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Abstract—This paper studies the problem of communications
between aircraft and a control tower for aviation risk monitoring
over wireless channels. The control tower needs to monitor
the state of each aircraft in real time by receiving reports
from the aircraft. Due to limited bandwidth, only a subset of
aircraft can communicate with the control tower at the same
time. This paper focuses on the problem of optimal scheduling
of data transmissions to minimize the risk. We formulate the
problem as learning states of parallel Markov chains where
each Markov chain represents an aircraft, and the objective
is to minimize the information entropy of all the aircraft. We
propose an algorithm based on Whittle’s index and study the
indexability of the problem for both single-state wireless channels
and multi-state wireless channels. Our numerical evaluations
show that our algorithm improves the accuracy of the estimations
compared with the heuristic scheduling methods such as greedy
and Round& Robin.

Index Terms—Whittle’s Index, Restless Multi-Armed Bandit
Problem, Multi-state channel

I. INTRODUCTION

This paper considers the problem of monitoring parallel
Markov chains over wireless networks. The problem is mo-
tivated by risk monitoring in aviation systems where a control
tower needs to communicate with aircraft in its region to
monitor their risk levels. The solution of this problem can also
be applied to other risk monitoring applications. The major
challenge in the problem is that the communication bandwidth
is limited. For example, in aviation, automatic dependent
surveillance — broadcast (ADS-B) is a current surveillance pro-
tocol in which each aircraft broadcasts its position periodically,
enabling it to be tracked. The data bandwidth avaiable for
ADS-B is about 1 Megabit/second. It has been shown in [1],
the channel becomes very congested when multiple aircraft in
an area broadcast their positions through the ADS-B channel,
which lead to significant data loss.

In our problem, the central control needs to maintain an
estimate of the risk level of each aircraft. When a report from
an aircraft is successfully is received, the state of the Markov
chain is know; otherwise, the estimate of the distribution of
the risk level of an aircraft is updated based on a pre-defined
Markov chain. In this paper, we assume simple two-state
Markov chains. Due to limited bandwidth, the controller can
only probe a subset of Markov chains each time. The objective
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is to develop a scheduling algorithm to minimize the total
information entropy of the Markov chains.

This optimization problem is then formulated as a Multi-
Armed Bandit (MAB) problem with the capacity of wireless
channels as a hard constraint. The problem is similar to a
restless bandit problem. The key difference is that the objective
is to minimize the total information entropy of all bandits
instead of finiding the optimal bandit. We adopt Whittle’s
Index to solve the problem. Whittle’s Index was first proposed
in [2] for restless bandit problems. Whittl’s index has been
used in wireless communication problems. For example, [3]
consider sa delay minimization problem through a multi-state
channels, and [4] studies the throughput maximization problem
where transmitter in the system has dynamic multi-channel
access.

In this paper, we consider both single-rate wireless channels
and multi-rate wireless channels. We prove that the problem
is indexable for single-rate wireless channels and establish
a sufficient condition under which the problem is indexable
with multi-rate wireless channels. Our numerical evaluations
show that our algorithm outperform other heuristics such as
the greedy policy and Round& Robin policies.

II. PROBLEM FORMULATION

We consider a system consisting of M two-state Markov
chains as shown in Fig.1. For simplicity, we assume that for
the +th Markov chain, p1o = po1 = p; < 0.5.

Poo o P11

Low Risk High Risk

Fig. 1. A Two-State Markov Chain

We assume the controller can probe at most K (K < M)
of them at each time slot, and each probe succeeds with
probability » < 1. Let S;(¢t) denote the state of the Markov
chain 7 at time ¢, and 0;(¢) € [0, 1] denotes the probability that

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 29,2020 at 17:43:53 UTC from IEEE Xplore. Restrictions apply.



2020 54th Annual Conference on Information Sciences and Systems (CISS)

Markov chain ¢ is in state “1” at time slot ¢ given the most
recent observation received at the controller.

o Sz<t)a
0:(t) = {pi + (1 —2p;)0;(t — 1),

if the probe is successful
otherwise

ey
Given a Bernoulli distribution with parameter 6;(¢), the
entropy of the distribution is

cit) = —0;(t) log 0;(£) — (1 — 0;(t)) log(1 — 6:(t)).

The problem we are interested in is to minimize the overall
entropy of the system, i.e.

