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Abstract

The design of efficient combination therapies is a difficult key challenge in the treatment
of complex diseases such as cancers. The large heterogeneity of cancers and the large
number of available drugs renders exhaustive in vivo or even in vitro investigation of
possible treatments impractical. In recent years, sophisticated mechanistic, ordinary
differential equation-based pathways models that can predict treatment responses at a
molecular level have been developed. However, surprisingly little effort has been put
into leveraging these models to find novel therapies. In this paper we use for the first
time, to our knowledge, a large-scale state-of-the-art pan-cancer signaling pathway
model to identify candidates for novel combination therapies to treat individual cancer
cell lines from various tissues (e.g., minimizing proliferation while keeping dosage low to
avoid adverse side effects) and populations of heterogeneous cancer cell lines (e.g.,
minimizing the maximum or average proliferation across the cell lines while keeping
dosage low). We also show how our method can be used to optimize the drug
combinations used in sequential treatment plans—that is, optimized sequences of
potentially different drug combinations—providing additional benefits. In order to solve
the treatment optimization problems, we combine the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) algorithm with a significantly more scalable sampling
scheme for truncated Gaussian distributions, based on a Hamiltonian Monte-Carlo
method. These optimization techniques are independent of the signaling pathway model,
and can thus be used for other signaling pathway models also, provided that a suitable
predictive model is available.

Author summary

Combination therapies are a promising approach to counter complex diseases such as
cancers. Two key difficulties in the design of effective cancer combination therapies are
the large number of available drugs and the heterogeneity of cancers which render
exhaustive laboratory studies impractical. In recent years, sophisticated signaling
pathway models that can predict responses to combination treatments at a molecular
level have been developed. This motivates the question of how one can leverage
mechanistic models to identify candidates for novel combination treatments. In this
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paper we propose a combination treatment optimization framework which employs a
large-scale pan-cancer pathway model. We formulate treatment optimization problems
for single cell lines and heterogeneous populations of cancer cells. We further investigate
sequential treatment plans and combine an existing evolutionary algorithm with an
efficient Hamiltonian Monte-Carlo based sampling scheme. During extensive simulation
studies our approach identified combination therapies which are predicted to be more
effective than conventional treatments. We hope that one day in silico experiments will
be used to identify a small set of promising treatment candidates which can then form a
starting point for laboratory studies, allowing for an efficient use of limited resources
and accelerated discovery of effective therapies.

Introduction

Rational design of combination therapies is a difficult but important challenge in the
treatment of complex diseases such as cancers [1-6]. The large heterogeneity of cancers
and number of available drugs renders exhaustive in vivo or even in vitro investigation
of treatments impractical. Accordingly, computational models that enable—even
individualized—prediction of drug sensitivity have to be employed [7]. To this end,
sophisticated mechanistic, ordinary differential equation (ODE) models for sensitivity
prediction have been developed [8-14]. However, so far little effort has been put towards
using these models to actually design treatments. Typically, only the temporal aspect of
when to administer drugs [15,16] is considered, but not which drugs to pick.

In this paper we present a framework for in silico combination treatment
optimization which employs a large-scale mechanistic pan-cancer pathway model [9]. A
robust evolutionary optimization algorithm is modified with an efficient sampling
scheme and used to guide the search for effective drug combination. An extensive
simulations study shows how the approach can be used to identify a set of combination
therapy candidates—trading off low proliferation with adverse side effects—targeting
single cancer cell lines or multiple-cell lines at once. Furthermore, we show how our
method can be used to optimize sequential treatment plans which apply varying drug
cocktails in sequence. The framework can be easily adapted to find treatment
candidates for other complex diseases than cancers, as long as a suitable predictive
model is available.

To our knowledge, this is the first application of a large-scale pan-cancer pathway
model to search for novel combination therapy candidates. We adapt non-convex
optimization techniques and use an efficient parallelization scheme which enables the
analysis of dozens of cell lines and combinations of 7 anti-cancer agents at low cost.
Three different treatment scenarios targeting single as well as multiple cell lines at once
are formalized as optimization problems and simulations studies are conducted. Our
simulations identified a set of treatment candidates in the form of drug combinations
that achieve better predicted treatment effects at lower concentrations than the
conventional therapy approaches.

Related work

The use of mathematical modeling for the design of cancer therapies has a rich history.

Early studies combined optimal control theory with a growth model of bone cancer to
find treatment regimes which balance reductions in cell population with administered

dosage of a single drug [17,18]. Moreover, evolutionary game theory [19,20] was used to
analyze the adaption of cell populations under selective pressure, especially with regards
to population size [21-23], and emergence of drug resistance [24-26].
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Sandholm [27, 28] proposed modeling treatment planning—and steering biological
entities more generally—as a multi-step game between a biological entity and a treater,
for the purposes of computationally constructing steering plans that can involve
combination therapies, sequential plans, and conditional plans (aka. adaptive
treatments). He proposed modeling the biological entity in the game 1) using a
behavioral model if there is enough data, 2) as a game-theoretic worst-case adversary if
there is not enough data, or 3) as an opponent with limited lookahead so it can be
exploited by luring it into traps. (Specific algorithms have since then been developed for
exploiting an opponent’s limited lookahead in imperfect-information games [29,30], but
they have not yet been applied to biological settings.) In that taxonomy, the present
paper falls under approach (1).

