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Abstract

We propose a turbulence-driven solar wind model for a fast solar wind flow in an open coronal hole where the solar
wind flow and the magnetic field are highly aligned. We compare the numerical results of our model with Parker
Solar Probe measurements of the fast solar wind flow and find good agreement between them. We find that (1) the
majority quasi-2D turbulence is mainly responsible for coronal heating, raising the temperature to about ~106 K
within a few solar radii, which leads in turn to the acceleration of the solar wind; (2) the heating rate due to quasi-
2D turbulence near the coronal base is larger than that due to nearly incompressible/slab turbulence; (3) the quasi-
2D energy in forward-propagating modes decreases with increasing distance, while the nearly incompressible/slab
energy in forward-propagating modes increases, reaching a peak value at ∼11.7 R before decreasing with
increasing heliocentric distance; (4) the correlation length increases with increasing distance from the coronal base;
and (5) the variance of the density fluctuations decreases as a function of heliocentric distance.

Unified Astronomy Thesaurus concepts: The Sun (1693); Solar wind (1534); Interplanetary turbulence (830)

1. Introduction

A primary goal of the Parker Solar Probe (PSP) mission (Fox
et al. 2016) is to understand coronal heating and the origin of
the fast solar wind (Matthaeus et al. 1999; Dmitruk et al. 2001;
Chandran & Hollweg 2009; Cranmer & van Ballegooijen 2010;
Verdini et al. 2010; Cranmer et al. 2013; Zank et al. 2018).
Therefore, PSP (and the Solar Orbiter) will improve our
understanding of these two problems in space physics and solar
physics.

Two physical models have been suggested to describe
the heating of the solar corona: “wave/turbulence-driven”
(W/T) and “reconnection/loop-opening”(RLO; Cranmer &
van Ballegooijen 2010). In the W/T model, magnetoconvec-
tion of open magnetic field tubes produces a broad spectral
range of low-frequency magnetohydrodynamic (MHD) waves
due to the transverse motion of minigranular, granular, and
supergranular regions in the photosphere. The MHD waves
carry kinetic and magnetic energy from the photosphere to the
chromosphere and transition regions, and then into the solar
corona and the distant heliosphere. The magnetic flux tubes
likely originate from the intergranular regions or lanes in
the quiet Sun (Fisk et al. 1999) and guide the solar wind and
Alfvén waves. De Pontieu et al. (2007) suggested that
transverse displacements observed in spicules can be inter-
preted as Alfvén waves, and related remote-sensing observa-
tions supporting the existence of Alfvén waves in the corona
have been provided by Morton et al. (2016). However, the
interpretation of remotely observed fluctuations as Alfvén
waves has been disputed, and Erdélyi & Fedun (2007) suggest
that kink modes were observed instead. The existence or not of
Alfvén waves in the solar corona is not yet settled, either
observationally (Tomczyk et al. 2007; Cirtain et al. 2007;
Tomczyk & McIntosh 2009; Verth et al. 2011; Okamoto &
De Pontieu 2011; Kuridze et al. 2012) or with respect to
theory, modeling, and analysis (Zaqarashvili & Erdélyi 2009;
Mathioudakis et al. 2013). The W/T model assumes that the
solar wind density and magnetic field gradients cause Alfvén

waves generated by transverse motion of the magnetic
footpoints in the photosphere to experience non-WKB reflec-
tion (Hollweg 1986; Matthaeus et al. 1999; Zank et al. 2018).
The outward- and inward-propagating Alfvén waves interact
nonlinearly (Matthaeus et al. 1999), which leads to the
generation of quasi-2D fluctuations (Shebalin et al. 1983) and
results in the dissipation of turbulent energy. Several
turbulence-driven solar wind models based on Matthaeus
et al. (1999) have been used to study the acceleration of the
solar wind and the heating of the coronal plasma (Dmitruk et al.
2001, 2002; Oughton et al. 2001; Suzuki & Inutsuka 2005;
Cranmer et al. 2007; Chandran & Hollweg 2009; Chandran
et al. 2010; Cranmer et al. 2013; Verdini et al. 2010; Woolsey
& Cranmer 2014).
In the RLO model, interchange reconnection between an

open flux tube and a closed loop (Moore et al. 1999; Rappazzo
et al. 2012) results in the closed loop injecting hot plasma
into an open flux tube. These models typically assume some
form of plasma heating mechanism in the loop. Zank et al.
(2018) introduced a different perspective on the RLO model in
that they consider the ubiquitous magnetic carpet (Title &
Schrijver 1998) that is found everywhere on the solar surface
(open and closed field regions). The magnetic carpet consists of
a complex admixture of magnetic field, closed and open, and
polarity above the photosphere, up to the scale height of the
magnetic carpet. The mixed-polarity, small-scale loops rise and
interact on a replenishment timescale of about 40hr and form a
plasma region filled with largely quasi-2D turbulent fluctua-
tions. Zank et al. (2018) focus on the small-scale loops of the
magnetic carpet in open field regions and consider the actual
heating process. Coronal plasma is heated by the dissipation of
dynamically evolving 2D turbulence created in the magnetic
carpet region through slow photospheric motions, and the
turbulence is advected upward by subsonic, sub-Alfvénic flow.
It is the transport of quasi-2D turbulence away from the coronal
base and its subsequent dissipation that distinguishes the
Zank et al. (2018) approach from the nanoflare model of Parker
(Parker 1972, 1988, 1994).
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Zank et al. 2018 developed a nearly incompressible MHD
(NI MHD) quasi-2D and NI/slab turbulence transport model
for the first time to study the evolution of turbulence in the
solar atmosphere. Using fixed background profiles of solar
wind density and solar wind speed, they found that the
dissipation of the majority quasi-2D turbulence is sufficient to
raise the temperature of the coronal plasma to millions of
degrees kelvin.

Here, we develop a turbulence-driven solar wind model for
the fast wind where the large-scale solar wind flow and the
magnetic field are closely aligned (or antialigned). To derive
the coupled quasi-2D and NI/slab turbulence transport model
equations for the fast wind, we assume that the normalized NI/
slab cross-helicity is equal to one and the normalized NI/slab
residual energy is equal to zero. This approximation is
consistent with the results of Telloni et al. (2019), who used
WIND spacecraft data sets to find a ∣∣

-k 5 3 (where ∣∣k is the
wavenumber along the flow direction) power spectrum for
unidirectional Alfvén waves, in which the normalized cross-
helicity sc is equal to one. Since this result is inconsistent with
critical balance theory (Goldreich & Sridhar 1995), Zank
et al. (2020) present a detailed spectral theory of NI MHD to
explain the origin of the observed Kolmogorov power law for
unidirectional Alfvén waves. Such a power spectral density

∣∣
-k 5 3 has also been found by Zhao et al. (2020b) using the PSP

measurements. A statistical study conducted by Stansby et al.
(2019) using Helios 2 data sets finds that the anisotropic
population, defined by different parallel and perpendicular
solar wind proton temperatures, is almost always Alfvénic
(s > 0.8c ). Similarly, a study by Chen et al. (2020) using PSP
measurements finds that the power-law index of the power
spectral density of solar wind fluctuations transitions from
-k 3 2 to -k 5 3 with increasing heliocentric distance. However,
these studies do not consider the alignment of the velocity and
the magnetic field as was done in Telloni et al. (2019) and
Zhao et al. (2020b). Here, we develop a turbulence model that
incorporates unidirectional Alfvén waves by coupling the
nearly incompressible turbulence model equations (Zank et al.
2017) with a background plasma described by the continuity,
momentum, and energy equations that incorporates turbulent
heating. In deriving the turbulence-driven solar wind model
equations for the fast solar wind flow, we assume that the NI/
slab component is highly Alfvénic so that the fluctuating
kinetic and magnetic energy are equipartitioned (i.e., the
normalized residual energy is equal to zero) and the normalized
cross-helicity is equal to one (Adhikari et al. 2019b; Parashar
et al. 2020; Zhao et al. 2020a). We compare the theoretical
solutions with PSP measurements of the fast solar wind flow.

