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Abstract

The design of efficient combination therapies is a difficult key challenge in the treatment
of complex diseases such as cancers. The large heterogeneity of cancers and the large
number of available drugs renders exhaustive in vivo or even in vitro investigation of
possible treatments impractical. In recent years, sophisticated mechanistic, ordinary
differential equation-based pathways models that can predict treatment responses at a
molecular level have been developed. However, surprisingly little effort has been put
into leveraging these models to find novel therapies. In this paper we use for the first
time, to our knowledge, a large-scale state-of-the-art pan-cancer signaling pathway
model to identify candidates for novel combination therapies to treat individual cancer
cell lines from various tissues (e.g., minimizing proliferation while keeping dosage low to
avoid adverse side effects) and populations of heterogeneous cancer cell lines (e.g.,
minimizing the maximum or average proliferation across the cell lines while keeping
dosage low). We also show how our method can be used to optimize the drug
combinations used in sequential treatment plans—that is, optimized sequences of
potentially different drug combinations—providing additional benefits. In order to solve
the treatment optimization problems, we combine the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) algorithm with a significantly more scalable sampling
scheme for truncated Gaussian distributions, based on a Hamiltonian Monte-Carlo
method. These optimization techniques are independent of the signaling pathway model,
and can thus be used for other signaling pathway models also, provided that a suitable
predictive model is available.

Author summary

Combination therapies are a promising approach to counter complex diseases such as
cancers. Two key difficulties in the design of effective cancer combination therapies are
the large number of available drugs and the heterogeneity of cancers which render
exhaustive laboratory studies impractical. In recent years, sophisticated signaling
pathway models that can predict responses to combination treatments at a molecular

level have been developed. This motivates the question of how one can leverage
mechanistic models to identify candidates for novel combination treatments. In this
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paper we propose a combination treatment optimization framework which employs a
large-scale pan-cancer pathway model. We formulate treatment optimization problems
for single cell lines and heterogeneous populations of cancer cells. We further investigate
sequential treatment plans and combine an existing evolutionary algorithm with an
efficient Hamiltonian Monte-Carlo based sampling scheme. During extensive simulation
studies our approach identified combination therapies which are predicted to be more
effective than conventional treatments. We hope that one day in silico experiments will
be used to identify a small set of promising treatment candidates which can then form a
starting point for laboratory studies, allowing for an efficient use of limited resources
and accelerated discovery of effective therapies.

Introduction 1

Rational design of combination therapies is a difficult but important challenge in the 2

treatment of complex diseases such as cancers [1–6]. The large heterogeneity of cancers 3

and number of available drugs renders exhaustive in vivo or even in vitro investigation 4

of treatments impractical. Accordingly, computational models that enable—even 5

individualized—prediction of drug sensitivity have to be employed [7]. To this end, 6

sophisticated mechanistic, ordinary differential equation (ODE) models for sensitivity 7

prediction have been developed [8–14]. However, so far little effort has been put towards 8

using these models to actually design treatments. Typically, only the temporal aspect of 9

when to administer drugs [15, 16] is considered, but not which drugs to pick. 10

In this paper we present a framework for in silico combination treatment 11

optimization which employs a large-scale mechanistic pan-cancer pathway model [9]. A 12

robust evolutionary optimization algorithm is modified with an efficient sampling 13

scheme and used to guide the search for effective drug combination. An extensive 14

simulations study shows how the approach can be used to identify a set of combination 15

therapy candidates—trading off low proliferation with adverse side effects—targeting 16

single cancer cell lines or multiple-cell lines at once. Furthermore, we show how our 17

method can be used to optimize sequential treatment plans which apply varying drug 18

cocktails in sequence. The framework can be easily adapted to find treatment 19

candidates for other complex diseases than cancers, as long as a suitable predictive 20

model is available. 21

To our knowledge, this is the first application of a large-scale pan-cancer pathway 22

model to search for novel combination therapy candidates. We adapt non-convex 23

optimization techniques and use an efficient parallelization scheme which enables the 24

analysis of dozens of cell lines and combinations of 7 anti-cancer agents at low cost. 25

Three different treatment scenarios targeting single as well as multiple cell lines at once 26

are formalized as optimization problems and simulations studies are conducted. Our 27

simulations identified a set of treatment candidates in the form of drug combinations 28

that achieve better predicted treatment effects at lower concentrations than the 29

conventional therapy approaches. 30

Related work 31

The use of mathematical modeling for the design of cancer therapies has a rich history. 32

