
Noname manuscript No.
(will be inserted by the editor)

Large-Scale Quasi-Newton Trust-Region Methods
With Low-Dimensional Linear Equality Constraints

Johannes J. Brust · Roummel F.
Marcia · Cosmin G. Petra

Received: date / Accepted: date

Abstract We propose two limited memory BFGS (L-BFGS) trust-region meth-
ods for large-scale optimization with linear equality constraints. The methods
are intended for problems where the number of equality constraints is small.
By exploiting the structure of the quasi-Newton compact representation, both
proposed methods solve the trust-region subproblems nearly exactly, even for
large problems. We derive theoretical global convergence results of the pro-
posed algorithms, and compare their numerical effectiveness and performance
on a variety of large-scale problems.

Keywords Linear Equality Constraints · Quasi-Newton · L-BFGS ·
Trust-Region Algorithm · Compact Representation · Eigendecomposition ·
Shape-Changing Norm

LLNL IM Release number: LLNL-JRNL-755231

1 Introduction

The minimization problem with linear equality constraints is

minimize
x∈Rn

f(x) subject to Ax = b, (1)

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344. R. Marcia’s research
is partially supported by NSF Grant IIS 1741490. C. Petra also acknowledges support from
the LDRD Program of Lawrence Livermore National Laboratory under projects 16-ERD-025
and 17-SI-005.

J. J. Brust
University of California Merced, Merced, CA (formerly), Argonne National Laboratory,
Lemont, IL, E-mail: jbrust@ucmerced.edu, jbrust@anl.gov

R. F. Marcia
University of California Merced, Merced, CA E-mail: rmarcia@ucmerced.edu

C. G. Petra
Lawrence Livermore National Laboratory, Livermore, CA E-mail: petra1@llnl.gov

2 Johannes J. Brust et al.

where the objective function f : Rn → R is continuously differentiable and the
equality constraints are defined by A ∈ Rm×n and b ∈ Rm. We assume that
m � n and that A has full row rank, i.e., rank(A) = m. The minimization
problem (1) arises in many applications, including optimal allocation with re-
source constraints, equality constrained centering problems, and network flow
optimization (see [1]). We assume it is computationally infeasible to evaluate
the Hessian of f because n is large and, for this reason, we focus on limited-
memory quasi-Newton methods for (1). The approaches in this article are
based on solves with AAT . Such computations may be inexpensive when m is
small even for large n. Thus, the proposed methods are expected to be most
efficient for relatively small m, although large m can be handled as long as
solves with AAT can be computed efficiently.

1.1 Existing methods

In the context of quasi-Newton methods for large-scale problems such as (1),
the algorithm of Lalee, Nocedal, and Plantenga [19] uses the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) quasi-Newton matrix to gener-
ate feasible iterates, xk. In order to update the iterates, subproblems involv-
ing quasi-Newton matrices are solved using preconditioned conjugate-gradient
techniques. A popular solver is IPOPT [26], which is an implementation of an
interior-point algorithm for large-scale optimization with the option of L-BFGS

matrices. The FMINCON algorithm [12] also uses L-BFGS matrices, and applies
either direct LDLT factorizations or iterative methods [13] to systems with
these matrices. Another algorithm based on quasi-Newton methods is RSQP

(Reduced-Hessian Successive Quadratic Programming [29]), which uses an L-

BFGS approximation to the Hessian of the Lagrangian objective function in a
particular subspace. Finally, PDCO (Primal-Dual interior method for Convex
Objectives [23]) by M. Saunders is an algorithm specifically targeting prob-
lems of the form (1) (and allowing general bounds l ≤ x ≤ u). The method
assumes convex objective functions and uses explicit information from the
Hessian matrix of second derivatives of f .

1.2 Paper contribution

We propose solving large-scale optimization problems with linear equality
constraints by combining limited-memory quasi-Newton methods with trust-
region methods. Unlike other constrained trust-region methods [11,19,22,25],
we concentrate on exploiting the representations of large-scale quasi-Newton
matrices. In particular, we propose two algorithms that extend unconstrained
quasi-Newton trust-region methods to incorporate linear equality constraints.
The first proposed method uses an `2-norm inequality constraint to define
the trust-region, while the second uses a shape-changing norm proposed in [5].
Both methods treat A as a dense matrix and generate iterates that consistently

Title Suppressed Due to Excessive Length 3

satisfy the linear constraints. While recent methods have exploited the com-
pact representation of quasi-Newton matrices to solve trust-region subprob-
lems (see e.g., [2–5,7]), in this work we compute the compact representation of
the (1, 1) block of the inverse Karush-Kuhn-Tucker matrix, which prescribes
the conditions for optimality of the trust-region subproblem with equality con-
straints. The main benefit of the proposed compact representation is that it
allows computing the trust-region step efficiently for large problems. In addi-
tion, we demonstrate that the search directions generated by both methods
satisfy a sufficient decrease condition that allows us to prove that the iterates
generated by both methods converge to critical points.

1.3 Outline

In Section 2, we review quasi-Newton methods and trust-region methods. We
define the trust-region subproblem corresponding to (1) and discuss the gen-
eral strategy of our two proposed methods. In Section 3, we describe a trial
step that both methods compute and test for feasibility. In Section 4, we pro-
pose our first algorithm, which uses the `2-norm to define the trust-region
subproblem. In Section 5, we describe our second algorithm, which uses a
shape-changing norm. In Section 6, we prove the global convergence of the
proposed methods. In Section 7, we present a variety of numerical experi-
ments to demonstrate the effectiveness of the proposed methods. In Section 8,
we discuss how the proposed methods can be extended to solve problems with
higher-dimensional linear equality constraints. In Section 9, we summarize our
main results. Appendix A lists the main notation used.

2 Background

2.1 Limited-memory quasi-Newton methods

Quasi-Newton methods maintain approximations Bk to the Hessian matrix
of the objective function ∇2f(xk) throughout the numerical optimization
process. A variety of quasi-Newton Hessian approximation strategies exist.
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is arguably the most
widely-used quasi-Newton update for large-scale optimization; it is defined by
the recursion formula

Bk = Bk−1 −
1

sTk−1Bk−1sk−1
Bk−1sk−1s

T
k−1Bk−1 +

1

sTk−1yk−1
yk−1y

T
k−1, (2)

where

sk−1 ≡ xk − xk−1 and yk−1 ≡ ∇f(xk)−∇f(xk−1). (3)

This rank-two update to Bk−1 preserves positive definiteness when sTk−1yk−1 >
0. For large-scale problems, only l� n of the most recent updates {si,yi} with

4 Johannes J. Brust et al.

k − l ≤ i ≤ k − 1 are stored in the so-called limited-memory BFGS (L-BFGS)
methods. (Typically, l ∈ [3, 7] (see, e.g., [10]).) One can recursively write

Bk = B
(k)
0 +

k−1∑
i=k−l

− 1

sTi B
(k)
i−(k−l)si

B
(k)
i−(k−l)sis

T
i B

(k)
i−(k−l) +

1

sTi yi
yiy

T
i

 ,

where B
(k)
0 ∈ Rn×n is a suitably-chosen initial matrix. We assume that B

(k)
0 =

γkIn, which is a typical choice for B0, where γk = yTk−1yk−1/y
T
k−1sk−1. Alter-

native choices of B0 are proposed in [3], and the approaches from this paper

still apply to these alternatives to B
(k)
0 .

Using the l most recently computed pairs, we define the following matrices:

Sk ≡ [sk−l · · · sk−1] and Yk ≡ [yk−l · · · yk−1] .

We partition the matrix STkYk into the sum STkYk = Lk + Tk, where Lk is
the strictly lower triangular part of STkYk and Tk is its upper-triangular part.
Let Dk denote the diagonal of STkYk. Then the compact representation of the

L-BFGS matrix with the initial matrix B
(k)
0 = γkIn is

Bk = γkIn + Ψ̂kΞ̂kΨ̂
T
k , (4)

where

Ψ̂k ≡ [Sk Yk] and Ξ̂k ≡ −γk
[

STk Sk Lk
LTk −γkDk

]−1
,

with Ψ̂k ∈ Rn×2l and Ξ̂k ∈ R2l×2l (see [10] for details). Note that the in-

verse Ξ̂k exists and is uniquely defined provided sTi yi > 0 for all i [10, The-
orem 2.3]. From the Sherman-Morrison-Woodbury formula, the inverse quasi-
Newton matrix Hk = B−1k , with the notation δk = γ−1k , is given by

Hk = δkIn + Ψ̂kM̂kΨ̂
T
k , (5)

where

M̂k ≡ −(γ2kΞ̂
−1
k + γkΨ̂

T
k Ψ̂k)−1 = −

[
0l×l γkTk

γkT
T
k γ2k(Dk + δkY

T
k Yk)

]−1
, (6)

with M̂k ∈ R2l×2l. Note that the methods described in this article are ap-
plicable to any quasi-Newton matrix with a compact representation, not only
the L-BFGS matrix. (For examples of compact representations of other quasi-
Newton matrices, see [10,6,15].)

Title Suppressed Due to Excessive Length 5

2.2 Trust-region methods

In unconstrained minimization, the trust-region algorithm is an iterative method
that defines and solves at each iteration k a quadratic subproblem of the form

sk = arg min
‖s‖≤∆k

Q(s) = sTgk +
1

2
sTBks, (7)

where gk = ∇f(xk), Bk ≈ ∇2f(xk) ∈ Rn×n is an approximation to the
Hessian, and ∆k > 0 is the trust-region radius (see [14]). Typically, the norm
used in the constraint is the Euclidean norm ‖ · ‖ = ‖ · ‖2. The solution sk is
used to compute the next iterate xk+1 = xk + sk. For this article, we use the
L-BFGS matrix for Bk.