In Adhikari et al. (2020), we studied the evolution of
turbulence in the slow solar wind between the perihelion of the
first orbit of PSP and 131.64 R . We found good agreement
between the theoretical results and the slow wind observed by
PSP Solar Wind Electrons Alphas and Protons (SWEAP;
Kasper et al. 2016). Therefore, this study may identify
distinguishing differences between turbulence in the fast solar
wind and that in the slow solar wind.

We select four intervals with start and end times (DOY:HR:
MN) of (312:13:0.378–313:8:46.54), (318:1:56.62–319:5:54.51),
(319:21:25.64–321:7:59.89), and (323:7:7.16—324.0.46:27.35).
These are roughly one-day intervals during which the radial
component of the solar wind speed is approximately constant,
indicating that the plasma is not perturbed (Borovsky 2016).

Although the plasma in the selected intervals may not originate
from the same coronal hole (Badman et al. 2020), these intervals
should illustrate the general trend of the evolution of turbulence
in the fast solar wind. We will therefore compare the model
results with PSP measurements to gauge the effectiveness of our
turbulence-driven coronal heating and solar wind model. The
selected interval corresponds to the fast solar wind flow observed
by PSP during its first encounter in the outbound direction. The
plasma data are moment data from the PSP SWEAP measure-
ments (Kasper et al. 2016).
The top and middle panels of Figure 1 show the 4 hr

averaged R, T, and N components of the solar wind speed and
the magnetic field of the selected interval. Also shown is the
angle between the mean solar wind speed and the magnetic
field (qUB) as a function of heliocentric distance.
We see that the large-scale mean flow and the magnetic field

are mostly aligned or antialigned: the bottom panel of Figure 1
shows a histogram of the qUB. During the second orbit, PSP
observed mostly slow solar wind. The PSP magnetometer and
plasma data are obtained from the website https://cdaweb.
gsfc.nasa.gov/index.html/.
We organize the manuscript as follows. In Section 2, we

present the turbulence-driven solar wind model for the field-
aligned solar wind flow. Section 3 discusses the results and a
comparison of the results with PSP measurements. Finally,
Section 4 presents a discussion and conclusions.

2. A Turbulence-driven Solar Wind Model

The nearly incompressible description of MHD turbulence
successfully describes the observed turbulent behavior of the
solar wind plasma. According to a nearly incompressible
description, the incompressible equations for the b 1p

regime (where ( )b mº nk T B2 2p B
2

0 , n is the solar wind
density, kB is Boltzmann’s constant, T is the solar wind
temperature, B is the large-scale magnetic field, and m0 is the
magnetic permeability) are fully 3D (Zank & Matthaeus 1992,
1993; Zank et al. 2012), while the leading-order incompressible
equations in the b 1p and ∼1 regime are quasi-2D, and the
higher-order corrections are fully 3D (Hunana & Zank 2010;
Zank et al. 2017). Here the fully 3D refers to a function in x, y,
and z, and quasi-2D refers to a function in x and y, that is, in a
plane perpendicular to the direction of the magnetic field. The
leading-order (quasi-2D) and higher-order corrections (NI/slab)
can be expressed in terms of the Elsässer variables as

( )
m r m r

=  = ¥ ¥
¥

z u
B

z u
B

and , 1
0 0

* *
*

respectively, where the superscripts ¥ and *refer to quasi-2D
and NI/slab turbulence. Zank et al. (2020) showed that the NI
MHD equations in the b ~ 1p or 1 regime in an inhomoge-
neous (homogeneous) flow comprise a leading-order component
of a quasi-2D (2D) component and NI compressible corrections
that include both slab (counterpropagating Alfvén waves) and
higher-order quasi-2D fluctuations. The parameters ¥u ,* and

¥B ,* are the fluctuating velocity and magnetic field, and ρ is the
solar wind mass density. The quasi-2D component is typically
assumed to be isotropic in the 2D plane perpendicular to the
magnetic field, although that is not necessarily true, while the
higher-order description admits both a quasi-2D and an
axisymmetric (slab) component with a particular direction ŝ
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Figure 1. Top left and right and middle left and right are the R, T, and N components of the solar wind speed and magnetic field for the fast solar wind observed at
different heliocentric distances, and the angle between the large-scale solar wind speed and the magnetic field (qUB). Bottom: histogram of the angle between the large-
scale solar wind speed and the magnetic field.
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defined by the magnetic field. Therefore, NI MHD represents a
combination of isotropic and axisymmetric turbulence in the
order of one or a small plasma beta limit.

We couple the NI MHD turbulence model with the
background plasma via turbulent heating of the plasma. The
background plasma is described by the mass and momentum
equations and the solar wind temperature equation and is given
in the 1D steady-state spherically symmetric coordinate system
as

( ) ( )r =
d

dr
r U 0; 22

( )r
r

= - -U
dU

dr

dP

dr

GM

r
; 3

2

( ) ( )

( )

⎡
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⎛
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, 4

p

D
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where U is the solar wind speed, P the thermal pressure, G the
gravitational constant, M the solar mass, mp the proton mass, n
the solar wind density, and kB Boltzmann’s constant. The third
term on the right-hand side (rhs) of Equation (4) is the turbulent
heating term through which the solar wind equations are coupled
with the quasi-2D and NI/slab turbulence transport model
equations. Although these solar wind equations do not include
the magnetic field, they differ from the original Parker model
(Parker 1958) through the presence of the turbulent heating term.
In addition, the Parker model assumes an isothermal plasma with
g = 1, while we assume g = 5 3. In Equation (4), the parameter
α is the von Kármán–Taylor constant and determines the
dissipation rate of turbulence. Various values for α have been
used in prior studies. Matthaeus et al. (1999) use a = 1 in their
model of coronal heating by magnetohydrodynamic turbulence.
Vasquez et al. (2007) and Montagud-Camps et al. (2018) use a
value of α that is about 1/10 in the heliosphere. Bandyopadhyay
et al. (2020) use an even smaller value, taking a = 0.03 in their
analysis of the energy transfer rate observed by PSP. It has
also been argued that a constant factor may not be a good
approximation in the sub-Alfvénic solar wind regime (van
Ballegooijen & Asgari-Targhi 2016). In our analysis, we use
a = 0.07. In Equation (4), the parameter s1 denotes the fraction
of the turbulent energy that heats the coronal/solar wind plasma.
In our study, we choose s1=0.8, in other words, that 80% of the
turbulent energy heats the solar wind coronal plasma in the fast
solar wind. Some fraction of the turbulence energy is expected to
go into creating a nonthermal ion population (possibly as a result
of some form of stochastic acceleration by magnetic islands, e.g.,
Zank et al. 2014; Zhao et al. 2018b, 2019; Adhikari et al. 2019a),
and some fraction goes into creating a nonthermal electron
population. Further study is needed to determine what fraction of
the turbulence energy heats solar wind protons and electrons, and

what fraction of the turbulence energy creates nonthermal
populations of ions and electrons.
The magnetic field B is assumed to be radial and is given by

