2020 54th Annual Conference on Information Sciences and Systems (CISS) 978-1-7281-4085-8/20/$31.00 ©2020 IEEE 10.1109/CISS48834.2020.1570616094

2020 54th Annual Conference on Information Sciences and Systems (CISS)

An Optimal Stopping Approach for Iterative
Training in Federated Learning

Pengfei Jiang
ECEE
Arizona State University
Tempe, US
pjiang9 @asu.edu

Abstract—This paper studies the problem of iterative training
in Federated Learning. We consider a system with a single
parameter server (PS) and M client devices for training a
predictive learning model with distributed data sets on the client
devices. The clients communicate with the parameter server
using a common wireless channel, so each time only one device
can transmit. The training is an iterative process consisting
of multiple rounds. At beginning of each round (also called
an iteration), each client trains the model, broadcast by the
parameter server at the beginning of the round, with its own
data. After finishing training, the device transmits the update to
the parameter server when the wireless channel is available. The
server aggregates updates to obtain a new model and broadcasts
it to all clients to start a new round. We consider adaptive
training where the parameter server decides when to stop/restart
a new round, and formulate the problem as an optimal stopping
problem. While this optimal stopping problem is difficult to
solve, we propose a modified optimal stopping problem. We first
develop a low complexity algorithm to solve the modified problem,
which also works for the original problem. Experiments on a real
data set shows significant improvements compared with policies
collecting a fixed number of updates in each round.

Index Terms—Distributed Machine Learning,
Learning, Optimal Stopping

Federated

I. INTRODUCTION

Most existing machine learning applications for big-data
analytics require the models to be trained in data centers,
which raises significant privacy concerns when data used con-
tain sensitive personal information such as clicks, photos, etc.
Federated learning is a distributed machine learning framework
proposed by Google! to train a machine learning model with
datasets distributed over local devices (such as mobile phones)
instead of in data centers. Training process is run on distributed
device such as mobile phones so that a device does not need to
expose personal data on the device to servers or other devices.
The updates for the model (e.g. the gradients of SGD) will
be transmitted to a parameter server which will aggregate the
updates to update the machine learning model. The updated
model will then be broadcast to the devices for the next
iteration of training.

Federated learning has applications in many areas [1], e.g.
Google has implemented federated learning in their Gboard
[2], [3], where a neural network language model is trained

Thttps://ai.googleblog.com/2017/04/federated-learning-collaborative.html

978-1-7281-4085-8/20/$31.00 ©2020 IEEE

Lei Ying
EECS
University of Michigan
Ann Arbor, US
leiying@umich.edu

using data on personal mobile devices for next-word prediction.
Due to randomness and uncertain in data processing and
transmissions, it has been observed [4], [5] that even with
dedicated servers, learning can be slowed down significantly
by a few machines that take unusually long time to complete
the training. The problem becomes even worse in Federated
Learning where devices have heterogeneous capacities, and
are less reliable. Therefore, a critical problem in Federated
Learning is to schedule the training, in particular for those
machine learning models that require iterative training. In
the past, [6], [7] have studied the convergence of the loss
function with respect to the number of local iterations on
each client and proposed mechanisms to optimally select the
number of local iterations on each client. This paper considers
a different problem that when the parameter server should stop
the current round, update the machine learning model, and
start the next round. Such a decision is based on the number
of updates received, the expected waiting time to receive the
next update, and how the loss function decreases as the number
of updates increases. We formulate the problem as an optimal
stopping problem and develop a low complexity algorithm to
solve the stopping rule. Our experiments on real datasets show
significant improvements on training time compared with the
policies that collect a fixed number of updates at each round.

II. PROBLEM FORMULATION

We consider a system with a single parameter server and
M client devices such as mobile phones, where each client
owns a local dataset. The system is used to train a learning
model using the local datasets in an iterative fashion. Each
iteration is called a “round”. At the beginning of each round,
the parameter server broadcasts the latest parameters (such
as the parameters of the neural network) to the clients. After
receiving the parameters, each client trains the model using
its local dataset, e.g. calculate the gradients using SGD, and
then transmits the updates (e.g. the gradients) to the parameter
server, which aggregates the updates to obtain a new model.
This finishes one round, and the next round starts when the
parameter server broadcasts the new parameters to the clients.
We further assume following idealized data processing and
communication models.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 29,2020 at 19:33:56 UTC from IEEE Xplore. Restrictions apply.