To use trust-region methods to solve (1), we note that if the current iterate
xk is feasible, i.e., Axk = b, then the next iterate xk+1 is also feasible, i.e.,
Axk+1 = b, only if Ask = 0. Thus, the trust-region subproblem corresponding
to (1) is given by

minimize
‖s‖≤∆k

Q(s) = sTgk +
1

2
sTBks subject to As = 0. (8)

Without the equality constraint in (8), the trust-region subproblem can be
solved to high accuracy with a Euclidean norm (see e.g., [7,17]) or a shape-
changing norm [5] by exploiting the compact representation of the Hessian of
Q(s), namely Bk, to compute the minimizer. However, these methods cannot
be used directly to solve (8) with the equality constraint because the opti-
mality conditions are different. In other words, we simply cannot extend the
same approach to the Lagrangian associated with (8) because the Hessian of
the Lagrangian does not have a readily available compact representation. In-
stead, we compute a compact representation of part of the inverse Hessian of
the Lagrangian, which allows us to solve (8) efficiently and accurately using
either the `2 or shape-changing norm without explicitly computing the inverse
Hessian of the Lagrangian.

Our overall strategy is as follows. First, we compute the solution to (8)
without the inequality constraint (Sec. 3). If this solution satisfies ‖s‖2 ≤ ∆k

and yields a sufficient decrease in the objective function, we use it to define
the next iterate. Otherwise, we solve (8) using an `2-norm (Sec. 4) or a shape-
changing norm (Sec. 5).

3 Trust-Region Subproblem Solution without an TR Constraint

When the constraint ‖s‖ ≤ ∆k is not present, the solution of (8) can be
characterized as a stationary point of the Lagrangian objective function

L(s,λ) = Q(s) + λTAs = sTgk +
1

2
sTBks + λTAs,

6 Johannes J. Brust et al.

where λ ∈ Rm is a vector of Lagrange multipliers (cf. [21, Section 18.1] with
linear constraints). The stationary point (se,λe) is obtained by setting the
gradient of the Lagrangian equal to zero, i.e., ∇L(se,λe) = 0n+m. This gives
rise to the Karush-Kuhn-Tucker (KKT) system[

Bk AT

A 0m×m

] [
se
λe

]
=

[
−gk
0m

]
. (9)

Let K ∈ R(n+m)×(n+m) define the KKT matrix in (9). With Ωk ≡ (AB−1k AT)−1

∈ Rm×m, the inverse of K is given by

K−1 =

[
B−1k −B−1k ATΩkAB−1k B−1k ATΩk

(B−1k ATΩk)T −Ωk

]
≡
[

Vk Wk

WT
k −Ωk

]
(10)

(see e.g., [18]). The solution of (9) is then[
se
λe

]
= K−1

[
−gk
0m

]
=

[
−Vkgk
−WT

k gk

]
. (11)

Note that the equality-constrained minimizer se depends only on the (1,1)
block of K−1. Next, we compute the compact representation of Vk to make
computing se more efficient. This compact representation enables us to com-
pute the partial eigendecomposition of Vk, which we combine with a shape-
changing norm in order to compute an analytic solution to (8).

3.1 Compact representation of Vk

Using the notation Hk = B−1k , we characterize the compact representation of
Vk using the following lemma.

Lemma 1 The (1,1) block of the inverse KKT matrix in (10) has the compact
representation

Vk = δkIn + ΨkMkΨ
T
k , (12)

where Ψk ≡ [AT Ψ̂k] ∈ R(2l+m)×n, Ck ≡ AΨ̂kM̂k ∈ Rm×2l and

Mk ≡
[
−δ2kΩk −δkΩkCk

−δkCT
kΩk M̂k−CT

kΩkCk

]
. (13)

Proof From (5), observe that

AHk = δkA + AΨ̂kM̂kΨ̂
T
k = [δkIm Ck]

[
A

Ψ̂T
k

]
. (14)

Now, using (14),

HkA
TΩkAHk = [AT Ψ̂k]

[
δ2kΩk δkΩkCk

δkC
T
kΩk CT

kΩkCk

] [
A

Ψ̂T
k

]
.

Title Suppressed Due to Excessive Length 7

Then (5) can be expressed as

Hk = δkIn + Ψ̂kM̂kΨ̂
T
k = δkIn + [AT Ψ̂k]

[
0m×m

M̂k

] [
A

Ψ̂T
k

]
.

Combining these to express Vk in (10) yields

Vk = Hk −HkA
TΩkAHk

= δkIn + [AT Ψ̂k]

[
−δ2kΩk −δkΩkCk

−δkCT
kΩk M̂k−CT

kΩkCk

] [
A

Ψ̂T
k

]
,

which is the desired result. ut

Thus, the minimizer of (8) without the inequality constraint is given by

se = −Vkgk = −(δkIn + ΨkMkΨ
T
k)gk. (15)

3.2 Computational complexity

To estimate the computational complexity in computing se, we concentrate
on the dominant number of multiplications. In particular, since m � n and
l� n, this means that we concentrate on terms that involve n.

First, we analyze the computational complexity of the matrices M̂k in (6)

and Mk in (13). In order to compute M̂k in (6), the upper triangular part Tk of
STkYk and YT

k Yk must be formed. However, the leading (l−1)×(l−1) blocks
of STkYk and YT

k Yk can be obtained from STk−1Yk−1 and YT
k−1Yk−1. Since

we only need the upper triangular part of STkYk and YT
k Yk is symmetric, only

the last columns of STkYk and YT
k Yk have to be computed. Each requires l ·n

multiplications. Then M̂k in (6) can be computed by expressing the inverse
explicitly as

M̂k =

[
T−Tk (Dk + δkY

T
k Yk)T−1k −δkT

−T
k

−δkT−1k 0l×l

]
,

which requires O(l3) multiplications to form. Thus, the dominant cost of form-

ing M̂k comes from computing the last columns of STkYk and YT
k Yk, which

requires l · n multiplications each.

Next, we compute Mk in (13) by first computing Ck = AΨ̂kM̂k =

[ASk AYk]M̂k ∈ Rm×2l. Note that the previous search directions si are fea-
sible directions, Asi = 0. Therefore, ASk = 0. Now, the first l− 1 columns of
AYk are the last l−1 columns of AYk−1. Thus to form AΨ̂k, we only need to
compute Ayk−1, which requires mn multiplications. Then, forming Ck from

AΨ̂k and M̂k, requires 4l2m multiplications. Finally, using the expression for

Hk in (5), Ωk = (AHkA
T)−1 = (δkAAT + CkM̂

−1
k CT

k)−1. Since A does not
change at each iteration, AAT is not recomputed at each iteration but rather
has a one-time computational complexity of O(m2n). Then since Ωk ∈ Rm×m,

8 Johannes J. Brust et al.

inverting AHkA
T has a computational complexity of O(m3). Thus the dom-

inant cost for forming Mk comes from computing the last columns of AYk,
which requires mn multiplications.

We compute the equality-constrained minimizer se as

se = −Ψk(Mk(ΨT
k gk))− δkgk. (16)

where Mk is (2l+m)× (2l+m) and Ψk is n× (2l+m). First forming ΨT
k gk,

then pre-multiplying by Mk and then by Ψk, and finally subtracting δkgk
leads to a computational complexity of O((2(2l + m) + 1)n) (ignoring terms
that do not depend on n). This estimate is consistent with [10, Sec. 3.1].

4 Trust-Region Subproblem Solution with an `2 TR Constraint

In this section and the next, we assume that the equality-constrained solution
se from (11) is not feasible with respect to the `2-norm inequality constraint.
That is, we assume ‖se‖2 > ∆k.

If the `2-norm is used in (8), the Lagrangian for (8) is

L(s,λ, σ) = Q(s) + λTAs +
σ

2
‖s‖22 = sTgk +

1

2
sTBks + λTAs +

σ

2
‖s‖22,

where λ ∈ Rm and σ ∈ R are the Lagrange multipliers. A stationary point
(s∗,λ∗, σ∗) of L(s,λ, σ) must satisfy

[
(Bk + σIn) AT

A 0m×m

] [
s
λ

]
=

[
−gk
0m

]
. (17)

Letting Hk(σ) = (Bk + σIn)−1 and Ωk(σ) = (AHk(σ)AT)−1, we see from
calculations similar to (11) that the stationary point (s∗,λ∗, σ∗) must satisfy

[
s∗

λ∗

]
=

[
−Vk(σ∗)gk
−WT

k (σ∗)gk

]
,

where

Vk(σ) = Hk(σ)−Hk(σ)ATΩk(σ)AHk(σ), (18)

Wk(σ) = Hk(σ)ATΩk(σ).

Thus we can obtain the optimal primal and dual solutions, s∗ and λ∗ if we
compute the optimal Lagrange multiplier σ∗.

Title Suppressed Due to Excessive Length 9

4.1 Computing σ∗

By computing the inverse of the KKT matrix in (17), we observe from (18)
that s depends on σ in the following manner:

s(σ) = −Hk(σ)Φk(σ)gk, (19)

where Φk(σ) = In −ATΩk(σ)AHk(σ).
Since ‖se‖2 > ∆k, the solution to (8) must lie on the boundary, i.e., ‖s∗‖2 =

∆k. Since s explicitly depends on σ (see (19)), the optimal Lagrange multiplier
σ∗ can be obtained by finding the zero of the function ψ(σ) = ‖s(σ)‖2 −∆k,
or equivalently, the zero of

φ(σ) ≡ 1

‖s(σ)‖2
− 1

∆k
.

The following theorem guarantees that σ∗ can be obtained using Newton’s
method.

Theorem 1 Newton’s method applied to φ(σ) with initial iterate σ0 = 0 is
guaranteed to converge to σ∗ monotonically.

