thus necessary to use a large number of
antennas to synthesize highly directional beams with high
beamforming gain. Spatial localization of energy will require
selection of a high-dimensional beamformer at the transmitter.

Transparent beam sounding is an important feature in LTE,
specifically enabling advanced beamforming and coordinated
multipoint [7]. One way this is accomplished is by precoding
the pilot or the reference signal the same way as the accom-
panying data. The beamforming operation at the transmitter is
then open to implementation and remains oblivious to the UE.
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This work deals with the problem of feedback-assisted
selection of beams for communication between two nodes
operating in the mmWave band. The goal is to pick a good
beam to maximize the desired performance metric while min-
imizing the time and resources to do so. It is well known from
MIMO theory that the optimal beam achieving maximum data
throughput is a function of the channel realization. Maximum
spectral efficiency is obtained when the beam picked is aligned
to the channel subspace [8]. Unfortunately, the current channel
realization (CSI) is not available to the transmitter apriori.
The receiver must provide some auxiliary channel information
in the feedback to help the transmitter ascertain the optimal
beam. In legacy cellular systems, a known pilot or reference
signal is sent out from each antenna element [9]. The receiver
then estimates the individual per-antenna gains and conveys it
back to the transmitter. Due to a large number of antennas
in a millimeter wave MIMO system however, the multi-
dimensional channel vectors impose a large communication
overhead rendering per-atenna sampling inefficient.

Several codebook-based techniques that allow CSI acquisi-
tion without explicit channel vector estimation for mmWave
use have been proposed in the literature [10]–[15]. The trans-
mitter is equipped with a finite codebook of beamformers. In
exhaustive sampling, each beam in the codebook is sounded
once and the receiver feeds back the index of the best beam
after all beams have been sounded. In hierarchical sampling,
the transmitter and receiver jointly determine the best beam
pair of a relatively coarse resolution which is further refined in
successive stages. This involves the receiver feeding a locally
optimal index back to the transmitter to ascertain the beams
for subsequent channel sounding. This is usually accomplished
by designing hierarchical subcodebooks containing beams of
varying resolution.

Another popular approach is the so-called compressive beam
alignment approach, where the channel entries are compressed
into a few linear measurements using random beamforming
vectors and fed back to the transmitter. In [16], [17] for exam-
ple, the sounding or sensing beams are generated by applying
quantized random i.i.d. phase shifts across antenna elements.
The path gains and angles of departure in the downlink are
then estimated by exploiting the spatial sparsity of the mil-
limeter wave channel. Many other beam alignment strategies
leveraging tools from compressed sensing have been studied
extensively (see for eg. [18], [19]). These approaches typically
require phase coherence between measurements meaning that
the receiver needs to report both the signal magnitude and
phase information in the feedback link. Alignment with mag-
nitude only measurements is explored in [20].
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In this work, we consider a model where the receiver
conveys only one bit of information per channel sounding
about the optimal beam. This ACK/NACK type of feedback
can be a function of the decoded channel sounding sequence
or determined via simple thresholding. This model enables
transparent beam sounding - the UE does not see the actual
number of transmit antennas and is not required to be informed
of the beamformers used at the transmitter. Rough beam
alignment using very low-resolution feedback (such as ARQ)
may prove to be important for standardization. The system
setup is shown in Figure 1.

Our contributions can be summarized as :

1) We demonstrate that the highly directional nature of the
millimeter wave channel allows us to interpret channel
sounding as a questioning strategy. The sounding beams
correspond to questions (about the channel) while the
feedback bits correspond to answers.

2) We investigate both adaptive (or closed-loop) and non-
adaptive (or open-loop) beam alignment algorithms in
this framework. In the non-adaptive algorithm, all beams
to be sounded are pre-selected and are designed corre-
sponding to a chosen error control code.

3) In the adaptive case, where the beams are selected ‘on
the fly’, we show that the beam alignment problem ties
closely with Ulam’s problem well known in computer
science literature [21]–[23]. We formulate new sounding
signals by exploiting this connection. We then study the
sounding time gap between adaptive and non-adaptive
beam alignment techniques via simulations.

4) The questioning interpretation of channel sounding is
also useful when multiple paths are present. Using tools
developed in group testing [24]–[27], we design new
sounding signals that enable the transmitter to identify
the dominant channel directions. The beam for com-
munication is then selected by training only on these
directions.

5) The quantization of channel state information in a real
system is noisy. This could be due to beam imperfec-
tions, fading, channel noise or interference. The align-
ment algorithms we propose are designed to be resilient
to noisy quantization.

A preliminary version of this work was presented in 2018
[1]. The authors in [28] built upon our work to propose a non-
adaptive resource-efficient design only for the case of one path.
An open-loop channel estimation technique inspired by linear
block codes in a different setting was described in [29]. In
[30], the authors develop new techniques for quantitative group
testing, and note that this may be useful for simultaneous
sensing of multiple users when the number of users within
a sounding beam is available as feedback to the transmitter.

The rest of the paper is organized as follows. In Section
II, we explain the system model and state the problem we
wish to solve. Section III and IV discuss open-loop and
closed-loop beam alignment algorithms respectively when a
single path dominates. Section V deals with the case of
multipaths. Simulation studies are presented in Section VI.
Finally, concluding remarks are presented in Section VII.

Figure 1. System Model for a Millimeter wave MISO system with 1-bit
feedback considered in this paper.

Notation: All vectors unless stated are column vectors and
their `2-norm is represented by ‖.‖. CN (m,σ2) represents a
circularly symmetric complex Gaussian random variable with
mean m and variance σ2. a∗ denotes the conjugate transpose
of the vector a. The hamming distance between two binary
vectors x and y is denoted by H(x, y). 1(.) denotes the
indicator function. d e denotes the ceiling function while b c
is the floor function. The set of complex numbers is denoted
by C and the set of natural numbers by N. GF (q) is the finite
field with q elements where q is some power of a prime.

II. SYSTEM MODEL

Consider a multiple-input single-output (MISO) millimeter
wave communication system with Mt antennas at the transmit-
ter. The receiver is assumed to have a single omni-directional
antenna. The methods discussed are applicable to a multi-
antenna receiver, but this is beyond the scope of the present
article. The system setup is shown in Figure 1. A number
of different beamforming architectures have been proposed
in literature (see for eg. [18], [31], [32]). Sounding schemes
proposed in this work can be adapted to any given architecture.

To accomplish beam alignment, we assume that the trans-
mitter sends a training sequence or reference signal. The
receiver (or user) then processes this known signal. After
processing, we model the symbol received by the receiver on
the `th sounding interval as

y` =
√
Mth∗f` + n` (1)

where f` ∈ CMt is the beamforming vector picked by the
transmitter in the `th sounding, h ∈ CMt describes the channel
and n` ∼ CN (0, 1/ρ) is the noise term. ρ is the post processed
SNR after the channel sounding sequence is match filtered. To
restrict the total power at the transmitter, f` is constrained to
be unit norm.