2020 54th Annual Conference on Information Sciences and Systems (CISS)

Roundi Rourd i+1 Round i+2
f | y
Broadcast Data process and 1 Brodteaee Data process and 1
communicate ! ; 1
communicate
| , !] | '] ! 4] 1
server —— ‘ Lk - | "—l—"f : ,} W l
H i "

i i : | i 1 1

i : ; 1 : ! 1

M 1B]

H Train ; : i : ! | Triin ‘i i !
dlient = T s 1B

! i LN : ; 1 : :
i ! - X ; i : : i

A MK M

| : ! ' I | ! ! ! 1

: ; i 1 : L0]

: : : 1 : : i 1
1 i | i I

1 i ; i 1

— 1 i f - !

I: Train A T ' : Train T

o l | =<1 i

5 I i : 3 i i 1

| 1 : P 8 1

i 1 | : i i E 1

D __g Train E : }—::_ _i ‘Tra':n ‘ E |
! | @7 :";_i'. ! : @

; ——
Roundstops ¢, ; il Round stops

Fig. 1: Tterative training process

Data Processing Model: We assume each client finishes
the data processing and computing the update with some
probability p at each time slot. In other words, we assume the
processing time of each dataset is geometrically distributed.

Communication Model: We assume the client mobile
devices share a single channel when communicating with the
parameter server (this assumption can be easily extended to
multichannel OFDM systems). At the beginning of a time slot,
one of the clients who have finished their computing tasks
but have not transmitted the data to the parameter server will
be selected uniformly at random to upload the update to the
server, and the transmission succeeds with probability u at
the end of the time slot. At some stopping time (the choice
of the stopping time is the focus of this paper), the parameter
server stops accepting new updates and updates the global
model using all uploaded information. The parameter server
then broadcasts a new global model to all clients to start a
new round.

This iterative training process is shown in Figure 1, where
7 denotes length of a time slot. We assume the amount of
time it takes for the parameter server to broadcast the updated
parameters is £y, which remains a constant for all rounds and
includes both the time it takes to aggregate all the updates it
receives and the time it takes to transmit the new parameter
to all clients.

We define «,, to be the number of clients who have not
finished processing their local datasets, (3, to be the number of
clients who have finished computing but have not transmitted
the updates to the parameter server, and k, = M — «,, — B,
to be the number of clients who have updated the parameters

based on local datasets and also uploaded the updates to the

parameter server. The iterative training process can be modeled

as a discrete-time Markov chain (DTMC) whose state at time
slot n is denoted by X,, = (K,,B,). Let z, = (kn,Sn)

denote a realization of X,,.

Let R(k) denote the reward that the parameter server obtains
after receiving the kth update. The reward R can be decrement
of the loss function. We make the following assumptions in
this paper:

(1) R is positive, increasing with k& and bounded.

(2) AR(k) R(k + 1) — R(k) is decreasing in k, i..
the reward increment of receiving one more update is
diminishing as the parameter receives more and more
updates.

We first focus on a single round with a given reward
function. Let N denote the number of time slots in this ground,
which is a random variable as the parameter server can decide
to terminate this round and start the next round at anytime.
We consider the following stopping problem:

o sup ELRUEN)

res E[NT + to] W

where 7 is a stopping policy, S is the set of all stopping policy,
N is stopping time, and ¢ is a constant as defined above.
The problem above is difficult to solve. Instead, we intro-
duce the following problem and then show that resolving this
new problem can lead to the solution of the original problem:

Vy=supE[R(KN) — A(NT + to)] 2)

TeS

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 29,2020 at 19:33:56 UTC from IEEE Xplore. Restrictions apply.

2020 54th Annual Conference on Information Sciences and Systems (CISS)

where \ is a positive constant.