Proof First note that φ(0) < 0 because we assume ‖s(0)‖2 > ∆k. To apply
Newton’s method to find the zero σ∗ of φ(σ), we note that the derivative of
φ(σ) is

φ′(σ) = −s(σ)T s′(σ)

‖s(σ)‖32
,

where s′(σ) represents the derivative of s(σ) [14, Lemma 7.3.1]. The vector
s′(σ) is computed by differentiating system (17) with respect to σ and solving
the resulting equations for s′(σ):[

(Bk + σIn) AT

A 0m×m

] [
s′(σ)
λ′(σ)

]
=

[
−s(σ)

0m

]
. (20)

Using the same calculations as obtaining (19) from (17), we have that

s′(σ) = −Hk(σ)Φk(σ)s(σ). (21)

Noting that Φk(σ)THk(σ)Φk(σ) = Hk(σ)Φk(σ), we observe that

−s(σ)T s′(σ) = s(σ)TΦk(σ)THk(σ)Φk(σ)s(σ) ≥ 0,

because Hk(σ) is positive definite for σ ≥ 0. Therefore, φ(σ) is non-decreasing
in the interval [0,∞). Next, we show that φ(σ) is concave in [0,∞) by showing
that φ′′(σ) ≤ 0. We obtain an expression for φ′′(σ) by differentiating the linear
system in (20), which yields[

(Bk + σIn) AT

A 0m×m

] [
s′′(σ)
λ′′(σ)

]
=

[
−2s′(σ)

0m

]
, (22)

10 Johannes J. Brust et al.

and hence

s′′(σ) = −2Hk(σ)Φk(σ)s′(σ),

so that

s(σ)T s′′(σ) = −2s(σ)THk(σ)Φk(σ)s′(σ)

= −2s(σ)TΦk(σ)THk(σ)Φk(σ)s′(σ)

= 2s′(σ)T s′(σ).

Thus,

φ′′(σ) = −
‖s(σ)‖32

(
‖s′(σ)‖22 + s(σ)T s′′(σ)

)
− 3(s(σ)T s′(σ))2‖s(σ)‖2

‖s(σ)‖62

= 3
(s(σ)T s′(σ))2 − ‖s(σ)‖22‖s′(σ)‖22

‖s(σ)‖52
≤ 0

by the Cauchy-Schwartz inequality. Next, we show that φ(σ)→∞ as σ →∞.
Let λmax > 0 and λmin > 0 be the largest and smallest eigenvalues of Bk, and
let σmax and σmin be the largest and smallest singular values of A. Note that

‖s(σ)‖2 = ‖Hk(σ)Φk(σ)gk‖2
≤ ‖Hk(σ)‖2‖Φk(σ)‖2‖gk‖2

≤ 1

λmin + σ

(
1 + ‖AT ‖2‖Ωk(σ)‖2‖A‖2‖Hk(σ)‖2

)
‖gk‖2

≤ 1

λmin + σ

(
1 + σ2

max

λmax + σ

σ2
min

1

λmin + σ

)
‖gk‖2,

which tends to 0 as σ → ∞, which implies that φ(σ) → ∞ as σ → ∞. Since
φ′′(σ) ≤ 0 in [0,∞), φ′(σ) must be non-increasing in [0,∞). If φ′(σ̂) = 0 for
some σ̂ > 0, then φ′(σ) = 0 for all σ > σ̂ because φ′(σ) is non-increasing and
φ′(σ) ≥ 0. However, this cannot happen because φ(σ)→∞ as σ →∞. Thus,
φ′(σ) > 0 for all σ in [0,∞), and every iteration of Newton’s method

σj+1 = σj −
φ(σj)

φ′(σj)

is well-defined. Finally, since φ(0) < 0 and φ(σ) is strictly increasing and con-
cave with φ(σ)→∞ as σ →∞, Newton’s method will converge monotonically
to σ∗ with the initial point σ0 = 0. ut

Thus, given the optimal Lagrange multiplier σ∗, the minimizer is given by

s(σ∗) = −Vk(σ∗)gk = −Hk(σ∗)Φk(σ∗)gk. (23)

As in Sec. 3.1 eqs. (12)–(13), we compute the compact representation of Vk(σ∗)
to efficiently compute the solution s(σ∗).

Title Suppressed Due to Excessive Length 11

4.2 Compact representation of Vk(σ)

Like the compact representation of Hk in (5)–(6), the matrix Hk(σ) has the
compact representation

Hk(σ) =
1

γk + σ
In + Ψ̂kM̂k(σ)Ψ̂T

k ,

where
M̂k(σ) = −

(
(γk + σ)2Ξ̂−1k + (γk + σ)Ψ̂T

k Ψ̂k

)−1
.

We can obtain the compact representation of Vk(σ) using the following corol-
lary to Lemma 1.

Corollary 1 The compact representation of Vk(σ) from (18) is given by

Vk(σ) = τkIn + ΨkMk(σ)ΨT
k , (24)

where τk = (γk + σ)−1, Ψk ≡ [AT Ψ̂k], and

Mk(σ) ≡
[
−τ2kΩk(σ) −τkΩk(σ)Ck

−τkCT
kΩk(σ) M̂k(σ)−CT

kΩk(σ)Ck

]
.

Given the compact representation of Vk(σ), we can efficiently compute the
solution s∗`2 to (8) with the `2-norm by

s∗`2 = −Vk(σ∗)gk = −(τ∗k In + ΨkMk(σ∗)ΨT
k)gk, (25)

where τ∗k = (γk + σ∗)−1.
Our approach using the `2-norm constraint is summarized in Algorithm 1.

4.3 Computational complexity

Algorithm 1 first computes the equality-constrained minimizer (line 2). The
computational complexity of this step is described in Section 3.2.

When the trust-region constraint is active, sk(σ) and s′k(σ) are computed
on lines 13 and 14 for new values of σ in Newton’s method. Corollary 1 implies
that sk(σ) and s′k(σ) are computed by the same computational complexity as
the equality-constrained minimizer; however, now two vectors instead of one
are computed. Thus the dominant cost for one iteration of Newton’s method
is 2O(4(l + m)n + n). This computational complexity is still linear in n, and
typically Newton’s method converges in few iterations [4,7]. The main advan-
tage of Algorithm 1 is that it computes trust-region subproblem solutions to
high accuracy, even when n becomes large. Alternative methods that compute
nearly exact solutions of the trust-region subproblem, such as [20], use direct
factorizations of the matrix Bk, which become prohibitively expensive for large
n. On the other hand, for large-scale problems iterative techniques are used
to solve the trust-region subproblem [13,24]; however, these only compute ap-
proximate solutions. In this regard the proposed method reveals its strength,
because it is a high-accuracy method for large-scale problems.

12 Johannes J. Brust et al.

Algorithm 1: LTRL2-LEC (Limited-Memory Trust-Region `2-norm for
Linear Equality Constraints)

Initialize: 0 ≤ c1, 0 < c2, c3, c4, c5, c6 < 1 < c7, 0 < ε1, ε2, k = 0, 3 ≤ l ≤ 7,
∆k = ‖xk‖2, gk = ∇f(xk), δk = 1/‖Φk(0)gk‖2, γk = δ−1

k , Ψk = AT ,

Mk = δk(AAT)−1, 0 < imax

1 while (ε1 ≤ ‖gk −AT (AAT)−1Agk‖2/max(1, ‖xk‖2)) do
2 sk = −

(
δkI + ΨkMkΨT

k

)
gk ; /* Equality constrained step */

3 ρk = 0;
4 if ‖sk‖2 ≤ ∆k then
5 ρk = (f(xk)− f(xk + sk))/(Q(0)−Q(sk));
6 end
7 if ρk ≤ c1 then
8 repeat
9 σ = 0, i = 0 ;

10 s′k(σ) = −(δkI + ΨkMkΨT
k)sk;

11 while ε < |φ(σ)| and i < imax do /* Newton’s method */

12 σ = σ − φ(σ)/φ′(σ);

13 sk = sk(σ) = −((γk + σ)−1I + ΨkMk(σ)ΨT
k)gk ;

14 s′k = s′k(σ) = −((γk + σ)−1I + ΨkMk(σ)ΨT
k)sk ;

15 i = i+ 1;

16 end
17 ρk = 0;
18 if 0 < (f(xk)− f(xk + sk)) then
19 ρk = (f(xk)− f(xk + sk))/(Q(0)−Q(sk));
20 end
21 if ρk ≤ c2 then
22 ∆k = min(c3‖sk‖2, c4∆k);
23 end

24 until c1 < ρk;

25 end
26 xk+1 = xk + sk ; /* Accept step */

27 if c5∆k ≤ ‖sk‖2 and c6 ≤ ρk then
28 ∆k = c7∆k;
29 end
30 gk+1 = ∇f(xk+1) and yk = gk+1 − gk;

31 δk+1 = yT
k sk/s

T
k sk and γk+1 = δ−1

k+1;

32 Update Ψk,Mk from (12), k = k + 1;

33 end

5 Trust-Region Subproblem Solution with a Shape-Changing TR
Constraint

In this section, we use an alternative to the Euclidean norm to define the trust-
region in (8). The main benefit of this approach is that it provides analytical
solutions to the TR subproblems that are numerically cheaper than the l2
counterparts without affecting the convergence properties. More specifically,
we employ the so-called shape-changing norm introduced in [5]. We describe
how to transform (8) by a change of variables to solve it more easily using this
shape-changing norm, which is based on a partial eigendecomposition of Vk.

Title Suppressed Due to Excessive Length 13

5.1 Partial eigendecomposition of Vk

Our approach to computing the eigendecomposition of Vk = δkI + ΨkMkΨ
T
k

in (12) starts with factoring the low-rank matrix

Uk ≡ −ΨkMkΨ
T
k .

Note that since Rank(Uk) = 2l + m, the matrix Uk has only 2l + m non-
zero eigenvalues. Let Q3 ∈ Rn×(n−(2l+m)) be a matrix whose columns form
an orthonormal basis for Null(Uk). In other words, Q3 satisfies UkQ3 = 0.
Note that since Q3 is prohibitively expensive to compute for large n, we do
not explicitly compute it in our approach. Next, observe that 0 = VkA

T =
(δkI−Uk)AT so that UkA

T = δkA
T . Thus, if AT = Q1R1 is the “thin” QR

decomposition of AT , the eigendecomposition of Uk is

Uk = −[AT Ψ̂k]Mk

[
A

Ψ̂T
k

]
= [Q1 Q2 Q3]

 δkIm Λ̂k

0


QT

1

QT
2

QT
3

, (26)

where Λ̂k ∈ R2l×2l is a diagonal matrix of eigenvalues, and the columns of
the matrices Q1 ∈ Rn×m, Q2 ∈ Rn×2l, and Q3 ∈ Rn×(n−(2l+m)) represent
mutually orthogonal eigenvectors. Note that even though we define the large
orthogonal matrix Q ≡ [Q1 Q2 Q3], our approach only explicitly computes
the matrix Q2.

