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Clinical Screening Interview Using a
Social Robot for Geriatric Care

Ha Manh Do , Member, IEEE, Weihua Sheng , Senior Member, IEEE, Erin E. Harrington , and Alex J. Bishop

Abstract— Social robots are coming to our homes and have
already been used to help humans in a number of ways
in geriatric care. This article aims to develop a framework
that enables social robots to conduct regular clinical screening
interviews in geriatric care, such as cognitive evaluation, falls’
risk evaluation, and pain rating. We develop a social robot
with essential features to enable clinical screening interviews,
including a conversational interface, face tracking, an interaction
handler, attention management, robot skills, and cloud service
management. Besides, a general clinical screening interview
management (GCSIM) model is proposed and implemented. The
GCSIM enables social robots to handle various types of clinical
questions and answers, evaluate and score responses, engage
interviewees during conversations, and generate reports on their
well-being. These reports can be used to evaluate the progression
of cognitive impairment, risk of falls, pain level, and so on by
caregivers or physicians. Such a clinical screening capability
allows for early detection and treatment planning in geriatric
care. The framework was developed and implemented on our
3-D-printed social robot. It was tested on 30 older adults with
different ages, achieved satisfying results, and received their high
confidence and trust in the use of this robot for human well-being
assessment.

Note to Practitioners—This article is motivated by the goal of
using a social robot to perform geriatric well-being assessment
through clinical screening interviews. In order to conduct clinical
screening interviews, the social robot needs the following essen-
tial features: having a verbal conversational interface, adapt-
ing to different types of clinical screening interviews, scoring
and evaluating answers, having nondirective listening responses,
and enabling directive listening responses. The proposed gen-
eral clinical screening interview management (GCSIM) model
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demonstrates these capabilities on the social robot. The robot
can give structured clinical screening interviews with different
question–answer sheets. This will help advance assistive tech-
nologies for use by geriatric physicians, nurses, and social service
professionals to keep older adults healthy, safe, and independent
at home. Robots will become more and more essential in
working alongside geriatric practitioners to help monitor older
adults at home and to provide early detection and warning of
cognitive/mental health problems, falls’ risk, and so on. This
early detection property can improve quality-of-care and help
older adults remain living at home.

Index Terms— Clinical interview, clinical screening, conversa-
tion management, elderly care, geriatric care, healthcare, social
robot, well-being assessment.

I. INTRODUCTION

THE older adult population in the United States is increas-
ing. The number of people 65 years of age and older

is anticipated to double from almost 43.1 million in 2012 to
83.7 million by 2050 [1]. This trend leads to both economical
and sociological challenges in geriatric care. Many of these
persons will live to age 85 and older. According to the U.S.
census, persons aging 85 and older represent the fastest-
growing age demographic in the country. Persons who are
85 and older often require greater health monitoring due to
increased vision and hearing impairment, memory deficits, and
so on. The increasing older population creates serious social
problems on the geriatric care. There are not enough young
people to take care of the aging population in the United
States [2]. The aging of the American society is resulting in
an ever-increasing population of old adults. Many of them age
alone with underlying functional and mental health problems.
Moreover, despite challenges in daily living performance, most
of the older adults prefer to remain living in their homes for
as long as possible. This is mainly due to the fact that staying
in one’s own home is cheaper and commits greater privacy
and autonomy [3]. More than a third of older Americans live
alone in their own homes [4].

Living alone in old age can prove hazardous to personal
safety, emotional health, mental health, and physical health.
The feeling of loneliness, negative moods, or depression
creates social and mental health problems of older adults.
More than five million people in the United States are living
with dementia and aging illnesses [5]. It is estimated that one
in three older adults will die from complications caused by
dementia. In the United States only, every 66 s, one person
is diagnosed with Alzheimer’s disease [5]. Besides, physical
health is another serious issue older adults face in their life.
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Fig. 1. Overview of the proposed clinical screening interview using a social
robot for geriatric care.

For an older adult, the risk of falls increases over time [1].
Falling within one’s home can result in injury and contribute
to nursing home admission, chronic health complications,
social isolation, and loss of self-confidence [6]. An estimated
30%–50% of all persons over 65 years of age fall in their
homes annually [7]. Half of them do so repeatedly during
the day, making falls the number one cause of consequential
disablement, unintentional injury, and accidental death among
older adults [8]. Therefore, it is important to keep track of
the progression of both mental and physical health in geriatric
care.

Social robots have proved their capabilities in geriatric
care, such as providing companionship [9], improving the
users’ mood [10], and conducting cognitive orientation assess-
ment [11], which have a positive influence on the lives of older
adults [12], [13]. We believe that social robots can offer a
solution to monitoring the mental and physical health of older
adults who live independently in their residence.

Clinical assessment is the process of collecting information
about a patient for diagnosing disease and planning treatment.
There are three common types of clinical assessments: clinical
screening interview, neurological and biological testing, and
intelligence testing. A clinical screening interview is a pro-
cedure that practitioners use to diagnose what is wrong and
initiate treatment for a patient. A clinical screening interview,
often referred to as a conversation with a purpose, is a dialog
in which the practitioner asks specific, open-ended questions
in order to assess a client’s cognition, behaviors, feelings,
and physical well-being. Equipped with verbal conversation
capability, the social robot can be used to perform clinical
screening interviews. The use of social robots for this task
could help detect mental and physical problems of older
adults, save patients’ time to visit practitioners in person,
and decrease their financial burden. Therefore, it is highly
beneficial to develop clinical screening interview capability
for social robots.

In this article, we propose an approach that uses a social
robot for a clinical screening interview. As shown in Fig. 1,
a social robot can perform clinical screening interviews
through verbal conversation in order to monitor the progres-
sion of cognitive impairment, pain, or physical well-being.
In addition, the robot is capable of not only conducting clinical
screening interviews but also automatically evaluating answers
given by the patient during clinical assessment sessions,
as well as generating scores and saving them for further
analysis by a remote caregiver or practitioner.