The millimeter wave channel is characterized by large
coherent bandwidths and a sparse scattering environment. We
thus adopt a ray-based narrow-band channel model [10]. The
multi-path propagation delays are suppressed and the channel
h ∈ CMt×1 with p paths is modeled as

h =

p∑
i=1

αia(θi) (2)
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where θi corresponds to the angle of departure (AoD) for
the ith path, αi ∼ CN (0, 1) is its complex channel gain,
and a(θi) ∈ CMt×1 represents the beam steering vector
for direction θi in the transmitter’s array manifold. Due to
its highly directional nature, the mmWave channel has only
a few dominant paths. The channel model in (2) with a
single dominant path reduces to h = αa(θ0). For pedagogical
reasons, we will assume a uniform linear array (ULA) at the
transmitter. Extensions to planar arrays is possible. For a ULA,
the unit norm beam steering vector is

a(θ) =
1√
Mt

[
1 ej2πβ sin θ ej2π(2)β sin θ · · · ej2π(Mt−1)β sin θ

]T
(3)

where β is the ratio of inter-antenna spacing to wavelength.
Suppose that the desired coverage area is I = [θmin, θmax].

The transmitter chooses an appropriate collection of T mutu-
ally disjoint intervals or bins that covers I, labeled 1 through
to T . One possible choice is uniform partitioning where all
intervals are picked to have equal length. A non-uniform
partitioning may be used if the base station has some prior
knowledge of where the user is located. For example, it may
choose finer intervals in regions where the user is more likely
to be to achieve greater beam directionality. For the purpose
of beam alignment, the transmitter is equipped with a beam
set denoted as C = {a1, a2, · · · aT }, where each beam ai is
designed to span the interval with label i. To test if the user
is in a region S ⊂ {1, 2, 3, · · ·T}, the transmitter chooses the
beamformer f as a normalized linear combination of beams in
S according to

fS =

∑
i∈S ai

‖
∑
i∈S ai‖

. (4)

As noted previously, we consider a model where the receiver
provides only one bit of information per channel sounding
about the best beam. The received symbol y` is quantized to
a single bit r` and fed back to the transmitter according to
some rule

r` = Γ`(y`). (5)

One possible choice is to set r` = 1(|y`|2> γ`) where 1(.) is
the standard indicator function and γ` is the chosen threshold
on the `th channel sounding.

The channel-normalized beamforming gain corresponding
to a beamforming vector f is defined to be

A(f) =
|h∗f |2

‖h‖2
. (6)

After receiving N bits of feedback over the N sounding
intervals denoted {rj}Nj=1, the transmitter wishes to select

fopt = arg maxA(f). (7)

In the case of one dominant path for example, if all bits
r` were reliable and no prior information was available, the
optimal strategy for the transmitter is to use a simple binary
search like algorithm by successively refining the search beam
width by half until the user is located to the desired beam
resolution. However due to noisy quantization, some of the
bits received in the feedback could be inconsistent with the

Figure 2. Down-link noise, beam imperfections and other factors can cause
the ACK/NACK feedback to be in error.

receiver’s actual location. We then say that these bits are in
error or are erroneous. This is depicted in Fig. 2.

Since the feedback link carries only a single bit per feedback
interval, channel sounding can be interpreted as a questioning
strategy with yes/no answers (ACK or NACK). However,
quantization error can cause some of the yes/no answers to
be incorrect, which equates to lies in questioning. The general
problem of searching over a finite set under different error
models is a well studied problem in theoretical computer
science [21]–[23], [33]. The actual number of erroneous bits
in a real system is a random quantity. We thus follow a worst-
case design philosophy in that our algorithms have garaunteed
resilience against a given maximum number of errors.

The beam f` ∈ CMt×1 picked in the `th sounding can be
described mathematically as

f` = F(C, r1, · · · , r`−1) ` = 1, 2, · · · , N, (8)

a function of the beam set C and the previously received
feedback bits {ri}`−1i=1 . This type of beam selection is referred
to as closed-loop or adaptive channel sounding. The base
station keeps track of bits received in the feedback to select
subsequent beams in an ‘online’ manner.

An alternative approach with far less complexity is to sound
beams agnostic to the received bits. Mathematically,

f` = F(C) ` = 1, 2, · · · , N. (9)

In other words, f` is not a function of {ri}`−1i=1 . All beam-
forming codewords {f`}N`=1 are designed ‘offline’ before the
sounding process even begins. We refer to such a strategy
as open-loop or non-adaptive channel sounding. Sections III
and IV discuss open-loop and closed-loop channel sounding
techniques respectively for the case of one dominant path.
Channel sounding for multi-path is dealt with in Section V.

It is clear from Fig. 2 that an erroneous bit r` received
in the feedback corresponds to a ‘lie’ in the questioning
interpretation. In closed-loop channel sounding, since f` is
selected as a function of {ri}`−1i=1 , an erroneous bit will change
the subsequent beams that are sounded. On the other hand, in
open-loop channel sounding, the effect of erroneous bits is
felt only in post processing. For beamforming vector f, its
normalized spatial pattern as a function of the physical angle
θ ∈ [−90◦, 90◦] is characterized as

Gf(θ) = |a(θ)∗f|2. (10)
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III. OPEN-LOOP CHANNEL SOUNDING

A. Algorithm Description

This section describes non-adaptive techniques for beam
alignment when only one path dominates. Without loss of
generality, assume T = 2K . We label each of the 2K bins
in the coverage area with K bits according to a one-to-one
mapping

ϕ : {1, 2, 3, · · · , T} 7 −→ {0, 1}K , (11)

One choice of ϕ in (11) is simply to use the standard decimal
to binary representation. This is illustrated for the case of T =
8 in Fig. 3. Let mj denote the vector label for bin j and mdp

be the label that corresponds to the dominant path. This is to
say the optimal beam from the codebook maximizing (6) is
aϕ−1(mdp).

Notice in Fig. 3 that the first bit of the vector label for each
of the bins in the second half of the search region is 1. In
other words, a beam sounded to search the second half of the
desired coverage area say f1 can be mapped to a question of
the form : “Is the first bit of mdp equal to 1?”. After f1 is
sounded, the receiver has access to the symbol y1 according
to (1) which is quantized to a single bit r1 and fed back to the
transmitter. Then, r1 = 0 corresponds to a no answer while
r1 = 1 corresponds to a yes answer. Due to the fact that
quantization is noisy, some of the ri, i = 1, 2, · · · , N , could
be inconsistent with the direction of the dominant path. Hence,
K questions, one for each bit, are not enough.