Next we now describe how to compute the non-zero eigenvalues in Λ̂k and
its corresponding eigenvectors in Q2. Subsequently, we combine the results to
arrive at the implicit eigendecomposition of (12). First, note that

δkQ1Q
T
1 = δkA

TR−11 R−T1 A = δkA
T (AAT)−1AT .

Using the expression for Mk in (13), we can write (26) as

[AT Ψ̂k]

[
−δ2kΩk−δk

(
AAT

)−1 −δkΩkCk

−δkCT
kΩk M̂k−CT

kΩkCk

][
A

Ψ̂T
k

]
= Q2Λ̂kQ

T
2 . (27)

Pre- and post-multiplying both sides of (27) by the orthogonal projection
P = I−AT (AAT)−1A yields

PΨ̂k

(
M̂k−CT

kΩkCk

)
Ψ̂T
kPT = Q2Λ̂kQ

T
2 ,

because PAT = 0 and AQ2 = 0. To compute the eigendecomposition of
the left-hand side, we first compute the “thin” QR factorization PΨ̂k =

Q̂2R̂2, and then we compute the eigendecomposition R̂2(M̂k−CT
kΩkCk)R̂T

2 =

V̂2Λ̂kV̂
T
2 so that

PΨ̂k

(
M̂k−CT

kΩkCk

)
Ψ̂T
kPT = Q̂2R̂2

(
M̂k−CT

kΩkCk

)
R̂T

2 Q̂T
2

= Q̂2V̂2Λ̂kV̂
T
2 Q̂T

2 .

14 Johannes J. Brust et al.

By letting Q2 = Q̂2V̂2, we obtain the eigendecomposition

Vk = δkI + [AT Ψ̂k] Mk

[
A

Ψ̂T
k

]

= [Q1 Q2 Q3]

0m
δkI2l − Λ̂k

δkIn−(2l+m)


QT

1

QT
2

QT
3


= QΛQT . (28)

Observe that the eigendecomposition only requires the computation of a few
eigenvalues (2l), corresponding to (δkI2l− Λ̂k) explicitly. Moreover, we do not
compute Q1 and Q3 explicitly.

5.2 Transforming the trust-region subproblem

Given the eigendecomposition of Vk, we now perform a change of variables
that allows Q(s) in (8) to become separable. Letting s = Qz, where z =
[zT1 zT2 zT3]T so that s = Q1z1 + Q2z2 + Q3z3, the trust-region subproblem
(8) has the equivalent expression

minimize
‖Qz‖≤∆k

Q(Qz) = (Qz)Tgk +
1

2
(Qz)

T
BkQz subject to AQz = 0. (29)

Since Q1,Q2, and Q3 are mutually orthogonal and AT = Q1R1, the linear
equality constraint AQz = 0 becomes

0 = AQz = [AQ1 AQ2 AQ3] z = AQ1z1 = RT
1 z1.

We assume here that AT has full column rank, so that R1 must be nonsingular.
Thus the equality constraint As = AQz = 0 is equivalent to

z1 = 0. (30)

With this constraint on z1, the quadratic term in the objective function Q(Qz)
in (29) becomes

(Qz)TBkQz =
[
zT2 zT3

] [QT
2

QT
3

]
Bk

[
Q2 Q3

] [z2
z3

]
.

The following lemma further simplifies Q(Qz).

Lemma 2 The identity[
QT

2

QT
3

]
Bk

[
Q2 Q3

]
=

[
δkI2l − Λ̂k

δkIn−(2l+m)

]−1
holds for the eigenvectors and eigenvalues in (28).

Title Suppressed Due to Excessive Length 15

Proof From (10), note that BkVk + ATWT
k = I. Then

I =

[
QT

2

QT
3

] (
BkVk + ATWT

k

) [
Q2 Q3

]
=

([
QT

2

QT
3

]
BkVk +

[
QT

2

QT
3

]
ATWT

k

)[
Q2 Q3

]
=

[
QT

2

QT
3

]
BkVk

[
Q2 Q3

]
because AT = Q1R1 and therefore QT

2 AT = 0 and QT
3 AT = 0. Then using

VkQ = QΛ from (28), we obtain

I =

[
QT

2

QT
3

]
Bk

[
Q2 Q3

] [δkI2l − Λ̂k

δkIn−(2l+m)

]
,

which is equivalent to the desired result. ut

Thus, the objective function Q(Qz) can now be written as

q(z2, z3) = zT2 QT
2 gk +

1

2
zT2 (δkI− Λ̂k)−1z2 + zT3 QT

3 gk +
1

2
δ−1k zT3 z3,

which is separable in z2 and z3. Next, we describe a shape-changing norm that
allows the trust-region subproblem in (8) to be separated into two subproblems
that can be easily solved.

5.3 Shape-changing norm

Given the eigendecomposition Vk = QΛQT and the matrices Q‖ ≡ [Q1 Q2]
and Q⊥ ≡ Q3, we use the shape-changing norm given by

‖s‖Q ≡ max (‖QT
‖ s‖∞, ‖QT

⊥s‖2), (31)

which was one of two norms proposed in [5]. In our work, we focus only on the
norm in (31) because it obtained the best results in the numerical experiments
presented in [5, Section 9]. To be consistent with the notation in [5], we define

QT s =

QT
1 s

QT
2 s

QT
3 s

 =

z1

z2

z3

 ≡
 0

z‖
z⊥

 .
Therefore,

‖s‖Q ≡ max (‖z‖‖∞, ‖z⊥‖2), (32)

and the inequality constraint ‖s‖Q ≤ ∆k is equivalent to requiring both

‖z‖‖∞ ≤ ∆k and ‖z⊥‖2 ≤ ∆k.

16 Johannes J. Brust et al.

Using this shape-changing norm, we can now express the original trust-region
subproblem as

minimize
‖z‖‖∞≤∆k,‖z⊥‖2≤∆k

q(z‖, z⊥),

which separates into the following two subproblems:

minimize
‖z‖‖∞≤∆k

q‖(z‖) = zT‖ (QT
2 gk) +

1

2
zT‖ (δkI− Λ̂k)−1z‖ (33)

and

minimize
‖z⊥‖2≤∆k

q⊥(z⊥) = zT⊥(QT
3 gk) +

1

2
δ−1k ‖z⊥‖

2
2. (34)

The two separated minimization problems can be solved analytically.

5.4 Analytical solution

With µi = (δk − [Λ̂k]ii)
−1 and g‖ ≡ QT

2 gk, the minimizer z∗‖ of q‖(z‖) in (33)
is given coordinate-wise by

[z∗‖]i = θi[g‖]i, where θi =


− 1

µi
if
∣∣∣ 1
µi

[g‖]i

∣∣∣ ≤ ∆k,

− ∆k

|[g‖]i|
otherwise.

(35)

Similarly, with g⊥ ≡ QT
⊥gk = QT

3 gk, the minimizer z∗⊥ of q⊥(z⊥) in (34) is

z∗⊥ = βg⊥, where β =

−δk if ‖δkg⊥‖2 ≤ ∆k,

− ∆k

‖g⊥‖2
otherwise.

(36)

The solution s∗SC to (8) with the shape-changing norm in (31) is s∗SC = Qz∗,
where the components z∗1, z∗‖, and z∗⊥ of z∗ are given by (30), (35), and (36), re-
spectively. Next, we demonstrate how Qz∗ can be computed without explicitly
forming the large matrix Q.

5.5 Computing the shape-changing-norm solution s∗SC

Recall that since Q is orthogonal, I = QQT = Q1Q
T
1 + Q2Q

T
2 + Q3Q

T
3 .

Because Q1Q
T
1 = AT (AAT)−1A, the optimal solution s∗SC = Qz∗ to the

Title Suppressed Due to Excessive Length 17

trust-region subproblem using a shape-changing norm is

s∗SC = [Q1 Q2 Q3]

 0
z∗‖
z∗⊥


= Q2z

∗
‖ + Q3z

∗
⊥

= Q2z
∗
‖ + βQ3Q

T
3 gk

= Q2z
∗
‖ + β

(
In −AT (AAT)−1A−Q2Q

T
2

)
gk.

= Q2

(
z∗‖ − βQT

2 gk

)
+ β

(
In −AT (AAT)−1A

)
gk, (37)

with Q2 =
(
I−AT (AAT)−1A

)
Ψ̂kR̂

−1
2 V̂2 from Sec. 5.1. Observe that the

expression (37) is a direct formula for computing a search direction (using the
shape-changing norm), and it only requires the small sub-matrix Q2 of the
large orthogonal matrix Q. The minimization using the shape-changing norm
is summarized in Algorithm 2.

5.6 Computational complexity

Like Algorithm 1, Algorithm 2 first computes the equality-constrained min-
imizer (line 2). The computational complexity of this step is described in
Section 3.2. The trust-region step is computed on line 15 and is of the form

sk =
(
In −AT (AAT)−1A

) (
Ψ̂kR̂

−1
2 V̂2(z‖ − βg‖) + βgk

)
.

To obtain an estimate of the computational complexity of sk, we first focus on

g‖ = QT
2 gk = V̂T

2 R̂−T2

(
Ψ̂T
k gk − Ψ̂T

kAT (AAT)−1Agk

)
.

