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A B S T R A C T

Fog computing, which distributes computing resources to multiple locations between the Internet of Things
(IoT) devices and the cloud, is attracting considerable attention from academia and industry. Yet, despite
the excitement about the potential of fog computing, few comprehensive studies quantitatively characterizing
the properties of fog computing architectures have been conducted. In this paper we examine the statistical
properties of fog computing task completion latencies, which are important to understand to develop algorithms
that match IoT nodes’ tasks with the best execution points within the fog computing substrate. Towards
characterizing task completion latencies, we developed and deployed a set of benchmarks in 6 different
locations, which included local nodes of different grades, conventional cloud computing services in two
different regions, and Amazon Web Services (AWS) and Microsoft Azure serverless computing options. Using
the developed infrastructure, we conducted a series of targeted experiments with a node invoking our
benchmarks from different locations and in different conditions. The empirical study elucidated several
important properties of task execution latencies, including latency variation across different execution points
and execution options, and stability with respect to time. The study also demonstrated important properties
of serverless execution options, and showed that statistical structure of computing latencies can be accurately
characterized based on a small number (only 10–50) of latency samples. The complete measurement set we
have captured as part of this study is publicly available.
1. Introduction

Fog computing is an emerging paradigm in which computing, stor-
age, networking, and control are placed at multiple locations between
the endpoint devices and the cloud [1–3]. Fog computing is receiving
increasing attention from industry and academia alike [1,4–12] due in
part to its potential for enabling advances in the Internet of Things (IoT)
applications [2]. Compared to centralized cloud solutions, fog comput-
ing can provide task execution points with different properties, and can
offer significantly lower IoT task execution latencies (as fog execution
points can be located closer to the end users) [13,14]. Multiple lines
of work have recently considered the development of task scheduling
and resource allocation algorithms for the scenarios where different
IoT nodes’ tasks can be executed in multiple locations within a fog
computing substrate [8–10,15–20]. However, little attention has been
paid to the empirical properties of task completion latencies in such
settings, and to the ease – or difficulty – of obtaining characterizations
of latency properties of different in-fog execution points. Our work
addresses a part of this gap, as we describe below.

∗ Corresponding author.

In this work we focus on characterizing statistical properties of task
completion latencies in fog computing, for systems with heterogeneous,
geographically distributed task execution points, as shown in Fig. 1. In
the settings we examine, a locally placed gateway is deciding where,
within the fog substrate that includes both local and cloud task execu-
tion points, it should execute the tasks of the IoT nodes. Gateway-based
IoT architectures are currently a de-facto standard: many modern IoT
architectures connect low-end IoT devices to the Internet via gateways
placed nearby, within the range of a direct WiFi or Bluetooth con-
nection. At different fog execution points, the tasks can be executed
with different execution options, e.g., with different quality levels. Multi-
quality approaches are starting to be actively explored; many different
ones have been proposed recently [19,21–24]. They are particularly
attractive for heterogeneous fog systems with many IoT nodes, where
the range of latency requirements of different nodes may necessitate
supporting a wide range of task execution options.
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Fig. 1. A multi-execution-point multi-quality fog computing system serving IoT nodes.
IoT nodes’ tasks can be executed in multiple locations within the fog computing
substrate: on local devices, as well as on the cloud, with both conventional and
serverless cloud computing options available.

Table 1
Example computing capabilities of different fog computing execution point categories.

Fog computing
point

Device or service CPU cores:
number,
frequency

Additional
computing
capabilities

Local server PowerEdge
R930 [31]

4–24 cores @
2.2–3.5 GHz

GPUs

Cloud,
conventional

AWS C2 [32] 1–128 cores @
2.3–3.3 GHz

GPUs, FPGAs

Cloud, serverless AWS
Lambda [33]

Fractional parts
of C2 cores

None

We focus on responsive IoT applications, in which IoT nodes rely on
fog computing for timely responses to their requests — as opposed to,
for example, fog-based execution of data analytics tasks without explicit
deadlines. The need for timely responses arises in both human-facing
and machine-to-machine applications, e.g., in gaming, augmented and
virtual reality [22,25], user guidance and feedback [14,26,27], motion
control in cars, autonomous drones [28], and industrial machinery [29,
30], and control of parameters in cyber–physical systems. Responsive
applications are considered to be one of the primary use cases for
fog computing [1,4]. In many of these systems, both the average
task completion latency and the associated broader latency-related
Quality of Service parameters (e.g., expected jitter, 95th and 99th
latency percentiles) are important for providing the best experience.
Correspondingly, in this work we consider not only the mean latencies
for different execution points and computing options, but also task
completion latencies as random variables, to identify their statistical
structure in detail.

Below we first provide an overview of several classes of task execu-
tion points in fog computing (Section 1.1), then describe our contribu-
tions (Section 1.2) and paper organization (Section 1.3).

1.1. Categories of execution points in fog computing

Execution points present in fog computing systems have different
properties, as we describe below. Several representative options of
different fog node categories are shown in Table 1.

Local servers: Despite the rising popularity of cloud computing
services, on-premise computing remains an essential feature of many
organizations, including universities. Ranging from small stand-alone
machines to full on-site datacenters, local computing infrastructure
offers computing options in close proximity to the local IoT nodes, for
example, in-building, or on the same campus [34]. We included a local
2

server-grade node in our study, and a local consumer-grade node for
comparison.

Cloud, conventional: Traditional cloud services’ computing capa-
bilities are located in one of several global datacenters (e.g., AWS and
Google Cloud offer services in 24 and 23 geographical regions world-
wide, respectively). Cloud computing has been commercially available
for over a decade. As part of the cloud services, multiple options with
different underlying hardware and different performance guarantees
are currently available [32]. We included two AWS execution points,
located in different regions, in our study.

Cloud, serverless: Serverless cloud computing allows running com-
puting using cloud datacenter resources without managing specific
computing instances. That is, rather than being provisioned ahead of
time, individual functions are instantiated on demand when they are
requested. First introduced by Amazon in 2014, serverless computing
is now offered by all major cloud providers [33,35–37], and is actively
promoted specifically for IoT applications [33,36]. We included two
AWS-based serverless execution points and one Microsoft Azure-based
serverless execution point in our study. To the best of our knowl-
edge, we are the first to closely examine the properties of serverless
computing as an execution option for latency-sensitive tasks in fog
computing.