For simplicity, we include the time slot in the system state
(Xn,n) = (K,,Bn,n). The transition probabilities of the
Markov chain are summarized below. Given state (X,,,n) =
(k,B,n) and any 0 < i < M — k — 3, we have

o If B> 0, then

Pr{(Xni1,n+1) = (kB +i,n+ 1)|[(Xn,n) = (k, 8,n)]
=(1—n) (M _Z.k - B)ﬁ(l —pMTh

Pr(Xpt1,n+1)=(k+1,5-1+in+1)
|(Xn7n) = (kvﬁvn)]

k- _ .
—u (M i B)pl(l _p)Mfkfﬁfz.

o If 8 =0, then
Pr{(Xpi1,n+1) = (k,i,n+ 1)[(Xn,n) = (k, B,n)]

_(M —ik - ﬁ)pi(l)Mk

We define V(+) to be the value function so that V' (k, 3,n)
is the value of state (x,,n) = (k,3,n), and

V(k, B,n)

= sup E[R(k+ Kn)—A(N+n)T+1t)].

o Kn<M—k
We can easily verify that V), = V/(0,0,0).

The following theorem establishes the relationship between
the original problem and the modified problem. (The proof of
following theorems and lemmas can be found in our technical
report [8].)

Theorem 1. If there exists)\ such that

Vi =supE(R(Ky) — AM(NT+tp)) =0,
mes

then

o s ELRUEN)]

SRR)]

Furthermore, if

Vi =supE(R(Ky) — A(NT +1t)) =0
TeS
is attained by some policy 7 € S, then the policy ™ is also
optimal for maximizing E[R(KyN)]/E[NT + to] .

Motivated by the result above, we can find the optimal

stopping time for problem 1 by the following steps:

o First initialize)\, and find optimal 7, in Problem (2) as
well as V.

o Repeatedly update A, and find a new optimal policy 7y
and optimal value V) for Problem (2) until finding a *
such that optimal value V- = 0. The final policy 7* is
the optimal policy.

In the next section, we present a low complexity algorithm for
Problem (2).

III. Low-COMPLEXITY ALGORITHM FOR SOLVING THE
MODIFIED OPTIMAL STOPPING PROBLEM

In this section, we focus on solving the optimal stopping
time problem for a fixed A. We will show that optimal policy
is a threshold policy. For any state (x,,n) = (k,3,n), the
actions are to either terminate the current round or to continue
to the next time slot. The reward of stopping at that stage is
R(k) — X(nT + to). If 3 = 0, then to continue means to
let unfinished clients continue to compute, but no update will
be transmitted since S = 0. Otherwise, ,, > 1, to continue
means a randomly selected client from the 3 clients will trans-
mit its result to the server while (M — k— /) unfinished clients
continue to process their datasets. The Bellman equation in
these two cases are presented below.

If g > 0, then

V(k,B,n)
=max {R(k) — AM(nT + tg) ,

M—k—p
M(> WHV(k+1,8- 1+i,n+1)>
=0

M—k—8
+(1 — p) (> WEHV(EB+in+ 1)) } .3

1=

If 8 =0, then
V(k,0,n)

M—k-3
=max {R(k) — AnT + 1), Z W(@)V(k,i,n+ 1)} ,
i=0
“)

where W (i) = (M_l.k'_ﬂ)pi(l — p)M—k=B—i,

Theorem 2. The following threshold policy is optimal for
Problem (2): For any state (k,3,n), policy @ first check 3,
o When 8> 0:if k < k*, continue; and if k > k*, stop;
o When 8 =0: if k < k§, continue; and if k > kg, stop.
In the algorithm above, k* = min{ki, M}, ki = inf{k :
AR(k) < 2T}, and ki < k*.

We remark that £* has a closed-form expression but £ does
not. We next discuss how to calculate k§ numerically based
on the following lemma.

Lemma 1. Given any A > 0, and any state (k, 3,n) such that
k<k* k+p3>k"and n >k, we have
A
V(k,B,n) = R(k™) — A(nT + to) — (k — k*)f.

From the proof of theorem 2, we can omit n in state(k, 5, n)
and just need to calculate a two-dimensional value table of
(k,) with a fixed n. We can calculate this value using
dynamic programming and setting a fixed n larger than M. We
maintain a value table of size of M x M. The value of states

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 29,2020 at 19:33:56 UTC from IEEE Xplore. Restrictions apply.

2020 54th Annual Conference on Information Sciences and Systems (CISS)

with different n can be calculated directly from following
Lemma:

Lemma 2. For any state (k,(3,n) with n > k, V(k
]-) - V(kaﬁan) -

Furthermore, the value for states with &k > k*and n > k
is shown from proof of theorem 2, and the value for states
with £ < k*, k+ 8 > k* and n > k has been shown by
lemma 1, so that we need to calculate a value table with size
k* x k* instead of size M x M, which are value of states with
k+ 8 < k*. So we only need to use dynamic programming
to calculate & as well as V (V/(0,0,0)).