Adaptive treatment regimes [31]—that is, regimes that monitor tumor development
and use predictive models to adapt reactively—have led to promising preclinical trials
on breast cancer [32] and Phase 2 clinical trials on prostate cancer [33]. Multiple in
vitro studies [34-36] investigated the emergence of drug resistance and showed
advantages of adaptive treatment regimes. A recent line of work [16, 37, 38] investigates
benefits of combination treatments on the development of drug sensitivity. Stackelberg
games have been used in computational studies to design vaccines that impede virus
adaption [39] and have more recently been proposed for cancer treatment design [40]
with the motivation to control drug resistance.

While these prior approaches rely on rather high-level abstractions of the underlying
biology, our work employs a detailed, mechanistic pan-cancer signaling pathway
model [9]. It can be individualized to cell-lines using sequencing data, which is
important to account for heterogeneity in response. It describes the action of 7 small
molecule inhibitors, which enables the design of higher order combinations. The
advantage of mechanistic pathway models over other machine learning based
techniques [41,42] is that the domain knowledge encoded into graphical structure makes
them less prone to overfitting and can help with generalization. Previous evaluations of
the used pathway model [9] indicated that it is capable of quantitatively accurately
predicting the effect of drug combinations from single drug treatments [9], which is
essential for the reliability of treatment strategies we propose. The only prior work [43]
in this direction uses a Boolean T-cell signaling pathway model [44] which yielded—due
to its Boolean nature—mainly qualitative insights.

Our work serves as a proof of concept of how biologically accurate quantitative
signaling pathway models can be combined with optimization algorithms to discover
effective combination therapies, including multi-step ones. Our methodology and
computational approach enabled us to perform extensive experiments with combinations
of 7 existing anti-cancer agents on dozens of cancer cell-lines yielding promising
directions for future laboratory studies.

Methods

In this section we present our approach in detail. We first discuss the pan-cancer
signaling pathway model that is used to simulate treatment responses. Building on the
predictions of this model three different combination treatment optimization problems
are introduced. In order to tackle these problems we discuss modifications to the
CMA-ES algorithm [45], to make it suitable for our domain. Finally, we discuss
simulated cell lines and combination treatments as well as implementation details.
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Pan-cancer cell simulation

For our treatment optimization simulation study, we employed a pre-existing large-scale
mechanistic pan-cancer signaling pathway model [9]. The model describes the effects of
7 targeted anti-cancer agents on multiple cancer-associated pathways at the molecular
level as an ODE model. In total, the model describes the temporal development of 1228
different molecular species, that is, concentrations of ligands, protein complexes or
drugs, through 2704 reactions using a total of 4104 parameters. Every model simulation
reports a proliferation score

R(t,e) = f(xss,w), st. &=g(x,p,e,7) and g(xss,p,e,7)=0,

where f(z,w) : R122% x RS — Rs( is a phenomenological function that maps
molecular abundances to proliferation scores, x,, are molecular abundances defined by
the steady state of the ODE model and w € RS are mapping coefficients, which are
free parameters of the mapping function. Here,

g(x,p,e,7) : RIZ8 x RIS x RU x RY ) — R'?28 is the right hand side of the

differential equation. & € R, the kinetic parameters p € R{J® are biophysical rate

constants such as binding rates or catalytic activities, which are free parameters for the
ODE model. e € RYY} are mRNA expression levels for 108 different genes and 36 gain
of function mutations described by the model, which can be used to individualize the
model to specific cell lines. T € R7>0 are drug concentrations, which define the
concentrations of individual drugs in the extracellular compartment.

To be biologically meaningful, the proliferation score r has to be normalized to the
proliferation score for the untreated condition with 7 = 0. The normalized relative
proliferation score V(7,e) = R(7,e)/R(0, e) can be directly compared to experimental
observations from cell viability assays such as CellTiter-Glo [46], which quantify the
difference in cell counts between treated and untreated conditions, thus accounting for
the net sum between cell growth and cell death.

For all simulations, we used previously reported values for p and w, which were
obtained by training the model on relative proliferation data from 120 cell lines from
the Cancer Cell Line Encyclopedia [47]. We used the AMICI software
package [48]—which internally uses CVODES [49]—to solve the ODE model (that is,
the signaling pathway network variables) to steady state after each treatment. Default
AMICIT integration and steady state tolerances were used.

Combination treatment optimization

We leverage the pan-cancer pathway model to identify candidates for novel combination
therapies for a variety of cancers using 7 preexisting drugs. Formally, we represent a
multi-drug treatment by a 7-tuple 7 € RZ,. Entry 7; is the concentration of the i-th
drug contained in treatment 7 in nanomoles (nM). Mathematically, the set of
treatments considered in this paper is represented by 7 = {7 € RL, : ||7]1 < a}, that
is, the set of all combination therapies whose total dosage is below threshold value «. In
prior work, the pathway model had been fitted with clinical data administering
concentrations in the range from 2.5nM to 8000nM. Thus, we use a value of o = 8000 to
ensure that the optimization domain 7 resembles the training data in terms of total
dosage.

An effective treatment needs to trade off between desired and adverse effects. For
each cell line ¢ the model defines a function V. : T — R>g = V(7, e.), which given a
treatment 7 € T and a vector of expression levels e., predicts the relative proliferation
value of ¢ when subjected to 7. The predicted relative proliferation is used to capture
desired treatment effects. Because the literature does not offer a concise way to quantify
adverse effects on healthy cells caused by a combination of multiple drugs, we apply a
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mathematical regularization function R to the treatment vector as an idealized measure.