Early studies combined optimal control theory with a growth model of bone cancer to 33

find treatment regimes which balance reductions in cell population with administered 34

dosage of a single drug [17, 18]. Moreover, evolutionary game theory [19, 20] was used to 35

analyze the adaption of cell populations under selective pressure, especially with regards 36

to population size [21–23], and emergence of drug resistance [24–26]. 37
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Sandholm [27,28] proposed modeling treatment planning—and steering biological 38

entities more generally—as a multi-step game between a biological entity and a treater, 39

for the purposes of computationally constructing steering plans that can involve 40

combination therapies, sequential plans, and conditional plans (aka. adaptive 41

treatments). He proposed modeling the biological entity in the game 1) using a 42

behavioral model if there is enough data, 2) as a game-theoretic worst-case adversary if 43

there is not enough data, or 3) as an opponent with limited lookahead so it can be 44

exploited by luring it into traps. (Specific algorithms have since then been developed for 45

exploiting an opponent’s limited lookahead in imperfect-information games [29,30], but 46

they have not yet been applied to biological settings.) In that taxonomy, the present 47

paper falls under approach (1). 48

Adaptive treatment regimes [31]—that is, regimes that monitor tumor development 49

and use predictive models to adapt reactively—have led to promising preclinical trials 50

on breast cancer [32] and Phase 2 clinical trials on prostate cancer [33]. Multiple in 51

vitro studies [34–36] investigated the emergence of drug resistance and showed 52

advantages of adaptive treatment regimes. A recent line of work [16, 37, 38] investigates 53

benefits of combination treatments on the development of drug sensitivity. Stackelberg 54

games have been used in computational studies to design vaccines that impede virus 55

adaption [39] and have more recently been proposed for cancer treatment design [40] 56

with the motivation to control drug resistance. 57

While these prior approaches rely on rather high-level abstractions of the underlying 58

biology, our work employs a detailed, mechanistic pan-cancer signaling pathway 59

model [9]. It can be individualized to cell-lines using sequencing data, which is 60

important to account for heterogeneity in response. It describes the action of 7 small 61

molecule inhibitors, which enables the design of higher order combinations. The 62

advantage of mechanistic pathway models over other machine learning based 63

techniques [41, 42] is that the domain knowledge encoded into graphical structure makes 64

them less prone to overfitting and can help with generalization. Previous evaluations of 65

the used pathway model [9] indicated that it is capable of quantitatively accurately 66

predicting the effect of drug combinations from single drug treatments [9], which is 67

essential for the reliability of treatment strategies we propose. The only prior work [43] 68

in this direction uses a Boolean T-cell signaling pathway model [44] which yielded—due 69

to its Boolean nature—mainly qualitative insights. 70

Our work serves as a proof of concept of how biologically accurate quantitative 71

signaling pathway models can be combined with optimization algorithms to discover 72

effective combination therapies, including multi-step ones. Our methodology and 73

computational approach enabled us to perform extensive experiments with combinations 74

of 7 existing anti-cancer agents on dozens of cancer cell-lines yielding promising 75

directions for future laboratory studies. 76

Methods 77

In this section we present our approach in detail. We first discuss the pan-cancer 78

signaling pathway model that is used to simulate treatment responses. Building on the 79

predictions of this model three different combination treatment optimization problems 80

are introduced. In order to tackle these problems we discuss modifications to the 81

CMA-ES algorithm [45], to make it suitable for our domain. Finally, we discuss 82

simulated cell lines and combination treatments as well as implementation details. 83
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Pan-cancer cell simulation 84

For our treatment optimization simulation study, we employed a pre-existing large-scale
mechanistic pan-cancer signaling pathway model [9]. The model describes the effects of
7 targeted anti-cancer agents on multiple cancer-associated pathways at the molecular
level as an ODE model. In total, the model describes the temporal development of 1228
different molecular species, that is, concentrations of ligands, protein complexes or
drugs, through 2704 reactions using a total of 4104 parameters. Every model simulation
reports a proliferation score