ˆ⎜ ⎟⎛
⎝

⎞
⎠=B B

r

r
r ,0

0
2

where the subscript 0 denotes an arbitrary reference point and r̂
is the direction of the magnetic field. Although the model
assumes that the magnetic field expands completely radially, it
should be recognized that the coronal magnetic field tends to
overexpand in the corona (Kopp & Holzer 1976).
In the momentum Equation (3), the first term on the rhs is the

pressure gradient, and the second term is the gravitational
force. In this model, the pressure gradient is the only force
driving the solar wind from subsonic to supersonic. Other
driving forces, such as the ponderomotive force (see Holzer &
Axford 1970; Leer et al. 1982; Withbroe 1988; Fisk et al. 1999;
Cranmer & van Ballegooijen 2010; Verdini et al. 2010;
Cranmer et al. 2013) or wave pressure (McKenzie et al. 1995),
are not included in the current model. Fisk et al. (1999) pointed
out that the wave pressure of the Alfvénic fluctuations can be
ignored when the particle pressure P generated is larger than
any possible wave pressure or ponderomotive force caused by
magnetic energy density ( )má ñB 22

0 (see also Verdini et al.
2010), because the radial magnetic field exerts no direct force
on the mean flow (see Fisk et al. 1999). Although the
ponderomotive force can affect the solar wind flow, it is not as
important as the pressure gradient. We will address this
problem in the future. In the model presented here, the pressure
gradient is the main force driving the solar wind within a few
solar radii because it is generated by a hot coronal plasma with
a temperature of about 106 K. Our approach to heating the
corona through the dissipation of turbulence (i.e., the third term
on the rhs of Equation (4)) is different from that of Habbal et al.
(1995), who expressed the heating term in an exponential form,

( ( ) )l= - -h h r rexp0 1 , where h0 is the strength of the
heating term, λ is a dissipation length scale, r is heliocentric
distance, and ~r 21 solar radii. From Equations (2), (3), and
(4), we can derive the following equation:

( )

( )

⎡
⎣⎢

⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
⎤
⎦
⎥⎥

g
g

a
g

- = -

-
á ñá ñá ñ

+
á ñ á ñ

+
á ñ á ñ

+
á ñá ñ

+
á ñá ñ

+ ¥+ ¥-

¥
+

¥+ ¥-

¥
+

¥- ¥+

¥
-

¥
¥+ ¥-

¥
+

¥- ¥+

¥
-

C

U
M

dU

dr

k

m

T

r
r

GM m

k T

s m

k

r

UT

z z z

L

z z

L

z z

L

E
z z

L

z z

L

1
4

4

1

6
2

2 2

, 5

s
s

p

p

p

D

2
2 B

2
B

1

B

2 2 2 2 1 2

2 2 2 1 2 2 2 2 1 2

2 2 1 2 2 2 1 2

*

where =M U Cs s is the sonic Mach number, and =Cs
2

gk T m2 pB is the square of the sound speed. Equation (5) is the
solar wind equation, showing that the solar wind speed is a
function of solar wind parameters and turbulent quantities,
indicating that turbulence influences the solar wind speed. In
addition, when the left-hand side terms in parentheses (...) and the
right-hand side terms in the square brackets [....] are zero
simultaneously, Equation (5) possesses a sonic point. This is a
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case when the sound speed is equal to the solar wind speed. To
solve Equation (5) near the sonic point, we use L’Hôpital’s rule.
As discussed above, the solar wind equations couple with the

quasi-2D and NI/slab turbulence transport model equations
through the third term on the right-hand side of Equation (4) or
(5). This term consists of quasi-2D and NI/slab variances of
the Elsässer variables, the quasi-2D residual energy, and the
quasi-2D correlation functions corresponding to forward- and
backward-propagating modes. The Elsässer energies and the
residual energies are defined as (Zank et al. 2012, 2017)

· · ( )á ñ = á ñ = á ñ¥  ¥  ¥  ¥ ¥ + ¥ -z z z zz E; , 6D
, 2 , , , , ,* * * * * *

where á ñ. denotes an ensemble average, in the usual mean field
sense as done typically in turbulence theory (see McComb 1995).
The turbulence transport model equations (Equations (8)–(13))
describe the evolution of turbulence from the surface of the Sun
to the outer heliosphere. We give the boundary conditions for the
turbulent quantities and solve the turbulence transport model
equations by a Runge–Kutta fourth-order method. Similarly, the
correlation functions corresponding to Elsässer variables and the
residual energy can be written as (Zank et al. 2012, 2017)

·

· ·

( )

ò
ò

l

l

= á ñ º á ñ

= á ¢ + ¢ ñ

º

¥
 ¥  ¥  ¥ 

¥


¥ ¥ + ¥ - ¥ + ¥ -

¥ ¥

z z

z z z z

L dx z

L dx

E

;

, 7
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D D

,
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* *

where ¢¥ z ,* represents the lagged Elsässer variables. The
parameters l¥


,* and l¥D

,* are the correlation lengths corresp-
onding to the quasi-2D and NI/slab Elsässer variables and the
residual energy.

The evolution of the majority quasi-2D turbulence can be
expressed by the 1D steady-state turbulence transport model
equations in a spherically symmetric coordinate system as
(Zank et al. 2017, 2018; Adhikari et al. 2017, 2019c)
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where ( )= á ñ + á ñ¥ ¥+ ¥-E z z 2T
2 2 is the quasi-2D total