The main contribution of this article is that it proposed
and implemented a comprehensive clinical screening interview
framework that enables social robots to proactively perform

geriatric well-being assessment through verbal conversations,
which has not been fully developed in existing dialogue or
question–answering (QA) systems. We introduced a complete
software architecture with a conversational interface (CI) for
social robots, which supports not only general conversations as
many other social robots do but also clinical screening inter-
views. We proposed and developed a general clinical screening
interview management (GCSIM) model for the human–robot
conversation manager. This novel GCSIM model enables a
social robot to handle various clinical screening interviews
with several essential interview skills to engage interviewees
during the conversation. Our work provides a reference design
to develop social robots for not only clinical interviews but
also other healthcare applications. For example, in pandemics
such as the Covid-19, social robots can find themselves
invaluable in monitoring the progression of patients’ health
while they are quarantined at their homes.

The rest of this article is organized as follows. Section II
discusses related previous works. Section III describes the
design of our social robot platform. Sections IV and V present
the development of the CI and the clinical screening interview
framework for social robots, respectively. Section VI gives
the experimental results. Section VII concludes the article and
discusses the future work.

II. RELATED WORKS

This section gives a review of the related works in the area
of social robots with a focus on geriatric care, healthcare, and
dialogue systems.

In recent years, there has been much interest in develop-
ing robotic technologies for geriatric care. Several animal-
like therapy robots and companion robots have been made
commercially available, such as PARO [14] and NeCoRo [15].
In academia, researchers have developed many robots for
elderly care in domestic environments, such as the Com-
panionAble, GiraffPlus, Accompany, Robot-Era, Mobiserv,
Hobbit, and SoCoNet projects [16]. Those robots were capable
of performing music therapy, teleconferencing, and remind-
ing older adults of taking medicines, eating or drinking,
and guiding them through their homes. Several robots have
been developed as assistive robots to give baths to in-bed
patients [17], help patients dress [18] and eat [19], monitor
the older adult’s daily activities, and detect falls [20]. Their
work showed that older adults, when trained beforehand, are
able to effectively take advantage of the assistance of a robot.

Several social robots have been developed for mental
health care, such as the Ludwig robot [21] that is capa-
ble of analyzing speech patterns to identify early signs of
Alzheimer’s [22], [23] and ZORA robot that can help older
adults with interactive therapeutic and recreational activi-
ties [24]. Chang et al. [25] found that the PARO robot
can act as a stress reliever for older adults suffering from
dementia. In [26], the PARO robot was used in experiments
to investigate the effect of a social robot intervention on
depression, loneliness, and the quality of life of older adults.
Their results showed a noticeable improvement in the mental
well-being of older adults. Wang et al. [27] investigated the
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responses of older adults with dementia and their caregivers
following direct interaction with a teleoperated assistive robot.
In [28], a home service robot was developed to remind the
older adults to drink water once fluid intake by the older
adults is found to be insufficient. The aforementioned robots
show the capabilities of geriatric care and healthcare. However,
the abovementioned work failed to develop a general frame-
work for clinical assessment through screening interviews.

Dialogue systems or conversational agents have many appli-
cations [29] and are generally classified into three main types:
task-oriented dialogue agents, chatbots, and QA systems. Task-
oriented dialogue agents are designed for a particular task to
get information from the user to help complete the task [30],
such as searching for flights, ordering a pizza, and finding
restaurants. Voice assistants, such as Apple’s Siri, Microsoft’s
Cortana, Amazon’s Alexa, and Google’s Assistant, are now
popular on smart devices for open conversations that mimic
unstructured human–human conversations rather than focus on
a particular task [31]. QA systems are developed to allow users
to ask questions in natural languages and receive a concise
answer [32]. The Web search engines, a type of QA systems,
have been developed by Google, Microsoft, Yahoo, and so on
for decades. Recently, IBM’s Watson question–answer system
based on the DeepQA system [33] won the TV game show,
Jeopardy. However, these dialogue systems and QA systems
are hard to adopt for clinical screening interviews since
they are mainly designed to handle the questions from the
users. Recently, several studies have used robots or computers
with audio systems for interview tasks, such as gathering
adults’ privacy information [34] and interviewing children
about special needs [35] or bullying [36]. However, the audio
systems in these studies played limited roles in the interview
tasks, which focused on playing a list of prerecorded ques-
tions and recording responses without evaluation or scoring.
These systems still lack the essential capabilities of a clinical
interview system, including handling various types of clini-
cal questions and answers, scoring or evaluating responses,
adapting to the users’ response, and integrating emotion
recognition and attention management to engage users during
conversations.

Social robots with conversational capabilities can be the
appropriate technology to achieve the goal of caring for the
elderly in their own homes [37]. Such robots can provide
companionship and assistive services through verbal conversa-
tions. Although conversational computers and social robots are
getting more popular, these systems mainly deal with general
conversations [38]. Therefore, there is a great need to develop
a robotic framework for conversations with the purpose of
clinical screening interviews for geriatric care.

III. SOCIAL ROBOT PLATFORM FOR

CLINICAL SCREENING INTERVIEWS

A. Essential Features of Social Robots

Social robots have a wide range of applications, designs,
features, and functionalities. This section aims to propose
several essential features that a social robot should have to
be capable of the clinical screening interview.

Fig. 2. 3-D-printed social robot used for clinical screening interviews.

Different from a normal conversation, a clinical screening
interview is a conversation with a purpose, which is clearly
defined and conducted within a certain time frame. The
structured clinical screening interview approach is mainly
used to gather reliable and valid assessment data. Structured
clinical screening interviews involve asking the same ques-
tions in the same order as every client. The intake interview
and the mental status exam are two of the most common
clinical screening interviews. The primary goals of clinical
screening interviews are relationship development, assessment,
and helping. To achieve these goals, besides honesty and
integrity, the ability to remain calm in stressful situations,
self-awareness, and observational and assessment skill, a prac-
titioner must meet requirements of basic communication and
listening skills [39]. Basic communication and listening skills
consist of nondirective listening responses, directive listening
responses, and directives and action responses. Nondirective
listening responses, including attending behaviors (eye con-
tact, body posture, voice tone, or verbal tracking) and other
behaviors (silence, clarifications/verbal prompt, paraphrasing,
the reflection of feeling, or summarization) serve to establish
a therapeutic alliance. Directive listening responses (feeling
validation, interpretive reflection of feeling, interpretation,
reframe, or confrontation) help bring the interviewer’s perspec-
tive into the interview. In addition, they must master technical
knowledge associated with clinical screening interviews. This
means that they must know different types of clinical screening
interviews and the range of available interview responses that
likely affect clients. Practitioners are required to maintain these
skills as a basic skill set that can be learned and improved with
time and practice.