Prior work has used L1 [17,18] and L2 [50] regularization for this purpose. In our
experiments we use L1, L2 and sum of logs regularization and compare differences in
resulting treatments.

The following three subsubsections, respectively, introduce three different treatment
optimization problem classes that are addressed in our simulation study.

Optimizing the single-step treatment of a single cell line

First, we focus on identifying a treatment 7 € T that is effective for a specific cell line c.

An optimization problem which balances relative proliferation score and adverse effects
is given by
min Vi (7) + AR(T), (1)
TeT
where the penalty parameter \ sets the weight of adverse effects as quantified by
regularizer R. Large values of A favor conservative treatments while low values favor
more aggressive treatments.

Optimizing the single-step treatment of a population of cell lines

Tumors often feature multiple sub-clones that feature different sets of mutations and
expression levels. To avoid resistance, all sub-clones have to be targeted effectively. As a

proxy for these sub-clones, we consider multiple cell lines with the same tissue of origin.

Accordingly, we try to construct treatments 7 € T that are simultaneously effective on a
set of different cell lines C. The optimization problem is

min max Ve(7) + AR(T), (2)
where the objective function only considers the highest predicted proliferation value
following treatment 7 among the cell lines in C, that is, the most proliferated cell line.
This objective favors treatments that reduce the proliferation values of all cell lines
evenly.

An alternative is to use a weighted sum of the individual proliferation scores. This
could be useful, for example, for finding personalized treatments when the distribution
of cell types in a tumor is known. When starting weights are used, that objective
function tries to minimizes the average proliferation of all cell lines in set C. In the
experiments, we will briefly discuss results under this objective. Of course, one could
experiment with hybrids of these two objectives as well.

Optimizing sequential treatment plans

For a heterogeneous population of cell lines, it may not always be possible to find a
single treatment that is effective in all cell lines. To address this, we also investigate the
discovery of a sequential treatment plan, that is, a sequence of combination treatments
(T1,...,Tyn) that is effective on a set of cell lines C. Let the space of sequential
treatments 7" be the n-ary Cartesian power of the space of drug combinations 7. A
treatment plan optimization problem is now given by

n

i VC 3 )\ R P ). 3
(n,ugﬁew%?cxi:l (7:) + ; (Ti) (3)

For each cell line ¢ € C, the relative proliferation value is computed by taking the
product of the predicted relative proliferation values at the individual treatment steps.
This assumes that the growth of a cell line during one of the steps of the treatment plan
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Available treatments

Treatment 1
[0.6x 0.6x]

Treatment 2
[0.8x 0.3x]

Treatment 3
[0.4x 0.9x]

. 1.0 1.0
OI:)tlmE'll two'—step Treatment 1 06 06 Treatment 1
time-invariant [0.6x 0.6x] = B [0.6x 0.6x] 036 036 Maximum proliferation: 0.36
, - .36 0. . .
treatment plan Average proliferation: 0.36
Cell  Cell Cell  Cell Cell  Cell
line 1 line 2 line 1 line 2 line 1 line 2
1 - 1.0 1.0
Optimal two-step L Treatment 2 0.8 Treatment 3
sequential [0.8x 0.3x] s [04x 005 0 Maximum proliferation: 0.32
—_— .. ——— . . .
treatment plan 0.27 Average proliferation: 0.295
Cell  Cell Cell  Cell Cell  Cell
line 1 line 2 line 1 line 2 line 1 line 2

Fig 1. Comparison of a sequential treatment plan with a time-invariant treatment plan. The
use of different specialized drug-combinations (targeting fewer cell lines at once) at different points in time
can enable more effective therapies. In the illustrative example above with two cell lines and three available
treatments, the optimal two-step time-invariant treatment leads to a relative proliferation score of 0.36 for
both cell lines. Meanwhile, the optimal two-step sequential treatment plan achieves relative proliferation
scores of 0.32 and 0.27 for cell lines 1 and 2, respectively.

multiplicatively affects the growth of that cell line in the next treatment step. A simple,
biologically plausible model that satisfies this assumption is an exponential growth
model with different, drug-dependent growth rates in each treatment step:

Ni—1,r,.cexp(n.(m)T)

Ve(n(r)) = Ni—1,0,cexp(ne(0)T)’ W

where N;_1 ;. is the final cell count of cell line ¢ from the previous step in the treated
condition, N;_1 0, is the final cell count of cell line ¢ from the previous step 7 — 1 in the
untreated condition, 1.(7;)) is the treatment-dependent growth rate of cell line ¢ during
the current step %, exp(n.(0) is the untreated growth rate of cell line ¢, and 7' is the
treatment duration (which we assume to be 72 hours, the time used to generate
experimental data the pathway model was calibrated on in prior work). Under the
assumption of such an exponential growth model, the following equations hold in every
treatment step:

exp(n(r;)T")
V) = D) ®)
and, by induction,
Neotoe _ T (r) ©)
Ni_10.c i ann
assuming that % =1, that is, both treated and untreated cell populations start at

the same cell counts. This was true for the experimental data used for training the
model in prior work.

Similar to the multi-cell line setting, this objective function considers the highest
proliferation value to find a therapy that is effective for all ¢ € C. The advantage of
sequential plans compared to time-invariant plans—plans that use the same drug
cocktail in each step of the treatment—is that the use of multiple specialized
drug-combinations targeting different subsets of C one at a time can be more effective
than a single general 7 € T targeting all of cell lines at once. A small illustrative
example for this is shown in Fig 1. In this paper discrete 72h time steps are naturally
enforced in that the path-way model is simulated from one steady state to the next.
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Optimization process

The deployed pathway model behaves in a non-convex way when interpolating between
drug combinations. Because of this the proposed optimization problems are non-convex
and there is no known algorithm that is both scalable and guaranteed to find an
optimal solution in every case.