turbulent energy. The right-hand sides of Equations (8) and

(9) differ from the right-hand sides of Equations (8) and (9) of
Zank et al. (2018; see also Zank et al. 2017; Adhikari et al.
2017) in the source term associated with NI/slab turbulence.
This term is absent in the above equations because the
backward-propagating minority energy á ñ =-z 02* , because we
assume that the NI/slab normalized cross-helicity is equal to
one (s = 1c* ) and that the NI/slab normalized residual energy is
equal to zero (s = 0D* ). We choose these conditions for the
minority NI/slab turbulence because it includes propagating
Alfvén waves. On assuming Alfvénicity, the two coupled
Equations (18) and (21) derived in the Appendix describe the
evolution of NI/slab turbulence. Therefore, unlike the 12
coupled quasi-2D and NI/slab turbulence transport equations
in Zank et al. (2018; see also Zank et al. 2017; Adhikari et al.
2017), we now have only eight coupled quasi-2D and NI/slab
turbulence transport equations. Equation (18) is the transport
equation for the energy in forward waves, and Equation (21) is
the transport equation for the correlation function corresp-
onding to forward waves. Equations (18) and (21) can be
written in a 1D steady-state spherically symmetric coordinate
system as (Zank et al. 2017, 2018; Adhikari et al. 2017)
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where m r=V BA 0 is the Alfvén velocity. The parameter b
defines the geometry of the NI/slab turbulence. We use
b= 0.26 (see Zank et al. 2012, 2017 for details regarding this
choice) to ensure reasonable numerical solutions of the
turbulence-driven solar wind model. Equations (8)–(13) are a
set of turbulence transport equations that describe the evolution
of turbulence in the highly Alfvénic solar wind plasma. In this
system, the energy of outwardly propagating Alfvén waves is
dissipated via its interaction with quasi-2D turbulence (Zank
et al. 2017), as indicated by the right-hand side of
Equation (12). This results in a Kolmogorov-type power
spectral density for wavenumbers parallel to the magnetic field
aligned flow, that is, ∣∣

-k 5 3 (Zank et al. 2020), as observed in
the solar wind (Telloni et al. 2019) and solar corona (Zhao et al.
2020b). These results indicate that NI/slab turbulence does not
turn off even when only unidirectional Alfvén waves are
present (Adhikari et al. 2019b). The model presented here
couples the quasi-2D and NI/slab turbulence transport model
Equations (8)–(13) when the normalized NI/slab cross-helicity
is equal to one (s = 1c* ), and the normalized NI/slab residual
energy is equal to zero (s = 0D* ).
The evolution of turbulence affects the evolution of the

variance of the solar wind density fluctuations in the NI MHD
theory and can be expressed by the 1D steady-state transport
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equation as (Zank et al. 2017; Adhikari et al. 2017)
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where ( )á ñ = á ñ + á ñ +¥ ¥+ ¥- ¥u z z E2 4D
2 2 2 is the quasi-2D

fluctuating kinetic energy, and [( ) (l= + + -¥ ¥ ¥
¥
+ ¥l E E Eu T C T

) ] ( )l l+ +¥
¥
- ¥ ¥ ¥ ¥E E E E2C D D T D is the correlation length of

the quasi-2D fluctuating kinetic energy. The parameter ¥EC is
the quasi-2D cross-helicity. Equation (14) shows that the
variance of the density fluctuations interacts with the quasi-2D
turbulent kinetic energy in a passive scalar sense, and this
interaction is responsible for a decrease in the variance of the
density fluctuations. Equation (14) indicates that the density
variance exhibits different radial profiles, depending on whether
the quasi-2D residual energy satisfies =¥E 0D , <¥E 0D , and

>¥E 0D . Zank et al. (2017) showed that the variance of density
fluctuations follows different radial profiles in the case when the
solar wind fluctuations are dominated by the turbulent kinetic
energy than when they are dominated by the turbulent magnetic
energy.

We study the evolution of solar wind turbulence in the fast
wind by solving the coupled solar wind and turbulence
transport model equations and using PSP fast wind measure-
ments. We solve the coupled transport equations with the
boundary conditions shown in Table 1 using a Runge–Kutta
fourth-order method. To derive the boundary conditions for the
quasi-2D Elsässer variables, we follow an analysis similar to
that of Zank et al. (2018; see also De Pontieu et al. 2007;
Moore et al. 2015).

The boundary condition for the NI/slab turbulence energy is
chosen in such a way that the NI/slab turbulence energy does
not exceed the quasi-2D turbulence energy because the latter
is the dominant component in our turbulence model. The
correlation length for the quasi-2D turbulence is assumed to be
l = ´¥ 8 104 km, which is 16 times larger than that found by
Abramenko et al. (2013) at the coronal base. We also assume
that the correlation length of the quasi-2D residual energy is
equal to l¥, and the correlation length for the NI/slab
turbulence is l¥2 . In Table 1, the boundary conditions at the
coronal base are chosen in such a way that the numerical
solutions of the model are reasonable and yield results
consistent with PSP measurements.

3. Results: Numerical Solutions of the Model Equations

We present numerical solutions of the turbulence-driven
solar wind model equations, and we compare them with PSP
measurements.
Figure 2(a) compares the theoretical and observed solar wind

speed, Alfvén velocity, and sound speed as a function of
heliocentric distance. The observed quantities are shown by red
diamonds with error bars. The error bars represent the interquartile
range. The solar wind speed (solid curve) increases from
13.56 km s−1 at the coronal base to ∼370 km s−1 at ∼4 R ,
and then it increases more slowly and monotonically as ~r0.14
with increasing heliocentric distance. The theoretical and observed
solar wind speeds between 35.5 R and 100 R are basically the
same. The Alfvén velocity (dashed curve, see the inset) increases
from 900 km s−1 at the coronal base to ´2.79 103 km s−1 at
about 1.2 R and then decreases with increasing heliocentric
distance. This result shows that the Alfvén surface forms at a
heliocentric distance of ∼11.7 R . The position of the Alfvén
surface can be influenced by the turbulence level in the solar
atmosphere. In Figure 2(a), the blue diamonds indicate the
observed Alfvén velocity. Similar to the Alfvén velocity, the sound
speed (dashed–dotted–dashed curve, see the inset) also increases
initially and then decreases with increasing heliocentric distance.
The sound speed and the solar wind speed intersect at ∼1.78 R ,
the sonic point.
Figure 2(b) shows the solar wind proton temperature as a

function of heliocentric distance. From the base of the solar
corona, the proton temperature increases from ´5 105 K to
~ ´3.5 106 K within 2 R , and then decreases monotonically
with increasing heliocentric distance (see the inset). This
increase in the solar wind proton temperature from ´5 105 K
to ~ ´3.5 106 K within a few solar radii is a consequence of
the rapid dissipation of quasi-2D turbulence (see Figure 3(a)).
As the coronal plasma is heated to millions of degrees kelvin,
the pressure gradient becomes so large that the accelerating
coronal plasma transits from a subsonic state (i.e., ∣ ∣ <U CS) to
a supersonic state (i.e., ∣ ∣ >U CS) within 2 R . The red
diamonds indicate the observed solar wind proton temperature,
which exhibits a power law of ~ -r 1.25 in heliocentric distance.
Compared to the observed proton temperature of the slow solar
wind measured by PSP during its first perihelion from 35.5 R
to 131.64 R (Figure 3(b) in Adhikari et al. 2020), the observed
proton temperature of the fast solar wind is comparatively
large, and the cooling rate of the temperature in the fast solar
wind is faster than that of the cooling rate in the slow solar
wind where the proton temperature exhibits a power law of
~ -r 0.95 (Adhikari et al. 2020). In the slow solar wind plasma,
turbulence is fully developed, and the presence of a stream-
shear source of turbulence reduces the rate of decrease of the
solar wind proton temperature. In Figure 2(b), the theoretical
solar wind proton temperature is approximately similar to the
observed solar wind proton temperature between ∼35 R and
∼50 R , but it is somewhat higher between 70 R and 100 R .
Figure 2(c) shows a comparison between the theoretical and

observed solar wind densities as a function of heliocentric
distance. The theoretical solar wind density at the base of the
solar corona is assumed to be 107 cm−3, which decreases by
two orders within 2 R and then more gradually with
increasing heliocentric distance. The rapid decrease of the
solar wind proton density is a consequence of the acceleration
of the solar wind speed. The red diamonds show the observed

