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ABSTRACT: Leveraging new data sources is a key step in
accelerating the pace of materials design and discovery. To
complement the strides in synthesis planning driven by historical,
experimental, and computed data, we present an automated,
unsupervised method for connecting scientific literature to
inorganic synthesis insights. Starting from the natural language
text, we apply word embeddings from language models, which are
fed into a named entity recognition model, upon which a
conditional variational autoencoder is trained to generate syntheses
for any inorganic materials of interest. We show the potential of this
technique by predicting precursors for two perovskite materials,
using only training data published over a decade prior to their first reported syntheses. We demonstrate that the model learns
representations of materials corresponding to synthesis-related properties and that the model’s behavior complements the existing
thermodynamic knowledge. Finally, we apply the model to perform synthesizability screening for proposed novel perovskite
compounds.

■ INTRODUCTION

Recent advances in predicting material properties,1−3 screening
synthesizable compounds,4−7 and organic reaction predic-
tion8−10 have been driven, in part, by the accessibility of
machine-readable datasets11−13 and consequently, data-driven
models. In stark contrast to organic reaction databases,13 the
overwhelming majority of inorganic synthesis knowledge lies
locked within the text of journal articles14−16 and laboratory
notebooks.17 While the latter has been shown as an effective
source for guiding successful syntheses of specific materials
systems, there is no existing method for automatically and
broadly translating literature knowledge into insights for the
syntheses of novel inorganic materials.
Scientific literature has previously been used to illuminate

patterns in nanoscale morphologies,14 solid-state reactions,16

device performances,18 and apparatus parameters,19 but each
of these efforts have required tailored, material-specific data
representations. Recently, Tshitoyan et al.20 have shown that
the Word2Vec embedding algorithm21 can capture useful
correlations in the materials science literature without the use
of any supervised algorithms or hand-engineered data
representations. The model used by Tshitoyan et al. focuses
on predictions regarding materials it has seen before, while the
work presented here aims to add chemical insights for
undiscovered materials. To provide actionable insights for
materials discovery, data-driven models must provide infer-
ences about never-before-seen materials, and these models

must consider not only the topical context (e.g., if a material is
a thermoelectric) but also synthetic context (e.g., which
precursors are often used to synthesize it). Moreover, all of this
must be achieved with minimal hand-labeling of training
data.16,22

In this work, we present an automated method for
connecting scientific literature to context-aware insights for
inorganic materials synthesis planning. We show that an
unsupervised condit ional variat ional autoencoder
(CVAE)23−25 can generate synthesis predictions for a variety
of materials, including materials never before seen by the
model. This CVAE learns directly from the materials synthesis
literature and produces an internal representation of precursors
which corresponds to physical and chemical trends without
receiving any explicit domain knowledge. We then use the
literature knowledge captured by the CVAE to complement
first-principles techniques in materials screening tasks.
In contrast to existing generative models for materials

synthesis planning,26 this unsupervised CVAE model requires
no fine-tuned feature engineering when performing synthesis
planning for different categories of materials. Additionally, it is
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trained on data that is automatically produced from a neural
network natural language processing pipeline14 that uses
context-aware, character-based word representations to allow
inferences to be made for never-before-seen materials. In short,
while previous models have shown the capability to predict if a
previously discovered material may be seen in a new
context,14,20,26 our model predicts not only if, but how, new
materials can be made, using only data learned autonomously
from the literature. Critically, our model not only learns to
follow the “rules” of commonly accepted synthesis intuition
but also learns to “break” these rules while still obeying
thermodynamics (e.g., suggesting nitride precursors where
oxides and carbonates are more typical, while maintaining
negative reaction enthalpy). Thus, our model provides a
literature-driven synthesis planning approach that is comple-
mentary to first-principles methods for exploring rare materials,
such as inorganic nitrides.7,27

To accelerate the efforts of the materials science community,
we open-source several key resources used in this work at
www.github.com/olivettigroup/materials-synthesis-generative-
models: We release context-sensitive embeddings from
language models (ELMo) that have been adapted for materials
science text28 along with a pre-trained FastText word
embedding model for materials science.29 Each of these
embedding models has been trained on a collection of over 2.5
million materials science journal articles.14,22 We also provide
the full architecture and code for the CVAE model, along with
a Python tutorial for running the code. Finally, we provide over
two hundred annotated literature synthesis routes for named
entity recognition (NER) tasks, such as identifying reaction
conditions and materials.