Suppose we assume that no more than L bits received at
the transmitter are erroneous. It is then clear that picking the
optimal beam is equivalent to determining K information bits
(of the label mdp) in the presence of up to L errors. This is
the classical problem of error control coding.

Let G = [g1g2 · · · gN ] be the generator matrix of a linear
(N,K, dmin) block code over GF (2) where N is the code
length, K is the code’s dimension and dmin is the minimum
distance between codewords. Denote by S` the bins to be
sounded in the `th sounding. Under the non-adaptive strategy,
we select S` according to

S` = {j : mjg` = 1}, (12)

where the corresponding beam f` is given by (4). The trans-
mitter thus picks the sounding signals in accordance with the
columns of the generator. Only those regions whose labels
when XORed corresponding to the generator’s `th column re-
turn 1 are picked on the `th channel sounding. Fig. 3 illustrates
the shapes of the beams to be sounded for a (6, 3, 3) code. The
first 3 columns of the generator form the identity matrix and
translate to bit-by-bit questions, one for each bit. Since the 4th

column is [1 1 0]T , f4 is chosen as a linear combination of
beams corresponding to labels (010), (011), (100) and (101).
The related question is, “Is the XOR of the first two bits in
mdp equal to 1?”

From (12), if all bits {ri}Ni=1 are consistent with the
direction of the dominant path, we would have

r` = I(ϕ−1(mdp) ∈ S`) = mdpg`. (13)

Figure 3. Assume T = 23 = 8, L = 1, N=6. The generator matrix used for
the (6,3,3) code is G. The regions to be sounded are shown and correspond
to the columns of the generator.

After N beams are sounded then, the received bit vector r =
(r1, r2, · · · , rN ) can be interpreted as a distorted version of
the codeword mdpG, corrupted due to the noisy quantization.

At the end of channel sounding, standard decoding meth-
ods from coding theory literature are applied to decode the
received codeword r into the binary label m̂ for the dominant
path. The transmitter selects

fsel = aϕ−1(m̂)/‖aϕ−1(m̂)‖. (14)

Since a linear code with dmin ≥ 2L+ 1 is resilient against up
to L errors [34], the code in Fig. 3 can determine the optimal
beam even if one of the six bits received in the feedback is
in error. It should be noted that one can also use non-linear
codes for designing the sounding scheme.

B. Analysis

The generator matrix G for any (N,K, dmin) linear block
code can be converted into what is called the systematic form
by Gaussian elimination [34], meaning it has the form

G = [IK | P] (15)
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where G is of size K × N and IK is the K × K identity
matrix. This implies that the first K beams sounded at the
transmitter in open-loop channel sounding can always be made
to correspond to K individual bit level questions. We shall see
that a parallel observation also holds in the case of closed-loop
channel sounding.

One natural goal for beam alignment is to minimize the total
sounding time and correspondingly the feedback overhead N .
Any bounds known for open-loop codes are useful to charac-
terize the trade-offs between N , the desired beam resolution
(relates to K) and the desired degree of error correction L.
Given K and L, we look for a (N,K, 2L+ 1) code with the
smallest codeword length N possible. A lower bound on N is
due to the celebrated sphere-packing bound

2K

 L∑
j=0

(
N

j

) ≤ 2N . (16)

The minimum sounding time with an open-loop beam align-
ment algorithm is the smallest N for which (16) holds.

The well-known Singleton bound [34] states that for any
arbitrary block code, dmin ≤ N −K + 1. Thus, if N and K
are fixed, the maximum number of erroneous feedback bits
L that are guaranteed to be corrected satisfies L ≤ N−K

2 .
Codes meeting this bound are called Maximum Distance
Separable (MDS) codes. These have been used extensively
in data storage systems due to their excellent error correction
capabilities. We can leverage them for robust open-loop beam
alignment.

IV. CLOSED-LOOP CHANNEL SOUNDING

In this section, we describe selection of beams as a function
of previously received feedback bits as in (8).

A. Preliminaries

The famous mathematician S.M Ulam in his autobiography
‘Adventures of a Mathematician’ [35] posed the following
question: What is the minimal number of yes/no questions
that one needs to determine an unknown number between one
and a million if at most one or two of the answers may be lies?
The generalization of this problem to distinguish between T
numbers with at most L lies has since been extensively studied
in the computer science literature [21]–[23] and is popularly
called Ulam’s problem.

We can think of an adaptive channel sounding strategy
for the case of one dominant path as Ulam’s game between
the communicating nodes. The unknown number corresponds
to the bin index containing the dominant path. The channel
sounding relates to questioning and the erroneously received
bits relate to lies during questioning. As before, we have a
total of T bins covering the region of interest [θmin, θmax] and
assume that no more than L bits received at the transmitter
are in error.

Berlekamp was the first to develop an analytical framework
to analyze Ulam’s problem [36] which we outline in IV-B. The
general idea is to assign a negative vote to bins that disagree
with the received bit in a given sounding iteration. As more

beams are subsequently sounded, the ‘incorrect’ bins hopefully
accumulate enough votes and are eventually discarded until
only the correct one remains.

Suppose that the transmitter sounds a region S ⊂
{1, 2, 3, · · ·T}. If it receives an ACK, the bins in Sc are
each assigned a negative vote and if a NACK is received,
the bins in S are each assigned a negative vote. Denote Ai to
be the collection of bin numbers that have received i negative
votes so far. In other words, Ai contains bin numbers with a
disagreement tally of i. Since we assume a maximum of L
erroneous bits, any bins receiving more than L negative votes
can be discarded.

The transmitter’s knowledge at any point in the sounding
process can thus be summarized by a collection of L + 1
disjoint sets {A0, A1, · · ·AL}. An example of how these sets
evolve as the channel sounding progresses is shown in Fig. 4

B. Berlekamp’s Analysis

Since the sets change only by assignment of negative votes,
it is enough to work with their cardinalities. Let xj denote
the cardinality of Aj and define the n-state to be the integer
sequence x = (x0, x1, · · ·xL) ∈ NL+1. The integer n refers
to the number of times that the transmitter is allowed to sound
the channel from that point onward. With a total budget of N
sounding signals then, the initial state is the N -state and the
final state is the 0-state.