In this representation, Ψ̂T
k gk and Agk (from ΨT

k gk) and Ψ̂T
kAT (from com-

puting Mk) are available as a result of generating the equality-constrained

minimizer first (line 2). Moreover, since V̂2 and R̂2 are R2l×2l matrices, the
most complex calculation of g‖ is of order max

(
O(m3),O(4l2)

)
. This depends

on whether solving the symmetric linear system AAT or the triangular sys-
tem R̂T

2 requires more effort. However, these terms do not depend on the large
variable n, and are expected to be inexpensive. Based on this, and because
z‖ is computed from g‖ by (35), the dominant number of multiplications in
forming the vector

ξk ≡ Ψ̂kR̂
−1
2 V̂2(z‖ − βg‖) + βgk (38)

is O(2ln + n). Subsequently, sk =
(
In −AT (AAT)−1A

)
ξk is obtained with

approximately O(2mn) multiplications. The latter estimates were based on

the assumption that R̂2 and V̂2 are available. These matrices are computed

18 Johannes J. Brust et al.

Algorithm 2: LTRSC-LEC (Limited-Memory Trust-Region Shape-
Changing Norm for Linear Equality Constraints)

Initialize: 0 ≤ c1, 0 < c2, c3, c4, c5, c6 < 1 < c7, 0 < ε1, 3 ≤ l ≤ 7, k = 0,
∆k = ‖xk‖2, gk = ∇f(xk), δk = 1/‖Φk(0)gk‖2, γk = δ−1

k , Ψk = AT ,

Mk = δk(AAT)−1

1 while (ε1 ≤ ‖gk −AT (AAT)−1Agk‖2/max(1, ‖xk‖2)) do
2 sk = −

(
δkI + ΨkMkΨT

k

)
gk ; /* Equality constrained step */

3 ρk = 0 ;
4 if ‖sk‖2 ≤ ∆k then
5 ρk = (f(xk)− f(xk + sk))/(Q(0)−Q(sk));
6 end
7 if ρk ≤ c1 then

8 R̂T
2 R̂2 = Ψ̂T

k Ψ̂k − Ψ̂T
k AT (AAT)−1AΨ̂k ; /* Cholesky factorization */

9 V̂2Λ̂kV̂T
2 = R̂2(Mk)22R̂T

2 ; /* Eigendecomposition */

10 g‖ = V̂T
2 R̂−T

2 (Ψ̂T
k gk − Ψ̂T

k AT (AAT)−1Agk);

11 ‖g⊥‖2 = (‖gk‖22 − gT
k AT (AAT)−1Agk − ‖g‖‖22)

1
2 ;

12 repeat
13 Set z‖ from (35) ;

14 Set β from (36);

15 sk = (In −AT (AAT)−1A)(Ψ̂kR̂−1
2 V̂2(z‖ − βg‖) + βgk);

16 ρk = 0;
17 if 0 < (f(xk)− f(xk + sk)) then
18 ρk = (f(xk)− f(xk + sk))/(Q(0)−Q(sk));
19 end
20 if ρk ≤ c2 then
21 ∆k = min(c3‖sk‖Q, c4∆k);
22 end

23 until c1 < ρk;

24 end
25 xk+1 = xk + sk ; /* Accept step */

26 if c5∆k ≤ ‖sk‖Q,∞ and c6 ≤ ρk then
27 ∆k = c7∆k;
28 end
29 gk+1 = ∇f(xk+1) and yk = gk+1 − gk ;

30 δk+1 = yT
k sk/s

T
k sk and γk+1 = δ−1

k+1;

31 Update Ψk,Mk from (12), k = k + 1;

32 end

in lines 8 and 9, respectively. The upper triangular R̂2 is defined by an implicit
QR factorization

PΨ̂k =
(
In −AT (AAT)−1A

)
Ψ̂k = Q̂2R̂2,

and, equivalently, by the explicit relation

R̂T
2 Q̂T

2 Q̂2R̂2 = R̂T
2 R̂2 = Ψ̂T

k Ψ̂k − Ψ̂T
kAT (AAT)−1AΨ̂k.

The last identity is due to the idempotency of orthogonal projection matrices:
P = P2. Since AΨ̂k is available, the dominant cost in computing the small
matrix R̂2 via a Cholesky factorization comes from updating Ψ̂T

k Ψ̂k. This

matrix is updated by the vectors Ψ̂T
k−1sk−1 and Ψ̂T

k−1yk−1 at complexity

Title Suppressed Due to Excessive Length 19

O(4l · n), which is expected to be larger than the approximate O(8l3) from

a Cholesky factorization. The orthogonal matrix V̂2 is computed from the

eigendecomposition R̂2(M̂k−CT
kΩkCk)R̂T

2 = V̂2Λ̂kV̂
T
2 ∈ R2l×2l. Note that

this eigendecomposition does not depend on n. In sum, the dominant number
of multiplications for computing sk areO((6l+2m)n+n). However after R̂2 has
been formed once, the subsequent costs of computing the trust-region step sk
are O(2(l+m)n+n). This is advantageous when the trust-region constraint is
active and sk is recomputed, repeatedly. Moreover, from the analysis of Section
3.2, the computational complexity of the step in line 2 is comparable with the
estimate in [10, Section 3.1], and therefore also with Algorithm 1. However,
when the trust-region subproblem is required to be recomputed, we expect
computational efficiencies from Algorithm 2.

6 Convergence Analysis

This section analyzes the convergence properties of our two proposed methods
(Algorithms 1 and 2). The analysis is based on the sufficient decrease prin-
ciple for trust-region methods [14]. This principle requires that a computed
minimizer to the trust-region subproblem reduces the quadratic approxima-
tion Q(s) by a satisfactory amount. Specifically, in [14, Sec. 12.2] the sufficient
decrease condition for the trust-region subproblem (8) is formulated as

Q(0)−Q(sk) ≥ cπkmin (πk/‖Bk‖2, ∆k) , (39)

where 0 < c < 1, and πk = ‖(In −AT (AAT)−1A)gk‖2. Note that πk may be
equivalently expressed as

πk = minimize
ρ∈Rm

‖gk −ATρ‖2.

If the steps in a trust-region algorithm satisfycondition (39), then global con-
vergence of the algorithm is deduced, as the method is guaranteed a sufficient
improvement at each accepted trial step [14,28]. In this section, we prove that
the equality-constrained solution, se from (15), and the solutions of the trust-
region subproblems from Algorithms 1 and 2 ((23) and (37), respectively) all
satisfy the sufficient decrease condition (39).

6.1 Sufficient decrease with the equality-constrained minimizer se

Observe that both proposed algorithms first test the equality-constrained min-
imizer se = −Vkgk. If the length of this direction exceeds the trust-region
constraint, i.e., ‖se‖2 > ∆k, or it does not satisfactorily reduce the objective
function, then the steps computed by the two methods will be different. The
following lemma demonstrates that se satisfies (39).

20 Johannes J. Brust et al.

Lemma 3 Provided ‖se‖2 ≤ ∆k, the equality-constrained minimizer

se = −Vkgk = −HkΦk(0)gk

of the trust-region subproblem in (7) satisfies the sufficient decrease condition
(39).

Proof Recall from Sec. 4 that HkΦk = Φk
THkΦk, where we let Φk = Φk(0).

Then substituting the equality-constrained minimizer se into the left-hand
side of (39), we obtain

Q(0)−Q(se) = gTk HkΦkgk − 1
2gTk Φk

THkΦkgk

= 1
2gTk Φk

THkΦkgk

≥ 1
2λ̂max

gTk Φk
T
kΦkkgk

= 1
2‖Φkgk‖2 ·

‖Φkgk‖2
‖Bk‖2

≥ 1
2πk ·min(πk/‖Bk‖2, ∆k), (40)

where λ̂max is the largest eigenvalue of Bk and where ‖Φkgk‖2 = ‖gk +
ATρe‖2 = ‖gk − AT (−ρe)‖2 ≥ πk with ρe from (11). Comparing the final
inequality from (40) with (39), we conclude that the unconstrained minimizer
satisfies the sufficient decrease condition. ut

6.2 Sufficient decrease with the `2-norm minimizer s∗`2

When the equality-constrained minimizer se is not accepted, Algorithm 1 com-
putes the `2-norm inequality constraint minimizer s∗`2 in (23). We prove s∗`2
satisfies the sufficient decrease condition in the following lemma.

Lemma 4 The solution s∗`2 = −Hk(σ∗)Φk(σ∗)gk of the trust-region subprob-
lem in (7) defined by the `2-norm, where σ∗ ≥ 0, satisfies the sufficient decrease
condition (39).

Proof Note that s∗`2 lies on the boundary, i.e., ‖s∗`2‖2 = ∆k. Then

(s∗`2)T (Bk + σ∗I)s∗`2 = (s∗`2)TBks
∗
`2 + σ∗∆2

k.

In addition, note from (23) that

(s∗`2)T (Bk + σ∗I)s∗`2 = −(s∗`2)TΦ∗kgk = gTk (Φ∗k)TH∗kΦ
∗
kgk,

where Φ∗k = Φk(σ∗) and H∗k = Hk(σ∗). Moreover, from the definition of Φ∗k,
it holds that (Φ∗k)TH∗kΦ

∗
k = H∗kΦ

∗
k. Therefore

Q(0)−Q(s∗`2) = −(gTk s∗`2 + 1
2 (s∗`2)TBks

∗
`2)

= −
(
−gTk H∗kΦ

∗
kgk + 1

2 (gTk (Φ∗k)TH∗kΦ
∗
kgk − σ∗∆2

k)
)

= 1
2gTk (Φ∗k)TH∗kΦ

∗
kgk + 1

2σ
∗∆2

k

≥ 1
2gTk (Φ∗k)TH∗kΦ

∗
kgk.