■ RESULTS AND DISCUSSION

We first describe our automated workflow. After a recurrent
neural network30 identifies synthesis sections of journal
articles, context-sensitive ELMo word embeddings are
computed and passed into another recurrent neural network
which performs NER to identify precursors, synthesis target
materials, and synthesis actions. Then, a CVAE model, shown
in Figure 1, is trained to learn representations of synthesis
routes from the named entities in an unsupervised manner.
Intuitively, an autoencoder (AE) learns to compress synthesis

parameters into a lower-dimensional representation. AEs can
be modified to have a variational component, resulting in a
variational autoencoder (VAE) which allows for novel
synthesis parameters to be efficiently and accurately
generated.26 By adding inputs to the decoder, the VAE
becomes a CVAE, and the model is then able to produce
different synthesis parameters depending on the target material
of interest. In contrast to previous work (which was not
conditional),26 the CVAE model presented here requires no
material-specific feature engineering, respects the order of
operations performed in a synthesis, and can perform synthesis
planning for arbitrary materials after a single instance of model
training (whereas prior models required retraining and
additional feature engineering for each materials system).
More details on these methods are provided in the
Experimental Section.
To maximize the opportunity for transfer learning of

synthesis trends, we choose a broad definition for synthesis
routes that requires minimal assumptions. For a given target
material m, a synthesis route Sm

i is a 2-tuple consisting of a
sequence of n synthesis actions (a1, a2, ..., an) acting on a set of
l precursors {p1, ..., pl}

= { }S a p(( ) , )m
i

k
n

j

l

(1)

and in general, a single target material m may have N > 1 valid
synthesis routes and thus Sm

i represents the ith valid synthesis
route for m. We also define precursors p as “element sources,”
such that they are materials sharing an element with m. The
CVAE model is then constructed to model the following
distributions

θ| a m(( ) , )k
n

a (2)

θ| p e a( , , ( ) )
j j k

n
p (3)

where θa and θp are model parameters for the synthesis action
and precursor CVAEs, respectively, and ej is the shared element
between a precursor pj and target material m (e.g., titanium).
Because CVAEs are generative models, novel synthesis actions
and precursors can be generated by sampling from a Gaussian
prior distribution.23

Critically, we represent m by a FastText word embedding
model trained on the materials science literature, which
enables the transfer of synthesis trends between existing and
novel materials by leveraging literature-based similarity.
Although unsupervised word representations for materials
science have been recently explored,20,22 existing methods
cannot draw inferences about materials that were previously
unseen by the model. As an example, using a model which has
never before encountered the formula LiNi1−xCoxO2, the word
embedding model we fine-tuned enables reasonable inferences
via cosine similarity. Similarity of the previously unseen
material is ranked to be higher with another battery cathode
material compared to a binary metal oxide

=−Similarity (LiCoO , LiNi Co O ) 61%x x2 1 2 (4)

=−Similarity (MnO , LiNi Co O ) 47%x x2 1 2 (5)

Here, the underlined text denotes a material which was never
observed by the model during training. Nonetheless, we are
able to represent the material as a real-valued vector as well as
compute a reasonable similarity to related materialsboth
tasks which would not be possible using previous methods.20,22