On sounding beams with labels in the set S ⊂
{1, 2, 3, · · ·T}, we define Ui = S ∩ Ai representing channel
sounding as the vector u = (u0, u1, · · ·uL), where ui = |Ui|.
This is equivalent to partitioning each set Ai into disjoint
subsets Ui and Vi of sizes ui and vi and testing if the user
is in the region

⋃L
j=0 Uj . The initial state (the N -state) is

(T, 0, 0, · · · 0) ∈ NL+1.
In this formulation, the goal is to devise a strategy with

minimal sounding time so that at the end of channel sounding,
only one of the sets Aj is non-empty. What one would like
is for the final 0-state to look like one of the following
: (1, 0, 0, · · · , 0), (0, 1, 0, 0, · · · , 0), (0, 0, 1, 0, · · · , 0), · · · ,
(0, 0, 0, 0, · · · , 1). Note also that not all sets can come up
empty as that would imply more than L lies have occurred, a
violation of the rules.

Berlekamp introduced the concept of “volume” for states.
The volume of a n-state x = (x0, x1, · · ·xL) is defined to be
[36]

Vn(x) =
L∑
i=0

xi

L−i∑
j=0

(
n

j

)
.

This definition is intuitively the total number of ways in which
lies could possibly be distributed; for each of the xi elements
in the set Ai, there are

(
n
j

)
arrangements of j erroneous

feedback bits in the n remaining probes, where j takes any
value from 0 to L − i. Berlekamp proved the following
theorems:

Theorem 1. [36] (Conservation of Volume) Let x be any non
trivial n-state, and let y and z be the (n−1)-states that result
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Figure 4. An example tracking the complete evolution of states for K = 2 and L = 2 assuming that the correct bin is the one labelled 4. The query regions
are shown within braces at each step. The answers that are erroneous lies are colored red. The question at each step was selected by solving the integer
program in (23) exactly. At the end of N = 8 questions, only the correct bin remains.

from it following a probe that corresponds to ACK and NACK
respectively. We then have

Vn(x) = Vn−1(y) + Vn−1(z).

The above theorem is a simple consequence of Pascal’s
combinatorial identity and the definition of volume. In words it
states, no matter the question selected, volumes of the resulting
ACK-state and the NACK-state add up to the volume of the
state at which the question was asked.

Theorem 2. [36] (Volume Bound) If the current n-state x is
such that n sounding signals are sufficient to determine the
dominant path, then Vn(x) ≤ 2n.

The initial state is (T, 0, 0, · · · 0) ∈ NL+1 with volume
T
(∑L

j=0

(
N
j

))
by definition. If the transmitter has a sounding

strategy that determines the bin number corresponding to the
dominant path with no more than N sounding signals, the
volume bound implies L∑

j=0

(
N

j

) ≤ 2N

T
. (17)

Thus, (17) gives the a lower bound on the minimum sounding
time to adaptively determine the optimal beam, no matter how
the lies are distributed.

C. Adaptive Selection Of Sounding Signals

An examination of (17) reveals that this bound is identical
to the sphere packing bound for open-loop codes in (16). For
certain values of N , L and T , perfect error correcting codes
exist that meet this bound exactly and adaptation provably
offers no benefits. But such codes are extremely limited since
it is known that any non-trivial perfect code over a finite field
has the same code parameters as the Hamming code or the
Golay code [34].

The Volume Bound together with the conservation of vol-
ume reveals the optimal regions to sound at any stage of the

beam alignment algorithm. Suppose that the transmitter in
the (N − `) state picks f` to sound beams with labels in a
set S` ⊂ {1, 2, 3, · · ·T} according to (4). Theorems 1 and 2
imply that S` must be selected so that the resulting states that
correspond to ACK and NACK have nearly the same volume.
This idea of splitting into equal halves is

If in a current n-state (x0, x1, · · ·xL), all x′js are even, then
the selection u =

(
x0

2 ,
x1

2 , · · ·
xL

2

)
results in the two (n− 1)-

states corresponding to ACK and NACK having equal volume,
for any n. Thus any sounding strategy that is optimal begins
with the same sounding signals, which is to pick half the
number of elements in each of the A′is successively as long as
all terms in the state sequence are even. This observation is in
parallel to (15). The first batch of optimal sounding signals
for both adaptive and non-adaptive algorithms are simply
individual bit-level questions. A simple induction argument
with Pascal’s identity gives the following Lemma.

Lemma 1. Suppose that the initial state is (T, 0, 0, · · · 0) ∈
NL+1. The resulting state after q beams are optimally sounded
is (

T

2q

(
q

0

)
,
T

2q

(
q

1

)
, · · · , T

2q

(
q

L

))
(18)

as long as 2q divides T . If T = 2K , the resulting state after
K beams are optimally sounded is((

K

0

)
,

(
K

1

)
, · · · ,

(
K

L

))
. (19)

Proof. We use an induction argument. The proposition is
clearly true for q = 1. Since 2 divides T , the optimal
beam is that which sounds half of the desired coverage
region. The resulting state after the first beam is sounded is
then

(
T
2 ,

T
2 , · · · , 0

)
. Suppose that the proposition holds for

q = k − 1 and that 2k divides T . The current state is then(
T

2k−1

(
k−1
0

)
, T
2k−1

(
k−1
1

)
, · · · , T

2k−1

(
k−1
L

))
. The optimal beam

to sound at this stage is to pick half the bins in each set. The
resulting state by assigning votes and by Pascal’s identity is(
T
2k

(
k
0

)
, T
2k

(
k
1

)
, · · · , T

2k

(
k
L

))
.
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The difficulty then in designing an optimal strategy is that
eventually, some terms in the resulting states will be odd. It
is clear that the leading terms in a state contribute most to the
volume. Hence, even a unit difference between the respective
leading terms of the Yes-state and the No-state will cause
a large difference in their volumes. To compensate for this
difference, the rest of the terms will have to be split unevenly.

A dumb strategy is to set uj =
⌊xj

2

⌋
for each j =

0, 1, · · · , L until a stage where each set Aj , j = 0, 1, · · · , L
has at most one bin. Using a result from [33], we obtain an
upper bound on the sounding time under this strategy.

Lemma 2. [33] Denote xi(q) as the number of bins at level
i after q probes. If we use the strategy described above, then
∀q ≥ 0 and j ≤ q

j∑
i=0

(
xi(q)−

T

2q

(
q

i

))
≤ j + 1 (20)

Theorem 3. Denote the minimum sounding time given by the
volume bound to be Nvol. The sounding time with the dumb
strategy is no more than Nvol + L2 + L+ 1.

Proof. After q beams are sounded, Lemma 4 implies
L∑
i=0

xi(q) ≤
L∑
i=0

T

2q

(
q

i

)
+ L+ 1. (21)

Choose the smallest q = qmin such that
L∑
i=0

T

2q

(
q

i

)
< 1 (22)

An inspection with equation (17) reveals either qmin = Nvol
or qmin = Nvol + 1. (the latter holds when (17) is satisfied
with equality) Thus after qmin probes, sets A0 through AL
collectively contain at most L+ 1 bins. Since each probe will
push at least one bin ahead, the claim holds.