1.2. Our contributions

In this paper, we empirically examine the properties of task ex-
ecution latencies in heterogeneous fog computing systems. Towards
this examination, we developed and deployed a set of benchmarks in
6 different locations, which included local nodes of different grades,
conventional cloud computing services in two different regions, and
serverless computing options from both Amazon Web Services (AWS)
and Microsoft Azure. Using the developed infrastructure, we conducted
a series of targeted experiments with a computing node invoking
these benchmarks from different locations and in different conditions,
including from 10 different environments on a trip between differ-
ent geographic regions, and continuously for 30 days with differ-
ent inter-invocation times. Altogether we obtained over 1000 h of
measurements. The contributions of our empirical study are as follows:

• We elucidate several important properties of task execution laten-
cies, including their heterogeneity across different locations and
stability with respect to time. We also demonstrate that latency
characterizations of specific execution options can be obtained
with as few as 10–50 latency samples.

• We demonstrate important properties of serverless execution op-
tions. For instance, a gateway serving multiple IoT nodes has the
potential to lower the response latency if it assigns multiple nodes’
tasks to the same serverless execution point.

• We provide a set of guidelines for smart gateway-based latency
characterizations, predictions, and task assignments. Our guide-
lines include, for example, the ability to treat serverless execution
points as having infinite capacities, the need to separately char-
acterize latencies of different execution options on the same
execution point, and the possibility of using Generalized Extreme
Value (G.E.V.) distributions to describe latency distributions of
fog execution options.

The complete measurement set we collected as part of this study is
available at [38].

1.3. Paper organization

The rest of the paper is organized as follows. Section 2 describes the
related work. Section 3 presents our experimental settings. Sections 4
and 5 present the results of the examinations of different types of
fog computing points: conventional execution, local and remote (Sec-
tion 4), and serverless execution (Section 5). Section 6 demonstrates
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Table 2
Existing relevant empirical task completion latency examinations.

# Public. Year Fog/ cloud Public
dataset

Stability
w.r.t. time

Serverless
execution

1 Chen et
al. [14]

2017 Cloud and
edge

No No No

2 Zheng et
al. [52]

2014 Cloud Yes Yes No

how task completion latencies can be modeled as random variables.
Section 7 demonstrates that these models can be reliably obtained from
a limited number of task completion latency samples, while Section 8
comments on the stability of the resulting task completion latency
distributions with respect to time. Section 9 concludes the paper.

2. Related work

Our study is motivated by multiple lines of work on IoT nodes’ task
assignments to execution points in fog computing systems [8–10,16–
20,39–43]. Due to fog systems’ potential to reduce task execution
latency compared to cloud-based systems, in many cases task allocation
objectives involve optimizing task completion latencies, or optimizing
other parameters subject to latency constraints [8,9,16–20,39]. For
example, [8] aims to minimize the total weighted response time of
all tasks, and [39] aims to minimize the maximal weighted cost of
delay and energy consumption among all users. In this paper we
aim to provide experimental insights and data that inform such ‘‘task
placement" algorithms.

Networking and communication latencies have long been stud-
ied, in different settings and from different perspectives (e.g., WiFi
latency [44], latency associated with accessing different cloud ser-
vices [45]). These studies focus on network parameters alone, while our
study includes latencies associated with communication, service initial-
ization, and task execution, which all represent important elements of
the delays experienced by IoT nodes that rely on in-fog services for task
execution.

Empirical observations of task completion latencies in edge and fog
computing have been made in [46–48], among others. Such studies
typically focus on first-order latency characterizations, often in the
context of a specific application optimized for in-fog execution. First-
order observations about latency variations in serverless computing
have recently been made in [49–51]. By contrast, we focus on task
completion latency models, variability, stability, and other complex
properties. To the best of our knowledge, our work is the first to consider
task latency characterizations from the point of view of a smart gateway,
and the first to provide corresponding guidelines.

Relevant latency measurements have also been conducted for cloud
gaming [13,53,54]. While relevant, gaming settings do not fully cor-
respond to the settings where IoT nodes are requesting services from
multiple heterogeneous execution points in a fog computing platform.

Two papers that are closest to ours are [14], an empirical study
of latency in edge and cloud settings for wearable cognitive assis-
tance, and [52], an empirical examination of the latency and the
quality of service of real-world web services (see Table 2). Similar
to our work, [14,52] examine task completion latencies that include
communication and task execution delays. [14] considers the effects
of edge and cloud-based execution, last-hop connectivity (4G LTE
and WiFi), mobile hardware, and edge-based accelerators. Our work
complements [14] by examining other factors, such as task latency
modeling as a random variable, its stability with respect to time, and
latency of serverless execution, and by providing a public dataset of our
measurements. [52] examines availability, latency, and throughput of
real-world web services monitored on a large scale over a long period
of time, and shares the associated dataset with the broader research
community. Our work complements [52] by focusing specifically on
3

Table 3
Fog computing execution points we deployed.

# Computing node Locations CPU specifications

1 Local server-grade
node

Campus Intel Xeon E5-2609
4@2.4 GHz

2 Local
consumer-grade
node

Residential location Intel Atom 230
1@1.60 GHz

3 AWS EC2 t2.micro
instance

US East (North
Virginia), US West
(Oregon)

Intel Xeon E5-2676
1@2.40 GHz

4 AWS Lambda US East (North
Virginia), US West
(Oregon)

Various, from AWS
EC2 pool

5 Microsoft Azure
serverless functions

US East (North
Virginia)

Various, from
Microsoft Azure
pool

Table 4
Benchmarks we deployed.

# Task Description Execution options

1 𝜋 Calculations (PIC) Calculate 𝜋 to many
decimal places via
Leibnitz approximation.

5000–500,000
iterations

2 Process Stored File
(PSF)

Calculate statistics on a
dataset read from node
memory.

500–50,000 lines
read

3 File
send-and-process
(FSP)

Calculate statistics on a
dataset sent to the
node.