Figure 1. Schematic diagram of the CVAE architecture. The model
consists of two joined CVAEs used for learning synthesis actions and
precursors. The synthesis action CVAE learns distributions of
synthesis action sequences conditioned on target materials. The
precursor CVAE learns distributions of precursor formulas condi-
tioned on both a target element and an encoded representation of the
jointly observed synthesis action sequence. Target materials are
represented by FastText embeddings, and all other inputs to the
model are sequences of one-hot vectors.
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The authors note, however, that FastText embeddings may
overemphasize similarity based on morphological likeness (e.g.,
words containing the same substrings), and so appropriate
caution should be exercised.
To demonstrate the applicability of our CVAE method, we

construct a dataset of approximately 51,000 synthesis action
sequences and 116,000 precursors via a general set of search
terms (“perovskite + thermoelectric + multiferroic + photo-
voltaic + solar + nano + cathode”) and apply our neural
network pipeline. We investigate the effectiveness of the CVAE
model in synthesis planning by performing a publication-year-
split experiment, where the model is trained only on syntheses
published prior to 2005 (∼2800 syntheses). We apply the
model in predicting precursors for materials that were unseen
during training, are computationally predicted as stable
perovskites,1 and only recently appear in the literature:
InWO3 and PbMoO3, first reported in 2016 and 2017,
respectively.31,32 Table 1 shows a report of the data generated

by sampling from the CVAE’s Gaussian prior distributions,
where the CVAE suggests the precursors for both materials
(see Table S1 for additional details). The CVAE model is thus
capable of predicting synthesis precursors while relying only on
literature knowledge from more than a decade prior to the
literature-reported syntheses of these materials. Trial-and-error
(or random) precursor selection is substantially less efficient,
as the number of possible precursor sets for each material is in
the hundreds. Thus literature-driven models may greatly
accelerate future synthesis attempts of novel materials.
During the data generation process, the CVAE model

proposes several plausible syntheses beyond the literature-
matching samples. To the best of the authors’ knowledge, the
only reported synthesis of InWO3 is via a solution-phase route.
However, the CVAE model suggests that solid-state synthesis
of InWO3 may be possible, using In2O3 and either WO2 or
WN as precursors. Such syntheses may be feasible, as they are
thermodynamically favorable (using data at 0 K and 0 atm
from OQMD).11 Thus, by observing the actions performed in
the laboratory, the model has extracted the underlying
thermochemical trends and physical reasoning used by the
experimenters.

+ → +In O 2WO 2InWO 2O2 3 2 3 2 (6)

Δ = −H 158 kJ/mol (7)

+ → +In O 2WN 2InWO N2 3 3 2 (8)

Δ = −H 930 kJ/mol (9)

We do note, however, that these thermodynamic analyses
should only be used as rough guidelines. Besides the
limitations of estimating an overall thermochemical reaction
for the synthesis, along with extrapolation from STP
conditions, kinetic effects are not considered here. Indeed,
while it is common to mix binary oxide precursors in solid-
state syntheses of ternary (or quaternary, etc.) oxides, the use
of nitride precursors is less common due to the high bond
energies of many nitride compounds.27 To achieve a clearer
understanding of kinetic effects, experimental verification
would be required alongside a model which incorporates
reaction conditions (e.g., temperatures), and this is an area for
future work. Nonetheless, it is interesting to observe that the
CVAE model is able to suggest synthetic precursors that are
both typical (oxides) and atypical (nitrides) while respecting
thermodynamics.
In the suggested recipes for PbMoO3, the CVAE model

suggests a solution-phase route using PbSO4 and MoCl2, both
of which are soluble under acidic conditions. The CVAE
model thus provides chemical insights into new, potentially
viable paths toward synthesizing PbMoO3, which has only
been realized so far in the laboratory by solid-state synthesis
methods.32 However, we stress that these suggestions still need
human evaluation and should not be applied “out of the box.”
Despite the fact that chemical knowledge is never given to

the CVAE model, we find one example where solubility rules
emerge from the model results. To demonstrate this, we
generate W-bearing precursors for InWO3 conditioned on two
representative action sequences sampled from the Synthesis
Action CVAE: a solid-state synthesis (mix, grind, calcine, press,
sinter, cool) and a solution-phase synthesis (add, dissolve, stir,
heat, wash, dry). Following this, we generate 10,000 CVAE-
suggested precursors. The most common W-bearing precursor
generated for the solid-state synthesis is the water-insoluble
WO3, while the most common precursor generated for the
solution-phase synthesis is the highly soluble Na2WO4. The
differences of these precursor likelihoods in each case is
substantial, with −16 and +21% changes to the likelihoods of
the CVAE suggesting WO3 and Na2WO4, respectively, when
switching from conditioning on solid-state to solution-phase
synthesis actions. This shows that, for this particular case, the
model has captured the physical concept of aqueous solubility
purely by observing the selective use of certain precursors in
solution-phase literature syntheses.
This effect of learning precursor trends from the literature is