Title Suppressed Due to Excessive Length 21

Because H∗k = (Bk + σ∗I)−1, thus ‖Φ∗kgk‖22/(λ̂max + σ∗) ≤ gTk (Φ∗k)TH∗kΦ
∗
kgk

≤ ‖Φ∗kgk‖22/(λ̂min + σ∗), where λ̂max and λ̂min are the largest and smallest
eigenvalues of Bk, respectively. Moreover, because

∆2
k = ‖s∗`2‖

2
2 = gTk (Φ∗k)T (H∗k)2Φ∗kgk ≤ ‖Φ∗kgk‖22/(λ̂min + σ∗)2,

therefore σ∗ ≤ ‖Φ∗kgk‖2/∆k − λ̂min ≤ ‖Φ∗kgk‖2/∆k because Bk is an L-BFGS

matrix and therefore λ̂min > 0. Then the following inequalities hold:

Q(0)−Q(s∗`2) ≥ 1
2‖Φ

∗
kgk‖22/(λ̂max + σ∗)

≥ 1
2

(
‖Φ∗kgk‖22

‖Bk‖2 + ‖Φ∗kgk‖2/∆k

)

≥


1
4‖Φ

∗
kgk‖22/‖Bk‖2 if ‖Bk‖2 > ‖Φ∗kgk‖2/∆k,

1
4‖Φ

∗
kgk‖2∆k otherwise

≥ 1
4πk ·min(πk/‖Bk‖2, ∆k)

because ‖Φ∗gk‖2 = ‖gk + ATρ(σ∗)‖2 = ‖gk − AT (−ρ(σ∗))‖2 ≥ πk, where
ρ(σ∗) is specified by system (17). ut

6.3 Sufficient decrease with the shape-changing-norm minimizer s∗SC

Note from Sec. 5.2 that the quadratic objective function has the equivalent
representation Q(s) = q(z‖, z⊥). Using the closed-form expressions for the
solutions z∗‖ and z∗⊥ allows us to show that the corresponding solution s∗SC
satisfies (39).

Lemma 5 The solution s∗SC = Qz∗ in (37) to the trust-region subproblem in
(8) with shape-changing norm (31) satisfies the sufficient decrease condition
(39).

Proof The expressions for z∗‖ in (35) and z∗⊥ in (36) give

Q(0)−Q(s∗SC) = −q(z∗‖, z
∗
⊥)

= −
[
(z∗‖)

TQT
2 gk + 1

2 (z∗‖)
T (δkI− Λ̂k)−1z∗‖ +

(z∗⊥)TQT
⊥gk + 1

2δ
−1
k (z∗⊥)T z∗⊥

]
= −

[
2l∑
i=1

{
θi[g‖]

2
i + 1

2θ
2
i µi[g‖]

2
i

}
+ β‖g⊥‖22 + 1

2

β2

δk
‖g⊥‖22

]

=
2l∑
i=1

{(
−θi − 1

2θ
2
i µi
)

[g‖]
2
i

}
+

(
−β − 1

2

β2

δk

)
‖g⊥‖22.

22 Johannes J. Brust et al.

Now from (35), if |[g‖]i/µi| ≤ ∆k, then θi = −1/µi and

(
−θi − 1

2θ
2
i µi
)

=
1

µi
− 1

2

(
1

µi

)2

µi =
1

2µi
= − 1

2θi.

Otherwise, |[g‖]i/µi| > ∆k and therefore θi = −∆k/|[g‖]i|, which both imply
1 > ∆k|µi|/|[g‖]i| = |θiµi|. Thus(

−θi − 1
2θ

2
i µi
)

=
∆k

|[g‖]i|
(
1 + 1

2θiµi
)
> 1

2

∆k

|[g‖]i|
= − 1

2θi.

Consequently,

2l∑
i=1

{(
−θi − 1

2θ
2
i µi
)

[g‖]
2
i

}
≥ 1

2

2l∑
i=1

{
(−θi) [g‖]

2
i

}
≥ 1

2 min
1≤i≤2l

{−θi}
2l∑
i=1

{
[g‖]

2
i

}
≥ 1

2 min
1≤i≤2l

{
1

µi
,
∆k

|[g‖]i|

}
‖g‖‖22

≥ 1
2min

{
1

‖(δkI− Λ̂k)−1‖2
,
∆k

‖g‖‖2

}
‖g‖‖22.

Since Q2
TBkQ2 = (δkI− Λ̂k)−1, ‖Bk‖2 ≥ ‖(δkI− Λ̂k)−1‖2 and therefore

2l∑
i=1

{(
−θi − 1

2θ
2
i µi
)

[g‖]
2
i

}
≥ 1

2min

{
1

‖Bk‖2
,
∆k

‖g‖‖2

}
‖g‖‖22.

Similarly, if ‖δkg⊥‖2 ≤ ∆k, then β = −δk and(
−β − 1

2

β2

δk

)
= δk − 1

2

δ2k
δk

= 1
2δk = − 1

2β.

Otherwise, ‖δkg⊥‖2 > ∆k and therefore β = −∆k/‖g⊥‖2, which both imply
1 > ∆k/‖δkg⊥‖2 = |β/δk|. Thus(

−β − 1
2

β2

δk

)
=

∆k

‖g⊥‖2

(
1− 1

2

|β|
|δk|

)
> 1

2

∆k

‖g⊥‖2
= − 1

2β.

Consequently,(
−β − 1

2

β2

δk

)
‖g⊥‖22 ≥ − 1

2β‖g⊥‖
2
2 ≥ 1

2 min

{
δk,

∆k

‖g⊥‖2

}
‖g⊥‖22.

Because δ−1k = γk is an eigenvalue of Bk, δk ≥ 1/‖Bk‖2 and therefore(
−β − 1

2

β2

δk

)
‖g⊥‖22 ≥ 1

2 min

{
1

‖Bk‖2
,
∆k

‖g⊥‖2

}
‖g⊥‖22.

Title Suppressed Due to Excessive Length 23

Combining these results, we obtain

Q(0)−Q(s∗SC) ≥ 1
2min

{
1

‖Bk‖2
,
∆k

‖g‖‖2

}
‖g‖‖22 +

1
2 min

{
1

‖Bk‖2
,
∆k

‖g⊥‖2

}
‖g⊥‖22.

Finally, note that

‖g‖‖22 + ‖g⊥‖22 = gTk Q2Q
T
2 gk + gTk Q⊥QT

⊥gk

= gTk (I−Q1Q
T
1)gk

= gTk (I−AT (AAT)−1A)gk

= ‖(I−AT (AAT)−1A)gk‖22
= π2

k.

Since ‖g‖‖2 ≤ πk and ‖g⊥‖2 ≤ πk,

Q(0)−Q(s∗SC) ≥ 1
2min

{
1

‖Bk‖2
,
∆k

πk

}
‖g‖‖22 + 1

2 min

{
1

‖Bk‖2
,
∆k

πk

}
‖g⊥‖22

= 1
2 min

{
1

‖Bk‖2
,
∆k

πk

}
π2
k

= 1
2πk min

{
πk
‖Bk‖2

, ∆k

}
.

ut

6.4 Convergence

We establish the convergence of Algorithms 1 and 2 in a theoremthat invokes
the theory developed by Conn et al. [14]. To be consistent with [14], our result
is based on the following assumptions:

A. The objective function f(x) is twice continuously differentiable and bounded
below (f(x) ≥ k−), and the Hessian is bounded above (∇2f(x) ≤ k+), for
two constants k−, k+.

B. The constraints are twice continuously differentiable and consistent.
C. A first-order constraint qualification holds at a stationary point x∗.
D. The quadratic approximation Q(s) is twice continuously differentiable.
E. The quasi-Newton matrix Bk is nonsingular for all k, i.e., the lowest eigen-

value λ̂min is bounded from 0, and the largest eigenvalue λ̂max is bounded
from infinity.

These properties are shown for the L-BFGS matrix in [5]. Finally we note that

1√
2l +m

‖s‖2 ≤ ‖s‖Q ≤
√

2l +m‖s‖2,

24 Johannes J. Brust et al.

which relates the shape-changing norm to the `2-norm, and ensures a measure
of ‘closeness’ to the `2-norm . We thus propose the following theorem to show
the convergence of our two proposed algorithms.

Theorem 2 Suppose that the eigenvalues of Bk are bounded, i.e., 0 < cl ≤
λ̂min ≤ λ̂max < cu for some constants cl and cu. Then every limit point of
the sequence of iterates {xk} generated by Algorithm 1 and by Algorithm 2 is
first-order critical.

Proof Algorithms 1 and 2 have the same form as Algorithm 12.2.1 in [14],
which is included here as Algorithm 3 for completeness. We make slight adap-
tations to be consistent with the problem formulation in this article. Algorithm
3 converges to a first-order critical point, as long as the steps sk satisfy the
sufficient decrease condition

Q(0)−Q(sk) ≥ cπkmin (πk/‖Bk‖2, ∆k) .

From Lemmas 3–5, all steps used in Algorithms 1 and 2 satisfy the sufficient
decrease condition. Therefore we conclude that both algorithms generate iter-
ates that converge to critical points. ut

Algorithm 3 (Algorithm 12.2.1 in [14])

Step 0: Initialization. An initial feasible point x0 and an initial trust-
region radius ∆0 are given. The constants 0 < ε1 ≤ ε2 < 1 and
0 < γ1 ≤ γ2 < 1 are also given. Compute f(x0) and set k = 0.

Step 1: Model definition. Define a model Q(s) subject to As = 0, ‖s‖ ≤
∆k.

Step 2: Step calculation. Compute a step sk that sufficiently reduces the
model Q(s) in the sense of (39) while satisfying the constraints from
Step 1;

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define the
ratio

ρk =
f(xk)− f(xk + sk)

Q(0)−Q(sk)
.

If ρk ≥ ε1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.
Step 4: Trust-region radius update. Set

∆k+1 ∈


[∆k,∞) if ρk ≥ ε2,
[γ2∆k, ∆k] if ρk ∈ [ε1, ε2),

[γ1∆k, γ2∆k] if ρk < ε1.

Increment k by 1 and go to Step 1.