In this work we implemented covariance matriz adaption evolution strategy
(CMA-ES)—a robust and sample-efficient algorithm [45]. The underlying idea of
CMA-ES is to iteratively generate a set of solution candidates whose objective scores
are then evaluated. After this, a number of elites—that is, the solution candidates with
the best objective scores—are selected which are then used to generate the solution
candidates for the next iteration step. The CMA-ES algorithm does this by maintaining
a mean vector and covariance matrix describing a multivariate Gaussian distribution.
At each step, solution candidates are sampled and elites are selected to update the mean
and covariance matrix in a way that increases the likelihood of reaching previous elite
solution candidates.

Over the years, a large variety of CMA-ES variations have been proposed and
applied to various domains. Our implementation of the algorithm exactly follows that
presented in [51]. However, we had to make certain modifications to that algorithm to
account for the fact that the domain of treatments 7 is a constrained set. We will
discuss those modifications next.

Sampling from a constrained space

During the sampling step, CMA-ES generates a set of solution candidates by sampling
from a multivariate Gaussian distribution. When dealing with a constrained domain,
naive sampling can lead to the generation of infeasible solution candidates. A popular
way to deal with this problem is to simply reject the infeasible points and to sample
again until all candidates are feasible [52,53]. This process effectively transforms the
multivariate proposal distributed into a truncated Gaussian.

However, this approach fails in our treatment domain. The volume of domain 7
roughly shrinks with a factor 1/d!, where d is the problem dimension. With increasing
dimensionality, the vast majority of sampled solution candidates needs to be rejected,
rendering the naive rejection-based approach infeasible. While the rejection-based
approach took less than one second per iteration to generate candidates for single-step
treatment plans, the per iteration time for two-step plans was already up to 5 minutes
and for three-step plans we could not complete a single CMA-ES iteration in 8 hours.
To avoid this problem, we employ a Hamiltonian Monte Carlo method [54], which can
directly generate samples from a truncated multivariate Gaussian distribution that can
be constrained by linear and quadratic inequalities. The per iteration sample generation
time of this more advanced approach for one-, two- and three-step treatment plans are
less than one, three and eight seconds respectively. Thus the Hamiltonian Monte Carlo
method speeds up the sample generation process by multiple orders of magnitude.
Without this modification extensive simulation studies of n-step sequential treatment
plans (d = 7n) would not have been possible.

Cell lines, penalties, and reference drug combination used in the
simulation study

We experiment with 12 colorectal, 19 melanoma, 10 pancreatic, and 20 breast cancer
cell lines on which the pathway model was trained in prior work. Cancers from these
tissues have a high frequency of BRAF and RAS mutations, for which a large fraction of
drugs in the model is thought to be effective. We varied the penalty parameter A\ from
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1077 to 10! with exponent steps of 0.25 (0.05 for the sequential experiments). For
every problem configuration, the optimization algorithm is initialized with 3 different
random seeds and run for 400 iterations. The search result with best objective function
value is reported.

We compare the optimized treatments to two baselines. The first baseline is the best
single-drug treatment which is determined as follows. For each of the 7 drugs,
treatments using concentrations in the range from 0 nM to 8000 nM are considered.
Their objective and relative proliferation values are evaluated at 1 nM steps. For a
given penalty parameter \, the best single drug treatment is identified by its objective
value. The second baseline are two-drug combinations that use a mixture of PLX-4720
(RAFi)+PD0325901 (MEKi). PLX-4720 and PD0325901 serve as a proxy for the
clinical grade combination therapy of Vemurafenib (RAFi) and Cobimetinib (MEKi) for
BRAF mutant melanoma [5]. Vemurafenib is the clinical analogue of PLX-4720 and
PD0325901 and Cobimetinib are allosteric inhibitors that target similar pockets in MEK
molecules. As it was difficult to find precise information on the clinical mixture ratios
for these two drugs, we consider ratios from 0%-100% evaluated at 5% steps. As for the
single drug baseline, treatments that use a total concentration in the range from 0 nM
to 8000 nM are evaluated at 1 nM steps, and the two-drug treatment that achieves the
best objective value is used as the second baseline.

Computation

All experiments were conducted using a compute cluster. Each individual experiment
was run on a single 64-core server with AMD Opteron(TM) 6272 2.1 GHz processors
and required less then 64 GB of RAM. Each prediction of proliferation for a given cell
line and treatment (that is, one call to the function V.) took about 1 second. This
dominated the run-time of the CMA-ES algorithm. We parallelized the evaluation of
treatment candidates generated by the CMA-ES algorithm, and furthermore, for each
solution candidate, parallelized the evaluation of that treatment on the different cell
lines. In this way, we were able to run all the experiments in less than two weeks. The
source code for the optimization algorithms and simulation study are open sourced and
available at https://github.com/Sandholm-Lab/treatment-opt-pancancer.

Results

In this section we show the effectiveness of the combination therapies discovered by the
modified CMA-ES algorithm for the three treatment settings. For each setting, the

findings are illustrated and the resulting treatments are compared to the two baselines.

We also analyse the variance of the returned treatments and optimization for average
proliferation.