R(τ , e) = f(xss,w), s.t. ẋ = g(x,p, e, τ ) and g(xss,p, e, τ ) = 0,

where f(x,w) : R1228
≥0 × R

16
≥0 → R≥0 is a phenomenological function that maps 85

molecular abundances to proliferation scores, xss are molecular abundances defined by 86

the steady state of the ODE model and w ∈ R
16
≥0 are mapping coefficients, which are 87

free parameters of the mapping function. Here, 88

g(x,p, e, τ ) : R1228
≥0 × R

4088
≥0 × R

144
≥0 × R

7
≥0 → R

1228 is the right hand side of the 89

differential equation. x ∈ R
1228
≥0 , the kinetic parameters p ∈ R

4088
≥0 are biophysical rate 90

constants such as binding rates or catalytic activities, which are free parameters for the 91

ODE model. e ∈ R
144
≥0 are mRNA expression levels for 108 different genes and 36 gain 92

of function mutations described by the model, which can be used to individualize the 93

model to specific cell lines. τ ∈ R
7
≥0 are drug concentrations, which define the 94

concentrations of individual drugs in the extracellular compartment. 95

To be biologically meaningful, the proliferation score r has to be normalized to the 96

proliferation score for the untreated condition with τ = 0. The normalized relative 97

proliferation score V (τ , e) = R(τ , e)/R(0, e) can be directly compared to experimental 98

observations from cell viability assays such as CellTiter-Glo [46], which quantify the 99

difference in cell counts between treated and untreated conditions, thus accounting for 100

the net sum between cell growth and cell death. 101

For all simulations, we used previously reported values for p and w, which were 102

obtained by training the model on relative proliferation data from 120 cell lines from 103

the Cancer Cell Line Encyclopedia [47]. We used the AMICI software 104

package [48]—which internally uses CVODES [49]—to solve the ODE model (that is, 105

the signaling pathway network variables) to steady state after each treatment. Default 106

AMICI integration and steady state tolerances were used. 107

Combination treatment optimization 108

We leverage the pan-cancer pathway model to identify candidates for novel combination 109

therapies for a variety of cancers using 7 preexisting drugs. Formally, we represent a 110

multi-drug treatment by a 7-tuple τ ∈ R
7
≥0. Entry τi is the concentration of the i-th 111

drug contained in treatment τ in nanomoles (nM). Mathematically, the set of 112

treatments considered in this paper is represented by T = {τ ∈ R
7
≥0 : ‖τ‖1 ≤ α}, that 113

is, the set of all combination therapies whose total dosage is below threshold value α. In 114

prior work, the pathway model had been fitted with clinical data administering 115

concentrations in the range from 2.5nM to 8000nM. Thus, we use a value of α = 8000 to 116

ensure that the optimization domain T resembles the training data in terms of total 117

dosage. 118

An effective treatment needs to trade off between desired and adverse effects. For 119

each cell line c the model defines a function Vc : T → R≥0 = V (τ , ec), which given a 120

treatment τ ∈ T and a vector of expression levels ec, predicts the relative proliferation 121

value of c when subjected to τ . The predicted relative proliferation is used to capture 122

desired treatment effects. Because the literature does not offer a concise way to quantify 123

adverse effects on healthy cells caused by a combination of multiple drugs, we apply a 124
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mathematical regularization function R to the treatment vector as an idealized measure. 125

Prior work has used L1 [17,18] and L2 [50] regularization for this purpose. In our 126

experiments we use L1, L2 and sum of logs regularization and compare differences in 127

resulting treatments. 128

The following three subsubsections, respectively, introduce three different treatment 129

optimization problem classes that are addressed in our simulation study. 130

Optimizing the single-step treatment of a single cell line 131

First, we focus on identifying a treatment τ ∈ T that is effective for a specific cell line c. 132

An optimization problem which balances relative proliferation score and adverse effects 133

is given by 134

min
τ∈T

Vc(τ ) + λR(τ ), (1)

where the penalty parameter λ sets the weight of adverse effects as quantified by 135

regularizer R. Large values of λ favor conservative treatments while low values favor 136

more aggressive treatments. 137

Optimizing the single-step treatment of a population of cell lines 138

Tumors often feature multiple sub-clones that feature different sets of mutations and 139

expression levels. To avoid resistance, all sub-clones have to be targeted effectively. As a 140

proxy for these sub-clones, we consider multiple cell lines with the same tissue of origin. 141