We start from state (k* —1,0,n), where n is a fixed number
larger than M. The Bellman equation is as follows:

7/87n+

V(k* —1,0,n)
= max{R(k* — 1) — AM(nT + o),
M—k*+1

> 6l

where G(i) = (M—’Z?“rl)pi(l)Mk
Since V(k* — 1,7 > 1,n) are known, and

R(k*) —

V(K" —1,i,n) —)\T} , (5)

V(k*—1,i>1,n) = AnT +to) — AT/p

according to Lemma 1, we can solve this Bellman equation
and get V(k* —1,0,n).

Similarly we calculate the values of state (k* —2,1,n) and
(k* —2,0,n). The optimal rule for state (k* —2,1,n) is to
continue according to theorem 2, so

V(k* —2,1,n)
M—k*+1
= (> GEHV(E -1in+ 1))
i=0
M—k*+1
i=0

(6)

where G(i) = (M~ 1) pi(1—p)M—F"+1=7_All values on the

right hand side except V(k* —2,1,n) are known, so V (k* —
2,1,n) is done. For (k* — 2, O,n), we have :

V(k*—2,0,n)
=max{R(k" —2) — A(nT + t9),
M—k*+2
> H(G)-V(k* —2,i,n) - /\T} , 7)
1=0

where H(i) = (M7 2)pi(1 — p)M—+"+2-1_ Since we just
get V(k* —2,1,n), and V(k* — 2,9 > 2,n) are known by
Lemma 1, after solving this bellman equation, we can get
V(k* —2,8=0,n).

Next we can continue to calculate V (k* —3,2,n) ,V(k* —
3,1,n), V(k* — 3,0,n); and then V(k* — 4,3,n) ,V(k* —
4,2,n), V(k* —4,1,n),V(k* —4,0,n) ---, V(0,5 = k* —

1,n), V(0,8 = k* = 2,n), ...,
got this £* x k* value table.

According to Lemma 2, we can get V) = V(0,0,0) =
V(0,0,n) +nA7. From theorem 2 and principle of optimality,
we can get

k§ = min {M, inf{k : V(k,0,n)

V(0,5 = 0,n). Now we have

= R(k) = A(nT +t0)}},

which determines the optimal stopping rule.
The algorithm is summarized below for given A > 0.

Algorithm 1: The numerical algorithm for solving
Problem 2
Given parameters: M ,to,7,\, u, p and reward function
R(k);
Calculate k*, where k* = min{M, k}},
=inf{k: AR(k) < 37}
Set n = ki + 1;
Get V(k,8,n) = R(k) — M(nT + o) directly by
lemma 2, where k > k*,0 < < M — k*;

Get V(k,B,n) = R(k*) — A(nT + to) — (K* — k)AT/u
by lemma 5, where k < k" k* — k< <M —Fk;
Calculate V(k* — 1, 8 = 0,n) by solving the Bellman
equation;
Calculate V (k*

V (k"

—-2,8=1,n),
—3,/8—2,7’1),

V(k*—2,8=0,n);
(k* - Saﬁ = Ln)v
V(k* - 3aﬁ = Oan)a

V(0,8 = k ~1,1), V(0,8 =k* —2,n),
V(0,5 = n) sequentially;
Return optlmal value
VA =V(0,0,0) =V (0,0,n) + An;
Calculate

ks =inf{k : V(k,0,n) = R(k) — MnT + to)},
Return optimal policy 7y by theorem 2.
If 8> 0: If k£ < k*, continue; else, stop
else: If & < k§: continue; else, stop.

Next we present a lower bound on J* and an upper bound
on k*.
Corollary 1. J* is lower bounded by
R(l)
(G +)7+t

Proof. By the definition of J*, we choose a policy 7 such that
it stops when k£ = 1. Therefore,

R(1)
E (NT + to) '

= + L Therefore, for any M > 1,

J >
If M =1, thenE (N) =
E. (N)< + . Hence,

-]EW(NT—Ft()) -

R(1)
(4 + 27+t

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 29,2020 at 19:33:56 UTC from IEEE Xplore. Restrictions apply.

