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MODULAR FORMS
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ABSTRACT. We give a sufficient condition, namely “Buzzard irregular-
ity”, for there to exist a cuspidal eigenform which does not have integral
p-adic slope.

RESUME. Une remarque sur les pentes p-adiques mon-entiéres
des formes modulaires. On donne une condition suffisante, a savoir
irrégularité au sens de Buzzard, pour qu’il existe une forme parabolique
propre de pente p-adique non-entiére.

1. STATEMENT OF RESULT

Let p be a prime number. If k and M are integers then we write Si(Io(M))
for the space of weight k cusp forms of level I'o(M). The p-th Hecke operator
acting on Si(Io(M)) is written T}, if p t M and U, otherwise.

For T' = T, or Uy, we define the slopes of T" to be the slopes of p-adic
Newton polygon of the inverse characteristic polynomial det(1 —7'X). This
is the same as the list of the p-adic valuations of the non-zero eigenvalues of
T, counted with algebraic multiplicity.

To state our theorem we need a definition due to Buzzard [4].

Definition 1.1. Let N > 1 be an integer with p{ N.

(a) An odd prime p is T'o(N)-regular if the slopes of T), acting on Sk(To(N))
are all zero for 2 < k < #.

(b) The prime p = 2 is Io(N)-reqular if the slopes of Ta acting on
S2(To(N)) are all zero and the slopes of To acting on Si(T'o(N))
are all either zero or one.

This definition first appeared in [4] where Buzzard gives an elementary
algorithm, depending on p and N, which on input k& will output a list of
integers. He conjectures that if p is I'g(INV)-regular then this list is exactly
the list of slopes of T}, acting on S;(I'o(V)). The authors of the present work
also have made a separate conjecture ([3]) which predicts the Up,-slopes of
all p-adic modular forms of tame level T'g(N) still assuming that p is I'o(V)-
regular. The two conjectures are consistent with each other experimentally,
but have not yet been shown to be consistent in general.
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Buzzard’s conjecture clearly implies that every slope is an integer. (This
implication is not at all clear from the conjectures in [3].) It is worth asking
if the integrality of slopes is characteristic of I'g(/V)-regularity. We show
that it is. The proof occupies the second section.

Theorem 1.2. If p is not T'o(N)-reqular then there exists an even integer
k such that Uy, acting on Si(I'o(Np)) has a slope strictly between zero and
one.

Coleman theory (which is used below) shows that no harm comes from
assuming the witnessing weight in Theorem is arbitrarily large. One
could try to determine the minimum weight k which confirms Theorem
An effective bound should follow from [10], but it is likely suboptimal.
Numerical data suggest that the optimal k, for p odd, is either k = j or
k=j+(p—1) where2 <j < # is a low weight with a non-zero T)-slope.

The theorem is also true for if we replace U, and S(I'o(Np)) by T, and
Si(To(INV)). Indeed, if a, is an eigenvalue for T}, acting on Si(I'g(N)) then
the polynomial X? — apX + pF~1 divides the characteristic polynomial of U,
acting on Si(I'g(Np)); the eigenvalues X for U, which are not roots of such
polynomials are known to satisfy A2 = p¥=2. So, if & > 2 (which is sufficient
by the previous paragraph) the slopes of U, between zero and one are the
same as the slopes of T}, between zero and one.

For p odd, the converse to Theorem [1.2]is also true. Namely, if there exists
an even integer k such that Si(T'o(N)) has a slope strictly between zero and
one then p is not I'o(N)-regular. See [5, Theorem 1.6]. Its proof uses the
p-adic local Langlands correspondence for GL2(Q,) and is thus significantly
deeper than the present work. Combining the two results, the following two
conditions are equivalent for an odd prime p:

(a) The prime p is not I'y(V)-regular.

(b) There exists an even integer k such that T}, acting on Si(I'o(/V)) has

a slope strictly between zero and one.

There is a natural third condition, implied by (b):

(c) There exists an integer k such that T}, acting on Si(I'o(N)) has a
non-integral slope.

It is conjectured (see [6]) that all three conditions are equivalent, but this
seems difficult.
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2. THE PROOF

We fix algebraic closures Q C Qp and write v,(—) for the induced p-adic
valuation on Q normalized so that v,(p) = 1. We also fix an embedding
Q C. We assume now that N > 1 is an integer co-prime to p.
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If n is a Dirichlet character of modulus p we write Si(I'1(Np),n) for the
subspace of forms in Si(T'1 (Np)) with character given by 1 (n promoted to a
character of modulus Np). An eigenform f in particular means a normalized
eigenform for the standard Hecke operators and the diamond operators. For
such an f, its p-th Hecke eigenvalue is written a,(f).