Accordingly, we try to construct treatments τ ∈ T that are simultaneously effective on a 142

set of different cell lines C. The optimization problem is 143

min
τ∈T

max
c∈C

Vc(τ) + λR(τ ), (2)

where the objective function only considers the highest predicted proliferation value 144

following treatment τ among the cell lines in C, that is, the most proliferated cell line. 145

This objective favors treatments that reduce the proliferation values of all cell lines 146

evenly. 147

An alternative is to use a weighted sum of the individual proliferation scores. This 148

could be useful, for example, for finding personalized treatments when the distribution 149

of cell types in a tumor is known. When starting weights are used, that objective 150

function tries to minimizes the average proliferation of all cell lines in set C. In the 151

experiments, we will briefly discuss results under this objective. Of course, one could 152

experiment with hybrids of these two objectives as well. 153

Optimizing sequential treatment plans 154

For a heterogeneous population of cell lines, it may not always be possible to find a 155

single treatment that is effective in all cell lines. To address this, we also investigate the 156

discovery of a sequential treatment plan, that is, a sequence of combination treatments 157

(τ1, . . . , τn) that is effective on a set of cell lines C. Let the space of sequential 158

treatments T n be the n-ary Cartesian power of the space of drug combinations T . A 159

treatment plan optimization problem is now given by 160

min
(τ1,...,τn)∈T n

max
c∈C

n∏

i=1

Vc(τi) + λ

n∑

i=1

R(τi). (3)

For each cell line c ∈ C, the relative proliferation value is computed by taking the 161

product of the predicted relative proliferation values at the individual treatment steps. 162

This assumes that the growth of a cell line during one of the steps of the treatment plan 163
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Optimization process 187

The deployed pathway model behaves in a non-convex way when interpolating between 188

drug combinations. Because of this the proposed optimization problems are non-convex 189

and there is no known algorithm that is both scalable and guaranteed to find an 190

optimal solution in every case. 191

In this work we implemented covariance matrix adaption evolution strategy 192

(CMA-ES)—a robust and sample-efficient algorithm [45]. The underlying idea of 193

CMA-ES is to iteratively generate a set of solution candidates whose objective scores 194

are then evaluated. After this, a number of elites—that is, the solution candidates with 195

the best objective scores—are selected which are then used to generate the solution 196

candidates for the next iteration step. The CMA-ES algorithm does this by maintaining 197

a mean vector and covariance matrix describing a multivariate Gaussian distribution. 198

At each step, solution candidates are sampled and elites are selected to update the mean 199

and covariance matrix in a way that increases the likelihood of reaching previous elite 200

solution candidates. 201

Over the years, a large variety of CMA-ES variations have been proposed and 202

applied to various domains. Our implementation of the algorithm exactly follows that 203

presented in [51]. However, we had to make certain modifications to that algorithm to 204

account for the fact that the domain of treatments T is a constrained set. We will 205

discuss those modifications next. 206

Sampling from a constrained space 207

During the sampling step, CMA-ES generates a set of solution candidates by sampling 208

from a multivariate Gaussian distribution. When dealing with a constrained domain, 209

naive sampling can lead to the generation of infeasible solution candidates. A popular 210

way to deal with this problem is to simply reject the infeasible points and to sample 211

again until all candidates are feasible [52, 53]. This process effectively transforms the 212

multivariate proposal distributed into a truncated Gaussian. 213

However, this approach fails in our treatment domain. The volume of domain T 214

roughly shrinks with a factor 1/d!, where d is the problem dimension. With increasing 215

dimensionality, the vast majority of sampled solution candidates needs to be rejected, 216

rendering the naive rejection-based approach infeasible. While the rejection-based 217

approach took less than one second per iteration to generate candidates for single-step 218

treatment plans, the per iteration time for two-step plans was already up to 5 minutes 219

and for three-step plans we could not complete a single CMA-ES iteration in 8 hours. 220

To avoid this problem, we employ a Hamiltonian Monte Carlo method [54], which can 221

directly generate samples from a truncated multivariate Gaussian distribution that can 222

be constrained by linear and quadratic inequalities. The per iteration sample generation 223

time of this more advanced approach for one-, two- and three-step treatment plans are 224

less than one, three and eight seconds respectively. Thus the Hamiltonian Monte Carlo 225

method speeds up the sample generation process by multiple orders of magnitude. 226