It is challenging for a social robot to possess all the afore-
mentioned skills. However, in order to be used for a clinical
screening interview, a social robot should have the essential
features as follows: having a verbal CI, adapting to different
types of clinical screening interviews, scoring and evaluating
answers, having nondirective listening responses, and enabling
directive listening responses. In this article, we mainly develop
and evaluate the CI, the clinical screening interview skill that
enables cognitive assessment, falls’ risk evaluation, and pain
rating. We also implement an attention management function
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Fig. 3. Software architecture of the social robot.

as a simplified version of nondirective and directive listening
responses.

B. Hardware Design

The social robot is a 3-D-printed desktop robot, as shown
in Fig. 2. The robot consists of three parts: robot head, body,
and base. The robot head is powered by two servo motors
and has two degrees of freedom (yaw and pitch). It features
a touch screen, a vision system, and an auditory system.
Therefore, the robot can track the user’s face and turn to the
direction where the sound is coming from. The touch screen
connected to an Android embedded board is used for video
communication and graphic user interface (GUI). The vision
system consists of an RGB-D camera allowing face detection.
The auditory system is built by extending the built-in micro-
phone array of the PS3eye camera [40]. It consists of four
microphones and employs technologies for echo cancellation
and background noise suppression. This allows the auditory
system to be used for speech recognition, sound localization,
and sound separation in noisy environments. The microphone
array operates with each channel processing 16-bit samples
at a sampling rate of up to 48 kHz per channel and a large
dynamic range of signal-to-noise ratio up to 90 dB. The audi-
tory system is based on HARK [41], an open-sourced robot
audition software consisting of modules for acoustic signal
processing, sound source localization, sound source separation,
and automatic speech recognition for various microphone array
configurations. Using a microphone array, the robot is able to
localize and separate multiple sound sources, which has been
realized in our previous works [42], [43]. The robot body has
two speakers and a minicomputer inside. The minicomputer
is an Intel NUC with a Core i7 processor and runs the robot
software. The robot base contains batteries and other power
supplies inside.

C. Software Architecture

In order to develop the essential features, as described
earlier, the robot software architecture is proposed, as shown
in Fig. 3. The architecture features six key components:

1) CI; 2) face tracking (FT); 3) interaction handler; 4) atten-
tion management; 5) robot skills; and 6) cloud service
management.

The CI combines speech recognition and spoken
language understanding (SLU) to enable human–robot verbal
conversations.

The FT detects the human face and recognizes facial
emotions during the interview for clinical assessment. It con-
sists of face detection and facial movement and emotion
recognition. The face detection is implemented using a pre-
trained facial landmark detector inside the Dlib library [44].
Each detected facial landmark consists of the locations
of 68 (x , y) coordinates that map to face regions, includ-
ing the mouth, right eyebrow, left eyebrow, right eye, left
eye, nose, and jaw. The detected landmarks are used to
recognize the facial movements using hidden Markov mod-
els (HMMs) and estimate the face position in the camera
field of view (FoV). We trained seven independent HMMs
to detect facial movements, including blink_eyes, smile,
turn_head_to_the_left, turn_head_to_the_left, straight_face,
speaking, and no_speaking. The face location consists of the
X and Y coordinates from the center point of the camera
FoV. Besides, the detected faces are cropped and sent to
Microsoft cloud servers for facial emotion recognition using
Face APIs [45]. This cloud service can return eight facial
emotions, including neutral, anger, contempt, disgust, happy,
fear, sadness, and surprise. The detected face along with
recognized movements and emotions is used for attention
management.

The interaction handler sets visual displays for the GUI and
handles events generated by the user’s interaction on the touch
screen. This handler and the GUI are implemented on Android
and connected to other modules on the Linux computer using
TCP/IP sockets. We call the GUI a robot face.

The attention management determines the user’s engage-
ment in an interview by tracking the face, speech, and
interaction of the user on the touch screen. It also regulates
and maintains the robot face to react to the user’s emotions
and responses during the interview. During clinical screening
interview, if negative verbal intents or negative facial emotions
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(anger, contempt, disgust, fear, and sadness) are detected,
the robot plays verbal cues (e.g., no worries, you did a good
job, fantastic, and nice job) to motivate the user. In addition,
if it detects no face, no response, and no interaction on the
touch screen, the robot replays the question or prompts the
user to the response.

The robot skills enable the robot to assist a human at home
by interacting with him or her in a nonintrusive way. The robot
is able to provide companionship through socialization skills,
such as telling jokes or quotes, playing music, describing
the weather, playing the latest news, and playing rock-paper-
scissors. In addition, the robot can perform clinical screening
interviews for cognitive assessment, mood, and loneliness
detection, as well as pain evaluation.

The cloud service management connects the robot to clinical
cloud services and databases. The cloud database stores the
health clinical question and answer (Q&A) sheets, as well
as users’ profiles and reports of clinical assessment scores,
which can be updated and reviewed by a caregiver. The local
database stores the profile, testing schedules, and Q&A sheets
customized for the user who is being cared for by the social
robot.

IV. CONVERSATIONAL INTERFACE

Enabled by speech synthesis, speech recognition, SLU, and
a human–robot conversation manager, as shown in Fig. 3,
the robot can interact with the human through verbal con-
versations.

A. Speech Synthesis

The speech synthesis module is known as text-to-speech
(TTS), where questions are verbally communicated to the user.
Recently, a number of commercial deep learning-based TTS
engines that produce quality sound are available as cloud and
web services, such as Amazon IVONA [46], IBM Watson
TTS [47], and Google TTS APIs [48]. We implemented online
TTS based on Google TTS APIs that can generate human-like
sound with a small delay.

B. Speech Recognition

The autonomous speech recognition (ASR) module is
known as speech-to-text (STT), where the answers given by
the user are converted to text for analysis. Recently, deep
neural networks (DDNs) are utilized for academic research
in ASR and deployed in most commercial ASR systems
that are available for end users to use as cloud services
and APIs. In order to achieve the state-of-the-art accuracy
of speech recognition, we utilized the Google Speech APIs
cloud service [48], one of the best cloud services for speech
recognition [49], which can return word sequences in real time.