Title Suppressed Due to Excessive Length 25

7 Numerical Experiments

This section describes four types of numerical experiments that benchmark
implementations of our proposed algorithms. The codes are developed using
MATLAB R2014a (64 bit) and are available at

https://github.com/johannesbrust/LTR LEC

All numerical experiments are carried out on a Dell Precision T1700 desktop
computer with Intel i5-4590 CPU @ 3.30GHz x 4 processors, 8 GB RAM, and
Linux Ubuntu 14.04, 64-bit. The goal of this section is to demonstrate the ef-
fectiveness of the proposed methods for problems of the form (1). Experiment
I compares our implementations of Algorithm 1 (labeled TR1) and Algorithm
2 (labeled TR2) with three alternative solvers. In Experiment II, the proposed
methods are applied to large-scale quadratic problems, where the number of
variables may be as large as 107. Experiment III compares the proposed meth-
ods on problems where the linear constraints may be degenerate and A may be
large and sparse. In Experiment IV, we compare the methods on a collection of
large-scale objective functions from the standard CUTEst library. Performance
profiles [16] are provided. We compare the number of iterations (iter) and
the time (time) for each solver on the test set of problems. The performance
metric ρs(τ) with a given number of test problems np is

ρs(τ) =
card {p : πp,s ≤ τ}

np
and πp,s =

tp,s
min tp,i
1≤i≤S

,

where tp,s is the “output” (i.e., time or iter) of “solver” s on problem p. Here
S denotes the total number of solvers for a given comparison. This metric
measures the proportion of how close a given solver is to the best result. The
parameters in Algorithms 1 and 2 are set to c1 = 0, c2 = 0.75, c3 = 0.5,
c4 = 0.25, c5 = 0.8, c6 = 0.25, c7 = 2, and l = 5, imax = 10.

7.1 Experiment I

This experiment compares TR1 and TR2 to three alternative solvers: FMINCON–

LDL [12], FMINCON–CG [12] and IPOPT [26]. FMINCON represents an interior-
point solver that implements a L-BFGS quasi-Newton approximation of the
Hessian of the Lagrangian, and uses one of two approaches to solve a se-
quence of linear-equality-constrained subproblems. FMINCON–LDL solves the
subproblems by a direct LDLT factorization of the corresponding KKT ma-
trices, while FMINCON-CG uses the projected conjugate gradient method [13]
to solve equality-constrained trust-region subproblems. The strategy of FMIN-

CON is based on [8,9,27]. IPOPT [26] implements an interior-point algorithm
for large-scale optimization with the option of L-BFGS Hessians. IPOPT and
FMINCON handle general constraints in addition to linear equality constraints.

26 Johannes J. Brust et al.

1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

τ

ρ
s
(τ

)

TR1
TR2
FMIN-LDL
FMIN-CG
IPOPT

2 4 6 8 10

0.2

0.4

0.6

0.8

1

τ

ρ
s
(τ

)

TR1
TR2
FMIN-LDL
FMIN-CG
IPOPT

Fig. 1 Performance profiles comparing iter (left) and time (right) of various solvers on
convex quadratic problems with dimensions ni = 1000 + 100i, 0 ≤ i ≤ 10.

In this experiment we define the objective function as a convex quadratic
function

f(x) = cTx +
1

2
xTGx,

where c ∈ Rn and G ∈ Rn×n is dense and positive semi-definite. With this
definition the solution to problem (1) can be analytically computed. To com-
pare the computed solutions of the different solvers, a solver is determined to
have found a solution if the computed vector x̂ satisfies

|f(x̂)− f(x∗)|/|f(x∗)| ≤ 10−6 and ‖Ax̂− b‖2 ≤ 10−9, (41)

where x∗ is the analytic solution. The problem dimensions are moderately
sized with ni = 1000 + 100i, 0 ≤ i ≤ 10. We expect all solvers to converge
for at least some of the problems. In order to set-up the methods, we use the
default options of all solvers, with the following exceptions.FMINCON–LDL and
FMINCON–CG: MaxIter = 1e6, MaxFunEvals = 1e6, TolX = 1e-10, Hessian
= {‘lbfgs’,5}, Ipopt: jac c constant = ‘yes’, hessian approximation =

‘limited-memory’, mu strategy = ‘adaptive’, tol = 1.e-7. A matrix G̃ ∈
Rn×n is used to define G = G̃T G̃, and the problem data c,b, G̃, and A are
generated as samples from a standard normal distribution, with m = 10. The
initial point is x0 = AT (AAT)−1Ab. Observe in Figure 1 that TR1, TR2 and
FMINCON–LDL do best in terms of iterations (left plot) overall. FMINCON–LDL

used the fewest iterations for the largest fraction of problems, as indicated by
the highest circle on the y-axis. However, TR1 and TR2 tend to have consistent
low iteration numbers across all problems, as indicated by the crossings of the
dashed-red and solid-blue lines with the magenta line. The right plot in Fig-
ure 1 displays that the computational times of TR1 and TR2 were significantly
lower than of any other solver. Note that the low profiles of IPOPT do not
mean that it did not converge to its tolerances. Rather, they indicate that the
computed solutions did not fulfill the combined criteria in (41).

Title Suppressed Due to Excessive Length 27

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

TR1
TR2
FMIN-LDL
FMIN-CG
IPOPT

100 200 300 400 500 600 700
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

TR1
TR2
FMIN-LDL
FMIN-CG
IPOPT

Fig. 2 Performance profiles comparing iter (left) and time (right) of various solvers on
convex quadratic problems with large-scale dimensions n = 104, 105, 106, 107. The differ-
ences in computational times are large, as can be deduced from the relatively large values
of τ on the x-axis in the right plot.

7.2 Experiment II

In this experiment the quadratic minimization problems are large-scale, with
104 ≤ n ≤ 107. For large values of n, dense Hessians G ∈ Rn×n cannot be
stored. Therefore for this experiment we define the convex quadratic objective
function as

f(x) = cTx +
1

2
(φxTx + xTGGTx),

where G ∈ Rn×r and φ > 0. The problem data φ, c,b,G, and A are randomly
generated from a standard normal distribution) with m = 10 and r = 5. Nu-
merical experiments with TR1, TR2, FMINCON–LDL, FMINCON–CG and IPOPT

are reported. Beyond 105 ≤ n we observe that FMINCON–LDL, FMINCON–CG

and IPOPT take excessively long times, and are therefore not applied to the
largest problems. Observe in Figure 2 that TR1 and TR2 obtain the best results
in terms of the number of iterations and computational time. We note that
both algorithms computed solutions within a few seconds on all problem sizes.

7.3 Experiment III

This experiment uses problems with sparse and possibly low-rank A ∈ Rm×n.
The objective function is the Rosenbrock function

f(x) =

n/2∑
i=1

(x2i − x2i−1)2 + (1− x2i−1)2,

where n is an even integer. The matrices A ∈ Rm×n are obtained from netlib
(see http://www.netlib.org/lp/data/). Specific properties of the matrices
from this experiment are listed in Table 1.

28 Johannes J. Brust et al.

1 1.2 1.4 1.6 1.8 2 2.2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

TR1
TR2
FMIN-LDL
IPOPT

20 40 60 80

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

TR1
TR2
FMIN-LDL
IPOPT

Fig. 3 Performance profiles comparing iter (left) and time (right) of solvers applied to the
Rosenbrock function for various matrices A from netlib.

Table 1 Properties of the constraint matrix A ∈ Rm×n for each problem. We report the
number of rows (m), the number of columns (n), the number of nonzeros (nnz) and the
rank.

Problem m n nnz rank
FIT1D 25 1026 14430 25
FIT2D 26 10500 138018 26

D6CUBE 416 6184 43888 405
SCSD1 78 760 3148 78
SCSD6 148 1350 5666 148
SCSD8 398 2750 11334 398

For the Rosenbrock function and the various matrices A, there is in general no
analytic formula of the solution. Therefore we compare the computed solutions
from the different solvers by checking if the following conditions are satisfied:

‖ĝk −AT (AAT)†Aĝk‖2/max(1, ‖x̂k‖2) ≤ 10−5 and ‖Ax̂k − b‖2 ≤ ε0,

where ε0 ≤ 10−9, and x̂k, ĝk are computed solution and gradient, with (.)†

representing the pseudoinverse of a matrix. FMINCON–CG required longer than
9 hours to compute solutions, which is why it is omitted in the comparison.
Overall, Figure 3 indicates that the proposed methods obtain desirable results
when A is large, sparse and possibly of low-rank.

7.4 Experiment IV

This experiment benchmarks our algorithms on a set of large nonlinear and
possibly non-convex objective functions. We use 62 large-scale unconstrained
CUTEst problems and add 10 randomly generated linear equality constraints
to each. Each minimization problem is defined by the CUTEst objective func-
tion with linear constraints, which are generated using the command A =

randn(m,n)/norm(x0); where x0 is the initial vector from the CUTEst prob-
lem and the random number generator is initialized by rng(090317). Table 2

Title Suppressed Due to Excessive Length 29

5 10 15 20
0

0.2

0.4

0.6

0.8

1

τ

ρ
s
(τ

)

TR1
TR2
FMIN-LDL
IPOPT

100 200 300 400
0

0.2

0.4

0.6

0.8

1

τ

ρ
s
(τ

)

TR1
TR2
FMIN-LDL
IPOPT

Fig. 4 Performance profiles comparing iter (left) and time (right) of applying TR1 and
TR2 and 2 alternative solvers on large-scale CUTEst problems with added linear equality
constraints.

lists the CUTEst objective functions. The results of running four methods are
summarized in Figure 4. FMINCON–CG is omitted in the comparisons because
it took exceedingly long on some problems. Moreover, we set a time limit of 20
minutes per problem. We observe that TR2 performs better than TR1 in terms
of execution time even though the two approaches need similar numbers of it-
erations. This performance difference is mainly because the trust-region steps
of TR2 are computed using an analytical formula that has lower computational
cost than the numerical root-finding step of TR1.

Table 2 Unconstrained CUTEst problems used in Experiment IV.