Without this modification extensive simulation studies of n-step sequential treatment 227

plans (d = 7n) would not have been possible. 228

Cell lines, penalties, and reference drug combination used in the 229

simulation study 230

We experiment with 12 colorectal, 19 melanoma, 10 pancreatic, and 20 breast cancer 231

cell lines on which the pathway model was trained in prior work. Cancers from these 232

tissues have a high frequency of BRAF and RAS mutations, for which a large fraction of 233

drugs in the model is thought to be effective. We varied the penalty parameter λ from 234
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10−7 to 10−1 with exponent steps of 0.25 (0.05 for the sequential experiments). For 235

every problem configuration, the optimization algorithm is initialized with 3 different 236

random seeds and run for 400 iterations. The search result with best objective function 237

value is reported. 238

We compare the optimized treatments to two baselines. The first baseline is the best 239

single-drug treatment which is determined as follows. For each of the 7 drugs, 240

treatments using concentrations in the range from 0 nM to 8000 nM are considered. 241

Their objective and relative proliferation values are evaluated at 1 nM steps. For a 242

given penalty parameter λ, the best single drug treatment is identified by its objective 243

value. The second baseline are two-drug combinations that use a mixture of PLX-4720 244

(RAFi)+PD0325901 (MEKi). PLX-4720 and PD0325901 serve as a proxy for the 245

clinical grade combination therapy of Vemurafenib (RAFi) and Cobimetinib (MEKi) for 246

BRAF mutant melanoma [5]. Vemurafenib is the clinical analogue of PLX-4720 and 247

PD0325901 and Cobimetinib are allosteric inhibitors that target similar pockets in MEK 248

molecules. As it was difficult to find precise information on the clinical mixture ratios 249

for these two drugs, we consider ratios from 0%-100% evaluated at 5% steps. As for the 250

single drug baseline, treatments that use a total concentration in the range from 0 nM 251

to 8000 nM are evaluated at 1 nM steps, and the two-drug treatment that achieves the 252

best objective value is used as the second baseline. 253

Computation 254

All experiments were conducted using a compute cluster. Each individual experiment 255

was run on a single 64-core server with AMD Opteron(TM) 6272 2.1 GHz processors 256

and required less then 64 GB of RAM. Each prediction of proliferation for a given cell 257

line and treatment (that is, one call to the function Vc) took about 1 second. This 258

dominated the run-time of the CMA-ES algorithm. We parallelized the evaluation of 259

treatment candidates generated by the CMA-ES algorithm, and furthermore, for each 260

solution candidate, parallelized the evaluation of that treatment on the different cell 261

lines. In this way, we were able to run all the experiments in less than two weeks. The 262

source code for the optimization algorithms and simulation study are open sourced and 263

available at https://github.com/Sandholm-Lab/treatment-opt-pancancer. 264

Results 265

In this section we show the effectiveness of the combination therapies discovered by the 266

modified CMA-ES algorithm for the three treatment settings. For each setting, the 267

findings are illustrated and the resulting treatments are compared to the two baselines. 268

We also analyse the variance of the returned treatments and optimization for average 269

proliferation. 270

Optimizing the single-step treatment of a single cell line 271

For the first experiment, the objective function defined by Eq (1) is used to find 272

effective drug-combinations for individual cell lines. Fig 2 visualizes the optimization 273

results for K029AX—a melanoma cancer with BRAF V600E mutation—for three 274

different types of regularization. The treatments discovered by the algorithm achieve 275

significantly lower relative proliferation values at lower total dosage than the two 276

baseline treatments. For low penalties all regularizations lead to similar treatment 277

compositions. For higher penalties L2 regularization leads to treatments that use more 278

drugs at lower dosage and logarithmic regularization leads to treatments that use fewer 279

drugs at higher dosage. Logarithmic regularization penalizes combinations treatments 280
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0.1019 across pancreatic, and 0.2010 across breast cancer cell lines. We compared these 326

scores to those attained by the multi-cell combination treatments which were specifically 327

designed to minimize the average proliferation rate. We found that the treatments 328

optimized for low average proliferation rate achieve average proliferation values of 329

approximately 0.0816 across melanoma, 0.0712 across colorectal, 0.0804 across 330

pancreatic, and 0.1589 across breast cancers. Therefore, the multi-cell treatments 331

considered in this paper not only minimize the maximum proliferation rate of cells 332

originating from each tissue type, but they also attain average proliferation rates that 333