C. Spoken Language Understanding

SLU takes the outputs from the ASR and produces utter-
ances’ meaning representations that are then passed on to the
human–robot conversation manager. This module determines
what the utterance (U) is about. The meaning representations

Fig. 4. SLU for social robots.

can be the domain (main topic) of the utterance, user’s intent
(I) with relevant parameters and entities (E) or tagger slots.
An example utterance “Wake me up at 7 am” can be parsed
into alarm domain and set.alarm intent with date-time entity
(date-time=“7 am”) that can be resolved into 7:00:00. The
alarm is classified by the domain recognition; the set.alarm
intent is recognized by the intent recognition; and the date-
time entity is extracted by the entity extraction. These modules
also estimate the confidence score of each component of the
semantic representation. In this article, all intents are imple-
mented in one domain only: the clinical_interview domain.
Therefore, the developed SLU consists of an intent parser
and entity resolution. Various approaches and techniques have
been applied for the intent parser, such as deterministic pars-
ing [e.g., regular expressions (REs)], statistical parsing (e.g.,
hidden vector state model, stochastic finite state transducers,
dynamic Bayesian networks, support vector machines, con-
ditional random fields (CRFs), and deep learning), dialogue
act recognition, user’s utterance classification, user’s utterance
content analysis, semantic interpretation, and syntax-driven
semantic analysis [38]. In this article, we implemented the
intent parser by a combination of deterministic parsing and
statistical parsing, as shown in Fig. 4. The deterministic pars-
ing model can cover all the sample utterances that are used to
train the model. This model makes the intent parser predictable
and easy to be used for clinical screening interviews, where the
answers may be changed and updated at the time of operation
but are well-bounded and the possible answers are well defined
by the practitioners. This model is implemented based on
pattern matching. If the first model fails to find a match,
the statistical parsing model is used. This second model is
trained beyond the set of sample utterances and, therefore, has
generalization capabilities. It can parse utterances even though
they are not part of the training examples. This model involves
two components: intent recognition and entity extraction. The
last step after identifying the intent and the entities is to resolve
entity values from raw strings of entities. These components
are presented in the following.

1) Pattern Matching: Pattern matching checks and locates
the constituents of some patterns among a given sequence of
tokens. The pattern can be represented by either tree structures
or sequences. Sequence patterns are commonly used for intent
parsing and often described using REs. The example utterances
of each intent are represented as regular languages [50]. REs
are used to denote regular languages. They can represent
regular languages and operations on them succinctly. An RE
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is a formal mathematical expression using a limited set of
operators. It can be used to specify a set of strings. REs
can be concatenated to form new REs, contain both special
and ordinary characters, and have repetition qualifiers (*, +).
The parser checks if an input text matches any given RE
that was built given example utterances of intent. We used
three main operations to present an RE, including disjunction
|, grouping {}, and parentheses (). An example utterance of the
weather intent is “(tell me|let’s me know|what is) the weather
in {location}(Stillwater) {time}(tomorrow),” where {location}
and {time} are entities. We implemented an RE pattern
matching engine based on nondeterministic finite automate
(NFA) [51]. REs are represented as NFA machines; then, these
NFA machines are run using an input string. The engine checks
whether an RE matches an input string and classifies this input
string into the corresponding intent.

2) Intent Recognition and Entity Extraction: There have
been several approaches for intent recognition or classification.
We can use classical approaches of text mining, such as models
on bag-of-words with N-Grams [52] and term frequency-
inverse document frequency (TF-IDF) [53]. Recently, neural
network methods have made significant progress in natural lan-
guage processing [54], including speech recognition, speech
synthesis, intent classification, and entity extraction. We can
use recurrent networks RNNs [e.g., long short-term mem-
ory (LSTM) and gated recurrent unit (GRU)] or convolutional
neural networks (CNNs) for intent recognition. The recent
study [55] shows that simple models (shallow neural networks)
can achieve significant performance on data sets where the
intent recognition task is based on a key phrase recognition
task, such as sentiment detection and intent recognition in
SLU. We implemented a statistical parser using compact feed-
forward neural networks that require a small training data set,
fast training, and efficiency in running on embedded systems
in social robots. We used four layers of neurons (three hidden
layers with the symmetrical sigmoid activation functions and
an output layer with the sigmoid activation function) and a
“bag-of-words” approach to organizing our training data.

Named entity recognition (NER) or entity extraction locates
and classifies the named entities that present in the text. NER
classifies the named entities into predefined categories, such
as the names of persons, organizations, locations, quantities,
monetary values, specialized terms, product terminology, and
expressions of time. We implemented the entity extraction
based on the slot filling approach using a linear chain CRF [56]
that is specifically trained to extract the slots of the recognized
intent.

Besides building example utterances and trained intents
for general conversations (e.g., setting alarm, telling jokes,
playing music, playing games, weather, and playing news),
we created example utterances to train clinical intents for inter-
views. By observing the sample videos of clinical screening
interviews, we identified intents that are relevant to clinical
interviews. The most popular intents that we identified are
clinic.repeat (the human asks the robot to repeat the ques-
tion), clinic.unknown (the human does not know the answer),
clinic.unclear (the question is unclear), clinic.stop (the human
wants to stop the interview), clinic.pause (the human wants

to pause the interview), and clinic.change (the human changes
the answer). We created 30 query examples for each clinical
intent based on our observation of these videos.

3) Entity Resolution: Entity resolution involves the dis-
ambiguation of entities. It finds all expressions that refer
to the same entity in a text and presents the value of the
entity in a predefined format that the robot can recognize.
For example, the extracted time entity “the first Monday of
June 2018” from the utterance “Remind me to visit the doctor
at 9:00 am on the first Monday of June 2018” is resolved
into a time value in ISO format “2018-06-04T09:00:00Z.”
In this article, we implemented the entity resolution for
dates, times, and money that are mainly used for cognitive
assessment.

D. Human–Robot Conversation Manager

The conversation manager coordinates the activity of all
components, controls dialogue flows, and communicates with
external applications, devices, services, or resources. Its roles
include discourse analysis, knowledge database query, dialog
management, and task management. In addition, the conver-
sation manager may contact one or more robot skills that
have knowledge of specific task domains, such as playing the
latest news, weather, setting alarms, playing music, playing
games, and clinical assessment. This module is implemented
based on the slot-filling approach for general conversations.
This approach proved its significance in a conversation flow
for parameter value collection within a single intent. Slot-
filling requires all parameter values of each intent to be
set. If users omit one or more of the parameters in their
response, the robot will generate questions to ask or prompt
them to provide values for each missing parameter. Besides,
we propose and implement a new human–robot conversation
management model for clinical interviews, namely, GCSIM
that can handle the required timing for well-being assess-
ment, attention management, listening responses, interaction
management, and scoring. This model will be presented in
Section V.