Table 1
Boundary Values at 1 R for Turbulent Quantities and Solar Wind Parameters

Parameters Values Parameters Values

á ñ¥+z 2 (km2 s−2) ´5.8 105 á ñ-z 2* (km2 s−2) 1100

á ñ¥-z 2 (km2 s−2) ´5.8 105 +L* (km3 s−2) ´1.76 108
¥ED (km2 s−2) 2000 U (km s−1) 13.56

¥
+L (km3 s−2) ´4.64 1010 n (cm−3) 1.0´107

¥
-L (km3 s−2) ´4.64 1010 T (K) ´5 105
¥LD (km3 s−2) ´1.6 108 rá ñ¥2 (cm−6) ´2 1011
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solar wind density of the fast solar wind flow, which follows a
power law of -r 2.14 between 35.5 R and 100 R . This power
law also confirms that the solar wind speed increases because
the solar wind density decreases more rapidly than -r 2. The
theoretical and observed solar wind proton density radial
profiles are similar. Figure 2(d) displays the heating rates of
quasi-2D and slab turbulence as a function of heliocentric
distance. The heating rate of quasi-2D turbulence at the base of
the solar corona is ~103 orders of magnitude greater than that
of the slab turbulence, and it decreases rapidly near the coronal
base. The heating rate for quasi-2D turbulence decreases by
two orders within 2 R and then decreases more gradually as
-r 1.5, while the heating rate for slab turbulence decreases as
-r 1.1. This result shows that quasi-2D turbulence provides most
of the energy to heat the coronal plasma to millions of degrees
kelvin and to accelerate the solar wind speed from a subsonic to
supersonic state.

Figure 3(a) shows the evolution of quasi-2D (solid curve), NI/
slab (dashed curve), and total (dashed–dotted–dashed) energy in
forward-propagating modes as a function of heliocentric distance.
The quasi-2D forward-propagating energy decreases by about
an order of magnitude within 2 R and then decreases more
gradually as -r 0.59. Note that the theoretical quasi-2D energies in
backward-propagating modes á ñ¥-z 2 and forward-propagating
modesá ñ¥+z 2 overlap each other because the quasi-2D turbulence
is balanced from 1 to 100 R (see Figure 3(d)). The energy in
NI/slab forward-propagating modes increases to a peak value of

´1.73 104 km2 s−2 from the coronal base and then decreases as
-r 0.16. Similarly, the total energy in forward-propagating modes

decreases quickly near the coronal base and then follows a power
law of -r 0.48. The red diamonds denote the observed energy in
forward-propagating modes, which exhibits a radial decay of
-r 0.96. Although the comparison shows that the theoretical and
observed energies in forward-propagating modes are in reasonable
agreement, the theoretical result decreases more slowly than the
observed result. The observed á ñ+z 2 shows some scatter and is
close to both the energies in the quasi-2D á ñ¥+z 2 and NI/slab
forward-propagating modes á ñ+z 2* , where the total component
(dashed–dotted–dashed curve) is larger than the observed á ñ+z 2 .
The evolution of the fluctuating magnetic energy as a

function of heliocentric distance is plotted in Figure 3(b). At
the coronal base, the quasi-2D fluctuating magnetic energy
(solid curve) is assumed to be ´6.062 109 (nT)2, the NI/slab
fluctuating magnetic energy (dashed curve) is ´5.77 106

(nT)2, and the total fluctuating magnetic energy (dashed–
dotted–dashed curve) is ´6.068 109 (nT)2. The quasi-2D
fluctuating magnetic energy is about three orders of magnitude
larger than the NI/slab fluctuating magnetic energy at the
coronal base. The quasi-2D component decreases more rapidly
than the slab component inside 2 R , after which it decreases as
-r 2.72, the NI/slab fluctuating magnetic energy as -r 2.28, and
the total energy as -r 2.68. The red diamonds denote the
observed fluctuating magnetic energy as a function of
heliocentric distance. A least-squares fit shows that the
observed fluctuating magnetic energy decreases as -r 3.32

between ∼40 R and ∼100 R . PSP observations are made
when the solar wind flow is well aligned with the mean

Figure 2. The panels show (a) the solar wind speed (solid curve), the Alfvén speed (dashed curve), and the sound speed (dashed–dotted–dashed curve); (b) the solar
wind proton temperature (solid curve); (c) the solar wind density (solid curve); and (d) the heating rate of quasi-2D (solid curve) and NI/slab (dashed curve)
turbulence as a function of heliocentric distance. The red diamonds denote the corresponding observed solar wind parameters with error bars.
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Figure 3. The panels show (a) the energy corresponding to forward-propagating modes; (b) the fluctuating magnetic energy; (c) the fluctuating kinetic energy; (d) the
normalized cross-helicity; (e) the normalized residual energy; (f) the Alfvén ratio; and (g) the variance of the density fluctuations as a function of heliocentric distance.
The solid curves denote the quasi-2D component, dashed curves the slab component, and dashed–dotted–dashed curves the total component. The red diamonds are the
observed quantities with error bars.
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magnetic field, and consequently only the slab-like fluctuations
can be observed. Quasi-2D fluctuations cannot be directly
measured. Hence, only the theoretical NI/slab model can be
compared directly to PSP magnetic field measurements made in
field-aligned flows (see Figure 1). Accordingly, in Figure 3(b),
we show that the theoretical NI/slab curves overlay the PSP
observations of á ñB2 well. The dominant magnetic energy
density is contained in the quasi-2D modes, which cannot be
observed by PSP.

The radial evolution of the fluctuating kinetic energy is
shown in Figure 3(c). The quasi-2D fluctuating kinetic energy
(solid curve) at the coronal base is assumed to be ´2.91
105 km2 s−2, which decreases rapidly so that the quasi-2D
fluctuating kinetic energy becomes negligible as distance
increases. The NI/slab fluctuating kinetic energy (dashed
curve) increases from the bottom of the solar corona, where
the energy is about 275 km2 s−2, to ~ ´4.32 103 km2 s−2 at
the Alfvén surface, and then decreases as -r 0.53. The total
fluctuating kinetic energy (dashed–dotted–dashed curve)
decreases initially and then follows a profile similar to that of
the NI/slab fluctuating kinetic energy. The red diamonds with
error bars are the observed turbulent kinetic energy as a
function of distance, which follows a power law of -r 0.86.
The radial profile of the NI/slab turbulent kinetic energy is
similar to that of the observed turbulent kinetic energy.