500–10,000 lines
transmitted

fog-based heterogeneous services for IoT nodes, rather than general
user-facing web services. As part of our examination, we explicitly
consider multiple elements not examined in [52], such as different
types of platforms (traditional and serverless; local and remote), and
multiple execution quality levels.

3. Measurement settings

We deployed a set of custom benchmarks on fog computing points
listed in Table 3. These points included both local nodes and cloud
services with both conventional and serverless cloud execution options.

The benchmarks we developed (in Python) and deployed on the
above-listed nodes are summarized in Table 4. These benchmarks stress
different aspects of a computing system. The 𝜋 Calculations (PIC) task
stresses the CPU (a similar Super 𝜋 procedure is used to characterize
the performance of conventional and overclocked CPUs [55]). The
Process Stored File (PSF) task stresses memory access. The File Send-and-
Process (FSP) task stresses the communications. The benchmarks do not
correspond to one specific application, but are rather representative of
CPU-limited, memory-limited, and communications-limited IoT nodes’
tasks. The benchmarks are representative of low-complexity tasks that
could be requested by IoT nodes. The benchmarks are executed with
a range of execution options shown in Table 4, corresponding to the
envisioned multi-quality execution in future fog computing systems.
While the three tasks can be executed with much larger execution
options (leading to longer execution times), we specifically selected
smaller execution options to correspond to responsive IoT applications,
in which IoT nodes rely on fog computing for timely responses to their
requests.

On conventional computing points we deployed the benchmarks
over the popular Flask web services framework [56], with communica-
tion over the HTTP request–response protocol. The codebase deployed
in all conventional computing nodes was identical. For serverless ex-
ecution, which relies on proprietary deployment agents, we adapted
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Table 5
ICMP ping times for fog nodes accessed from an on-campus location and a nearby
residential location.

ICMP ping latency, ms, for different fog nodes

Measurement Campus Residential US East US West

On-campus node Median 2.3 16 8.7 70.4
90th percentile 4.4 21.4 9.6 71.4

Residential node Median 15.2 0.9 18.7 86.8
90th percentile 21.1 1.4 23.7 92.1

our code slightly to adhere to the required serverless input and output
handling.

As local execution points, we selected a server-grade option (#1 in
Table 3) with an Intel Xeon CPU, and a consumer-grade option (#2
in Table 3) with an Intel Atom CPU. These execution points were not
fully dedicated to our purposes, but were lightly loaded. We included a
server-grade and a consumer electronics-grade local execution points in
our study, to correspond to various local execution options that could
potentially be available in fog computing architectures.

As cloud execution points, we used two AWS datacenters, one in
our geographic region (US East, North Virginia, ≈300 miles away
from our campus), and one that is far away (US West, Oregon, >2500
miles from campus). For conventional cloud-based execution we used
EC2 t2.micro instances [32]. We also included serverless AWS (AWS
Lambda) [33] and Microsoft Azure options [36] in our experiments
(#4 and #5 in Table 3). We ran serverless Microsoft Azure functions
in the US East Microsoft datacenter, and serverless AWS options in the
same US East and US West computing centers as the conventional AWS
cloud services. These commercial platforms share resources between
hundreds of thousands of clients, and offer no visibility into their
CPU, memory, and network utilization rates. Despite extensive resource
multiplexing, which can be associated with fluctuations in resource
availability, we have observed that task latency statistics are relatively
stable with respect to time, as we describe in Section 8.

The majority of our experiments were conducted with a wirelessly
connected laptop, which represented a smart gateway. We used only
one laptop at a time, thus the overall service invocation rate was the
same as the laptop’s task invocation rate. The services were not loaded
with other nodes’ requests; service queuing delays were not a factor in
our latency characterizations. The laptop called the deployed services
from either an on-campus location or a close-by residential location
(<15 miles from campus). The ICMP ping response times for the
different fog nodes accessed from these location are shown in Table 5.
As expected, at each location a local fog node can be reached faster than
the closest cloud node (2.3 ms vs. 8.7 ms for the on-campus location,
0.9 ms vs. 18.7 ms for the residential one). We also performed several
experiments with other locations (e.g., the experiments described in
Section 4), and several with the local nodes connected via Ethernet
(e.g., the experiments described in Section 8.2).

We observed that connections with the cloud are notably faster on-
campus than off-campus. For example, as listed in Table 5, we measured
ICMP ping delays as 8.7 ms vs. 18.7 ms for the US East region, and
70.4 ms vs. 86.8 ms for the US West region. Unusually low latency of
campus-to-cloud connections has been noted before [47]; we observed
it on both Princeton University and Duke University campuses. This
observation suggests that on-campus experiments do not fully capture
the experience of the majority of the users of fog computing architectures,
and suggests the need to include off-campus locations in experimental
examinations of fog computing architectures.

We measured task completion latencies by measuring the round-trip
time between a laptop issuing task execution request and receiving a
result transmitted by the task execution point. This method corresponds
to measuring latency in its entirety. For local servers and conventional
cloud servers, the incurred delays include laptop-to-server communi-
cations and server-based task execution components. For serverless
4

Table 6
Median and 95th percentile task completion latencies for the PIC benchmark requested
by a laptop located on campus. Each data point in this table is based on over 1200
data samples.

Execution Median latency (s) 95th percentile latency (s)

point 5000 iter. 50,000
iter.

500,000
iter.

5,000
iter.

50,000
iter.

500,000
iter.

Server 0.02 0.06 0.47 0.04 0.08 0.64

Cons. node 0.08 0.38 3.0 0.12 0.61 3.5

AWS EC2, US
East

0.03 0.05 0.37 0.04 0.07 0.52

AWS EC2, US
West

0.15 0.18 0.48 0.16 0.19 0.62

AWS Lambda,
US East

0.46 0.52 1.19 0.57 0.65 1.37

AWS Lambda,
US West

0.72 0.79 1.05 0.86 0.92 1.27

execution, in which functions are instantiated on demand when they
are requested, the incurred delays also include server-based service
initialization components. To partially decouple the impacts of local
and remote latency impacts, we interleaved the invocations of bench-
marks on different execution points, local and remote. In particular,
this approach helped us distinguish between the WiFi-associated local
connectivity disruptions, which affect communications to all execution
points, and the conditions affecting individual execution points. In
different parts of this research we evaluated a range of task completion
latency properties, including latency magnitude for different settings,
latency distributions, and latency stability with respect to time.