V. FRAMEWORK FOR CLINICAL SCREENING INTERVIEW

This section presents our development of a clinical screen-
ing interview framework that enables multiple clinical screen-
ing interviews and features a verbal CI, a clinical screening
interview procedure, answer evaluation and scoring, and atten-
tion management.

A. Clinical Screening Interviews

A clinical screening interview is a conversation in which the
psychologist asks specific, open-ended questions in order to
evaluate cognition, health, behaviors, feelings, or other capac-
ities of a client. The clinical screening interview approach is
commonly used for an intake evaluation and cognitive impair-
ment diagnostic in geriatric care. There are various interview
tools for screening, diagnostic, and assessment widely used
for geriatric care. In this article, we mainly discuss interview
tools for cognitive assessment, falls’ risk evaluation, and pain
rating.
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1) Cognitive Assessment: Cognitive assessments are com-
monly implemented to appraise and monitor age-associated
changes in human cognition. A cognitive orientation assess-
ment is a practical method for grading the cognitive state of
a person [57]. These assessments can be used to check time
and space orientation, as well as short- and long-term recalls
of information. Generally, it is employed by therapists and
physicians. These assessments can also be used to evaluate the
cognitive development of children. However, the focus of this
work is solely on older adults who are at high risk of demen-
tia and Alzheimer’s diseases. There are different types of
cognitive orientation assessments that can be conducted. The
minimental status examination (MMSE) and MMSE2 consist
of daily life questions, such as the date, month, and state
of residence. The MMSE and MMSE2 test the ability of
a person to register, calculate, recall, and orient oneself at
a given situation [57]. The MMSE2, a standardized version
of the MMSE, is used to reduce the interrater variability in
scores of the original version [58]. The Montreal cognitive
assessment (MoCA) is a 10-min-long cognitive screening
tool [59] to evaluate the concentration, quantitative thinking,
language, and orientation of a person, and it is able to identify
mild cognitive impairment with a higher sensitivity than the
MMSE. The Addenbrookes cognitive assessment (ACA) is
based on the MMSE, and it was developed as a way to
differentiate between Alzheimer’s disease and dementia. It can
be applied in approximately 15 min and also less relies on
verbal abilities and focuses more on the executive abilities
of the elderly than the MMSE [60], [61]. We built a new
cognitive evaluation interview toolkit that covers different
types of memory and concentration tests. The toolkit consists
of 11 types of questions: 1) repetition (the human is asked
to repeat and remember some information); 2) time (time of
the day, year, month, day of the week, and date); 3) location
(state, state capital, city/town, building, and floor); 4) recall
(the human is asked to recall the information she/he heard
before); 5) saying series of numbers in reverse; 6) solving
problems with basic operations; 7) describing the images;
8) spelling the word in reverse; 9) command (the human is
asked to do commands: smile, turn head to the left or right,
and blink eyes); 10) figure selection and drawing; and 11)
listening comprehension. Each type of question has multiple
questions.

2) Falls’ Risk Evaluation: Falls are one of the leading
causes of both fatal and nonfatal injuries for older adults. The
most popular falls’ risk assessment tools used in hospitals are
the Morse Falls Scall, STRATIFY Scale, Hendrich II Fall Risk
Model, and Johns Hopkins Fall Risk Assessment Tool [62].
These toolkits collect multiple factors (e.g., history of falling,
gait, mental status, age, cognition, and mobility) from a patient
and use their own scoring systems to assess the falls’ risk.
The most recent falls’ risk assessment tool is STEADI [63].
Using in-depth interviews, STEADI helps identify patients at
low, moderate, and high risk for a fall. The abovementioned
tools mainly use interviews for falls’ risk screening and use
gait, strength, and balance tests to evaluate the fall-risk levels.
However, these tools mainly collect the history of falling in
general. In order to evaluate the falls’ risk of older adults at

their homes, we built a new interview tool with a series of
questions about how confidence an older adult is in doing
daily activities without falling. The confidence levels are from
1 (not confident at all) to 10 (very confident).

3) Pain Rating: A pain rating tool is a communication
method that allows doctors to track patients’ pain and rate
their pain and evaluate what they are feeling and how bad
their pain is. The main approaches of current pain rating
tools are using verbal, visual and numeric self-rating scales,
physiological responses, and behavioral observation scales to
measure the pain. There are many types of pain scales used
for general clinical and research settings, including 1–10 pain
scales, faces pain scales, global pain scale, visual analog pain
scale, McGill pain scale, Mankoski pain scale, color scales for
pain, and so on [64]. The 1–10 pain scales, the Wong–Baker
FACES pain rating scales, and the McGill pain questionnaire
are most frequently used as self-rating instruments for pain
rating. Therefore, we built a pain rating tool by combining all
these scales and questionnaires.

B. Modeling for Clinical Screening Interview

In a structured clinical screening interview, a practitioner
asks a list of predefined questions to collect information for
the purpose of assessment. A general process of each question
consists of four phases: 1) providing a setting or context
of the question by saying statement or providing a sheet of
pictures or descriptions; 2) asking the question; 3) waiting
for responses and scoring or evaluating the responses; and
4) saying a closing statement for the question before moving
to the next one. Listening responses are mainly applied in
the first three phases. After each phase, there is a responding
time given for the patient to answer, recognize, or memorize.
Clinical screening interview using a social robot is performed
by combining the robot’s CI and graphical user interface on
the touch screen. In this section, we propose a general clinical
screening interview model for the structured clinical screening
interviews using a social robot, such as cognitive assessment,
pain rating, and falls’ risk evaluation.