2
subject to: Z AT (¢

=1

where
AT (t) = 1{Markov chain i is probed at time t}

under a scheduling policy 7, and II is the set of all scheduling
policies.

If we view 6;(t) as the state of an arm, then the problem is
related to restless bandit problems. A significant difference is
that the reward ), ¢;(t) depends on the states of all arms.

We use Whittle’s index [2] to solve this problem. We will
see that despite the fundamental difference in the cost function,
the problem is an indexable problem. Following Whittle’s
index approach, we first relax the hard constraint per time slot
to an average constraint, i.e., the number of Markov chains to
be obsrved is at most K on average,

co M

ZZBtAﬂ' Lﬂ

t=0 i=1

By introducing the Lagrange multiplier v to the problem, we

have the following Lagrangian:
M
(Lar-)]
i=1

zwz foy s
(3)

— i=1 t=0
Note that the Lagrange multiplier v can be viewed as the
penalty. Since the term v).,~, 'K is a constant in the
optimization problem, for a fixed v, the relaxed problem can be
de-coupled into sub-problems associate with each individual
Markov chain. In particular, we have

D Blet)+vy  BrAT ()
=0 t=0

Note that while we replace the hard constraint, the algorithm
implemented can only probe K Markov chains. The Whittle
index approach is to index the M Markov chains and then the
algorithm picks the K ones with the highest indices.

The Whittle’s Index Policy is a low-complexity heuristic
that has been extensively used in the literature and performs

L(v) =min F
well

min F
well

“)

well in practice.The challenge is that problems are not always
indexable. In the following sections, we will prove the index-
ability and the conditioned indexability, i.e. Whittle’s index is
well defined.

III. WHITTLE’S INDEX APPROACH

To solve the sub-problem Eq.(4) for each Markov chain. We
consider the following Bellman equation:

Vi(0;;v) = mm{ i(0;) + BVi(pi + (1 — 2p)0i;v), v+
(0 )+ﬂ[7‘9 Vi(L;0) + (1 — 0)Vi(0:0)+  (5)
(1—T)%(pi+(1—2pi)9¢;v)”

where V;(0,v) is the value function of the ith Markov chain
starting from state 6;(t), and 7 is the message delivery ratio.
The Whittle index in this problem is v*(0;,r), the smallest
value of v in the Eq. (4) that makes it equally desirable to
observe and not to observe when the ¢th Markov chain is in
state ;. The fundamental question in Whittle’s index whether
the problem is indexable. We will analyze the indexability in
two different cases.

A. Single State Channels
We first consider the case the message delivery ratio r
remains the same at all time, and have the following lemma.

Lemma 1. V;(0;;v) is a concave function in 0,.

The proof of this lemma can be found in the appendix [5].
Letting the two terms in the minimization equal to each
other, we obtain

¢i(0:(t)) + BVi(pi + (1 — 2pi)0i(t);v) = v+ ci(6:(1))
Broi(t)Vi(1;v) + Br(l — 0;(t))Vi(0;v)+ (6)
Bl —=r)Vi(p+ (1 —2p;)0i(t);v).
Since the cost entropy function is symmetric in 6, we know
that V;(0;v) = V;(1;v), which yields
Brvi(pi +

We next show that the problem is indexable when r is given.
Let D;(v) be the set of values of 6; for which Markov chain
7 will not be probed under the v-penalty policy, i.e.

Di(v) = {0 € 0,1] : BrVi(pi+(1=2p;)0; v) <v+BrV;(0;v)}.

(1—2p;)0;(t);v) = v+ Brv;(0;v).  (7)

The problem is indexable if D;(v) increases monotonically
from & to the universe set as v increasing from 0 to oo, as
established in the following theorem.

Theorem 1. The Markov chains are indexable.

Proof. The indexable condition is equivalent to that Equation
(7) has a unique solution v*(6) for each state 6. Because of
the symmetry of the cost function, we know that V;(0;v) =
V;(1;v). Based on the concavity of V;(0;v), we have

Vi(pi + (1 = 2p;)0i;0) > Vi(0;0)
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because for every 6 € (0,1), the point (6,V;(6;v)) on the
graph of V;(6;v) is above the straight line joining the points
(0,V;(0;v)) and (1,V;(1;v)), as shown in Fig. 2. So when
v = 0, Dl(O) = .