further demonstrated upon inspecting latent codes learned by
the model. Because the CVAE learns conditional distributions,
the input precursors are projected into a degenerate latent
space, where the degeneracy is split by the conditional input
received by the decoder. By investigating several examples (see
Figure S4), we find that the CVAE learns to group precursors
with similar synthesis-relevant properties, including insoluble
binary oxides, water-soluble polyanion compounds, and pure/
alloyed metals. Because the CVAE only receives one-hot
representations of precursors as inputs, with no prior
knowledge encoded, this suggests that the CVAE model is
capable of capturing chemical intuition and composition-
driven similarity solely by joint observations of precursors,
synthesis actions, and target materials. Despite the lack of
“negative” data in the literature, the diversity of published

Table 1. Generated Precursors for InWO3 and PbMoO3,
Drawn from the CVAE Modela

target material precursors

InWO3 In2S3 + WCl4
In(NO3)3 + WCl4
In2O3 + WO2

In2O3 + WN
bInCl3 + Na2WO4

PbMoO3 PbCl2 + MoCl2
PbSO4 + MoCl2
cPbO + MoO2

aThe CVAE model was trained on synthesis routes published during
or before 2005. bPrecursors match Kamalakkannan et al. (2016).31
cPrecursors match Takatsu et al. (2017).32
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synthesis literature is sufficient to drive the CVAE model in
learning meaningful representations of precursors.
To emphasize the particular nature of synthesis planning via

a literature-trained model, we contrast suggested precursors by
the CVAE model with thermodynamic stability computations
from OQMD,11 which we have used to compute two-phase
equilibria and formation energies for all compounds in the
chemical space spanned by all CVAE-suggested precursors.33

Given that only a subset of the (meta)stable precursor
materials are selected by the CVAE, as shown in Figure 2,
the CVAE is clearly not suggesting the full set of
thermodynamically viable precursors (blue vs orange curves).
Indeed, the CVAE has filtered precursors from a set of 73
possible precursors to only 27, thus minimizing the set of
candidate precursors to test in the laboratory. Additionally,
Figure 2a,b shows that the CVAE is not selecting precursors in
correspondence with isolated thermodynamic metrics: the
CVAE’s suggestions are explained neither by thermodynamic
reactivity (i.e., the number of relevant two-phase equilibria
with respect to other precursors) nor individual precursor
stability (i.e., formation energy). This suggests that there is a
meaningful difference between the thermodynamically driven
and literature-driven synthesis planning methods. While the
former probes the realm of physical possibility, the latter
emphasizes practical choices and historical trends. In other
words, the CVAE model has uncovered a new physical metric
for synthesis planning that is driven by the aggregate reported
successes of past experiments and complements existing
thermodynamic theory.
We next train the CVAE model on our full dataset, using no

publication-year cutoffs. To investigate the capability of the
model for suggesting syntheses of a novel, never-before-
synthesized material, we consider novel ABO3 perovskite
materials proposed by Balachandran et al.34 These proposed
perovskites have not previously been synthesized and have
high thermodynamic stability as measured by energy differ-
ences against their convex hulls. We note that ABO3

perovskites are used here as a representative example because
of their chemical variety and diverse range of properties, but
the CVAE model does indeed generalize to other categories of
materials (see Table S3).
HgZrO3 is one such example of a thermodynamically stable,

unsynthesized perovskite material,34 and we perform synthesis
predictions using the CVAE model (see Table S2). We find
that the CVAE proposes solid-state syntheses which appear to
be thermodynamically reasonable:

+ + → +HgO ZrC 2O HgZrO CO2 3 2 (10)