are experimentally within 20% of what is attained by the treatments which were 334

specifically designed for low average. 335

Variance in optimization process 336

During our single- and multi-cell simulations we observed some variance in the 337

optimized combination treatments when using low penalty values. This indicates the 338

existence of multiple local optima. To get a better insight into this behavior we 339

performed an additional single-cell experiment with K029AX as well as a multi-cell 340

experiment with colorectal cell lines. For both settings we ran an additional 20 runs 341

with warm starts. Each run started by optimizing a treatment for the lowest penalty 342

value (10−7) and then increased the penalty exponent at 0.25 steps, where at each step 343

we initialized the algorithm with the optimal drug-combination from the previous step. 344

We grouped the discovered drug-combinations found during the 20 runs by penalty 345

value and performed separate Principal Component Analysis (PCA) for each group to 346

investigate the treatment distribution. The first two principal components are visualized 347

in Fig 5 and Fig 6 which in both experiments explained more than 90% of the existing 348

variance. Under high to medium penalties L1 and L2 regularization led to unique 349

optimal treatments. For lower penalty values there is some variance. Logarithmic 350

penalization suffers from high variance even when using large penalties indicating many 351

local optima. This might explain some of the instabilities we observed in the previous 352

experiments which used logarithmic regularization. For low penalty values the 353

distribution of the returned combinations is similar for all types of regularization. 354

Overall the variance in the multi-cell experiment is larger than in the single-cell one. 355

Discussion 356

Our approach discovered treatment strategies that deviate from current clinical first line 357

treatment strategies. Without this result, the algorithm would not be of much use, as it 358

would not predict anything new and just recapitulate what we already know. Yet, we 359

have to carefully examine whether the proposed strategies are plausible from a 360

biological perspective. For the investigations with BRAFV600E skin cancer cell lines, 361

the optimal combination strategy we identified was often only marginally better than 362

the PD03525901+PLX-4720 gold-standard reference. Similarly, for the multi-cell line 363

analysis, the algorithm identified the gold-standard combination for low total dosages 364

and was only able to identify better combinations at higher dosages. However, we 365

consistently observed high concentrations of the MEK inhibitor PD0325901, which is 366

known to display otherwise rare on-target toxicities, suggesting that a different 367

regularization strategy might be desired for this drug. 368

Another question is how likely the treatments which are predicted to be effective by 369

the pathway model will also be effective in a real wet lab study. While overfitting might 370

occur when calibrating a model with over 4000 parameters the used a mechanistic 371

pathway model was fitted with over 5000 real data points from the Cancer Cell Line 372

Encyclopedia [47]. Unlike in many other systems biology settings here the number of 373
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data points is larger than the number of model parameters. The model itself and its 374

calibration are described in great detail in [9]. One advantage of mechanistic models is 375

that their graphical structure captures domain knowledge of the underlying cell biology. 376

This makes mechanistic models less prone to overfitting and can help with 377

generalization. The used pathway model was calibrated with data from single-drug 378

treatments and has been shown to accurately predict treatment effects of two drug 379

combination treatments [9]. Given that most of the optimized treatments only use 3 or 380

4 drugs, we are optimistic that the model can yield valuable insights. Nonetheless, 381

laboratory are, of course, required to provide a final answer about the effectiveness of 382

the treatments identified in the simulation study on real cells. 383

One limitation of the current study is that the relative cell viability measures we 384

have used here, such as those reported by assays such as CellTiter-Glo, are subject to 385

several known inconsistencies [55, 56]. These issues can, in part, be addressed by more 386

modern methods [57,58]. Similarly, the assumption that cell growth dynamics have 387

reached a steady-state after 72 hours may not always hold true. This may influence 388

whether and how well biological insights presented in this study can be replicated in in 389

vitro and in vivo experiments. However, these limitations are primarily due to 390

limitations of data available in the large pharmacological studies [47] that were used in 391

the parameterization of the current model, and not due to intrinsic shortcomings of the 392

methods developed in this study. In fact, the methods developed here could easily be 393

applied to the design of adaptive treatment strategies [16]. 394

The model employed here assumes cell-line-specific, but static transcription. 395