While this strategy is extremely simple, a penalty of L2 +
L + 1 may not be tolerable especially when L is large. We
instead look for a direct attack. If x = u + v where u is the
probe that reduces the n-state x to either the (n−1)-yes-state
y or the (n− 1)-no-state z, we see that

∣∣Vn−1(y)− Vn−1(z)
∣∣ =

∣∣∣∣∣∣
L∑
j=0

(
n− 1

L− j

)
(2uj − xj)

∣∣∣∣∣∣ . (23)

The optimal choice of u = (u0, u1, · · ·uL) is then to minimize
(23). Fig. 4 demonstrates the complete sequence of states for
K = 2 and L = 2 where u is always selected optimally.

The optimization problem of minimizing (23) is an integer
linear program and known to be NP-hard. A commonly used
technique to handle these type of problems is to first relax
the integer constraints and solve the corresponding linear
program. The solutions obtained are then rounded to integers
using methods like branch and bound or cutting planes. A
comprehensive discussion of different solution techniques can
be found in [37]. Alternately, the authors in [38] suggest
a greedy-like approach to minimize (23) by accumulating
one term at a time. This is summarized as Algorithm 1.

Table I
SOUNDING TIME COMPARISON FOR ADAPTIVE VS NON-ADAPTIVE

ALIGNMENT

K\L 1 2 3 4 5 6

1 3 5 7 9 11 13
2 5 8 11 14 17 20
3 6 9(10) 12(13) 15(17) 18(20) 21(24)
4 7 10(11) 13(14) 16(19) 19(22) 22(26)
5 9 12(13) 15 18(20) 21(23) 24(27)
6 10 13(14) 16(17) 19(22) 22(25) 25(29)

The function ChooseU (A0, A1, · · ·AL, n) chooses the region
[U0, U1, · · ·UL] to test, given the current n-state.

Algorithm 1 ChooseU (A0, A1, · · ·AL, n) [38]
1: p, q ← 0 . Initialise
2: for i← 0 to L do
3: ∆←

∣∣∣(p+
(
n−1
L−i
)
ui

)
−
(
q +

(
n−1
L−i
)
(xi − ui)

)∣∣∣
4: Choose Ui ⊆ Aito minimise ∆
5: p← p+

(
n−1
L−i
)
ui

6: q ← q +
(
n−1
L−i
)
(xi − ui)

7: end for
8: return S =

⋃L
j=0 Uj

We are now ready to describe the adaptive channel sounding
strategy. The sounding time budget N is fixed before. The
transmitter maintains {A0, A1, · · ·AL, n} for an appropriately
chosen value of L. The role that parameter L plays is that
any bin receiving more than L negative votes is discarded
during the sounding process. On testing a region and receiving
an ACK/NACK, the sets are updated by assignment of votes.
Having received bits r1 through rj in the feedback link, the
transmitter picks Sj+1 = ChooseU (A0, A1, · · ·AL, N − j).
Thus in sounding interval j + 1, transmitter sounds the beam

fj+1 =

∑
i∈Sj+1

ai
‖
∑
i∈Sj+1

ai‖
. (24)

The most likely angular region corresponding to the path
angle in the channel is the one with the least number of nega-
tive votes. Thus at the end of channel sounding, the transmitter
picks Aj with the smallest index j such that it is non-empty.
If Aj contains only one bin number p ∈ {1, 2, 3, · · ·T}, we
set fsel = ap. If not, we set fsel = aq where q is randomly
chosen from Aj .

In Table 1, we compare the (worst case) sounding times
for adaptive and non-adaptive beam alignment. Non-adaptive
alignment is implemented with the shortest length code known
for the given parameters. A table of best known codes is in
[39]. The adaptive alignment is implemented via the greedy
sub-optimal Algorithm 1. Table cells with a single entry
are cases where the total sounding time for both algorithms
coincide meaning that adaption does not provide any benefit.
As a general trend, the gap between sounding time for the two
techniques gets larger as either K or L increase.
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Figure 5. The coverage area is split into T = 8 regions and the beamset
C = {a1, a2, · · · , a8}. In this example, there are two paths that correspond
to directions θ1 and θ2 respectively. We thus have B = {3, 7} assuming that
each beam ai directs energy only in the sector labelled i.

V. CHANNEL SOUNDING FOR MULTIPATH

We now consider the effect of multipaths between the
transmitter receiver pair. The channel model is

h =

p∑
i=1

αia(θi) (25)

with parameters as defined in (2). As before, the desired
coverage area is covered by T angular regions or bins. The
beam alignment algorithm is split into two phases. In the
first phase, the channel is sounded N times and the N bits
received in the feedback are post-processed to identify the
set B ⊂ {1, 2, · · · , T} of bin indices that correspond to path
directions that are active. See Fig. 5 for an example. In the
second phase, the transmitter sounds beams along directions
specified in B to determine the optimal beam. For pedagogical
reasons, we assume in this section that all of the beams in
the beamset C are idealized beams whose gain patterns are
constant in their intended support and zero elsewhere (see Fig.
8).

A. Preliminaries

The beam alignment algorithms described for the single path
case can no longer be applied to the multi-path scenario in a
straightforward manner. In the case of open-loop beam align-
ment, each bin was assigned a message label mj ∈ {0, 1}K ,
j = 1, 2, · · · , T . A suitable code with the generator matrix G
was then chosen for beam selection. Suppose that there are
two strong paths that correspond to bins with labels say m1

and m2. Even with perfect feedback (which means no bits in
the feedback are inconsistent), the transmitter after channel
sounding receives r = (r1, r2, · · · , rN )T given by

r = m1G ∨m2G, (26)

where ∨ is the component-wise logical OR operation. With
access to only r at the end of channel sounding, the identities
of individual paths are completely lost and they cannot be
resolved without imposing some additional constraint on G.

In the adaptive algorithm, negative votes were assigned to
individual regions with the goal of picking out one dominant
path. Suppose that there are two dominant paths and we
decompose {1, 2, · · · , T} = S1 ∪ S2 where S1 and S2 each
contain one path. For example in Fig. 5, we could take
S1 = {1, 2, 3} and S2 = {4, 5, 6, 7, 8}. If the transmitter
now sounds either fS1

or fS2
as in (4), all bins in one of

these sets are assigned a negative vote. Thus, the notion of a
disagreement tally is obscured.