As shown in Figure 1, the angle between the solar wind flow
and the magnetic field is mostly around 0° or 180°. The red
diamonds in Figure 3(d) denote the observed normalized cross-
helicity with error bars. The average observed normalized cross-
helicity is about 0.89. The solid, dashed, and dashed–dotted–
dashed curves are the theoretical quasi-2D, NI/slab, and total
normalized cross-helicity. The quasi-2D turbulence is assumed to
be balanced (i.e., zero cross-helicity) at the coronal base and
remains so until 100 R . In Zank et al. (2018), the balanced quasi-
2D turbulence at the base of the solar corona becomes unbalanced
with distance, because there are counterpropagating Alfvén waves
that drive quasi-2D turbulence, but no such counterpropagating
Alfvén waves exist in the current model. Additionally, the
theoretical NI/slab normalized cross-helicity remains at 1 between
1 R and 100 R because there are no backward-propagating
Alfvén waves in this model. The total normalized cross-helicity
(dashed–dotted–dashed curve) increases initially and then decreases
slightly with increasing heliocentric distance. As discussed above,
because PSP observes primarily field-aligned flows, the measured
cross-helicity refers only to NI/slab modes. Figure 3(d) shows
that the theoretical slab and PSP-derived cross-helicities are
consistent.

Similarly, the observed normalized residual energy with error
bars shown in Figure 3(e) oscillates around the mean value of
0.0067 between 35.5 R and 100 R . The quasi-2D normalized
residual energy (solid curve) in the figure decreases rapidly to
become−1 with increasing heliocentric distance. Hence, the quasi-
2D turbulence evolves to become primarily quasi-2D fluctuating
magnetic energy, that is, essentially small-scale magnetic islands or
flux ropes. The theoretical NI/slab normalized residual energy
(dashed curve) is zero between 1 R and 100 R , similar to that
observed (red diamonds) for the reasons discussed above.
Figure 3(f) shows the Alfvén ratio as a function of heliocentric
distance. The observed Alfvén ratio (red diamonds) oscillates
around an average value of 1.0384. The theoretical NI/slab Alfvén
ratio (dashed curve) and the observed Alfvén ratio show good

agreement between 35.5 R and 100 R . The consistency of the
observed and theoretical normalized cross-helicity, normalized
residual energy, Alfvén ratio, and the angle between the solar wind
flow and the magnetic field suggests that the fast solar wind
observed by PSP over the interval 35.5 R to 100 R supports our
assumptions of setting s = 1c* or á ñ =-z 02* and s = 0D* or

=E 0D* in deriving turbulence transport model equations for the
fast solar wind. Typically, such observations are used to argue that
the solar wind is highly Alfvénic despite the observation of a
nonadiabatic temperature profile (unidirectional Alfvén wave
propagation ∣ ∣s = 1c , s = 0D , does not support turbulence, and
hence turbulent or dissipative heating is not possible) and often a
Kolmogorov-like wavenumber spectrum ∣∣

-k 5 3 (Telloni et al.
2019; Zhao et al. 2020b; ∣∣k being the wavenumber parallel to the
solar wind flow). Instead, our results demonstrate that the fast wind
is dominated by quasi-2D turbulence that cannot be measured by
PSP because the flow is highly field aligned. However, the slab
component of the 2D + slab decomposition of NI MHD allows us
to compare directly the slab predictions to PSP observations. As
illustrated in Figure 3 (and 2), the comparison of the theory and
observation is very good.
The comparison between the theoretical and observed variances

of the density fluctuations as a function of heliocentric distance is
shown in Figure 3(g). The theoretical density variance at the base
of the solar corona is assumed to be ´2 1012 cm−6, which
decreases by about three orders of magnitude within 2 R and then
decreases more slowly and monotonically as distance increases.
The red diamonds with error bars denote the observed density
variance measured by the PSP. The observations follow a radial
profile of ~ -r 6.1. A similar analysis by Adhikari et al. (2020)
found that the radial profile of the variance of the density
fluctuations in the slow wind between 35.5 R and 131.64 R is
about -r 2.98. These two results clearly show the differences in the
density variance in the fast and slow solar winds. The theoretical
density variance decreases and is consistent with that observed
between 35.5 R and 100 R .
Figure 4(a) describes the evolution of the correlation

function as a function of heliocentric distance. The solid and
dashed curves correspond to the correlation function for the
quasi-2D forward- and backward-propagating modes, respec-
tively, and the dashed–dotted–dashed curve corresponds to the
correlation function of the residual energy. The correlation
function decreases quickly in the vicinity of the coronal base
and then remains approximately constant until 100 R , where

¥
+L and ¥

-L show the same radial profiles with increasing
distance. In the figure, ¥

+L and ¥
-L overlap, so they do not

appear to be distinct. The rapid decrease of ¥
+L and ¥

-L leads to
a stronger nonlinear decay term near the coronal base, which
results in the rapid dissipation of the turbulent energy and leads
to the rapid increase in the temperature of the coronal plasma.
Figure 4(b) plots the correlation lengths of the Elsässer

energies and the residual energy as a function of heliocentric
distance. The correlation lengths corresponding to quasi-2D
forward- and backward-propagating modes (solid and dashed
curves, respectively) show the same radial profiles and increase
as distance increases. The dashed–dotted–dashed red curve
denotes the correlation length for the quasi-2D residual energy,
which increases more rapidly than the correlation lengths of
the forward- and backward-propagating modes. The dashed–
dotted–dashed black curve corresponds to the correlation
length of NI/slab outward-propagating modes. The red
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diamonds with error bars are the observed correlation lengths
of forward-propagating modes. The observed correlation length
corresponding to forward-propagating modes is smaller than
the theoretical NI/slab correlation length (dashed–dotted–
dashed curve), which may be due to the large correlation
length used at the coronal base.

Figure 4(c) shows the correlation length of magnetic field
fluctuations as a function of heliocentric distance. Similar to the
correlation lengths of the Elsässer variables, the correlation
length for quasi-2D magnetic field fluctuations (solid curve)
increases more rapidly than the correlation length of slab
magnetic field fluctuations (dashed curve). The correlation
length corresponding to NI/slab magnetic field fluctuations is
larger than the observed correlation length of magnetic field
fluctuations within ∼78 R , and they are close between ∼80 R
and ∼100 R .

The correlation length for the fluctuating kinetic energy
is plotted in Figure 4(d). Compared with the quasi-2D
correlation length (solid curve) for the fluctuating kinetic
energy, the correlation length (dashed curve) of the NI/slab
fluctuating kinetic energy is close to the observed correlation
length (red diamonds), although a little larger in general. The
correlation length (solid curve) for the quasi-2D fluctuating
kinetic energy is larger and increases more rapidly than the
correlation length of the NI/slab fluctuating kinetic energy.
These results show that in the fast solar wind, the correlation
length of the quasi-2D turbulence is larger than the

correlation length of the NI/slab turbulence, which is
different from that in the slow solar wind. Adhikari et al.
(2020) found that the correlation length of NI/slab turbu-
lence (in the slow solar wind) is larger than that of quasi-2D
turbulence from 35.5 R to 131.64 R .