Optimizing the single-step treatment of a single cell line

For the first experiment, the objective function defined by Eq (1) is used to find
effective drug-combinations for individual cell lines. Fig 2 visualizes the optimization
results for K029AX—a melanoma cancer with BRAF V600E mutation—for three
different types of regularization. The treatments discovered by the algorithm achieve
significantly lower relative proliferation values at lower total dosage than the two
baseline treatments. For low penalties all regularizations lead to similar treatment
compositions. For higher penalties L2 regularization leads to treatments that use more
drugs at lower dosage and logarithmic regularization leads to treatments that use fewer
drugs at higher dosage. Logarithmic regularization penalizes combinations treatments
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A. K029AX + L1 Regularization

g 1.0 1 — optimization Result g 1.0 —— Optimization Result 8 == Vandetanib
- ~—— Best Single Drug = —— Best Single Drug 7 s CHIR-265
& 0.8 1 —— PD0325901+PLX-4720 5 0.8 —— PD0325901+PLX-4720 = 6 == Erlotinib
| 2| 3 Lapatinib
2 0.6 2 0.6 g5 == Selumetinib
2 & 24 = PLX-4720
2044 204 < 3 . = PD0325901
&= e =
© s EilEgnl -
: 02 £ 02 2 i:!
: : 1 |11,
0.0 W [ TF
1077 107 10-° 10~ 10-% 1072 107! 0 1 2 3 4 5 6 7 8 1077 107% 10~ 10™* 1073 1072 107!
Penalty A Total dosage (uM) Penalty A
. .
— B. K029AX + L2 Regularization
g 1.0 7 — optimization Result g 1.0 —— Optimization Result 8 il == Vandetanib
= —— Best Single Drug 3 —— Best Single Drug 7 H | = CHIR-265
£ 0.8 1 — PD0325901+PLX-4720 £os8 —— PD0325901+PLX-4720 Z5 1 m= Erlotinib
E=| b= £ 1 Lapatinib
206 206 25 1 == Selumetinib
¢ o 24 I. " PLX-4720
Z 041 204 S 3 i = PD0325901
= & ] H
e g R HHH T
5 02 % 02 e HH
! ! w1 1T
0.0 L I I : ! ; 1 ol PO LLLLLLLLLLL T —
10-7 107 10-5 10* 1073 102 107! 0 1 2 3 4 5 6 7 8 1077 1075 1075 10~* 1073 1072 107!
Penalty A Total dosage (uM) Penalty A
— C. K029AX + Logarithmic Regularization
g 1.01 —— Optimization Result g 1.0 —— Optimization Result 8 == Vandetanib
b=l ~—— Best Single Drug = —— Best Single Drug 7 = CHIR-265
£os8 —— PD0325901+PLX-4720 £ 0.8 —— PD0325901+PLX-4720 Z6 = Erlotinib
b g 3 Lapanmb
£06 g 0.6 &5
: ar A - PLX-4720
204 204 1 3 === PD0325901
g g —
— =1 S
A ------ snpg
% —/| ] T [{LLL] |||||||||
= 0.0 - T T T T T T = 0.0 T T T T T T T T 0 I I ! I I
1077 106 10~ 10™* 10-% 102 10-! 0 1 2 3 4 5 6 7 8 107 106 10-5 10~ 10-3 10-2 10-1
Penalty A Total dosage (UM) Penalty A

Fig 2. Single-step treatment for K029AX. Comparison between optimized
single-cell multi-drug treatment, optimal single-drug treatment, and optimal
PD0325901/PLX-4720 combination treatment for K029AX—a melanoma cell line with
BRAF V600E mutation—for three different types of regularization. Left plots: optimal
treatment as identified by the objective function for different penalty parameters. The
middle plots: relationship between administered total dosage and achieved proliferation
value regardless of penalty and objective value. Right plots: composition of the
multi-drug treatments. For all three types of regularization the optimization process
leads to combination treatments which achieve significantly lower relative proliferation
values at lower concentrations than single and two-drug treatment.

harshly and a low objective value does not always identify a strong treatment. Further
results for A2058, MDAMB4355—two other melanoma cancer with BRAF V600E
mutation—are provided in Appendix . For A2058 the optimized combination
treatments are significantly more efficient than the baselines. For MDAMB435S, the
clinical-grade combination therapy that uses PLX-4720 and PD0325901 is already very
effective and the discovered treatment only leads to slight improvements.

Optimizing the single-step treatment of a population of cell lines

For the second experiment, the objective function defined by Eq (2) is used to find drug
combinations that minimize the maximum relative proliferation value predicted by the
pathway model over sets of cell lines originating from skin (Cyelanoma), large-intestine
(Ccolorectal ), pancreas (Cpancreatic), and breast (Cpreast) tissues, respectively. Findings for
colorectal cell lines are visualized in Fig 3. Experimental results for all tissues under all
three types of regularization are provided in Appendix . For all four tissues, the
discovered treatments achieve significantly lower maximum relative proliferation values
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A. Colorectal cell lines + L1 Regularization
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Fig 3. Single-step treatment for colorectal cell lines. Comparison between
optimized multi-cell multi-drug treatment, optimal single-drug treatment, and optimal
PD0325901/PLX-4720 combination treatment for colorectal cell lines for three different
types of regularization. Left plot: optimal treatment as identified by the objective
function for different penalty parameters. Middle plot: relationship between

administered total dosage and achieved proliferation value regardless of objective values.

Right plot: composition of the multi-drug treatments.

than the single-drug and PD0325901/PLX-4720 combination baselines at medium and
high dosages. Especially for pancreatic cell lines, the optimized treatments reduce the
cancer cell viability by a factor of up to three. For breast cancers, the optimization
process leads to drug combinations that achieve notable treatment effects even at low
dosage.