A structured clinical screening interview CLIN
includes a list of N questions and expected answers
QA = {qai, i = 1, 2, . . . , N}, which is designed by
caregivers or practitioners and adapted to each patient at the
interview time by the robot. Each question–answer pair qa
features four components: a setting or context, a question,
expected answers, and a post-question statement that provides
a closing statement after each question. The question–answer
pair is defined as follows:

qa = {context, question, answer, post_question}
= {c, q, a, p}
= {[vc, tc, ic], [vq, tq, iq], [ea, sc], [vp, t p, i p]}

where [vc, tc, ic] are the verbal statement, response time,
and GUI status of the context c; [vq, tq, iq] are the verbal
statement, responding time, and GUI status or graphical con-
tent of the question q; [vp, t p, i p] are the verbal statement,
responding time, and GUI status or graphical content of the
post_question p; and ea and sc are expected answers and
corresponding scores. The GUI status or graphical content can
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be a sequence of images or figures displayed on the robot face,
such as a speaking face, a normal face with blinked eyes,
a smiling face, an image, a figure, or a video clip.

An example of a question is as follows:

{
“context”: {

“vc”: “Pretend this figure is a clockface”,
“tc”: 1,
“ic”: [“display:clockface”]},

“question”: {
“vq”: “Please use your finger to draw the hour

and minute hands at 15 minutes to 5 o’clock”,
“tq”: 15,
“iq”: [“display:clockface”]},

“answer”: {
“ea”: {“draw_clockface”: {“hour_hand”: 4,

“minute_hand”: 45}},
“sc”: {“hour_hand”: 1, “minute_hand”: 1}},

“post_question”: {
“vp”: “Thank you. Move to the next question”,
“tp”: 1,
“ip”: [“display:robot_face”]}

}

The clinical screening interview Q&A sheets are prepared
by remote caregivers or practitioners and sent to the robot
through cloud services. Question generation constructs instruc-
tive statements, and questions and correct answers of the
current Q&A sheet during a clinical screening interview. This
module can be implemented in different approaches, such
as generative models, retrieval-based models, and pattern-
based heuristics. In this work, we implemented it using the
heuristics-based approach. The questions and correct answers
are defined and stored in the database. The statements and
questions are selected from if-else conditional logic using a
set of rules. The correct answers to the questions related to
dates and time are automatically updated using the current
time of a given assessment session. These sheets are con-
verted into the above format. A Q&A sheet is created right
before each clinical screening interview. All expected verbal
answers of this Q&A sheet are used as example utterances
to train a new intent, namely, clinic.answering, together with
clinical intents (clinic.repeat, clinic.unknown, clinic.unclear,
clinic.stop, clinic.pause, and clinic.change).

The GCSIM model for the robot to conduct an interview
question is shown in Fig. 5. As mentioned earlier, the robot
conducts an interview question through four phases as follows.

In the first phase starting at time t0, the robot says an
opening statement or a verbal context vc of the question and
displays a graphical content ic on the robot face. During the
time period of this phase from t0 to t1, the human face is
tracked by the FT. If no face is detected or the human face is
not in the center, the robot says a directive statement dlr1 to
get the human ready for answering the question, and the robot
may repeat vc and ic.

In the second phase starting at time t1, the robot asks
a question vq and displays a graphical content iq on the

robot face. It also checks human’s attention in the same way
as in the first phase and says a directive statement dlr2 in
response to the recognized attention.

The human is required to answer in a time period tq from
t2 to t3 in the third phase using verbal or interaction on the
touch screen as follows.

1) Verbal Responses: The robot shows the timer and records
the human response by capturing audio phrases one by one.
For example, the recorded audio phrases are s1, s2,…, sM .
Whenever any audio phrase is recorded, it is accumulatively
merged to previous audio phrases, and a nondirective listening
response nlri (e.g., a smiling face) is shown in the robot face to
respond to the human voice. If si is recorded, the audio data Si

is sent to the Google speech recognition cloud service, where
Si = s1 + s2 + · · · + si . The Google cloud service returns a
word sequence Wi such that

Wi = argmax
W

p(Si |W )p(W ) (1)

where p(Si |W ) is the acoustic model and p(W ) is the lan-
guage model. The SLU parses Wi to detect clinical intents.
If any nonanswering intent (clinic.repeat, clinic.unknown,
clinic.unclear, clinic.stop, and clinic.pause) is detected,
the robot says a corresponding directive listening response dlr3

to instruct the human in answering the question; otherwise,
the intent clinic.answering or clinic.change with its entity ei is
recognized, where ei is expected information that may answer
the question. If these intents are detected at low confidence,
then ei is set to be equal to Wi . The scoring module compares
ei with expected answers eai to evaluate and score the human’s
answer. If this answer is correct, the robot stops the timer
and moves to the next phase (the fourth phase); otherwise,
the robot keeps recording the human responses until the time
is over. Based on the score and evaluation, the robot plays a
short verbal cue to motivate the human before saying a closing
statement for the question in the fourth phase.

2) Interaction Responses: If the question is required to
be answered by human’s interactions on the touch screen,
the robot shows the timer and a graphical interface for the
human to select answers for the question. If any interaction
is detected, it is recorded and converted to a corresponding
response that is also scored and evaluated in the same way as
a verbal response.

C. Answer Evaluation and Scoring

1) Verbal Responses: As presented in Section V-B, the
expected information ei extracted from the human verbal
response is scored by comparing with all expected answers
eai for the question through syntax analysis. The comparison
is performed in two steps. First, both the user response ei and
each expected answer of eai are analyzed and parsed using the
Natural Language Toolkit (NLTK) [65]. The parsed results
are converted into two ASCII trees, namely user response
tree and correct answer tree. These trees represent the part
of speech (POS) and the relationship between words. Second,
a matching tree search is performed to compare these two
trees. The answering score is awarded based on the matching
between these two trees. For each question, the robot generates
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Fig. 5. GCSIM model: FT, SLU, Att. Man. (attention management), dlr (directive listening response), and nlr (nondirective listening response).

a score of 1 if the correct answer tree is a subtree of the user
response tree, which means the human answered it correctly or
0 if the correct answer tree is not a subtree of the user response
tree, which means that the user response was incorrect. It is
also possible to be awarded a partial score if the answer is
partially correct by evaluating the matching score of the two
trees.

2) Touchscreen Interaction Responses: In the clinical
screening interviews, there are three types of touchscreen
interactions the human uses to answer questions. The first
type is multiple-choice questions (e.g., selecting a shape). The
human points to his/her choices on the screen, and they are
recorded and scored. The second type is graphical marking
questions. The human is asked to mark in an image shown on
the screen (e.g., selecting body parts they feel the most pain).
The image with marks is captured. The third type is drawing
questions. The human is asked to draw a figure (e.g., drawing
the hour and minute hands on a presented clockface). The
drawn figure is captured and scored by comparing it with the
reference figures. The example questions are shown in Fig. 6.
This section mainly discusses the evaluation process for a
drawing question.