4. Discussion and Conclusions

We developed a self-consistent nearly incompressible
magnetohydrodynamic (NI MHD) turbulence-driven solar
wind model for open-field solar coronal holes in which the
solar wind flow is aligned with the magnetic field. By assuming
equipartition between the NI/slab fluctuating kinetic and
magnetic energies and that the normalized NI/slab cross-
helicity is ∣ ∣s = 1c* , we derived coupled NI MHD quasi-2D and
NI/slab turbulence transport model equations. Unlike the high
plasma beta turbulence transport model equations (Zank et al.
2012), these assumptions do not eliminate the nonlinear term of
the NI/slab turbulence transport model equations, indicating
that NI/slab turbulence does not turn off (Adhikari et al.
2019b) at the Alfvén surface. Recent analysis of both WIND
and PSP data sets for highly aligned flows find that
unidirectional Alfvén waves exhibit a Kolmogorov-type of
power law (Telloni et al. 2019; Zhao et al. 2020b), which is
consistent with the spectral analysis of NI MHD by Zank et al.
(2020). The coupled quasi-2D and NI/slab turbulence transport
model equations derived here incorporate unidirectional Alfvén
waves in a 2D + slab NI MHD framework (Telloni et al. 2019;

Figure 4. The panels show (a) the correlation functions, (b) the correlation lengths, (c) the correlation lengths of magnetic field fluctuations, and (d) the correlation
lengths of velocity fluctuations as a function of heliocentric distance. The conventions for the figure are the same as used in Figure 3. The red diamonds are observed
correlation lengths with error bars.
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Zank et al. 2020; Zhao et al. 2020b) and correspond to a small
plasma b 1p or ∼1 regime (Zank et al. 2017). In our model,
the dissipation of quasi-2D turbulence mainly heats the coronal
plasma above the photosphere (Zank et al. 2018), and it is
closely related to the idea of random twisting and braiding of
magnetic field lines, which dissipates magnetic energy in the
form of nanoflares above the photosphere (Parker 1972, 1988;
Fisk et al. 1999; Rappazzo & Parker 2013; Zank et al. 2018).
As discussed in Zank et al. (2020), the unidirectional

propagating Alfvén waves interact passively with the quasi-2D
turbulence, which results in a Kolmogorov-like ∣∣

-k 5 3 spec-
trum. The absence of slab “turbulence”is a consequence of the
Alfvén timescale t l~ VA A A0 greatly exceeding the nonlinear
timescale t l~ á ñ¥

^
¥ ¥znl

2 , where lA and l̂¥ are the Alfvénic
and quasi-2D correlation lengths. When t t¥A nl , Zank et al.
(2020) show that the turbulence is strong and dominated by
nonlinear interactions and that, other than passively responding
to the quasi-2D fluctuations, Alfvén waves propagate unidir-
ectionally in the turbulent flow.

We extended the Zank et al. (2018) model by coupling the
NI MHD quasi-2D and NI/slab turbulence transport equations
with the solar wind equations. Here, we solved the coupled
solar wind equations and the nearly incompressible turbulence
transport model equations simultaneously from the base of the
solar corona to 100 solar radii, in which the continuity,
momentum, and thermal temperature equations provide the
background profiles for the solar wind density and speed. We
compared our theoretical solutions with the fast solar wind
measured by PSP on its first orbit in the outbound direction.
We summarize our findings as follows:

1. The solar wind speed increases rapidly from a subsonic
state to a supersonic state within a few solar radii,
consistent with observations reported by Telloni et al.
(2007), and then monotonically increases as a function of
heliocentric distance. The theoretical solar wind speed is
similar to the fast solar wind observed by PSP between
35.5 R and 100 R .

2. The temperature of the coronal plasma becomes of the
order of 106 K within a few solar radii. The theoretical
solar wind proton temperature is in reasonable agreement
with the observed proton temperature between 35.5 R
and 100 R .

3. The solar wind density decreases rapidly near the coronal
base due to the rapid increase in the solar wind speed.
The radial profile of the theoretical solar wind density
is similar to the observed solar wind density between
35.5 R and 100 R .

4. The heating rate of quasi-2D turbulence is ~103 times
higher than that of the NI/slab turbulence, indicating that
the dissipation of quasi-2D turbulence near the coronal
base is sufficient to heat the coronal plasma up to millions
of degrees kelvin, thus driving the solar wind from a
subsonic to a supersonic state.

5. The Alfvén velocity increases from 900 km s−1 to ´2.79
103 km s−1 within 2 R and then decreases with
increasing heliocentric distance. The Alfvén surface
forms at a heliocentric distance of ∼11.7 R , and a sonic
surface forms at ∼1.78 R .

6. The majority quasi-2D energy in forward-propagating
modes decreases rapidly near the coronal base, and then
gradually decreases as a function of heliocentric distance.

The slab energy in forward-propagating modes increases
to a peak value of ´1.73 104 km2 s−2 and then decreases
with distance. The theoretical quasi-2D and NI/slab
energies in forward-propagating modes are comparable to
the energy observed in forward-propagating modes.

7. The quasi-2D, NI/slab, and total fluctuating magnetic
energy decreases as distance increases. The observed
fluctuating magnetic energy and the NI/slab fluctuating
magnetic energy show good agreement between 35.5 R
and 100 R .

8. The quasi-2D fluctuating kinetic energy is large at the
coronal base compared to the slab fluctuating kinetic
energy. However, the quasi-2D fluctuating kinetic energy
decreases rapidly with increasing heliocentric distance,
whereas the NI/slab fluctuating kinetic energy increases
initially to a peak value of ´4.32 103 km2 s−2 and then
decreases with increasing distance. The radial profile of
the slab fluctuating kinetic energy is similar to the
observed fluctuating kinetic energy between 35.5 R and
100 R .

9. The average observed normalized cross-helicity, residual
energy, and Alfvén ratio are close to 0.89, 0.0067, and
1.0384 in the fast solar wind and are similar to the
theoretical NI/slab quantities.

10. The theoretical quasi-2D and NI/slab correlation lengths
increase as a function of heliocentric distance. The
correlation length for quasi-2D turbulence increases faster
than the correlation length of slab turbulence. The
observed correlation length is smaller than the NI/slab
correlation length with increasing heliocentric distance.

11. The variance of the density fluctuations decreases as a
function of heliocentric distance, and the theoretical
and observed variances show good agreement between
35.5 R and 100 R .

The nonadiabatic temperature profile observed in a highly
Alfvénic solar wind flow (i.e., unidirectional Alfvén wave
propagation ∣ ∣s = 1c and s = 0D ) shows that turbulent heating
of the solar wind flow is possible. Our results show that the fast
wind is dominated by quasi-2D turbulence that cannot be
measured by PSP because the flow is highly field aligned
(Telloni et al. 2019; Zank et al. 2020; Zhao et al. 2020b).
However, the slab component of the 2D + slab decomposition
of NI MHD can be compared directly with observations. The
results show that the theoretical NI/slab turbulent energy and
correlation length are similar to the PSP measurements of the
fast solar wind flow.
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contract SV4-84017, an NSF-DOE grant PHY-1707247, and
an NSF EPSCoR RII-Track-1 cooperative agreement OIA-
1655280. The Parker Solar Probe (PSP) magnetometer and
plasma data were obtained from the NASA CDAWeb website.