Accordingly, the model may not accurately describe adaptive resistance mechanisms 396

that are believed to work through transcriptional feedbacks [59, 60]. Moreover, because 397

the steady state of the model is always unimodal under conditions we have considered, 398

there is no memory effect between subsequent treatments at the cellular level. However, 399

the multiplicative propagation of relative viabilities along the sequence of treatments 400

introduces a memory effect at the population level. In every treatment step, the relative 401

proliferation values from the previous step effectively introduce a re-weighting of the 402

relative importance of the cell lines. As we showed, this alone is enough to cause there 403

to be benefit from time-varying sequential treatments. In practice, a further benefit 404

from sequential treatment may be obtainable by steering a cell line or set of cell lines 405

during the dynamics, that is, without waiting for steady state between treatments. 406

Finding such treatment plans computationally would require a signaling pathway model 407

that is faithful to reality not only at steady states but also during the transient paths. 408

Constructing and calibrating such models would likely require significantly more in vivo 409

and/or in vitro data than models that only need to be accurate in steady states. 410

For some cell-lines and regularizers, we observed that optimization can yield a 411

continuum of equivalent optimal treatments, which indicates ill-conditioning of the 412

problem. Looking at the PCA (Fig 5 and Fig 6) revealed that this behaviour is limited 413

to low penalization strengths that do not reduce the total concentration of the optimal 414

treatment beyond the 8 µM maximum. Accordingly, we concluded that this 415

ill-conditioning did not substantially effect the results present here and that the 416

regularization approaches, as expected, improved the conditioning of the problem. 417

The regularization functions we used provide an empirical way to minimize drug 418

concentrations and respective adverse toxicities. In practice, concentrations at which 419

adverse toxicities occur may be specific to drugs, tissues, and person. In the absence of 420

large-scale toxicological and pharmacokinetic screenings, it seems difficult to design a 421

more rational type and strength of penalization. Our regularization functions penalize 422

total drug burden and do not consider cooperativity. The study of drug cooperativity is 423

in itself an active area of research [61–66]. 424
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Conclusions 425

In this paper we proposed a framework for in silico combination treatment optimization. 426

To the best of our knowledge this is the first time a large-scale pan-cancer pathway 427

model was used to identify effective treatment strategies. Multiple treatment 428

optimization problems were proposed which required us to balance reduction in 429

proliferation with adverse side effects. In order to solve these problems, we combined 430

the CMA-ES algorithm with a significantly more scalable sampling scheme, based on a 431

Hamiltonian Monte-Carlo method. We evaluated the approach in an extensive 432

simulation study with cancer cell lines originating from multiple tissues. We studied the 433

treatment of individual cell lines and heterogeneous populations of cell lines. We also 434

studied the generation of sequential time-varying and time-invariant treatment plans. 435

The combination treatments identified by our algorithm achieved significantly better 436

predicted proliferation scores at lower drug concentrations compared to the conventional 437

therapy approaches. This serves as an early proof of concept of how in silico simulations 438

can be used to identify potentially novel combination therapies. Future research is 439

required to evaluate the performance of the discovered treatments in laboratory studies. 440

Supporting information 441

S1 Appendix. Further Single-Step Single Cell Experiments. Results of the 442

single-step single-cell optimization process for A2058 and MDAMB43S cancer cell lines. 443

For A2058 we observed that for all three types of regularization the optimized 444

combination treatments achieve significantly lower relative proliferation values at lower 445

concentrations than the single and two-drug baselines. For MDAMB43S the discovered 446

combination treatments only slightly improved upon the PD0325901/PLX-4720 447

two-drug baseline. In both cases the type of regularization impacts the composition of 448

the returned combination treatments. When using logarithmic regularization we 449

observed large variance in returned treatments and low objective values did not always 450

indicate effective treatments. 451

S2 Appendix. Further Single-Step Population Cell Experiments. Results of 452

the single-step multi-cell optimization process for melanoma, pancreatic and breast 453

cancer cell lines. For all four tissues and regularizers, the discovered combination 454

treatments achieve significantly lower maximum relative proliferation values than the 455

single-drug and PD0325901/PLX-4720 combination baselines at medium and high 456

dosages. Especially for pancreatic cell lines, the optimized treatments reduce the cancer 457

cell viability by a factor of more than two. For breast cancers, the optimization process 458

leads to drug combinations that achieve notable treatment effects even at low dosage. 459

The type of used regularization effects the composition of the combinations. When 460

using logarithmic regularization we observed large variance in returned treatments and 461

low objective values did not always indicate effective treatments. 462
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