Optimizing sequential treatment plans

The third experiment investigates 2-step treatment plans and uses the objective
function defined by Eq (3) to find sequences of drug combinations that are effective on
cell lines originating from the same tissue. In this setting we compare the performance
of optimized sequential treatment plans (that is, ones that can use different drug
combinations and dosages at the two treatment steps) against optimized time-invariant
treatment plans (that is, ones that have to use the same drug combination and dosage
in each of the two treatment steps). With these candidate drugs and cell lines, only very
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Best time-invariant treatment plan

(Maximum proliferation: 0.6978)

1% treatment (NN NN
2" treatment _-

Best sequential treatment plan

(Maximum proliferation: 0.6048) = PD0325901

0.1 02 03

Total dosage (UM)

Time-invariant

Y ammme

Total dosage (uM)

Sequential

mm PLX-4720
Lapatinib
B Erlotinib

Cell line After treat. 1 After treat. 2 After treat. 1 After treat. 2
COLO201 0.835 0.698 0.612 0.605
COLO320 0.557 0.310 0.412 0.343
HCC56 0.684 0.468 0.586 0.459
LS123 0.803 0.645 0.692 0.605
LS411N 0.344 0.118 0.169 0.107
NCIH747 0.711 0.506 0.589 0.533
SKCO1 0.648 0.420 0.553 0.380
SNUC2A 0.738 0.545 0.620 0.507
SW1417 0.448 0.201 0.344 0.252
SW403 0.780 0.608 0.631 0.600
SW480 0.159 0.025 0.123 0.063
T84 0.741 0.550 0.646 0.539

Fig 4. Two-step treatment plan composition for colorectal cell lines. A
visualization of the drug cocktails administered by the optimized two-step treatment
plan and the optimized two-step time-invariant treatment plan for colorectal cell lines
under L1 regularization at the same total drug dosage (550 nM). The 2-step plan uses a
high-dose treatment followed by a low-dose treatment. This achieves maximum
proliferation 0.6048, which is more effective than the time-invariant treatment plan
which only achieves 0.6978. The table shows the relative proliferation values of
individual cell lines after the first and second treatment step. The highest proliferation
values after each treatment step are marked bold.

slight benefits were gained from allowing time-varying treatments. However, in a few
cases at medium dosages we observed some larger gains. One example for an effective
2-step plan for colorectal cell lines is shown in Fig 4. A sequential plan that employs
one aggressive drug-combination of PD0325901, PLX-4720, and Erlotinib and then a
more conservative—that is, lower-dose—combination of PD0325901, Lapatinib, and
Erlotinib achieves a maximum proliferation value of 0.6048 which is 13% lower than the
proliferation value achieved by the optimized time-invariant treatment plan (0.6978),
which uses a combination of PD0325901 and PLX-4720 at medium dosage.

Optimization for average proliferation

While this paper mainly focuses on minimizing the maximum proliferation value in
populations of cancer cell lines, we will now briefly discuss experimental results where
the objective was to minimize the average proliferation value. This alternative
optimization problem was discussed in the methods section.

First we investigated what average proliferation rate the multi-cell combination
treatments that were optimized for the mazimum criterion achieve for each of the four
individual tissues under L1 regularization with penalty value A = 10~7. We found that
the treatments optimized for low maximum proliferation achieve an average relative
proliferation rate of approximately 0.1036 across melanoma, 0.0814 across colorectal,

September 29, 2020

11/34

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325



0.1019 across pancreatic, and 0.2010 across breast cancer cell lines. We compared these
scores to those attained by the multi-cell combination treatments which were specifically
designed to minimize the average proliferation rate. We found that the treatments
optimized for low average proliferation rate achieve average proliferation values of
approximately 0.0816 across melanoma, 0.0712 across colorectal, 0.0804 across
pancreatic, and 0.1589 across breast cancers. Therefore, the multi-cell treatments
considered in this paper not only minimize the maximum proliferation rate of cells
originating from each tissue type, but they also attain average proliferation rates that
are experimentally within 20% of what is attained by the treatments which were
specifically designed for low average.

Variance in optimization process

During our single- and multi-cell simulations we observed some variance in the
optimized combination treatments when using low penalty values. This indicates the
existence of multiple local optima. To get a better insight into this behavior we
performed an additional single-cell experiment with K029AX as well as a multi-cell
experiment with colorectal cell lines. For both settings we ran an additional 20 runs
with warm starts. Each run started by optimizing a treatment for the lowest penalty
value (1077) and then increased the penalty exponent at 0.25 steps, where at each step

we initialized the algorithm with the optimal drug-combination from the previous step.

We grouped the discovered drug-combinations found during the 20 runs by penalty
value and performed separate Principal Component Analysis (PCA) for each group to
investigate the treatment distribution. The first two principal components are visualized
in Fig 5 and Fig 6 which in both experiments explained more than 90% of the existing
variance. Under high to medium penalties L.1 and L2 regularization led to unique
optimal treatments. For lower penalty values there is some variance. Logarithmic
penalization suffers from high variance even when using large penalties indicating many
local optima. This might explain some of the instabilities we observed in the previous
experiments which used logarithmic regularization. For low penalty values the
distribution of the returned combinations is similar for all types of regularization.
Overall the variance in the multi-cell experiment is larger than in the single-cell one.