The drawing question aims to check the coordination
between hand movement and vision. For this question, the fol-
lowing steps are involved: 1) showing the requirement of the
figure to be drawn; 2) giving a place for the figure to be drawn;
3) after the completion of the drawing, check for resem-
blance. The evaluation of manually drawn shapes requires
many factors to be considered, which may be age-related

Fig. 6. Interaction responses. (a) Selecting a shape. (b) Drawing hour and
minute hands. (c) Selecting the face that best describes the level of pain.
(d) Selecting the body part with the most pain.

ailments, such as stiffness to hold and draw, diseases such
as Parkinson’s disease, steadiness, and vision impairment.
If the user commits some minor mistakes, the robot should
give positive evaluation results. In addition, drawing on a
vertical screen yields a different experience compared with
that of drawing on a paper. Considering all these factors,
an evaluation module was developed. The process consists of
two phases: similarity evaluation and quantitative evaluation.
The evaluation methodologies used in these phases depend on
each question. Evaluating the drawing of the hour and minute
clock hands will be presented to demonstrate this process as
follows.

a) Similarity evaluation: This phase estimates the sim-
ilarity between the drawn figure and the references. For
example, the robot asks the human to draw the hour and
minute hands at 3:00 on a clockface, as shown in Fig. 7(a). The
references of a clockface at 3:00 are shown in Fig. 7(b)–(e).
This step includes the following phrases: 1) load the original
color image of the drawn figure; 2) convert the image to
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Fig. 7. Clockface drawing evaluation. (a) Clockface. (b)–(e) References of
the hour and minute hands at 3:00. (f) Hour and minute hands drawn in the
touch screen. (g) Edge of the clock hands. (h) Window of minute hand (Wm)
and hour hand (Wh). (i) Estimated minute and hour hands.

gray scale; 3) convert the gray scale image to a binary
image; 4) extract the contours from the binary image and the
reference figures; and 5) compare the contour of the figure and
that of each reference figure and match them. If there is
sufficient similarity, then the score of similarity evaluation
is returned true, otherwise false. If the similarity score is
true, the quantitative evaluation is performed to evaluate the
figure in detail.

b) Quantitative evaluation: This phase mainly estimates
the size, position, and other features of the drawn figure.
For example, this phase estimates the direction and size of
the minute and hour hands drawn in the clockface through
the following steps: 1) find out the edge points using the
Laplacian of Gaussian (LoG) algorithm [66] in the image,
as shown in Fig. 7(g); 2) collect two sets of edge points
inside the windows of minute hand (Wm) and hour hand
(Wh), as shown in Fig. 7(h); and 3) estimate the minute and
hour hands from these data sets using the linear regression
algorithm. The two data sets collected in the second step are
MP and HP, where MP = [(x1, y1), (x2, y2), . . . , (xM , yM )]
and HP = [(x1, y1), (x2, y2), . . . , (xH , yH )]). They are used to
identify the minute and hour hands that can be represented as
follows:

y = w0 + w1x (2)

where w0 and w1 are the coefficients of the equation. By using
least-squares estimation, the coefficients (Wm and Wh) of the
minute and hour hands are computed as follows:

Wm = [
wm

0 wm
1

]T = (
X T

m Xm
)−1

X T
mYm (3)

Wh = [
wh

0 wh
1

]T = (
X T

h Xh
)−1

X T
h Yh (4)

where Xm , Ym , Xh , and Yh are given as follows:

Xm =

⎡
⎢⎢⎣

1 x1

1 x2

. . .
1 xM

⎤
⎥⎥⎦Ym =

⎡
⎢⎢⎣

y1

y2

. . .
yM

⎤
⎥⎥⎦

Xh =

⎡
⎢⎢⎣

1 x1

1 x2

. . .
1 xH

⎤
⎥⎥⎦Yh =

⎡
⎢⎢⎣

y1

y2

. . .
yH

⎤
⎥⎥⎦.

Fig. 8. Confusion matrix of the intent parser evaluated on the SNIPS
benchmark.

Fig. 9. Average F1-score of our SLU and five main existing NLU
systems [67].

The minute and hour hands are estimated as follows:
ym

i = wm
0 + wm

1 xi , i = [1, 2, . . . , M] (5)

yh
i = wh

0 + wh
1 xi , i = [1, 2, . . . , H ]. (6)

As shown in Fig. 7(i), the direction and size of the estimated
hands are used to evaluate and score the response of the human
to the drawing question.

VI. EXPERIMENTAL RESULTS

This section presents our experiments and evaluations of the
intent parser and the field tests of clinical interviews.

A. Intent Parser

We evaluated the intent parser using the SNIPS bench-
mark [67], which has been tested on several main existing
NLU systems (Google’s API.ai, Facebook’s Wit, Microsoft’s
Luis, Amazon’s Alexa, and Snips’ NLU) for seven chosen
intents, including AddToPlaylist, GetWeather, BookRestau-
rant, SearchCreativeWork, PlayMusic, SearchScreeningEvent,
and RateBook. We used 300 sample utterances to train for
each intent and 100 utterances for validation. The confusion
matrix is shown in Fig. 8. As shown in Fig. 9, the average
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Fig. 10. Confusion matrix of the intent parser for clinical intents. There are
a total of 30 validation samples for each intent.

F1-score of our intent parser achieves more than 0.87 and
is compatible with the abovementioned NLU systems on the
same benchmark.

Besides, we trained and evaluated clinical intents;
30 expected answers for the questions of clinical question–
answer sheets are randomly selected to create example utter-
ances for the clinic.answering intent. In addition, there are
30 query examples created for each of the other clinical
intents. The intent parser for clinical screening interviews was
evaluated using 5-fold cross validation. The confusion matrix
of this evaluation is shown in Fig. 10. The average F1-score
is more than 91%. For example, the response for the question
“What day of the week is it?” is “Today is Monday oh no
Tuesday.” This response is correctly parsed as follows:

{“query”: “Today is Monday oh no Tuesday”, “intent”:
“clinic.change”, “entity”: {“first-answer”: “Monday”,
“answer”: “Tuesday”}, “confidence”: 0.86 }.