2020 54th Annual Conference on Information Sciences and Systems (CISS)

R(k)

Trric where k

Corollary 2. J* is upper bounded by maxy,
is an integer and 0 < k < M.

Proof. A straightforward upper bound on J* is
E|R(K
7 — s EBEN)]
TES E[N ST+ tO]
where p and p are both set to 1, so J* is upper bounded by

maxy kfft)o , where k is integer and 0 < k < M.]

IV. THE SOLUTION OF THE ORIGINAL PROBLEM

In the previous section, we have shown how to find optimal
m for Problem (2) as well as V), for a given A > 0. Next we
focus on finding the optimal A so that we can solve the original
problem. Corollaries 1 and 2 show lower and upper bound on
J* , we can use them to initialize the A. The following lemma
demonstrates some important properties of Vj.

Lemma 3. V), is decreasing and convex in .

Proof. The proof follows the analysis in [9]. Assuming \; <
A2, we have
Vx, = Exy [R(KN) — A2 (NT + t0)]
< Er,, [R(KN) — M (NT +to)]
< Eﬂ)\l [R(KN) — /\1(NT + to)]

so V), is decreasing with A.
To prove convexity, given A\; and Ao, let 0 < 0 < 1, A =
6‘)\1 + (1 — 9))\2, SO
V)\ = Eﬂ—A [R(KN) — (9)\1 + (1 - 9))\2)(1\77' + to)]
=0E., [R(Kn) — M(NT +to)]
+ (1= 6)En [R(K) — do(NT + 10)]
<OVy, + (1= 0)Vy,.

O

Now we can get an upper bound on k* for all possible A

when R(k) = ¢ — 347 for some constants a and c.

Corollary 3. Given R(k) = ¢ —
a t
Vi b),

Proof. 1t is directly from the definition of £* and Corollary 1.
Since k* = inf{k : AR(k) < %}, we have

a *
T we have k* <

a/2

-
(5 +)7+t

a C—

Therefore,

a t
k*<\/ (1+H+$).

c—a/2 P
O

Corollary 3 establishes an upper bound on k*, which
depends on parameters a, ¢, 4, p, Lo, and 7, but independent of

Fitted curve

0.39 —

O Original values
Fit values

0.385

0.38

Loss

0.375

0.37 -

0.365
0 5 10 15 20 25 30 35 40
Number of clients

Fig. 2: simulation result about reward function(loss function)
with 100 user

M. Therefore, the complexity of solving the modified problem
(2) is O(M (k*)?) = O(M).

The next algorithm presents the details of solving the
optimal stopping time, where o is the predefined accuracy
level.

Algorithm 2: Solution for problem 1

Given parameters: M ,to,7, u, p ; Reward function
R(k);
Step 1: Calculate lower bound \;,e and upper bound
Aupper by corollary 1 and corollary 2.
Step 2: A = (Aupper + Nower)/2
while |V)| > o =0.001 do
if V), > 0 then
‘ Alower —)\’ A ()\upper +)\lower)/z
else
‘ Aupper —)\, A ()\uppe’r +)\lowe’r)/2
end
end
Step 4: return A, which is equal to J*

V. EVALUATION

Data and Model: We consider the experiment of training
a CNN model with distributed MNIST data. The dataset is
divided into 100 groups, each representing a local dataset (or
a client). Each client trains the CNN model with its own data
and uploads its newly trained parameters sequentially to a
parameter server if the channel is ON.

Reward function: We first plot the reward function R(k)
which is defined to be the decrement of the loss function (the
cross-entropy loss) when the number of updates increases from
k — 1 to k. The loss function for £ = 1,---,40, ... is shown
in Fig. 2, from which we can see that R(k) = ¢ — 355 fits
the reward function well. So in our experiments, we assume
R(k) = ¢ — 445 for some a >0 and ¢ > 0.

We evaluated the proposed algorithms using the MNIST
dataset. In our experiment, we chose M = 100, o = 3,000ms

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 29,2020 at 19:33:56 UTC from IEEE Xplore. Restrictions apply.