Altogether we collected over 1000 h of experimental data, which
included several multi-day experiments, some lasting as long as 30
days. Example summaries of the measured task completion latencies,
for the PIC benchmark executed on different fog nodes with different
execution options, are shown in Table 6. Each value in this table is
based on more than 1200 individual data samples. We can see, for
example, that for this task, the median completion latency is the small-
est on a local server for the least complex execution option, but is the
smallest on the closest non-serverless cloud server, AWS EC2 US East,
for the two more complex execution options. This is intuitive: for small
tasks, the latency is dominated by the communication time, which is
smaller for local nodes, while for larger tasks, it is dominated by the
execution time, which can be smaller for more capable cloud nodes.
We note, however, that these tradeoffs can be different for consumer-
grade and server-grade local nodes. For this task, for example, there
are no conditions under which the execution on a local consumer-
grade node is faster than execution on the cloud. Finally, we also
observe that serverless AWS Lambda execution is significantly longer
than non-serverless options.

4. Role of geography and local conditions

In this section we comment on geography-related task completion
latency properties in multi-point fog computing systems.

It is well-known that the communication delay differs for different
datacenters, with the delay dependent on the distance signals need
to travel. To further understand the variability of task completion
latencies across different edge conditions and locations, we did a direct
comparison of latency distributions for multiple PIC task executions in
US East and US West datacenters, for a laptop carried on a trip from a
location on the Eastern side of the US (Durham, NC) to a location to the
Western side of the US (Seattle, WA). The experiment included 16.3 h
of measurements collected in 10 different environments; the laptop was
accessing the benchmarks over WiFi and cloud connectivity available
in a given environment. Table 7 lists the environments we captured
in these experiments, and summarizes the key statistics of latency
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Table 7
The statistics of completion latencies captured, for execution points in AWS EC2 US
East and US West datacenters, for 10 different environments.

# Location Execution point:
AWS EC2, US East

Execution point:
AWS EC2, US West

1 Duke University
campus,
Durham, NC

𝑚 = 0.34, 𝑠𝑝 = 0.1
(𝑁 = 721)

𝑚 = 0.48, 𝑠𝑝 = 0.1
(𝑁 = 293)

2 Residential
settings,
Durham, NC

𝑚 = 0.53, 𝑠𝑝 = 0.17
(𝑁 = 8627)

𝑚 = 0.49, 𝑠𝑝 = 0.43
(𝑁 = 2814)

3 Raleigh–Durham
Airport (RDU),
Durham, NC

𝑚 = 0.40, 𝑠𝑝 = 0.11
(𝑁 = 303)

𝑚 = 0.50, 𝑠𝑝 = 0.11
(𝑁 = 91)

4 Flight from
Durham, NC to
Houston, TX

𝑚 = 0.56, 𝑠𝑝 = 0.42
(𝑁 = 721)

𝑚 = 0.66, 𝑠𝑝 = 0.42
(𝑁 = 254)

5 Houston Airport
(HOU), Houston,
TX

𝑚 = 0.43, 𝑠𝑝 = 0.43
(𝑁 = 624)

𝑚 = 0.55, 𝑠𝑝 = 0.99
(𝑁 = 177)

6 Flight from
Houston, TX to
Seattle, WA

𝑚 = 1.92, 𝑠𝑝 = 0.39
(𝑁 = 1768)

𝑚 = 1.84, 𝑠𝑝 = 0.39
(𝑁 = 589)

7 Hotel in Seattle,
WA

𝑚 = 0.44, 𝑠𝑝 = 0.07
(𝑁 = 8510)

𝑚 = 0.33, 𝑠𝑝 = 0.07
(𝑁 = 2906)

8 Corporate
campus in
Seattle, WA

𝑚 = 0.51, 𝑠𝑝 = 0.20
(𝑁 = 1504)

𝑚 = 0.38, 𝑠𝑝 = 0.20
(𝑁 = 501)

9 Seattle airport
(SEA), Seattle,
WA

𝑚 = 0.55, 𝑠𝑝 = 0.32
(𝑁 = 766)

𝑚 = 0.42, 𝑠𝑝 = 0.30
(𝑁 = 249)

10 Flight from
Seattle, WA to
Chicago, IL

𝑚 = 4.40, 𝑠𝑝 = 0.77
(𝑁 = 426)

𝑚 = 4.28, 𝑠𝑝 = 0.78
(𝑁 = 161)

Fig. 2. Task execution latencies recorded with task invocations requested via in-
light WiFi, on 3 different flights, RDU-HOU, HOU-SEA, and SEA-ORD, for the task
xecution in two datacenters: US East (the left boxplot for each of the flights), and
S West (the right boxplot for each of the flights). In-flight, task execution latencies
re substantially higher than the latencies in other conditions. Task execution latency
ifferences between the US East and the US West datacenters are small in comparison
ith the overall in-flight task execution latencies.

istributions for the case of the PIC execution option with 500,000
terations. The table shows the median latencies 𝑚 and the spans 𝑠𝑝

between the 10th and the 90th percentiles of latency distribution, for
the 𝑁 task latency samples we captured in each of the experiments.

Comparing task completion latencies in US East and US West exe-
cution points, as experienced from the different locations, we observe,
as expected and as recorded before (e.g., in [47]), that the median
task completion latency is usually smaller when the task is executed
in a nearby datacenter. The only exception we noticed is location 2 in
Table 7, for which the execution in the nearby datacenter is slightly
slower than the execution in the remote datacenter; we hypothesize
that this is associated with a slow-down in the execution in the nearby
datacenter. For the conditions we examined, the typical differences in
5
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median latencies between the US East and the US West datacenters
were in the range of 100–140 ms.