Δ = −H 1340 kJ/mol (11)

+ →HgO ZrO HgZrO2 3 (12)

Δ = −H 0.29 kJ/mol (13)

Again, we emphasize that thermodynamic analyses are often
insufficient to evaluate reaction plausibility. As an additional
utility for evaluating generated synthesis parameters, we
develop a similarity metric based on the latent codes learned
by the CVAE. By measuring nearest-neighbors of latent codes
for the recipe using mercuric oxide and zirconium carbide, we
find that the two closest literature recipes are for solid-state
syntheses of SrZrO3 and BaAl2O4 (see Figure S5). Besides
providing insight into which observed literature examples
“inspired” this particular prediction, we are also led to further
insights on precursor selections. ZrC is an uncommon choice
of precursor, but carbonate precursors are readily used in solid-
state syntheses. Indeed, both of the near-neighbor syntheses
for HgZrO3 use carbonate precursors rather than carbides.
While similarity methods have previously been produced for

materials (e.g., based on crystal structures),35 the CVAE
incorporates synthesis knowledge to produce a distinct
measure of similarity. Indeed, from a structural point of view,
it would not be expected that SrZrO3 and BaAl2O4 should have
high similarity to HgZrO3 because all three materials form
ground-state structures in different crystal systems (ortho-
rhombic, hexagonal, and cubic, respectively).
Moreover, rather than measuring similarity against entire

materials, the CVAE-based metric operates at the level of
individual reported (or generated) synthesis routes. Because
the nearest-neighbor search is computationally inefficient in
high dimensional spaces, the dimensionality reduction imposed
by the CVAE enables this “latent citation” model to be used as
a rapid, data-driven synthesis planning method.
Finally, we present results for synthesis screening using the

CVAE model to suggest syntheses for numerous ABO3

suggested by Balachandran et al.34 The CVAE was used to
generate syntheses with ten data generation attempts per
compound, and only compounds which had at least one
suggested synthesis route with commercially available
precursors were considered to have passed the test, which is
the same criterion used by Segler et al.8 to evaluate
retrosynthetic routes for organic molecules.

Figure 2. Two-phase equilibria between precursors and associated precursor formation energies for InWO3 precursors,
33 using data from 1000

precursor sets generated by the CVAE. (a) Normalized distributions for number of two-phase equilibria between precursors for CVAE-suggested
and non-suggested precursors. (b) Normalized distributions of formation energies for CVAE-suggested and non-suggested precursors.
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Figure 3 shows a grid of possible A-site and B-site atoms for
ABO3 perovskite materials, with screened compounds

represented by highlighted combinations of A-site and B-site
atoms. While a joint machine learning and density functional
theory method34 selects a set of materials which are
thermodynamically stable in the perovskite form, the further-
imposed synthesis screening selects a subset that is most
readily synthesizable based on existing literature knowledge.
From a set of 83 proposed ABO3 perovskite compounds, the
CVAE has selected a subset of only 19. In analogy to the
results found by Segler et al. for data-driven retrosynthesis of
organic molecules,8 we find here that the CVAE model has
derived new chemical selection “rules” based on the results
reported by past experiments.

■ CONCLUSIONS

The CVAE model, combined with the rest of our neural
network workflow, enables a new axis of synthesis screening
which complements the existing domain knowledge.5,34 By
incorporating and extending patterns in the historical
literature, materials which are theoretically synthesizable can
be rapidly and automatically filtered by their practical
synthesizability. This capability of the model emphasizes the
ability to capture and extend physical and chemical insights
from the literature itself. Although natural language is not
inherently bound by physical principles, the reported steps in
successful materials synthesis experiments are ultimately
governed by physics and motivated by scientific reasoning.
While this latent scientific reasoning exists primarily in the
minds of experimenters, we have shown that observations of
experimental reports within the literature are sufficient to
uncover key aspects of this reasoning, including rules of
solubility and thermodynamics. Moreover, the CVAE model
encourages synthesis planning beyond the norm of usual
synthesis routes, as demonstrated by the suggestion of nitride
precursors and precursors that are soluble under specific pH
conditions.