Problem n
ARWHEAD 5000 DIXON3DQ 10000 POWER 10000
BDQRTIC 5000 DQDRTIC 5000 QUARTC 5000
BOX 10000 DQRTIC 5000 SCHMVETT 5000
BROYDN7D 5000 EDENSCH 2000 SINQUAD 5000
BRYBND 5000 EG2 1000 SPARSQUR 10000
COSINE 10000 ENGVAL1 5000 SPMSRTLS 4999
CRAGGLVY 5000 EXTROSNB 1000 SROSENBR 5000
CURLY10 10000 FLETCHCR 1000 TOINTGSS 5000
CURLY20 10000 FMINSRF2 5625 TQUARTIC 5000
CURLY30 10000 FREUROTH 5000 TRIDIA 5000
DIXMAANA 3000 GENHUMPS 5000 VAREIGVL 50
DIXMAANB 3000 LIARWHD 5000 WOODS 4000
DIXMAANC 3000 MOREBV 5000 SPARSINE 5000
DIXMAAND 3000 MSQRTALS 1024 TESTQUAD 5000
DIXMAANE 3000 MSQRTBLS 1024 JIMACK 3549
DIXMAANF 3000 NCB20 5010 NCB20B 5000
DIXMAANG 3000 NONCVXU2 5000 EIGENALS 2550
DIXMAANH 3000 NONCVXUN 5000 EIGENBLS 2550
DIXMAANI 3000 NONDIA 5000
DIXMAANJ 3000 NONDQUAR 5000
DIXMAANK 3000 PENALTY1 1000
DIXMAANL 3000 POWELLSG 5000

Figure 5 compares TR1 and TR2 in more detail.

30 Johannes J. Brust et al.

1 1.2 1.4 1.6 1.8

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

TR1
TR2

1 1.2 1.4 1.6 1.8 2 2.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

TR1
TR2

Fig. 5 Performance profiles comparing iter (left) and time (right) of applying TR1 and
TR2 on large-scale CUTEst problems with added linear equality constraints.

8 Conclusion

We developed two limited-memory quasi-Newton trust-region methods for op-
timization problems with linear constraints Ax = b. The methods differ in
the norm that defines the trust-region subproblem. An advantage of both
proposed methods is that they efficiently compute nearly exact trust-region
subproblem solutions for large-scale problems. Moreover, one of the proposed
methods computes search directions by using an analytic formula. Numerical
experiments indicate that the proposed methods perform well on large-scale
problems.

Appendix A. Notation

Section 2: Background

sk−1 = xk − xk−1 Sk = [sk−l · · · sk−1]
yk−1 = ∇f(xk)−∇f(xk−1) Yk = [yk−l · · · yk−1]

STkYk = Lk + Tk Dk = diag(STkYk)

B
(k)
0 = γkIn Hk = B−1k
γk = yTk−1yk−1/y

T
k−1sk−1 δk = 1/γk

Bk = γkIn + Ψ̂kΞ̂kΨ̂
T
k Ψ̂k = [Sk Yk]

Hk = δkIn + Ψ̂kM̂kΨ̂
T
k

Ξ̂k = γk

[
−STk Sk −Lk
−LTk γkDk

]−1
M̂k = −(γ2kΞ̂

−1
k + γkΨ̂

T
k Ψ̂k)−1

Section 3: Trust-Region Subproblem Solution without an Inequality Constraint

Title Suppressed Due to Excessive Length 31

K =

[
Bk AT

A 0

]
Ωk = (AB−1k AT)−1

Ψk = [AT Ψ̂k]

K−1 =

[
B−1k −B−1k ATΩkAB−1k B−1k ATΩk

(B−1k ATΩk)T −Ωk

]
Vk = B−1k −B−1k ATΩkAB−1k
Vk = δkIn + ΨkMkΨ

T
k

Wk = B−1k ATΩk

Mk =

[
−δ2kΩk −δkΩkCk

−δkCT
kΩk M̂k−CT

kΩkCk

]
Ck = AΨ̂kM̂k

Section 4: Trust-Region Subproblem Solution with an `2-Norm Inequality Con-
straint

Hk(σ) = (Bk + σI)−1 Hk = Hk(0)
Φk(σ) = In−ATΩk(σ)AHk(σ) Φk = Φk(0)

Hk(σ) = 1
γk+σ

In + Ψ̂kM̂k(σ)Ψ̂T
k

Ωk(σ) = (AHk(σ)AT)−1

M̂k(σ) = −
(
(γk + σ)2Ξ̂−1k + (γk + σ)Ψ̂T

k Ψ̂k

)−1
Vk(σ) = Hk(σ)−Hk(σ)ATΩk(σ)AHk(σ)
Vk(σ) = Hk(σ)Φk(σ)

s(σ) = −Hk(σ)Φk(σ)gk
s′(σ) = −Hk(σ)Φk(σ)s(σ)

Section 5: Trust-Region Subproblem Solution with a Shape-Changing Norm
Inequality Constraint

Uk = −ΨkMkΨ
T
k

AT = Q1R1 Q1Q
T
1 = AT (AAT)−1A

P = In −AT (AAT)−1A PΨ̂k = Q̂2R̂2

V̂2Λ̂kV̂
T
2 = R̂2(M̂k −CT

kΩkCk)R̂T
2

Q2 = Q̂2V̂2

Q = [Q1 Q2 Q3]
Q‖ = [Q1 Q2] Q⊥ = Q3

z =

z1
z2
z3

 s = Qz

z‖ = z2 = QT
2 s z⊥ = z3 = QT

3 s
g‖ = QT

2 gk g⊥ = QT
⊥gk

Vk = QΛQT = [Q1 Q2 Q3]

0

δkI− Λ̂k

δkI

QT
1

QT
2

QT
3



32 Johannes J. Brust et al.

References

1. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, UK, 2007.

2. J. J. Brust, O. Burdakov, J. B. Erway, R. F. Marcia, and Y.-X. Yuan. Shape-changing
L-SR1 trust-region methods. Technical Report 2016-2, Department of Mathematics,
Wake Forest University, 2016.

3. J. J. Brust, O. P. Burdakov, J. B. Erway, and R. F. Marcia. Dense initializations
for limited-memory quasi-Newton methods. Technical Report 2017-2, Department of
Applied Mathematics, UC Merced, 2017.

4. J. J. Brust, J. B. Erway, and R. F. Marcia. On solving L-SR1 trust-region subproblems.
Computational Optimization and Applications, 66(2):245–266, 2017.

5. O. Burdakov, L. Gong, Y.-X. Yuan, and S. Zikrin. On efficiently combining limited
memory and trust-region techniques. Mathematical Programming Computation, 9:101–
134, 2016.

6. O. Burdakov, J. Martinez, and E. Pilotta. A limited-memory multipoint symmetric
secant method for bound constrained optimization. Annals of Operations Research,
117:51–70, 2002.

7. J. V. Burke, A. Wiegmann, and L. Xu. Limited memory BFGS updating in a trust-
region framework. Technical Report, University of Washington, 1996.

8. R. H. Byrd, J. C. Gilbert, and J. Nocedal. A trust region method based on interior point
techniques for nonlinear programming. Math. Program., Ser. A, 89:149–185, 2000.

9. R. H. Byrd, M. Hribar, and J. Nocedal. An interior point algorithm for large-scale
nonlinear programming. SIAM J. Optim., 9:877–900, 1999.

10. R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton matrices
and their use in limited-memory methods. Math. Program., 63:129–156, 1994.

11. M. Celis, J. Dennis Jr., and R. Tapia. A trust region strategy for equality constrained
optimization. Technical Report 84-1, Mathematical Sciences Department, Rice Univer-
sity, 1984.

12. T. Coleman, M. A. Branch, and A. Grace. Optimization toolbox for use with MATLAB.
MathWorks: Natick, MA, 1999.

13. T. Coleman and A. Verma. A preconditioned conjugate gradient approach to lin-
ear equality constrained minimization. Computational Optimization and Applications,
20:61–72, 2001.

14. A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. SIAM, Philadelphia,
PA, 2000.

15. O. DeGuchy, J. B. Erway, and R. F. Marcia. Compact representation of the full
Broyden class of quasi-Newton updates. Numerical Linear Algebra with Applications,
25(5):e2186, 2018.

16. E. Dolan and J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91:201–213, 2002.

17. J. B. Erway and R. F. Marcia. Algorithm 943: MSS: MATLAB software for L-
BFGS trust-region subproblems for large-scale optimization. ACM Trans. Math. Softw.,
40(4):28:1–28:12, June 2014.

18. W. W. Hager. Updating the inverse of a matrix. SIAM Review, 31(2):221–239, 1989.
19. M. Lalee, J. Nocedal, and T. Plantenga. On the implementation of an algorithm for

large-scale equality constrained optimization. SIAM J. Optim., 8(3):682–706, 1998.
20. J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM J. Sci. Statist.

Comput., 4:553–572, 1983.
21. J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York, 2

edition, 2006.
22. M. Powell and Y. Yuan. A trust region algorithm for equality constrained optimization.

Math. Program., 49:189–211, 1991.
23. M. A. Saunders. PDCO: Primal-dual interior method for convex objectives.

http://www.stanford.edu/group/SOL/software/pdco.html, 2002–2015.
24. T. Steihaug. The conjugate gradient method and trust regions in large scale optimiza-

tion. SIAM J. Numer. Anal., 20:626–637, 1983.

Title Suppressed Due to Excessive Length 33

25. A. Vardi. A trust region algorithm for equality constrained minimization: Convergence
properties and implementation. SIAM J. Numer. Anal., 22(3), 1985.

26. A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program., 106:25–57,
2006.

27. R. Waltz, J. Morales, J. Nocedal, and D. Orban. An interior algorithm for nonlinear
optimization that combines line search and trust region steps. SIAM. J. Optim., 9:877–
900, 1999.

28. Y.-X. Yuan. Trust region algorithms for constrained optimization. Technical report,
State Key Laboratory of Scientific and Engineering Computing, Beijing.

29. S. Zhijiang. RSQP toolbox for MATLAB. https://www.mathworks.com/matlabcentral/
fileexchange/13046-rsqp-toolbox-for-matlab, 2006.