We instead model channel sounding with one-bit of feed-
back as a noisy group testing problem with d defectives [25]–
[27]. Group testing was originally introduced during World
War II to detect the presence or absence of syphilitic antigen
in a blood sample from a large population of samples in as few
tests as possible [24]. Blood samples containing the antigen
are called positives or defectives and are far fewer in number
compared to the total population size. The main idea is to
test groups of samples (called pools) together rather than test
each one individually. A group testing algorithm is adaptive if
the successive pools to be tested depend on the the outcomes
of previously tested pools. However, much of research in this
area is focused on non adaptive algorithms where all pools
to be tested are decided beforehand. This is primarily since
adaptive algorithms are sequential by nature and hence incur
high latency, while the tests in a non-adaptive algorithm can be
implemented in parallel when used for applications like blood
testing. We consider here a noisy variant of the problem where
the outcome of a test may be erroneous.

All vectors we deal with in this section have 0-1 entries.
We say that a vector p = [p1, p2, · · · , pN ]t contains vector
q = [q1, q2, · · · , qN ]t denoted q � p, if qi ≤ pi for all
i = 1, 2, · · · , N . We associate channel sounding to a binary
N × T test matrix Z = {z1, z2, · · · , zT } with a 1 in position
(i, j) if jth bin is sounded on the ith channel sounding and
0 otherwise. In other words, the ith row of Z completely
specifies the bins that are sounded in the ith channel sounding
interval. The corresponding beamformer fi is selected as

fi =

∑T
j=1 aj1(zj(i) = 1)

‖
∑T
j=1 aj1(zj(i) = 1)‖

. (27)

Here, zj(i) refers to the ith entry in the column vector zj . An
example of the shapes of beams to be sounded is illustrated in
Fig. 6. We can also think of the columns of Z as the individual
binary vector labels or codewords assigned to each bin.

B. Perfect Feedback

First, suppose that all of the bits {ri}Ni=1 are consistent
with the actual path directions. In other words, none of the
bits received at the transmitter are incorrect. By definition, the
rows of Z indicate the regions where energy is directed in a
particular sounding. Thus, if the bins that correspond to the
p path directions have labels zi1 , zi2 , · · · , zip (columns of Z),
we would have

r =

p∨
j=1

zij (28)

where
∨

represents the component-wise logical OR op-
eration of column vectors. In practice, we may not know
p exactly and instead assume p ≤ d. (28) reveals how Z
should be designed. In principle, all we need is the component-
wise logical OR of every d or less columns of Z to be a
unique vector to determine which path directions are active.
However, even if we had such a Z, determining the set B
would involve an exhaustive search over a total of

∑d
i=1

(
T
i

)
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Figure 6. Shapes of beams to be sounded for given design matrix Z.

Figure 7. An example of a 2-disjunct matrix Z. Clearly, no individual column
contains any other column. Further, the logical OR of any 2 columns does
not contain the third due to the violations that are marked in red.

possibilities. This would make the scheme impractical from an
implementation perspective. To overcome this, it is common in
the group testing literature to enforce the following additional
structure on Z [25].

Def: A matrix Z is said to be d-disjunct if the component-
wise logical OR of any d or less columns does not contain
any other column.

A 1-disjunct matrix is one where no column is contained
in another. An example of a 2-disjunct matrix is illustrated
in Fig. 7. If Z were d-disjunct, it suffices to iterate over
each of the T columns once and check the ones that are
contained in the received bit vector r to decide which bins
correspond to active path directions. This greatly reduces
the implementation complexity and involves only T vector
comparisons. Mathematically,

B = {k | zk � r}. (29)

C. Imperfect Feedback

As noted before, the quantization of the received symbol
at the receiver is noisy. As a result, the transmitter only has
access to a corrupted version of r in (28), say r′. If n is a 0-1
noise sequence, 1 indicating an erroneously received bit, we
have

r’ =

 p∨
j=1

zij

⊕ n = r⊕ n (30)

where ⊕ is the addition operation over GF (2). Even a single
error in the received bit vector r can cause a failure if we used
only a d-disjunct matrix. To be resilient against up to e errors,
the logical OR of one set of d (or less) columns should be at
least 2e+1 away in hamming distance from that of another set
of d (or less) columns. We thus need special kind of d-disjunct
matrices.

Def: A de-disjunct matrix Z is a d-disjunct matrix with
the following property: given any d + 1 columns with one
designated, there are at least e+ 1 rows with a 1-entry in the
designated column and a 0-entry in the others.

Theorem 4. A de-disjunct binary matrix Z can identify up to
d multipaths correctly against up to b e2c erroneous feedback
bits.

Proof. Let P = {x1, x2, · · · , x|P|} and Q = {y1, y2, · · · , y|Q|}
each be a set of d or less columns from Z i.e. |P|, |Q|≤ d.
Denote component-wise OR of columns in P and Q as

p̃ =

|P|∨
i=1

xi and q̃ =

|Q|∨
j=1

yj (31)

Choose a column column c ∈ Q \ P. Since Z is de-
disjunct, c contains a 1-entry in e+ 1 rows where all columns
x1, x2, · · · , x|P| have 0-entries. Thus, H(p̃, q̃) ≥ e+ 1.

The property of de-disjunctness in addition to providing
error tolerance also allows for a very simple decoding strategy
whose runtime is linear in the dimensions of the test matrix
(Section V-D). However, deterministic construction of such
matrices is a non-trivial endeavor and a subject of intensive
research. We refer the interested reader to [25], [26], [40]
for specific design methodologies and a general overview on
group testing literature.

In a parallel line of thought, many authors have advocated
for random constructions of test matrices. One particularly
simple construction is where each individual entry in the
test matrix is sampled i.i.d. from a Bernoulli distribution and
has been shown to perform well in practice [41]. In our
simulations, we consider both kinds of designs and compare
their performances under different decoding algorithms. It was
shown in [42] that optimal adaptive measurements provide no
gain over Bernoulli i.i.d designs in the asymptotic regime for
either perfect or noisy feedback, provided that the number of
defectives d grows slowly with the number of items T . We
will thus only consider non-adaptive designs for the multi-
path case.
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D. Recovering Path Directions

Suppose that Z is de-disjunct. The matrix Z with binary
entries completely describes the sounding signals at any stage
of the algorithm. It is designed to identify up to certain
number of paths with the desired error tolerance. Specifically,
it can provably identify up to d paths and correct up to
b e2c erroneously received bits. As before, the transmitter is
equipped with a beam set C. Sounding progresses according
to design matrix Z and the one bit ACK/NACK responses
are collected in a vector r

′
. The active path directions then

need to be inferred by decoding r
′

described in algorithm 2.
A straightforward proof of correctness is in [43]. Note that its
time complexity scales as O(NT ) and it returns a set B of
bin indices that correspond to path directions. Since one does
not know the number of errors that can occur apriori, we shall
also consider other decoding methods in our simulations.