While the methods presented in this paper are applicable to
various materials systems and synthesis methods, we recognize
that our broad representation of synthesis routes omits
information such as temperatures, solvents, and morphologies
and additionally assumes that there is a one-to-one relation
between elements in precursors and targets. We thus believe
that a promising future work lies in the direction of generative
models with a narrower scope but finer-grained detail. For
example, limiting the dataset to solvothermal syntheses may
facilitate prediction of solvent choices, solvothermal reaction
temperatures, and dwell times. This additional domain
knowledge may be incorporated by filtering proposed synthesis
parameters8 or constraining model outputs.36 Motivated by
these possibilities, our open-source NER annotations include
the necessary labels (e.g., reaction conditions) to enable these
future studies.

■ EXPERIMENTAL SECTION

The text extraction methodology follows the high-level
workflow as reported in the literature;14 however, all machine
learning models have been redesigned from the ground-up.
While the prior work used local-window neural networks and
logistic regression, in this work, recurrent and convolutional
neural networks are used, along with higher performance word
embedding models.
All neural network models are implemented in the Keras

library using the TensorFlow backend,37 with the exception of
ELMo which is implemented directly in TensorFlow.38 The
Pymatgen library is used for computing all chemical
formulas.39

A bidirectional-GRU30 recurrent neural network is trained to
classify all paragraphs of a journal article using FastText word
embeddings as input features. An annotated collection of 4000
paragraphs were used to train the paragraph classification
model. This model has an overall accuracy of 92% across eight
classes (abstract, introduction, synthesis recipe, character-
ization and other methods, results, conclusions, captions, and
miscellaneous) and achieves a recall and precision of 96 and
81% for classifying synthesis recipes, respectively. For the
purposes of the CVAE model, recall is the most relevant
metric, as false-positive synthesis recipes have a minimal effect
on downstream NER processes (with the exception of
increasing overall computation time). Training the paragraph
classification model took less than an hour using an Intel Xeon
E5-2620 v4 at 2.10 GHz.
We highlight that static, context-insensitive word embed-

dings are used for this task because the computation time for
character-based embeddings is intractable for a full-text corpus
of this size. Training the FastText model took approximately 2
weeks using an Intel Xeon E5-2620 v4 at 2.10 GHz.
A bidirectional-GRU, operating at a sentence-level context,

is trained on character-based ELMo word embeddings.
ChemDataExtractor is used for tokenizing sentences and
words.40 The macro-averaged categorical accuracy is 93%, and
a full confusion matrix is available in Table 2. The ELMo
model was fine-tuned on our collection of 2.5M + materials
science journal articles, starting from the standard pretrained
weights.28 In practice, the authors found that fine-tuning an
ELMo model to materials science literature improved perform-
ance on NER tasks by upwards of 10% in some categories. The
fine-tuning process took approximately 1 week to complete
training on two NVIDIA Titan Xp GPUs. The NER model
took less than an hour to train on the same hardware.

Figure 3. Unsynthesized ABO3 perovskite compounds, labeled by
their A-site and B-site elements. Colored-in squares are perovskites
predicted to be stable.34 Orange and blue colors correspond to
compounds which passed or failed the CVAE screening, respectively.
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The NER labels are produced from a manual annotation
process where 230 journal articles were annotated word-by-
word. This annotated dataset includes labels for additional
categories which are not used in the current study, such as
temperatures, solvents, apparatuses, and brand names.
Table 2 shows the confusion matrix for the NER model used

to identify precursors, synthesis actions, and synthesized target
materials. We also experimented with training NER models
that incorporate additional class labels available in the
annotated NER data and found promising accuracies for
several types of synthesis-relevant data. On the test set of
annotations, using the same NER model architecture (with
more output classes), we achieved F1 scores of 92% on
atmospheric gases (e.g., argon and nitrogen), 96% on amounts
of materials (e.g., molarity and mass), 94% on reaction
conditions (e.g., temperatures and reaction times), and 73% on
material descriptors (e.g., phase names and morphologies).
Synthesis recipes are treated as a set of precursors, along