Appendix A
NI/Slab Turbulence Transport Equations

To derive transport equations for á ñz 2* , we start with
Equation (83) of Zank et al. (2017), which is the transport
equation for the minority Elsässer variables z* for an
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inhomogeneous b ~ 1p plasma:
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where m r= z u b 0* * * , and +z* and -z* indicate
forward- and backward-propagating modes, respectively.
Equation (15) shows that the higher-order, nearly incompres-
sible Elsässer variables couple with the leading-order core ¥z
variables in a passive scalar sense, so the primary dissipation
mechanism for z* is due to mixing rather than nonlinearity.
Equation (15) contains three timescales: the Alfvén timescale
t l= VA A A0, the quasi-2D nonlinear timescale t l=

¥
¥


á ñ¥z 2 , and the NI nonlinear timescale t l= á ñ
 z 2*
* * . The

quasi-2D and NI nonlinear timescales satisfy the ordering of
 l lá ñ á ñ¥

 ¥ z z2 2
* * (see Zank et al. 2020 for further

discussion). Taking a dot product between z* and Equation
(15), we find the transport equations for á ñz 2* are (Zank et al.
2017)
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where we approximate ˆ á ñ¥ ¥z z n2 1 2 (n̂ is orthogonal to
the large-scale magnetic field B0), and ·= á ñ+ -z zED* * * is the
residual energy. In the derivation of Equations (16) and (17),
we express a covariance with zero lag as ( ) ( )d= -Q b s s0ij ij i j

(Batchelor 1953; Zank et al. 2012, 2017).
We now impose a condition of Alfvénicity =E 0D* or s = 0D*

and =E 1C* or s = 1c* in Equations (16) and (17). The parameter
sD* is the normalized residual energy, sc* is the normalized cross-
helicity, and EC* is the cross-helicity. These are the measures of
Alfvénicity where the fluctuating kinetic and the fluctuating
magnetic field are almost aligned so that -z 0* orá ñ -z 02* ,
indicating that the backward modes are approximately zero. Also,
near the Sun where the magnetic field is almost radial,
ˆ · r =n 0. Under these conditions, Equation (16) reduces to
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and Equation (17) becomes

( )=0 0. 19

Equations (18) and (19) show that the transport equation for the
backward-propagating modes for slab turbulence vanishes, so
we only need to solve the transport equation for the outward-
propagating modes.
We derive the transport equation for the correlation function

( )· ·ò l= á ñ º á ñ  ¢   z z z zL dr* * * * * * corresponding to for-
ward/backward-propagating modes for the Alfvénic (NI/slab)
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turbulence. The parameters ( )º +¢ z z x r* * denote the lagged
Elsässer variables at a location r from x. We start from Equation
(87) of Zank et al. (2017):

( ) · ·

( ) ·

· ·

·

ˆ · · ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥





r
r

r
r

r
r

r
r

¶
¶

+  + 

+ -  -
¶
¶



 +  -
¶
¶

-
¶
¶

- 

 á ñ    -
¶
¶

=


 



¥

U V U

U

V V

V

U

L

t
L L

b L bL s s
U

x
bL

s s
V

x
s s V

x

L
L

z n b s s
U

x

1

2
1

4

1

2

1 1

2

1

1

2 2

1

1
2 0, 20

A

D D i j
i

j
D

A A i j
Ai

j
i j Ai

j

D
A sw

i j
i

j

2 1 2

*
* *

* * *

*
*

where · ·ò l= á + ñ º+ -¢ +¢ -z z z zL dr ED D D* * * * * * * is the cor-
relation function corresponding to the NI/slab residual energy.
Since =E 0D* implies that =L 0D* , á ñ =-z 02* implies that

=-L 0* , and ˆ · r =n 0 for the radial magnetic field,
Equation (20) reduces to
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for the +L* and =0 0 for the -L* . Equation (21) shows that we
only need to solve the transport equation for the correlation
function corresponding to NI/slab outward-propagating modes.
Equations (18) and (21) describe the evolution of unidirectional
propagating modes and the corresponding correlation function.

Appendix B
Data Analysis

We select four unperturbed plasma intervals in the fast solar
wind flow as measured by the SWEAP (Kasper et al. 2016) and
FIELDs (Bale et al. 2016) instruments on PSP. The start and end
times (DOY:HR:MN) of the intervals are (312:13:0.378–313:
8:46.54), (318:1:56.62–319:5:54.51), (319:21:25.64–321:7:59.89),
and (323:7:7.16—324.0.46:27.35). These intervals are approxi-
mately one-day intervals during which the solar wind speed does
not experience any sudden changes. We derive turbulent quantities
using the observed T and N components of the solar wind speed
and magnetic field and the solar wind density (Borovsky 2016;
Adhikari et al. 2017; Zhao et al. 2018a). We consider first a time
interval of 4 hr and calculate the fluctuating velocity and the
magnetic field using = - á ñu U U and = - á ñb B B , where á ñU
and á ñB are the mean solar wind speed and the magnetic field.
Then we calculate the Elsässer variable m r= z u b 0 0 ,
where r0 is the mean solar wind mass density, and m0 is the
magnetic permeability. We calculate the variance of the u, b, and
Elsässer variables, which describe the fluctuating kinetic energy,
fluctuating magnetic energy, and the Elsässer energies, respectively
(Zank et al. 1996; Adhikari et al. 2015). We also calculate
the variance of the solar wind density in a time interval of 4 hr.
We derive the normalized residual energy sD, the normalized

cross-helicity sc, and the Alfvén ratio rA from

s
m r
m r

s

m r

=
á ñ - á ñ
á ñ + á ñ

=
á ñ - á ñ
á ñ + á ñ

=
á ñ

á ñ

+ -

+ -

u b

u b

z z

z z

r
u

b

; ;

.

D c

A

2 2
0 0

2 2
0 0

2 2

2 2

2

2
0 0

Similarly, we calculate the correlation length corresponding to
forward-propagating modes l+, the correlation length of the
velocity fluctuations lu, and the correlation length of the
magnetic field fluctuations. For this, we calculate the
autocorrelation function as a function of lag time (Adhikari
et al. 2015). Using Taylor’s hypothesis, we convert lag time to
lag distance. The correlation length corresponds to lag distance
at which the autocorrelation is 1/e of the maximum value (see
also Shiota et al. 2017).
Finally, we smooth the data, in which we apply a criterion

that the mean square fluctuations of the velocity, magnetic
field, solar wind density, and solar wind temperature should be
smaller than the square of the corresponding mean fields, which
avoids data associated with shocks and other structures
embedded in the solar wind. The data that do not satisfy this
criterion are neglected, and then the remaining values are
averaged. Because of the different lengths of data points in the
interval, we smooth the data in different ways. The first and
second intervals are smoothed by 30 data points, the third
interval is smoothed by 15 data points, and the fourth interval is
smoothed by six data points.
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