B. Field Test and Evaluation

Thirty local older adults from 60 to 89 years old com-
pleted clinical screening interviews using our social robot dur-
ing which human-administered evaluation was simultaneously
performed. The demographic information about this group
is as follows: (10 male, 20 female; Mean age: 73.4; and
Standard deviation: 7.90); Races [White/Caucasian: 86.7%,
Native Hawaiian/Pacific Islander: 6.7%, American Indian:
3.3%, and Multiracial: 3.3%]; Education [Some college: 30%,
High School: 20%, College Degree: 16.6%, Graduate/Ph.D.:
26.6%, and Less than high school: 6.8%]; and Marriage
status [Married: 50%, Widowed: 33.3%, Divorced/Separated:
13.3%, and Never Married: 3.4%]). These subjects were
predominately in their early 70’s, women, white-Caucasian,
over 1/3 were college-educated, and most were currently
married or widowed. All participants were asked to read and
sign a university-approved institutional review board (IRB)
consent form before participation. The clinical screening inter-
view lasted about 50 min, which includes cognitive assess-

Fig. 11. Field test scene: the older adult (right), the local practitioner
(middle), and the social robot (left). The clinical screening interviews are
conducted by the robot and evaluated by both the robot and the independent
practitioner.

Fig. 12. Question categories of the conducted clinical screening interviews.
There are a total of 3690 questions to be given to 30 subjects in the field
tests.

ment, falls’ risk evaluation, pain rating, health screening,
mood evaluation, companionship assessment, memory testing,
fatigue, and short blessed testing. Survey and debriefing were
conducted, which consists of open-ended questions on the
subjective experience in using the social robot. The field
test scene is shown in Fig. 11. The clinical screening inter-
views were conducted by the robot, while the answers were
evaluated by both the robot and an independent practitioner.
Each subject was asked 120 to 128 questions. The answers
were evaluated based on the categories of these questions,
including Yes/No, Address/Name, Time, Location, Numerical
Series, Count_backwards, Spelling, Command, Interaction,
Verbal_Choice, Visual_Choice, and Others. The distribution of
these categories is shown in Fig. 12. The robot successfully
conducted all clinical screening interviews in the field test and
received high trust and good feedback from the participants.

We evaluated the scoring performance of the robot in the
clinical screening interviews by comparing the points the robot
and the practitioner score for each question. The percentage
of questions the robot scores the same as the practitioner is
shown by the blue bars in Fig. 13. The robot failed most
in the spelling responses with a scoring accuracy of about
90% but was able to correctly evaluate and score more than
93% for the other responses, as shown in the blue bars. The
incorrect evaluation occurred when there was wrong speech
recognition or when the older adults answered in unexpected
ways. The robot failed to recognize around 7% of the spelling
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Fig. 13. Scoring performance: the percentage of answers the robot scores
the same as the practitioner (blue bars), the rate of wrong speech recognition
(orange bars), and the rate of the responses answered in unexpected ways
(green bars).

Fig. 14. Accuracy of face detection, facial movement recognition, facial
emotion recognition, and clinical intent recognition in the filed test.

responses but less than 3% of almost any other responses,
as shown by the orange bars in Fig. 13. There were less than
3% of the responses that were answered in unexpected ways,
as shown by the green bars. The robot correctly evaluated all
touch screen interaction responses that include the clockface
figures drawn by the older adults.

Moreover, in order to evaluate the attention management,
we tested the FT, facial movement and emotion recognition,
and clinical intent recognition with 30 participants in the field
test. As shown in Fig. 14, the accuracy of face detection is
more than 97%. The robot mainly failed in detecting the side
faces when the participants turned left or right. The accuracy
of facial movement recognition is about 94%. The cloud-based
facial emotion recognition mainly returned the neutral emotion
and had low accuracy of other emotions. Comparing with
the evaluation of the practitioner, the accuracy of recognizing
negative facial emotions was below 40%. However, the robot
can recognize clinical intents of the participants during clinical
interviews in the filed test with an accuracy of 88.2%. Overall,
attention management played an important role in handling
the whole interview process and improving the human–robot
communication in interview tasks.

In addition, we conducted post-surveys and debriefing with
questions on the subjective experience after each participant

completed the robot-administrated clinical interviews. The
participants were asked to provide ratings from 0 to 10 on
whether: 1) they have confidence that this robot can assess
human well-being like a care provider (aide, nurse, and
clinician) and 2) they have trust in this robot to assess human
well-being. A total of 25 participants voluntarily completed the
written debriefing survey. The other five chose not to do after
completing the robot interaction. For confidence, there were
11% or 44% of the 25 subjects who indicated low confidence
that a robot can assess human well-being as accurate as a
care provider, whereas 56% indicated they had a high degree
of confidence that this robot can assess human well-being
comparable to a human care provider. For the trust, results
indicated that 8% or 32% of subjects had a low degree of
trust that a social robot could access well-being like a human
care provider, whereas 17% or 68% indicated that they trusted
this social robot to assess well-being. It is observed that older
adults appear to trust the robot somewhat more than they
may actually feel the confidence that the social robot can
accurately rate well-being. A Chi-Square test was conducted,
which results in χ2 = 4.58, ρ = 0.03, or < 0.05, suggesting
that the subjects were significantly more trustful of the robot
to perform a well-being assessment; then, they were confident
that it could access well-being as accurate as a human care
provider.

VII. CONCLUSION

In this article, we proposed and developed a framework that
enables a social robot to perform clinical screening interviews
for well-being assessment based on verbal communication.
The framework is mainly powered by a CI capable of speech
recognition, speech synthesis, SLU, and conversation man-
agement with the GCSIM model. The whole system was
developed and implemented in our social robot. The robot
has the capability of handling cognitive assessment, falls’ risk
evaluation, pain rating, health screening, mood evaluation,
companionship assessment, memory testing, fatigue, and short
blessed testing. A series of field tests on older adults was
conducted, which showed the effectiveness of the social robots
in performing a comprehensive geriatric well-being assess-
ment. In future works, we will enhance the facial emotion
recognition and integrate the facial emotions with the CI to
assess the well-being of older adults. We would like to test the
robot with older adults who suffer from memory loss or aging-
associated diseases. We will also let the robot autonomously
determine when to perform an assessment session. This work
has the potential to be used for robot-assisted home geriatric
care and healthcare.
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