As part of this experiment, we collected data on three different
flights, where we were using in-flight WiFi: Raleigh, NC to Houston, TX
(RDU-HOU), Houston, TX to Seattle, WA (HOU-SEA), and Seattle, WA
to Chicago, IL (SEA-ORD). The key latency statistics for these flights
are summarized in Table 7. Latency distribution boxplots are shown in
Fig. 2. In-flight WiFi is notoriously slow, which we readily observed in
our experiments: e.g., as shown in Table 7, in the in-flight conditions,
the median latency values are the highest of all environments we
examined. Coincidentally, our experience also showcased the difference
between ‘‘basic’’ and ‘‘high-speed’’ in-flight WiFi. On the RDU-HOU
flight, the median task completion latency was only 160 ms higher
than the median latency recorded in the flights’ departure airport, RDU
(a 40% increase). On the other two flights, the median latencies were
1.5 s and 3.9 s higher than the median latencies in the departure
airports, >300% and >700% increases, correspondingly. We deduced
that the RDU-HOU flight potentially has happened to be among the
7.2% seat-miles of flights that currently offer higher-quality WiFi [57].
Task completion latency distributions were also somewhat less stable
in in-flight conditions, as we elaborate on in Section 8. Comparing task
execution latencies between the US East and the US West datacenters,
we observe that in the in-flight conditions, task execution latency
differences between the datacenters are small in comparison with the
overall in-flight task execution latencies: namely, 100 ms (RDU-HOU),
80 ms (HOU-SEA), and 120 ms (SEA-ORD).

5. Serverless execution

In this section we examine latencies associated with serverless task
execution, in which functions are instantiated on demand when they
are requested. Serverless execution is widely used for web applica-
tions, and is promoted specifically for the Internet of Things and fog
computing [1,49,58]. Below, we first comment on unique attributes of
serverless computing (Section 5.1), then describe the results of our task
execution latency characterizations (Section 5.2), and comment on the
implications of serverless properties for smart gateway-based latency
characterizations (Section 5.3) and decision-making (Section 5.4). The
characterizations were conducted with both AWS Lambda and Mi-
crosoft Azure serverless functions, as described in Section 3. The mea-
surements we collected for the analysis presented in this section are
available at [38]. We are unaware of existing public datasets that
capture the serverless execution properties we describe below.

5.1. Autoscaling in serverless computing

One of the core advantages of serverless computing is the so-called
autoscaling : unlike traditional cloud computing resources, which need
to be created ahead of time, serverless instances are spun up and
down automatically based on user demand [59]. This saves application
developers and administrators from worrying about creating the right
number of processes for the users.1

The downsides of serverless computing are some limitations in
languages and functionality, the need to adapt programs to serverless
APIs (which we had to do for our benchmarking experiments), and the
associated complexity of porting serverless solutions from one provider
to another [60]. An additional downside of autoscaling is the complex
latency characteristics of serverless execution, as we describe below.

1 Throughout our benchmarking efforts, we appreciated the autoscaling
roperty of serverless computing: we had to keep track of whether we instan-
iated the conventional services, but did not have to worry about serverless
nes.
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Fig. 3. Task completion latencies for a Microsoft Azure serverless function, for the
different times between function invocations 𝛥𝑡: (a) Scatterplot of task completion
latencies vs. 𝛥𝑡, and the CDFs (b) and the PDFs (c) for 3 distinct response time dynamics
we identified in this data.

5.2. Latency changes with autoscaling and spin-down

Due to cloud providers internal resource allocation mechanisms that
prioritize in-demand functions over functions accessed infrequently
[60], serverless functions that are called more often execute faster.
Industry professionals who work with serverless computing have been
noting this [50]; however, we are unaware of attempts to capture
these properties of serverless execution points for smart gateway-based
decision-making.

To evaluate the behavior of serverless functions for different invo-
cation rates, we conducted a set of experiments for which we varied
the time between subsequent function invocations 𝛥𝑡 via a timer we
mplemented on a laptop we used to represent a smart gateway. The
ifferences between task completion times for functions invoked with
ifferent frequencies were substantial. For example, in our experiments
ith the PSF task in the North Virginia AWS datacenter, the difference
etween the median execution times of functions invoked within 1.5 s
f each other and functions invoked with longer delays ranged from
% to 42%.

When serverless functions are not invoked for longer periods of
ime, task completion latencies can increase further. For example, in
ur experiment with invoking an AWS function in a North Virginia
atacenter every 30 min over the course of a day, the median response
ime was 0.95 s, for a function that responds in 0.5 s when called
requently — a 90% increase in latency. In our experiment with invoking

Microsoft Azure function in the North Virginia datacenter every
0 min over the course of 1.5 days, the average response time was
.0 s, for a function that normally responds in under 0.15 s — a 40x
difference. The differences we observe between these ‘‘cold start’’ times
with different serverless platforms have been noted in [49].
6

t

5.3. Modeling latency in the presence of spin-down

To understand the potential approaches to modeling spin-down la-
tency increases, we conducted a longer-term experiment with one par-
ticular execution option: 20,000 consecutive Microsoft Azure function
invocations in North Virginia, with randomly chosen times between the
invocations 𝛥𝑡, with the maximum 𝛥𝑡 = 5 min (300 s). This experiment
took more than 18 days. The experiment focused on the effects of
spin-down, rather than on service scale-out. That is, we invoked the
serverless function from only one location, thus the time between the
invocations was never less than the minimum function response time
of 0.06 s. The scatterplot of the obtained response times versus 𝛥𝑡 is
shown in Fig. 3(a).2

In this data, we were able to isolate three distinct cases: 𝛥𝑡 < 10 s
(𝑁 = 10,425), 10 s < 𝛥𝑡 < 60 s (𝑁 = 1641), and 𝛥𝑡 > 60 s (𝑁 = 7877),
where 𝑁 corresponds to the number of task latency samples falling in
the identified range. The CDFs and the PDFs for these three cases are
shown in Figs. 3(b) and 3(c). The task completion latencies for the cases
of 𝛥𝑡 < 10 s and 𝛥𝑡 > 60 s are drawn from different distributions; the
task completion distribution for the case of 10 s < 𝛥𝑡 < 60 s has the
statistical properties of the mixture of the other two distributions, as
can be observed, for example, in Fig. 3(c).

5.4. Gateway-based decision-making with serverless execution options

From the point of view of task execution point selection in fog
computing architectures, serverless autoscaling translates to having
execution points with near-infinite capacities. Correspondingly, it is useful
to include infinite-capacity execution points into fog task scheduling
and resource allocation problem formulations.