with a sequence of in-lab synthesis actions and a target-
synthesized material. Both the synthesis action CVAE and the
precursor CVAE use identical architectures: convolutional
encoders feed into a latent parameter space for means and
variances of Gaussian variational posteriors, and outputs from a
latent sampling function are concatenated with conditional
inputs as inputs to a recurrent decoder. In producing the
results for this study, 8 latent dimensions were used for both
the CVAEs.
Synthesis actions are encoded as sequences of one-hot

vectors. Because there are many synonymous actions reported
in the literature (e.g., press and compress), cosine similarity
between FastText embeddings of synthesis actions are used to
automatically cluster and prune the total vocabulary of
synthesis actions. The authors found that using a total
vocabulary size of 50 actions was adequate to capture the
variety of possible synthesis actions. The authors would like to
caution that the choice of vocabulary affects the variety and
quality of the generated data: in particular, including a larger
scope of synthesis methods (e.g., including characterization
details) demands a larger vocabulary and consequently
increases the difficulty of accurate data generation for the
model. While vocabulary sizes in this study were chosen by the
authors, automated vocabulary pruning methods have also
achieved success in recent work.15

The synthesis action CVAE learns to auto-encode sequences
of synthesis actions, conditioned on the character-based
FastText embedding of the target material. The use of
character-based embeddings allows for the representation of
target materials unseen at the training time. The reconstruction
accuracy varies strongly with the dataset size (e.g., when

truncating the dataset by year) and the number of latent
dimensions in the “bottleneck” of the model. We found that,
using 10% randomly held-out test data, the model achieves
categorical accuracies of 51, 56, and 60% on training datasets
of 100, 1000, and 10,000 recipes, respectively. Accuracies as
high as 70% were achieved by increasing the number of latent
dimensions to 64, but this was found to greatly reduce the
conditional nature of the model because the model tends to
“ignore” the conditional information provided from the target
material and instead learn a single, global distribution.
In general, the authors found that high test-set accuracies

were not necessary to generate reasonable data, as data
generation is computationally cheap. The accuracy for the
synthesis action CVAE is also comparable to the accuracies
reported in the literature,8 as there are multiple valid methods
for the synthesis of a single material.
Precursors (represented by their chemical formulas) are

encoded as sequences of one-hot vectors, where the total
vocabulary is a character set consisting of the different
elements and the numerical digits. We define a precursor as
a chemical formula, used in a synthesis recipe, which shares an
element with the target synthesized material (and intuitively
acts as an “element source” during synthesis). In our case
studies for ABO3 perovskites, we assume that oxygen is
ubiquitous and does not require an associated inorganic
precursor. The authors note that information regarding
hydrates, non-stoichiometric formulas, fractional formulas,
abbreviations, and common names are ignored. This
introduces some level of bias into our data, and a more robust
representation of precursors is an area for future work. We also
validate generated chemical formulas using Pymatgen, as the
CVAE also suggests invalid precursors during random
sampling attempts, similar to the invalid SMILES noted by
Goḿez-Bombarelli et al.25 We found that this added only
trivial amounts of computational time (i.e., seconds) to the
overall data generation process.
The precursor CVAE model learns to auto-encode chemical