On the other hand, we know that V;(0,v) is upper bounded
by 7]%(0'5), which is the discounted total cost when the state
stays as 6 = 0.5, which occurs if no probing occurs. As a
result, when v > _li)gf(g'{’), D;(v) ={6;: 0, € [0,1]}.

Next we prove the monotonicity of D;(v). We know that
the LHS of Equation (7) is a concave function in 6;. So the
LHS and RHS can be plotted as in Fig. 2. From the symmetry

L.H.S
R.H.S
AT N

|

| l

| |

! i

0 a(v) 1 8

Fig. 2. LHS and RHS of Eq.(7)

of the cost function, we know that V;(6;;v) = V;(1—60;;v), so
in the remaining part of the proof, we assume that 6; € [0, 0.5]
for simplicity.

According to Fig. 2, when 6; € [0, a(v)), the LHS is smaller
than the RHS of Equation (7), D;(v) = {[0, a(v))}. Let

g1(0:(t),v) = BrVi(pi + (1 — 2p;)0;(t); v)
92(0;:(t),v) = v+ prv;(0;v).

We can prove the indexability by proving

for any 0; € [0,(v)). In other words, for fixed 6, as v
increases, go increases faster than ¢ if 6 € D(v). The
condition can be written as:

14 BTaVi(O;U) B ma‘/}(pi + (1 —2p;)0i;v) S0 (@®
ov ov
for any 0; € D;(v).
Here we point out that V' (6; v) is not differentiable for some
v. In particular, the function is not differentiable when

Brv;(pi + (1 —2p;)0;v) = v + Brvi(0;v),

i.e. when 6 is on the boundary of D(v). When V;(0;v) =
g1(6,v) = g2(0,v), probe or not does not make any difference,
but the derivative of the two terms in the Bellman equation
Equation (5) may be different. Since a boundary point is not
included in D(v) According to its definition, so we consider
the derivative of the second term when it is not differentiable

and defines it to be % here, because if Eq.(8) holds for
all the differentiable points, it also holds for both left and right
hand derivative at the non-differentiable points. For the non-
differentiable point of V' (0;v), right hand derivative will be
considered.

Let

and
ht(Q) =pi+(1- Qpi)ht_l(g)

for ¢t > 1, represents the ¢ step state transition without probe.
For any 6 € D;(v), let

k = arg m]?x{hk(é') € D;(v)}.

So for § € D;(v) we have:
t
Vilg'(0);0) = Y _ai(h'(0) + BTVi(A T (0)i0)  (9)
i=0

when 0 < ¢ < k. The costs ¢;(6;) are independent with v, so
we have:

ov ov
As a complement, we also point out that k is an integer related
¢ AVi(h* 1 (9)50) : - k+1 .
0 v, === is not differentiable when h"**(0) lies on
the boundary of D(v) for any & > 0. We will prove that
the indexability holds for any & > 0, then both left-hand
derivative and right-hand derivative are under consideration.
So we simply regard k as a constant for all differentiable v.

; k+1(py.
Next we consider about the term W, we have:

Vi(g" 1 (0);v) = v + ci(g" T (0))+
Brvi(0;v) + B(1 —r)V(g" T (6);v)
OV (0w)
ov

Vil0:0) _ gy Vi(h1(0):v) w0

(1)

for any ¢ > 1. Let

wzl+ﬁrﬂc+5(1—r)

v
{1+8ra+80-n)(1+pra+80-r))}
1+ prz
1-8(1—-r)
so for 0 € D(v), we have:
aV;(0;v) _ gt 1+ prax
ov 1-p(1-r)
and
Vi (pi(1 = 2p;)0;(t); v) _ gk 1+ Bra
Ov 1-8(1-7)
Then Eq.(8) becomes:
1+/6r[x—6’“112r16rf)5 >0
1+ pBrx 1
s
<1 Bl >$2 ¥ 1
[—p+pr) = T-5+pr pr
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First it is easy to show that w > 0, since as the penalty
increase, the discounted total cost can not decrease, so we have
x > 0, and the LHS of above equation is always positive for
any k > 0.

Since % < ﬁ, the RHS of the above equation is
always smaller than O for any k£ > 0. So Eq.(8) always holds
when 0;(t) € D;(v), and the problem is indexable.

As we mentioned before, V;(h*T1(0),v) is not differen-
tiable in v when h**1(f) is on the boundary of D(v), since
k is a piece-wise constant on v. Both of left derivative and
right derivative can be support by Eq.(8), since it holds for
any k > 0. O]

The value v*(6;,r) is defined as the penalty on probing to
balance the two terms in the Bellman equation Eq.(5). Whit-
tle’s index based policies are known to have good performance
in practice, see [6] and [3].