Additionally, from the point of view of assigning tasks to execution
points, serverless function autoscaling and spin-down lead to a paradox-
ical, counter-intuitive behavior: the more work we assign to a serverless
execution option, the faster it responds. A gateway that is serving multiple
IoT nodes would lower the response latency if it assigned multiple
nodes’ tasks to the same serverless execution point.

The underlying mechanisms controlling task completion latencies in
serverless execution are complex; their details are not usually revealed
to the users.3 A gateway that attempts to empirically obtain a precise
task latency characterization that will be used in task assignment
algorithms runs into the following problems:

• The gateway needs to probe the serverless execution point at the
expected task invocation frequency, as the observations made at
other invocation frequencies may be substantially different.

• As an individual gateway does not have the information about the
frequency of invocation requests generated by the other gateways,
the gateway does not have the full knowledge of function inter-
invocation times, and hence cannot provide accurate latency
estimates.

Thus in many practical cases gateway-based predictions of serverless
execution latencies could be closer to pessimistic estimates than to
precise characterizations.

6. Task completion times as random variables

In this section we demonstrate how task completion times can
be modeled as random variables (Section 6.1) and comment on the
distributions of different execution options (Section 6.2).

2 This plot excludes 64 outlier points with response times > 0.5 s.
3 As observed in [61], by not revealing the details of the underlying

nfrastructure to the users, service providers can evolve the infrastructure
ithout getting locked into outdated design decisions, and also avoid revealing

rade secrets.
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6.1. Fits of Generalized Extreme Value (G.E.V.) distributions to experimen-
tal latency values

To better understand the properties of task completion latencies,
we fitted the experimentally obtained benchmark completion latency
samples to a set of 20 common statistical distributions using the con-
ventional maximum likelihood estimation (MLE) technique to estimate
the parameter vectors for the hypothesized distributions. It is well-
known that the MLE technique is asymptotically optimal under mild
onditions since it achieves the Cramer–Rao lower bound and becomes
n unbiased estimator for large datasets [62]. Due to its desirable
symptotical features, the MLE approach employed in this paper is also
he common approach in many practical estimation problems in which
he sufficient statistics cannot be obtained analytically for finding the
inimum variance unbiased estimator. The full set of distributions we

xamined is as follows: Beta, Binomial, Birnbaum–Saunders, Exponen-
ial, Extreme Value, Gamma, Generalized Extreme Value, Generalized
areto, Inverse Gaussian, Logistic, Log–logistic, Lognormal, Nakagami,
egative Binomial, Normal, Poisson, Rayleigh, Rician, 𝑡 Location-scale,
nd Weibull.

Having obtained estimated distributions following the MLE ap-
roach, we order the quality of fitted distributions by analyzing the
otal deviation between the estimated probability distributions and the
umerical one obtained using the experimental data. For this purpose,
he usual metric employed is the total variation distance, which forms a
etric space on the set of probability distribution functions [63].4 The
istribution that is best-fit to the data is defined as the one minimizing
he distance to the numerical distribution function. The second-best fit
istribution is defined similarly.

We observe that in many of the cases we examine, experimental
atency values match well to Generalized Extreme Value (G.E.V.) distri-
utions with a positive shape parameter, that is, a Type II G.E.V. dis-
ribution, which are also known as Frechet or Inverse Weibull.

For example, we closely examined the following three datasets we
ollected:

(i) A dataset with 34,449 samples of the PIC benchmark executed
on execution points 1, 3 (both locations), and 4 (both locations),
with execution options of 5000, 50,000, and 500,000 iterations.
The executions were requested from an on-campus wirelessly
connected laptop. The total duration of this data collection
experiment was approximately 8 h.

(ii) A dataset with 41,693 samples of the PSF benchmark executed
on execution points 1, 3 (both locations), and 4 (both locations),
with execution options of 500, 5000, and 50,000 lines read.
The executions were requested from an on-campus wirelessly
connected laptop. The total duration of this data collection
experiment was approximately 6 h.

(iii) A dataset with 56,392 samples of the FSP benchmark executed
on execution points 1, 2, and 3 (both locations), with execution
options of 500, 5000, and 10,000 lines transmitted. The execu-
tions were requested from a wirelessly connected laptop in an
off-campus residence. The total duration of this data collection
experiment was approximately 11 h.

n this case, for the PIC benchmark (settings (i)), the G.E.V. distribution
s the best fit in 9 out of 15 experiments, and second-best fit in

additional experiments. For the PSF benchmark (settings (ii)), the
.E.V. distribution is the best fit in 8 out of 15 experiments, and

econd-best fit in the additional 7 — that is, in every experiment
G.E.V. distribution is either the best or the second-best fit. For

he FSP benchmark (settings (iii)), while the best fit is typically a 𝑡

4 For two probability distributions 𝜇 and 𝜈 defined on a metric space 𝑋,
he total variation distance 𝑑TV(𝜇, 𝜈) between them is given by 𝑑TV(𝜇, 𝜈) =
up 𝜇(𝐴) − 𝜈(𝐴) .
7

𝐴⊆𝑋 | |
Fig. 4. The CDFs of measured latencies for several settings, shown with the best-
fitting Generalized Extreme Value (G.E.V.) distributions. In many cases we examine,
the G.E.V. is the best or the second-best fit out of 20 common statistical distributions.

Table 8
G.E.V. distribution fits to the experimental latency data, for some of the examined
benchmarks.

Settings 𝑁 Distribution
support (s)

G.E.V. parameters

PIC, settings (i),
500,000 iter., execution
point 1

1444 0.42–5.8 Shape 0.34, scale
0.04, location 0.48

PSF, settings (ii), 5000
lines, execution point
3, US West datacenter

3961 0.15–3.2 Shape 0.35, scale
0.004, location 0.16

FSP, settings (iii),
10,000 lines, execution
point 1

2710 0.09–0.64 Shape 0.12, scale
0.008, location 0.11

Location scale distribution (in 10 out of 12 experiments) or a logistic
distribution (in the remaining 2 experiments), the G.E.V. distribution
is a second-best fit in 7 out of 12 experiments.