2020 54th Annual Conference on Information Sciences and Systems (CISS)

which includes broadcasting time and aggregating time, 7 =

10ms, and defined the reward function to be R(k) = 0.04 —
0.018
k

Ki’e further chose success probability of transmissions x to
be %. The size of the parameters of our CNN is about 80k-
100k. Based on the transmission rate of current 4G systems,
which is about 50k per 10ms, we assume the average time
for finishing uploading the parameters is around 16ms, which
leads to our choice of p. The success probability of data
processing p is set to be 1/500. We estimate the average
training time on cell phone is 5000ms. Since the duration
of each time slot is 10ms, the transmission probability is set
to be 1/500.

We compared the loss function under the proposed algo-
rithm based on optimal stopping time and other algorithms
based on fixed number of updates in each round. In particular,
we considered two other algorithms: the first algorithm require
updates from all M devices and the second algorithm, used by
Google, requires 10% updates from the M device. We remark
that the 10% rule is selected by comparing different fractions
and found the best one for each application [10]. So it can be
viewed as a policy uses the “optimal” number of updates at
each iteration.

For the optimal stopping time algorithm, we first obtain
lower bound Ajgwer = 0.01203 and upper bound Aypper =
0.01234. We then found the optimal A* = 0.01209, from
which, we obtained that £*=10 and %k = 8 for the optimal
stopping rule.

The testing loss as a function time is shown in Figure 3.
Each data point in lines represents the test loss after one round
of training. The length interval between two data points in each
line of our figure shows average running time in one round
for each stopping rule. For example, the average simulated
running time of a round with the optimal stopping rule (k* =
10, ki = 8) is 3.45s, as well as 3.555s for k = 10 and 28.76s for
k = 100. We can see that the optimal stopping rule reduce the
loss by at least 170% throughout the training process. Figure
4 compares just the optimal stopping rule and the 10% rule.
We again can see from this figure that even comparing to the
“optimal” fixed k, the optimal stopping rule still reduces the
loss function by 7% throughout.

VI. CONCLUSIONS

In this paper, we proposed an optimal stopping approach
for training machine learning models in Federated Learning.
Our simulation results showed the significant performance gain
compared with fixed training schedules.

ACKNOWLEDGEMENT
Research supported in part by NSF CNS 1618768, ECCS
1739344, and CNS 2002608.
REFERENCES
[1] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated

machine learning: Concept and applications. ACM Transactions on
Intelligent Systems and Technology (TIST), 10(2):12, 2019.

0.55 T

——k=10 (10% rule)
0.5 —e— k=100 (100% rule) 1
—_— ko=8,k=10 (optimal stopping)

0 100 200 300 400 500 600 700
Time
Fig. 3: Experiment result using optimal stopping rule with 100
users

0.2 T T T T T T T T T
——k=10 (10% rule)
0.19 +k0=8,k=10 (optimal stopping) | |

0.18
0.17
0.16

123

8 015

-

0.14
0.13
0.12

0.11

laawn
200 250 300 350 400 450 500 550 600 650 700
Time

0.1 L L L L L L L L

Fig. 4: Experiment result using optimal stopping rule with 100
users

[2] Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Francoise Beau-
fays. Federated learning of out-of-vocabulary words. arXiv preprint
arXiv:1903.10635, 2019.

[3] Andrew Hard, Kanishka Rao, Rajiv Mathews, Frangoise Beaufays,

Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage.

Federated learning for mobile keyboard prediction. arXiv preprint

arXiv:1811.03604, 2018.

Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications

of the ACM, 56(2):74-80, 2013.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Mark Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,

et al. Large scale distributed deep networks. In Advances in neural

information processing systems, pages 1223-1231, 2012.

Jianyu Wang and Gauri Joshi. Adaptive communication strategies to

achieve the best error-runtime trade-off in local-update sgd. arXiv

preprint arXiv:1810.08313, 2018.

[7] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework

for the design and analysis of communication-efficient sgd algorithms.

arXiv preprint arXiv:1808.07576, 2018.

P. Jiang and L. Ying. An optimal stopping approach for iterative training

in federated learning. Arizona State Technical Report, 2019.

[9] Thomas S Ferguson. Optimal stopping and applications. 2012.
[10] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
et al. Communication-efficient learning of deep networks from decen-
tralized data. arXiv preprint arXiv:1602.05629, 2016.

[4

=

[5

[ty

[6

=

[8

[t}

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 29,2020 at 19:33:56 UTC from IEEE Xplore. Restrictions apply.