Discussion

Our approach discovered treatment strategies that deviate from current clinical first line
treatment strategies. Without this result, the algorithm would not be of much use, as it
would not predict anything new and just recapitulate what we already know. Yet, we
have to carefully examine whether the proposed strategies are plausible from a
biological perspective. For the investigations with BRAFV600E skin cancer cell lines,
the optimal combination strategy we identified was often only marginally better than
the PD03525901+PLX-4720 gold-standard reference. Similarly, for the multi-cell line
analysis, the algorithm identified the gold-standard combination for low total dosages
and was only able to identify better combinations at higher dosages. However, we
consistently observed high concentrations of the MEK inhibitor PD0325901, which is
known to display otherwise rare on-target toxicities, suggesting that a different
regularization strategy might be desired for this drug.

Another question is how likely the treatments which are predicted to be effective by
the pathway model will also be effective in a real wet lab study. While overfitting might
occur when calibrating a model with over 4000 parameters the used a mechanistic
pathway model was fitted with over 5000 real data points from the Cancer Cell Line
Encyclopedia [47]. Unlike in many other systems biology settings here the number of
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A. K029AX + L1 Regularization
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Fig 5. Output variance for K029AX. Visualization of the first two principal
components of 20 single-cell combination treatments for K029AX under three different
types of regularization using warm starts.
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Fig 6. Output variance for colorectal cells. Visualization of the first two
principal components of 20 multi-cell combination treatments for colorectal cells under
three different types of regularization using warm starts.
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data points is larger than the number of model parameters. The model itself and its
calibration are described in great detail in [9]. One advantage of mechanistic models is

that their graphical structure captures domain knowledge of the underlying cell biology.

This makes mechanistic models less prone to overfitting and can help with
generalization. The used pathway model was calibrated with data from single-drug
treatments and has been shown to accurately predict treatment effects of two drug
combination treatments [9]. Given that most of the optimized treatments only use 3 or
4 drugs, we are optimistic that the model can yield valuable insights. Nonetheless,
laboratory are, of course, required to provide a final answer about the effectiveness of
the treatments identified in the simulation study on real cells.

One limitation of the current study is that the relative cell viability measures we
have used here, such as those reported by assays such as CellTiter-Glo, are subject to
several known inconsistencies [55,56]. These issues can, in part, be addressed by more
modern methods [57,58]. Similarly, the assumption that cell growth dynamics have
reached a steady-state after 72 hours may not always hold true. This may influence
whether and how well biological insights presented in this study can be replicated in in
vitro and in vivo experiments. However, these limitations are primarily due to
limitations of data available in the large pharmacological studies [47] that were used in
the parameterization of the current model, and not due to intrinsic shortcomings of the
methods developed in this study. In fact, the methods developed here could easily be
applied to the design of adaptive treatment strategies [16].

The model employed here assumes cell-line-specific, but static transcription.
Accordingly, the model may not accurately describe adaptive resistance mechanisms
that are believed to work through transcriptional feedbacks [59,60]. Moreover, because
the steady state of the model is always unimodal under conditions we have considered,
there is no memory effect between subsequent treatments at the cellular level. However,
the multiplicative propagation of relative viabilities along the sequence of treatments
introduces a memory effect at the population level. In every treatment step, the relative
proliferation values from the previous step effectively introduce a re-weighting of the
relative importance of the cell lines. As we showed, this alone is enough to cause there
to be benefit from time-varying sequential treatments. In practice, a further benefit
from sequential treatment may be obtainable by steering a cell line or set of cell lines
during the dynamics, that is, without waiting for steady state between treatments.
Finding such treatment plans computationally would require a signaling pathway model
that is faithful to reality not only at steady states but also during the transient paths.
Constructing and calibrating such models would likely require significantly more in vivo
and/or in vitro data than models that only need to be accurate in steady states.

For some cell-lines and regularizers, we observed that optimization can yield a
continuum of equivalent optimal treatments, which indicates ill-conditioning of the
problem. Looking at the PCA (Fig 5 and Fig 6) revealed that this behaviour is limited
to low penalization strengths that do not reduce the total concentration of the optimal
treatment beyond the 8 pM maximum. Accordingly, we concluded that this
ill-conditioning did not substantially effect the results present here and that the
regularization approaches, as expected, improved the conditioning of the problem.

The regularization functions we used provide an empirical way to minimize drug
concentrations and respective adverse toxicities. In practice, concentrations at which
adverse toxicities occur may be specific to drugs, tissues, and person. In the absence of
large-scale toxicological and pharmacokinetic screenings, it seems difficult to design a
more rational type and strength of penalization. Our regularization functions penalize
total drug burden and do not consider cooperativity. The study of drug cooperativity is
in itself an active area of research [61-66)].
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Conclusions

In this paper we proposed a framework for in silico combination treatment optimization.

To the best of our knowledge this is the first time a large-scale pan-cancer pathway
model was used to identify effective treatment strategies. Multiple treatment
optimization problems were proposed which required us to balance reduction in
proliferation with adverse side effects. In order to solve these problems, we combined
the CMA-ES algorithm with a significantly more scalable sampling scheme, based on a
Hamiltonian Monte-Carlo method. We evaluated the approach in an extensive
simulation study with cancer cell lines originating from multiple tissues. We studied the
treatment of individual cell lines and heterogeneous populations of cell lines. We also
studied the generation of sequential time-varying and time-invariant treatment plans.
The combination treatments identified by our algorithm achieved significantly better
predicted proliferation scores at lower drug concentrations compared to the conventional
therapy approaches. This serves as an early proof of concept of how in silico simulations
can be used to identify potentially novel combination therapies. Future research is

required to evaluate the performance of the discovered treatments in laboratory studies.