We next summarize the calculation of Whittle’s index.
According to Eq.(9) and Eq.(11), 6 is on the boundary of
D(v*(0)), in other words, D(v*(6)) = [0,0) for any 6 > 0.
So we can get:

D=3 Bl (o)
BlrVi(0;v*(0)) + (1 = 1)V (0 2(0);07(0)) |)

Lo —|— BrV (0;v*(0))
- B —r)

4 pro (v—l—

Lo
= Zﬁjcxhj(o +5

+ Z 5L0+J

) e(h*017(0)) (12)

where
Lo = arg ml?x{hk(O) € D(v*(0))}
= “Ogl—Qp,;(]‘ —20)].

On the other hand, Eq.(7) holds for v = v*(#), we have
Brvi(h'(0); v*(0)) = v+ pr- Vi(0;0*(0))

- J(1 — pY-le(hi Brv + B2r2V;(0;v* ()
D e e Rl
= v+ Br-Vi(0;07(0))

Combine Eq.(12) and Eq.(13), Whittle’s index v*(6) of the ith
aircraft at state 6 can be solved.

B. Multi-State Channel

We now consider multi-state channel case, assume that
the channel states of the ith Markov chain r; is an i.i.d.
random variable such that 7, € R; = {r; 1,72, - ,Tin}
with r;1 > r;2 > -+ > r;, for any . Each channel state
occurs with probabilities p; 1, pi 2, , pi,n respectively, and
satisfying Zj pi,j = 1 for any 4. Also we assume that the
channel states at current time is known for all Markov chains,

but the future channel states are unknown. This setting is
similar to the multi-state channel in [3].

In Multi-State channel, for the ¢th Markov chain, the tuple
(0;,7;) where 0; € [0,1], and r; € R; consists the state, since
decision depends on both 6#; and r;, and the state space is
[0,1] x R;. Still, let D;(v) be the set of states where the ith
Markov chain would not to be probed under v-penalty policy.
The Bellman Equation (5) becomes:

Vi(05(t), ri;v) = min {Cz( i) +BVi(pi + (1 = 2pi)0i(t)v),
U+C7( L( ))+ﬁrz (O,’U)—Fﬂ(l—’ﬁ)
Vi (pi+ (1= 2p)0:(0);0) |
(14

where V; (0;;v)
r;, that is:

=E,,[V; (0;,r;;v)] is the expected value over

T 65(0y0) = min {6404 57 i+ (120050,

v+ Br;Vi(0;0) + B(1 — 1)V (pi+(1—2p;)0; (t)v) }]
(15)

Similarly, because of the symmetric property of the Markov
process, we only consider about § € [0, 0.5]. From the previous
section, we know that the concavity still holds. Let the two
terms in the minimum are equal to each other, we have:

(05 v)

Brz ( + (1 - 2pz)9¢(t)' ) =v+ Brivz

For agent i, the space of 6; can be divided into n + 1 parts
{®;;} where I =0,1,2,--- ,n, and ®;( satisfying:

(16)

Bri V. (pl—&—(l 2pl)0“v) <wv+Pr;;Vi(0;v) for all r; ; €R;
®; 1 satisfies:
57’1,121 (pi + (1 = 2p;)0i5v) > v+ Br; 1Vi(0;0)
57°i,jVi( pi + (1 —2p;)b;; )

— forall j > 1
<v+ ﬂri,jVi(O; U)

®; ; satisfies:

Bri i Vi(pit( pi) Z) for all j <1
> v+ pri;jVi(0;v)
BriVi(pit (1= 2pi)0i;v) for all j > I

<v+ Brw i(0;v)

®; ,, satisfies:

Brm-Vi (pl(172p2)01,’0) > v+6ri7jV¢(0;v) for all Tij S T\’,z
From the concave property, we have Vi (pl-(l — 2p;)b;; v) >
V:(0;v) for any 6;, by moving the Sr; ;V(0,v) term to the
left, it is easy to show that any ; € ®;,_1 is smaller than 6, €
®; ;. Then the rested set D;(v) of the ith Markov chain can
be described as DZ'<’U) = {(91’,”) 1 0; € ‘bi,o,ri e R;orb; e
D, ,r; <1y for 0 <1 <n}
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Similarly, to prove the indexability of ¢id situation, we need
to prove

1+ Br, aVi(0;v) Br; OV i(pi + (1 — 2p;)0;;v)
v v

holds for any (0;,r;) € D;(v) for any .