Table 8 shows the parameters of the fitted G.E.V. distributions for
three of the experiments with 𝑁 task completion latency samples, for

hich the G.E.V. is the best-fitting or the second-best-fitting distribu-
ion of all examined. In these experiments, the means of the fitted distri-
utions, which are identified by the location parameter in G.E.V. distri-
utions, are substantially different; the extent to which the distributions
re spread out, identified by the scale parameter, is different as well.
n all cases, the G.E.V. shape parameter is positive, corresponding to
he Inverse Weibull distributions. Fig. 4 shows several experimentally
btained CDFs and the CDFs of fitted G.E.V. distributions.

Inverse Weibull distributions have previously been observed to fit
TTP server processing times [64]; as the underlying communication
echanism in our experiments is HTTP, it is logical that these distri-

utions would be a fit for some experiments, especially those where
TTP-related mechanisms dominate task completion latencies.

We also observe a close fit of G.E.V. distributions to serverless
xecution points’ latencies. For example, for the serverless execution
ptions in the above-described experiments, a G.E.V. distribution is the
est fit in 11 out of 12 experiments. Examples of a fit of a G.E.V. distri-
bution to serverless execution points’ latencies are shown in Fig. 4(b).
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Fig. 5. An experimentally obtained execution point latency CDF 𝐹 and its estimates
𝐹𝑁 based on 𝑁 = 10 and 𝑁 = 50 samples from the distribution (a), and the average
(b) and the maximum (c) distance between the experimental 𝐹 and its estimates 𝐹𝑁 ,
for the different number of samples 𝑁 . Even a small number of samples 𝑁 allows
characterizing a CDF well.

G.E.V. distributions typically arise in the study of order statistics. We
hypothesize that internal proprietary cloud providers’ service provi-
sioning mechanisms behind serverless operations involve a minimiza-
tion or a maximization of a performance quality, and thus are readily
described by the G.E.V. distributions.

Our observations about the fits of G.E.V. distributions to task laten-
cies are limited to low-complexity tasks we use in our benchmarking.
Complex operations with runtimes that vary widely for different inputs
(e.g., cascading classifiers with multiple exit points [65], or complex
interactive applications with many components [14]), may have task
completion latency distributions defined by algorithm-related, rather
than infrastructure-related, phenomena. We do, however, expect low-
complexity tasks to represent an important fraction of the IoT tasks
served by fog architectures.

6.2. Distributions for different execution options

In addition to examining the fits, we also considered whether the
distributions are similar for the different execution points and execution
options. We found that the distributions can vary. For instance, for the
PIC benchmark, we saw that the increase in the complexity of a task
led to a substantial increase in not just the median latency, but also
in the span of the latency distribution (i.e., the shape of the CDF is
different for different execution options). For the FSP benchmark, with
the increase in the complexity of the task, the span of the distribution
increased slightly for execution points 2 and 3, and substantially for
execution point 1. Overall, the distributions can be very different for
different execution options. Thus, the characteristics of the latency of
different execution options need to be obtained separately; we cannot
assume that the CDFs will be the ‘‘shifted versions" of each other.

7. Estimating task completion times based on partial information

In this section we provide insights into characterizing task comple-
tion latency CDFs based on a small numbers of task completion latency
samples.
8

Fig. 6. Response time for multiple task invocations, for two different settings. Response
time distribution remains largely stable throughout the multi-hour duration of the
experiments.

The differences in CDFs of different execution options (see above)
suggest that the characterizations of the different options need to be
separately obtained. For multi-point multi-quality fog systems, the need
to separately characterize each execution option on each execution
point may seem daunting. Fortunately, a gateway would require few la-
tency samples to obtain an approximation of a task completion latency
CDF, as we show below.

Fig. 5(a) shows an experimentally obtained CDF 𝐹 for setting 1 in
able 8, in comparison with Kaplan–Meier estimates of this CDF, 𝐹𝑁 ,
ased on 10 and 50 samples 𝑁 from this distribution. It can be observed
hat for these values of 𝑁 , 𝐹 and 𝐹𝑁 are close to each other. To
uantify the proximity, Fig. 5(b, c) show the average and the maximum
istances between 𝐹 and 𝐹𝑁 for different 𝑁 values for this distribution.
or each value of 𝑁 , samples were randomly drawn 100 times; the
ots on the graphs show the individual results, while the line shows the
esults’ average in Fig. 5(b), and the results’ maximum in Fig. 5(c). It
an be seen, for example, that when 30 task completion latency samples
re used to obtain the CDF estimate 𝐹𝑁 , the average distance between
he estimated and the empirical CDF is only 6%, and the maximum
rror is only 17%.

Obtaining task completion latency samples to characterize execu-
ion point latencies should not be onerous in practice, as it is straight-
orward for the gateway to measure latencies while executing tasks.
hat is, in the example above, when the gateway executes a task every
inute, it would take 30 min for the estimated CDF to be within 6% of

he empirical CDF on average. Approaches that trade off exploitation
nd exploration in latency characterization can be developed to further
educe the execution option characterization overhead.

. Task completion latency stability

In this section we examine the stability of task completion latency
istributions with respect to time. We first comment on task completion
atency distribution stability we observed in a range of experiments
hat lasted on the order of hours (Section 8.1), and then describe
he distribution stability we observed in two multi-day experiments
Section 8.2).
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Fig. 7. Response time for multiple task invocations, for two different in-flight exper-
ments. While the distributions vary more than the distributions in less challenged
onditions, they also exhibit long-term stability.

.1. Latency stability in multi-hour experiments

In our experiments we observed that the statistics of task completion
atencies in a given environment remained largely the same for our
ulti-hour experiments. Two representative cases are shown in Fig. 6,
hich demonstrates latency measurements as a function of time for
different settings: (a) 8000 executions of the PIC benchmark, with

he execution option of 500,000 iterations, called from a laptop placed
n a hotel in Seattle, WA, and using the hotel WiFi, executed in an
WS EC2 t2.micro instance in the US West datacenter, and (b) 2000
xecutions of the PSF benchmark, with the execution option of 50,000
ines read, called from a laptop placed on campus and using a campus

iFi, executed on the serverless AWS Lambda platform in the US West
atacenter. Fig. 6 shows that, while the response times are random,
oth the average response time and the level of variation around the
verage are stable with respect to time in both settings.