Supporting information

S1 Appendix. Further Single-Step Single Cell Experiments. Results of the

single-step single-cell optimization process for A2058 and MDAMB43S cancer cell lines.

For A2058 we observed that for all three types of regularization the optimized
combination treatments achieve significantly lower relative proliferation values at lower
concentrations than the single and two-drug baselines. For MDAMBA43S the discovered
combination treatments only slightly improved upon the PD0325901/PLX-4720
two-drug baseline. In both cases the type of regularization impacts the composition of
the returned combination treatments. When using logarithmic regularization we
observed large variance in returned treatments and low objective values did not always
indicate effective treatments.

S2 Appendix. Further Single-Step Population Cell Experiments. Results of
the single-step multi-cell optimization process for melanoma, pancreatic and breast
cancer cell lines. For all four tissues and regularizers, the discovered combination
treatments achieve significantly lower maximum relative proliferation values than the
single-drug and PD0325901/PLX-4720 combination baselines at medium and high
dosages. Especially for pancreatic cell lines, the optimized treatments reduce the cancer
cell viability by a factor of more than two. For breast cancers, the optimization process
leads to drug combinations that achieve notable treatment effects even at low dosage.
The type of used regularization effects the composition of the combinations. When
using logarithmic regularization we observed large variance in returned treatments and
low objective values did not always indicate effective treatments.
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A Further Single-Step Single Cell Experiments

We show results of the single-step single-cell optimization process for A2058 (Figg 7)
and MDAMB43S (Fig 8) cancer cells. For A2058 we observed that for all three types of
regularization the optimized combination treatments achieve significantly lower relative
proliferation values at lower concentrations than the single and two-drug baselines. For
MDAMB43S the discovered combination treatments only slightly improved upon the
PD0325901/PLX-4720 two-drug baseline. In both cases the type of regularization
impacts the composition of the returned combination treatments. When using
logarithmic regularization we observed large variance in returned treatments and low
objective values did not always indicate effective treatments.

A. A2058 + L1 Regularization
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Fig 7. Single-step treatment for A2058. Comparison between optimized
single-cell multi-drug treatment, optimal single-drug treatment, and optimal
PD0325901/PLX-4720 combination treatment for A2058—a melanoma cell line with
BRAF V600E mutation—for three different types of regularization. Left plots: optimal
treatment as identified by the objective function for different penalty parameters. The
middle plots: relationship between administered total dosage and achieved proliferation
value regardless of penalty and objective value. Right plots: composition of the
multi-drug treatments.
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— A. MDAMBA435S + L1 Regularization
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Fig 8. Single-step treatment for MDA MB435S. Comparison between optimized
single-cell multi-drug treatment, optimal single-drug treatment, and optimal
PD0325901/PLX-4720 combination treatment for MDAMB435S—a melanoma cell line
with BRAF V600E mutation—for three different types of regularization. Left plots:

optimal treatment as identified by the objective function for different penalty
parameters. The middle plots: relationship between administered total dosage and
achieved proliferation value regardless of penalty and objective value. Right plots:
composition of the multi-drug treatments.
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B Further Single-Step Population Cell Experiments

We show results of the single-step multi-cell optimization process for melanoma (Fig 9),
pancreatic (Fig 10) and breast (Fig 11) cancer cell lines. For all four tissues and
regularizers, the discovered combination treatments achieve significantly lower maximum
relative proliferation values than the single-drug and PD0325901/PLX-4720 combination
baselines at medium and high dosages. Especially for pancreatic cells, the optimized
treatments reduce the viability score by a factor of more than two. For breast cancers,
the algorithm lead to drug combinations that achieve notable treatment effects even at
low dosages. The type of used regularization effects the composition of the combinations.
When using logarithmic regularization we observed large variance in returned
treatments and low objective values did not always indicate effective treatments.
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Fig 9. Single-step treatment for melanoma cell lines. Comparison between
optimized multi-cell multi-drug treatment, optimal single-drug treatment, and optimal
PD0325901/PLX-4720 combination treatment for melanoma cell lines for three different
types of regularization. Left plot: optimal treatment as identified by the objective
function for different penalty parameters. Middle plot: relationship between
administered total dosage and achieved proliferation value regardless of objective values.
Right plot: composition of the multi-drug treatments.
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— A. Pancreatic cell lines 4+ L1 Regularization
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Fig 10. Single-step treatment for pancreatic cell lines. Comparison between
optimized multi-cell multi-drug treatment, optimal single-drug treatment, and optimal
PD0325901/PLX-4720 combination treatment for pancreatic cell lines for three different
types of regularization. Left plot: optimal treatment as identified by the objective
function for different penalty parameters. Middle plot: relationship between
administered total dosage and achieved proliferation value regardless of objective values.
Right plot: composition of the multi-drug treatments.
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— A. Breast cell lines + L1 Regularization
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Fig 11. Single-step treatment for breast cell lines. Comparison between
optimized multi-cell multi-drug treatment, optimal single-drug treatment, and optimal
PD0325901/PLX-4720 combination treatment for breast cancer cell lines for three
different types of regularization. Left plot: optimal treatment as identified by the
objective function for different penalty parameters. Middle plot: relationship between
administered total dosage and achieved proliferation value regardless of objective values.
Right plot: composition of the multi-drug treatments.
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