Algorithm 2 Decoding Multipath(Z, r
′
)

1: B ← ∅ . Z is de-disjunct
2: for i← 1 to T do . size of Z is N × T
3: C(zi, r

′
)← card

(
{j | zi(j) = 1 and r

′

j = 0}
)

4: if C(zi, r
′
) ≤ b e2c then

5: B ← B ∪ {i}
6: end if
7: end for
8: return B

E. Selection Of Beamformer

For the case of multipath, we allow the transmitter to choose
its beam for communication as a linear combination of a small
subset of beams from the beamset. Suppose that the beamset
C = {a1, a2, · · · , aMt} consists of Mt orthogonal beams.
Having recovered the set B = {ii, i2, · · · , im} with a group
testing approach, the beamformer f chosen at the transmitter is
a linear combination of beams ai1 through aim . The transmitter
estimates the complex weights to be applied to these beams
before they are summed by training only on these beams. Due
to channel sparsity, |B|� |C|. As a concrete example, suppose
B = {2, 5}. By sending out training beacons on a2 and a5, the
transmitter obtains a good estimate of γ2 = a∗2h and γ5 = a∗5h.
The beamformer is then selected to be fsel = γ2a2+γ5a5

‖γ2a2+γ5a5‖ .

VI. SIMULATION RESULTS

We present simulation studies to validate our proposed
algorithms. It is convenient to define the spatial frequency
variable ψ = 2πβ sin(θ) = π sin(θ), assuming β = 1

2 . We
consider full 180◦ beamforming (θmin = −90◦, θmax = 90◦)
and the beam set at the transmitter C = {a1, a2, · · · , aMt} has
the form

ai =
1√
Mt

e−j
(Mt−1)

2 ψi

[
1 ejψi · · · ej(Mt−1)ψi

]T
(32)

where ψi = −π + (2i− 1) π
Mt
, i = 1, · · · ,Mt. The centers ψi

of the beams are spaced equally in the ψ ∈ [−π, π] domain so
that the resulting beams are orthonormal i.e. |a∗i aj | = 0 when

-90

-75

-60

-45

-30

-15

0
0 0.1 0.2 0.3

G
f
( )

Codebook in (33)

DFT Codebook

Ideal

Figure 8. Consider Mt = 32, θmin = −90◦, θmax = 90◦. Spatial pattern
Gf(θ) of a beamformer designed to sound the region S = {4, 5, 6, 7, 8} in
(4) with DFT type beams vs the codebook in (32). Notice the maximum gain
of an ideal beam is 1

|S| = 0.2.

i 6= j. While similar in form to the beam steering vector,
the additional phase shift term e−j

(Mt−1)
2 ψi applied to the

beams ensures that when the individual harmonics are summed
together in (4), the resulting beam patterns have nearly flat
gains in the regions of interest and low side-lobes in others.
In comparison, beams from a simple DFT-type codebook work
poorly due to the nulls that occur on summing of harmonics.
This is illustrated in Fig. 8. We also define idealized beams
to simplify the detector design. Let C̃ = {ã1, · · · , ãMt

} be the
set of ideal beams where beam ãi has a normalized spatial
pattern given by

Gãi(θ) =

{
1 θ ∈ Gi
0 otherwise

(33)

where Gi =
{
θ : π sin(θ) ∈

[
−π + 2π

Mt
(i− 1),−π + 2π

Mt
i
]}

.

A. Single Path Channel

Consider the channel with one dominant path h = αa(θ0),
where θ0 ∼ U(−π2 ,

π
2 ) and α ∼ CN (0, 1). The optimal

beam then achieves a normalized gain of maxi|a(θ0)∗ai|2.
On average, the best achievable beamforming gain for the
codebook in (32) is equal to

(34)
Amax = Eθ0

[
max
i
|a(θ0)Hai|2

]
= Eθ0

[
max
i

sin2(Mt(ψi−π sin(θ))
2 )

sin2( (ψi−π sin(θ))
2 )

]
.

For Mt = 32 antennas for example, the performance limit is
numerically evaluated to be Amax ≈ 75.4%.

Since the detector outputs either an ACK or a NACK, we
formulate the detector design problem as a hypothesis test
assuming idealized beams. For practicality of our schemes, we
consider a simple threshold detector of the form r` = I(|y`|>
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Figure 9. Expected channel-normalized beamforming gain for single path
millimeter wave channel as a function of sounding SNR ρ. The parameters
are fixed at Mt = 32, N = 16,K = 5 and full 180◦ beamforming is
considered. The feedback link is assumed to be perfectly noiseless.

γ) where the decision threshold γ is chosen independent of the
beamformer f` selected and sounding iteration `. On receiving
the complex symbol y`, the beam detection problem from (1)
then reduces to the hypothesis testH0 : |y`|∼ Rician

(
|α|
√

2, 1
2ρ

)
H1 : |y`|∼ Rayleigh

(
1
2ρ

) (35)

where we have assumed that the transmitter always sounds
half the number of bins. In other words, in (4) we always
have that |S|= T

2 . Threshold rule γ is then selected based on
the ROC curves. If an estimate of the fading gain |α| is not
available at the receiver, the hypothesis test is formulated asH0 : |y`|∼ Rayleigh

(
1 + 1

2ρ

)
H1 : |y`|∼ Rayleigh

(
1
2ρ

) . (36)

In Fig. 9, the transmitter is equipped with Mt = 32 antennas
and the given sounding time budget is N = 16. The feedback
link is assumed to be perfectly noiseless and the errors are only
due to beam detection errors. The scheme labelled ‘Bit-by-Bit’
is a simple non-adaptive scheme chosen as the baseline where
the first N = 16 columns of the matrix [I5|I5|· · · I5] are set as
the generator. This yields a (16, 5, 3) code and corresponds to
asking questions per bit, and cycling through them repeatedly.
The coded non-adaptive scheme is based on the best known
open-loop code for given K and N which is the (16, 5, 8) code
constructed using MAGMA. A minimum distance of 8 ensures
that up to 3 errors can always be corrected. The adaptive
sounding scheme is implemented based on Algorithm 1 and
we set the maximum number of lies parameter at L = 3. Thus
any region receiving more than 3 negative votes is discarded
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Figure 10. Performance when the feedback link is a binary symmetric channel
with error probability 5%. Detection threshold was designed based on (35).

during the sounding process. The natural performance metric
is the channel normalized beamforming gain defined to be

ABF =
|h∗fsel|2

‖h‖2
(37)

where fsel is the beam selected by the transmitter at the end
of the sounding process. Two sets of curves are shown for
comparison, ‘A’ is where the detection threshold is selected
according to (35) and ‘B’ where it is chosen according to
(36).