>0 (17)

Theorem 2. The mult-state channel Markov chains are index-
able when 1

- 18
1 + (1 — Pi,l)ri,l ( )

b <

holds for all i.

The proof of this Theorem can be found in the appendix.
(5]

Similarly, the we would choose to probe the K Markov
chains with higher indexes. However the indexes now depend
on both state estimation 6;(¢) and channel state r;. In multi-
state channel, the explicit format of v} (6, ;) is hard to solve,
especially when the number of state of channel is large.
However, we can use binary search to get an approximation.
As for an example, we will show brief process to derive the
two-state channel index as an example.

For the ith Markov chain, to solve the index v*(0, r,-yl), let
v =0v*(0,11) = v*(0,7r2) (0 <6 <@ <0.5), and 0 is
temporarily unknown. From the proof above, let V;(0,v*) =
x, (0,7;1) and (0',7;2) is on the boundary of D;(v*), we
have the following equations:

ﬁri,lvi(pi + (]. — 2])7,)9, ’U*) = U* —+ 57’};_]1%
ﬁriﬁgvi(pi + (]. — 2p1)9/, ’U*) = ’lfk —+ 57"7;_’2%

On the other hand, = = V;(0,v*) can be expressed as:

19)
(20)

Lo Li—1
z = Fahl0)+ Y g1 —piry)
=0 =0
(Ci(hfoﬂﬂ(o)) + piv* + 5/-%,17“1‘,196) 1{L; > 0}+
o0
ZBL0+L1+1+J'(1 _ Pi,lri,l)Ll(l _ Fi)j
j=0

(i(nfot 5 (0) + 0" + fric)

where Lo = max;{h¥(0) < 6}, and L1 = max;{h*(0) <
0’} — ko. Combine Eq.(19)(20)(21) the index value of v*, ¢,

Vi(0,v*) for the ith Markov chain can be estimated by using
binary search.

2L

IV. SIMULATIONS

We consider a scenario where a control tower is monitoring
aircrafts in the area. Each aircraft has two states: “low risk”
and “high risk”. The transition probability p from one state to
another is assumed to be 0.05.

We assume that there are 500 aircrafts in the system,
based on the channel bandwidth, the control tower can require
information from 150 of them at each time slot. Assume that
there are two types of aircraft, each types has 250 aircrafts.
The first one has transition probability p; = 0.05, and has

transmission success probability 7; = 0.5. The second type of
aircraft has transition probability po = 0.02 and transmission
success probability ro = 0.7.

We can plot the index of these two types of aircraft as in
Fig.3. We compare the Whittle’s index approach with a greedy

3.09

2.54
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Whittles Index
=
w
L

Iy
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|
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0.0 A

0.0 0.1 0.2 0.3 0.4 0.5
theta

Fig. 3. Index of two types of aircraft

method that aircraft with larger ¢(f) will be selected, and
the Round Robin method, where all the aircrafts are selected
periodically with same frequency. And the simulation results
of total information entropy of all these 500 aircrafts are shown
in Fig.4. As we can see, the information entropy level of
Whittle’s Index Approach is lower than both the greedy or
Round & Robin methods.
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Fig. 4. Information Entropy Simulation

We next consider multi-state channels such that Pr(r =
0.9) = 0.4, Pr(r =0.7) = 0.3, and Pr(r = 0.5) = 0.3.

The simulation results are plotted in Fig.5. Again we can
observe that the Whittle’s index outperforms the other two
algorithms.
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Fig. 5. Index of three states channel aircraft

V. CONCLUSION

In the paper, we studied the problem of learning the states of
parallel Markov chains over unreliable wireless networks. The
solution to this problem has applications in risk monitoring
such as monitoring the states of aircrafts (or UAVs) from a
control tower. We first proved that for single state wireless
channels, the problem based on Whittle’s index is indexable,
and the index can be derived explicitly. For multi-state chan-
nels, the indexability can be proved under a sufficient condi-
tion, and the index value can be calculated numerically. And
simulation shows that the proposed Whittle’s index approach
can have better performance than greedy policy and Round &
Robin policy.
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