formulas, represented as character sequences, conditioned on a
one-hot vector of the target element along with the encoded
representation of the synthesis action sequence in which the
precursor is observed from the literature. Analogous to the
CVAE for synthesis action sequences, the reconstruction
accuracy is strongly influenced by dataset size and latent
dimensions. On 10% random holdouts, the model achieves
accuracies of 59, 67, and 91% on training datasets of 100, 1000,
and 10,000 precursors, respectively. Increasing the number of
latent dimensions to 64 resulted in accuracies as high as 98%
but with the same effect on conditioning as observed for the
synthesis action CVAE.
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Orvañanos, B.; Chen, B.-R.; Toney, M. F.; Schelhas, L. T.; Tumas,
W.; Tate, J.; Zakutayev, A.; Lany, S.; Holder, A. M.; Ceder, G. A map
of the inorganic ternary metal nitrides. Nat. Mater. 2019, 18, 732−
739.
(8) Segler, M. H. S.; Preuss, M.; Waller, M. P. Planning chemical
syntheses with deep neural networks and symbolic AI. Nature 2018,
555, 604−610.
(9) Gao, H.; Struble, T. J.; Coley, C. W.; Wang, Y.; Green, W. H.;
Jensen, K. F. Using Machine Learning To Predict Suitable Conditions
for Organic Reactions. ACS Cent. Sci. 2018, 4, 1465−1476.
(10) Coley, C. W.; Barzilay, R.; Jaakkola, T. S.; Green, W. H.;
Jensen, K. F. Prediction of Organic Reaction Outcomes Using
Machine Learning. ACS Cent. Sci. 2017, 3, 434−443.
(11) Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C.
Materials Design and Discovery with High-Throughput Density
Functional Theory: The Open Quantum Materials Database
(OQMD). J. Mater. 2013, 65, 1501−1509.
(12) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.;
Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K.
A. Commentary: The Materials Project: A materials genome approach
to accelerating materials innovation. APL Mater. 2013, 1, 011002.
(13) Goodman, J. Computer Software Review: Reaxys. J. Chem. Inf.
Model. 2009, 49, 2897.
(14) Kim, E.; Huang, K.; Saunders, A.; McCallum, A.; Ceder, G.;
Olivetti, E. Materials Synthesis Insights from Scientific Literature via
Text Extraction and Machine Learning. Chem. Mater. 2017, 29,
9436−9444.
(15) Weston, L.; Tshitoyan, V.; Dagdelen, J.; Kononova, O.;
Trewartha, A.; Persson, K. A.; Ceder, G.; Jain, A. Named Entity
Recognition and Normalization Applied to Large-Scale Information
Extraction from the Materials Science Literature. J. Chem. Inf. Model.
2019, 59, 3692−3702.
(16) Huo, H.; Rong, Z.; Kononova, O.; Sun, W.; Botari, T.; He, T.;
Tshitoyan, V.; Ceder, G. Semi-supervised machine-learning classi-
fication of materials synthesis procedures. npj Comput. Mater. 2019, 5,
62.
(17) Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M.
B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J.
Machine-learning-assisted materials discovery using failed experi-
ments. Nature 2016, 533, 73−76.
(18) Ghadbeigi, L.; Harada, J. K.; Lettiere, B. R.; Sparks, T. D.
Performance and resource considerations of Li-ion battery electrode
materials. Energy Environ. Sci. 2015, 8, 1640−1650.
(19) Young, S. R.; Maksov, A.; Ziatdinov, M.; Cao, Y.; Burch, M.;
Balachandran, J.; Li, L.; Somnath, S.; Patton, R. M.; Kalinin, S. V.;
Vasudevan, R. K. Data mining for better material synthesis: The case
of pulsed laser deposition of complex oxides. J. Appl. Phys. 2018, 123,
115303.
(20) Tshitoyan, V.; Dagdelen, J.; Weston, L.; Dunn, A.; Rong, Z.;
Kononova, O.; Persson, K. A.; Ceder, G.; Jain, A. Unsupervised word

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.9b00995
J. Chem. Inf. Model. 2020, 60, 1194−1201

1200



embeddings capture latent knowledge from materials science
literature. Nature 2019, 571, 95−98.
(21) Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J.
Advances in Neural Information Processing Systems 26; Curran
Associates Inc.: Lake Tahoe, Nevada, 2013; pp 3111−3119.
(22) Kim, E.; Huang, K.; Tomala, A.; Matthews, S.; Strubell, E.;
Saunders, A.; McCallum, A.; Olivetti, E. Machine-learned and codified
synthesis parameters of oxide materials. Sci. Data 2017, 4, 170127.
(23) Kingma, D. P.; Welling, M. International Conference on Learning
Representations, 2014.
(24) Sohn, K.; Lee, H.; Yan, X. Advances in Neural Information
Processing Systems 28; Curran Associates, Inc., 2015; pp 3483−3491.
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