Corresponding to the choice of embeddings, each eigenform has an as-
sociated two-dimensional p-adic Galois representation p; : Gal(Q/Q) —
GL2(Q,). Write p; for its reduction modulo p and p;,, (resp. py,) for
the restriction of py (resp. ps) to the decomposition group Gal(Q,/Q,) C
Gal(Q/Q) induced from the embedding Q C Qp. Note that the construc-
tion of p; requires the choice of a Galois-stable lattice, but that the semi-
simplification of p; is independent of this choice. In particular, whether or
not pg,, is irreducible is also independent of the choice of a stable lattice.

Lemma 2.1. Let n be a Dirichlet character of conductor p and f an eigen-
form in So(I'1(Np),n). If vy(ay(f)) equals O or 1, then py, is reducible.

Proof. If vy(ap(f)) = 0 then it is well known that py, is reducible. For
example, see [I1, Lemma 2.1.5] and the references therein. (This is also
commonly attributed to a letter from Deligne to Serre in the 1970s which
has never been made public.)

Now suppose that vy(ap(f)) = 1. Then, there is an eigenform f’ in
Sa(T1(Np),n~ 1) with v,(ap(f’)) = 0 and py isomorphic to ps up to a twist.
(The form f’ is sometimes called the Atkin-Lehner involute of f; see [2]
Proposition 3.8].) Since the first argument applies to f’, we deduce that
pfp and its twist py, are both reducible. ([

Proposition 2.2. If p is odd and not T'g(N)-regular then there exists an
even Dirichlet character n of modulus p such that U, acting on So(I'1(Np),n)
has a slope strictly between zero and one.

Proof. Choose an integer 2 < k < % and an eigenform f € Si(I'o(V))
with v, (a,(f)) > 0. By [, Theorem 2.6, p;,, is irreducible.

Suppose first that f has weight 2. Then, the polynomial X2 — a,(f)X +p
divides the characteristic polynomial of U, acting on Si(I'o(Np)) (as in the
remarks after Theorem [1.2]). The theory of the Newton polygon implies that
the roots of this polynomial have valuation strictly between zero and one,
so we can choose 7 to be the trivial character and we are done in this case.

Now assume that f has weight at least 4 and thus also p > 5. By [I, The-
orem 3.5(a)], which assumes p > 5, there exists an even Dirichlet character
n necessarily of conductor p (because f has weight at most % <p+1)
and an eigenform g € S3(I'1(Np),n) such that p, and p; have isomorphic
semi-simplifications. Since p; , is irreducible, p,, is as well. Thus, pg, is
irreducible, and Lemma implies that v,(ap(g)) is strictly between zero
and one. (|
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Proposition [2.2] is an analog of Theorem for weight two forms with
character, and its proof confirms our theorem when there is a weight 2 form
of level I'y(N') with positive T),-slope. To prove Theorem in general, we
use the theory of p-adic modular forms. We refer to [§] for the facts in the
next two paragraphs.

Ifw:2; — Q; is a continuous character (a “p-adic weight”) then we

write S,];(N ) for the space of overconvergent p-adic cusp forms of weight x
and tame level I'g(N) equipped with its Up-operator. If k is an integer and
#(z) = 2¥ then we write this space as S,Z(N); it contains Si(I'o(Np)) as a
U,-compatible subspace. Likewise, if #(z) = 2¥n(z) where 7 is a non-trivial
finite order character of Z; then Sikn(N) contains Si(I'1(Np/1),n) as a

Up-compatible subspace (where p/7 is the conductor of n).
By Coleman theory we mean the following: suppose that x is a p-adic
weight and £ is the p-adic valuation of a non-zero eigenvalue for U, appearing

in S,JL(N ). Then, for any sequence of p-adic weights (ky)n>0 such that xy,
and  agree on the torsion subgroup of Z5, and k(1 + 2p) — k(1 + 2p) as

n — 00, we have that h is also a U,-slope in S,En (N) for n > 0.
We can now give the proof of the theorem.

Proof of Theorem|[1.3 Assume first that p is odd. By Proposition [2.2] there
exists an even Dirichlet character 7 of modulus p and rational number 0 <
h < 1 which appears as a U,-slope in Sp(I'1(Np),n). Thus, the slope h

appears as a U,-slope in SZQW(N). Choose j > 0 even so that 77|F; is of the
form z ++ 2. Then, for n > 0 and k, = 2+ j + (p — 1)p", the slope h is
a Up-slope in S};n(N ) by Coleman theory described above. For such k we
have h <1 < k—1 and so h is Up-slope in Si(I'g(Np)) by [7, Theorem 6.1].

The proof for p = 2 is similar to the argument in Proposition when
kE = 2. If either So(T'o(N)) or Sy(I'p(/V)) has a non-integral slope we are
done. If not, then either So(I'y(IV)) contains a slope one form, or Sy(I'o(N))
contains a form of slope two or three. In either case, the corresponding
2-adic refinements will have fractional slope. O
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