We repeat the same set of simulations for the case where the
feedback link is noisy, specifically a binary symmetric channel
with probability of error p = 0.05. The results are indicated in
Fig. 10. We also compare our proposed techniques to two other
schemes. One is where the transmitter exhaustively sweeps
over a codebook containing T = 16 orthonormal beams
that approximately span the horizon [−90◦, 90◦]. The other is
uncoded beam sounding wherein the transmitter sounds K = 5
beams, one for each bit, with their powers adjusted so that
the total power budget across all schemes being compared is
the same. We can draw the following conclusions from these
simulation studies:

1) For adaptive sounding, optimal beam selection by solv-
ing the integer program in (23) each time performs
only slightly better than greedy selection outlined in
Algorithm 1. The corresponding performance curve is
labelled as ‘Adaptive (Optimal)’ in Fig. 10.

2) Adaptive sounding outperforms the best non-adaptive
coded strategy by 3-4 dB and the bit-by-bit scheme by
up to 5 dB.

3) The proposed coded sounding schemes generally main-
tain good performance even when the feedback link is
noisy as seen in Fig. 10.

Next, we study the performance of our algorithms as a
function of the sounding time budget N . Fig. 12 shows two
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Figure 11. Expected channel-normalized beamforming gain for single path
millimeter wave channel as a function of sounding time N . The parameters
are fixed at Mt = 32,K = 5 and full 180◦ beamforming is considered. Two
sets of curves, one at sounding SNR ρ1 = 0 dB and the other at ρ2 = 5 dB
are shown.

sets of performance curves for sounding SNR’s fixed at ρ1 = 0
dB and ρ2 = 5 dB. For each N , the non-adaptive scheme was
implemented by choosing the known length N code with the
largest minimum distance. The adaptive scheme is based on
Algorithm 1 with the threshold for all curves chosen based on
(36). For the case of ρ1 = 0 dB for example, adaptive channel
sounding can achieve the same expected beamforming gain as
non-adaptive schemes with just half the sounding time budget.

B. Multi-Path Channel

In this section, we consider a channel model with two
paths h = (α1a(θ1) + α2a(θ2)), where θ1, θ2 ∼ U(−π2 ,

π
2 )

and α1, α2 ∼ CN (0, 1). We assume that the transmitter is
equipped with Mt = 512 antennas and the sounding time
is fixed at N = 63. The region [−90◦, 90◦] is thus split
into 512 bins, and the sounding signals for the multi-path
scenario correspond to a suitably chosen group testing matrix.
Similar to the single-path scenario, the detection threshold at
the receiver is held constant throughout the sounding process
for a given sounding SNR. At the end of channel sounding,
the transmitter comes up with an estimate B of bin indices
corresponding to the dominant path directions. It then performs
training on beams specified by B to choose a beamformer as
discussed in Section V-E.

We consider two different non-adaptive designs of the
sounding matrix Z. The first design Z1 is a randomly generated
0-1 matrix whose each entry is i.i.d. Ber(p), where p = 1 −
(2−

1
2 ) is selected based on the analysis in [44]. The second test

matrix Z2 is a carefully constructed deterministic 23-disjunct
design based on “matrix-containment” construction techniques
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Figure 12. Expected channel-normalized beamforming gain for a 2-path
millimeter wave channel. The parameters are fixed at Mt = 512, N = 63
and full 180◦ beamforming is considered. Z1 is a Bernoulli i.i.d. design while
Z2 is a deterministic 23-disjunct matrix.

using the GAP software package [45]. In the notation of [46],
the 63× 512 submatrix of M2(6, 4, 1) is set as Z2.

Suppose that the received bit vector is r’ in (30). We
consider the following practical decoding strategies. The first
two have a combinatorial flavour while the third is based on
assuming a noise model and probabilistic.
• Noisy Combinatorial Orthogonal Matching Pursuit

(NCOMP) algorithm [47]: For each column zi of Z, we

define the metric mi ,

∣∣∣{j | zi(j)=1 and r
′
j=1

}∣∣∣
H(zi,0)

. The
indices corresponding to the two largest values of this
metric are returned where ties are broken arbitrarily.

• Direct Decoding (DD) : We use Algorithm 2 for decoding
for increasing values of e until the algorithm returns two
indices. This is essentially picking out the two columns
with the lowest values of C(zi, r

′
).

• (Modified) Separate Decoding of Items (SDI) algorithm:
This type of decoder was first described in the Russian
literature [44] and recently studied extensively in [48].
We assume that a bit ri in (28) is flipped with some error
probability q which we estimate via Monte-Carlo simu-
lations. This is the so-called symmetric additive noise
model. Following [48], the decoder involves computing
for each column zi

φi =

n∑
i=1

ln
f1(r

′

i, zi(j))
f2(r′i)

(38)

where f1(0, 0) = pq + (1 − p)(1 − q), f1(1, 0) = 1 −
f1(0, 0), f1(0, 1) = q, f1(1, 1) = 1 − f1(0, 1), f2(0) =
(1− q)(2p− p2) + q(1− p)2 and f2(1) = 1− f2(0). The
bin indices corresponding to the two largest values of φi
are then returned by the algorithm. We caution the reader
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that due to the final sorting step, the algorithm used here
is not strictly separate decoding as defined in [48].

Fig. 11 shows the performance of the proposed techniques
as a function of transmit SNR ρ. As one would expect, the
carefully constructed deterministic design beats a random i.i.d.
design for any decoding algorithm. In case of a random
Bernoulli design, decoding with SDI beats NCOMP signifi-
cantly which is in agreement with the simulations reported in
[48]. For the case of a deterministic design, SDI provides a
slight improvement over DD as it captures the probability of
feedback bits being in error to make better decoding decisions.
A simple Bernoulli i.i.d design is only worse by about 1.5 dB
than the hard to construct deterministic design when SDI is
used.

VII. CONCLUSIONS

In this work, we studied the problem of one-bit feedback-
assisted beam alignment in millimeter wave networks. By
interpreting the beamforming problem as one of searching in
a finite set, we investigated adaptive and non-adaptive channel
sounding strategies that were designed to be robust to noisy
quantization. The open-loop technique is based on standard
block codes while the closed-loop technique corresponds to
playing Ulam’s game against a liar. We showed that it is also
possible to identify multi-paths by leveraging tools from group
testing.

New beam adaption techniques can potentially be formu-
lated by exploring other error models studied in the literature
such as one where the ACK/NACK is erroneous with a certain
error probability. Future work includes extending the proposed
techniques to the case where there are restrictions on the
beams that can be sounded. Questioning strategies studied
traditionally in computer science may prove to be useful for
other feedback based problems in communications and signal
processing.
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