To quantify the stability of response time distributions, we consider
he stability of distribution percentiles. Specifically, taking consecutive

300-sample intervals of the recorded response times and obtaining their
statistics, we compare the medians (50th percentiles) and the 90th and
the 95th percentiles of the 300-sample distributions. For the settings
described above and shown in Fig. 6, these percentiles are close to each
other. For instance, for the PIC task (Fig. 6(a)), the highest difference
between the distribution medians is 0.7%, and the highest difference
between the 95th percentiles is 6%. For the FSP benchmark (Fig. 6(b)),
the highest difference between the distribution medians is 2.8%, and
the highest difference between the 95th percentiles is 26%. In the
numerous multi-hour experiments we conducted, such stability of a
CDF with respect to time is typical, observed in nearly all cases. The
stability indicates that an obtained task completion latency CDF is likely
to remain useful for long periods of time.

The only set of conditions where we observed some variability are
the in-flight WiFi conditions. Some of our in-flight WiFi experiments
are described in Section 4 (experiments 4, 6, and 10 in Table 7, and the
distributions demonstrated in Fig. 2); we also conducted several other
in-flight experiments, where, similarly to the experiments described in
Section 4, the median latencies were significantly larger than laten-
9

cies in non-flight environments. However, even in those challenged
Fig. 8. The overlayed CDFs of 5000 consecutive task executions intervals in a 10-day
experiment, for an AWS EC2 instance-based execution point, for the FSP benchmark
with lower (a) and higher (b) network utilization. Over the 10-day experiment, latency
characteristics of the execution point remained stable for one experiment (a), and
changed once for the other (b).

conditions, despite a dramatic increase in the overall magnitude of
latency compared to other conditions, the latency distribution is more
stable than one may expect. Two examples are shown in Fig. 7. They
correspond to the following conditions: (a) 1600 executions of the PIC
benchmark with the execution option of 500,000 iterations, called from
a laptop connected to in-flight WiFi on a flight from Europe to the US,
and executed on the serverless AWS Lambda platform in the US East
datacenter, and (b) 1700 executions of the PIC benchmark with the ex-
ecution option of 500,000 iterations, called from a laptop connected to
in-flight WiFi on a flight from Houston, TX to Seattle, WA, and executed
on the AWS EC2 platform in the US East datacenter. Here, in the first
set of conditions, the highest difference between the medians is 7.2%,
and the highest difference between the 95th percentiles is 30%. In the
second set of conditions, the highest difference between the medians is
6.7%, and the highest difference between the 95th percentiles is 83%.
While significantly more varied than in non-challenged conditions, the
distributions are still stable enough for their characterizations to be
useful over long periods of time.

8.2. Latency stability in multi-day experiments

To examine latency CDF stability further, we conducted a 10-day
experiment with the FSP benchmark executing in an AWS EC2 instance
in a US West datacenter (>800,000 consecutive executions), and a 2-
day experiment with the PIC benchmark executing in an AWS EC2
instance in a US East datacenter (>200,000 consecutive executions).
To exclude WiFi-related disruptions, we conducted these experiments
with a laptop connected via Ethernet.

Our results demonstrate that task completion latencies’ properties
remain stable for long periods of time, undergoing changes only once in
a while. For example, for the FSP benchmark executed with the option
of a small dataset transmitted over the network (500 lines transmitted),
the statistical properties of task completion latencies remained stable
over the entire 10-day interval. Fig. 8(a) shows, for this case, the CDFs for
the successive 5000-invocation intervals of this experiment, overlayed
with each other. Throughout the 10 days of this experiment, the 5th,
10th, 25th, 50th, and 75th percentiles of task completion latencies
stayed within 2.2% from each other, the 90th and the 95th percentiles
— within 8.5%. For the FSP benchmark executed with the option of a
larger dataset transmitted over the network (10,000 lines transmitted),
over the 10-day course of the experiment, the CDF statistics changed once,
on the 4th day of the experiment. Fig. 8(b) shows, for this case, the
CDFs for the successive 5000-invocation intervals of this benchmark.
The difference between the percentile values for the different CDFs
in this case is up to 20%; for the CDFs before and after the 4th-day
transition the difference in all percentiles does not exceed 2.1%.

For the PIC benchmark, the CDF statistics changed only once as
well, in a 2-day interval, but the changes were more pronounced:

for one of the options, the median task completion latency increased
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6x (from 0.05 s to 0.32 s), and for the other — 10x (from 0.29 s
to 2.9 s). We hypothesize that this notable change is related to CPU
sharing in the AWS t2.micro instance we use, as the PIC is a CPU-
sensitive benchmark. Similarly to the case of the FSP, before and after
the transition, task completion latency CDFs remained stable. Over the
17 h before the transition and the 27 h after the transition, the CDFs’
percentiles differed by no more than a few percent.

The observed stability in task completion latencies indicates that
the execution point latency characterizations can be conducted infre-
quently, but do need to be updated periodically. In particular, the
extent of task completion latency changes we observed for the PIC
benchmark – e.g., from 0.29 s to 2.9 s – is on the order that would call
for selecting a different task execution point for a latency-sensitive task.

9. Conclusions

Fog computing is receiving increasing attention from industry and
academia alike due in part to its potential for enabling advances in the
Internet of Things (IoT) applications. Yet, few comprehensive quantita-
tive characterizations of the properties of fog computing architectures
have been conducted. In this work we examined statistical properties
of task completion latencies in fog computing systems with multiple
heterogeneous execution points. The experimental study we conducted
covered a range of settings, and uniquely considered both traditional
and serverless fog computing execution points. Our study elucidated
several important properties of task execution latencies, including the
heterogeneity of their properties across different locations and the need
for separate characterizations of different execution options. Based on
the results of our study, we demonstrated how task completion latencies
can be modeled as random variables. We also demonstrated that such
models can be obtained from a limited number of task completion
latency samples, and that the obtained statistical characterizations are
likely to remain useful over long periods of time.

In future work we will expand our benchmarks to include popular
cloud-based services for IoT devices, such as AWS Rekognition [66],
a service that processes device-provided images to extract labels of
objects detected in the images. We will also design fog task allocation
algorithms that take the execution points’ and options’ properties we
observed in this study into account.
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