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Abstract
We revisit the problem of differentially private release of classification queries. In this problem, the goal is to
design an algorithm that can accurately answer a sequence of classification queries based on a private training
set while ensuring differential privacy. We formally study this problem in the agnostic PAC model and derive
a new upper bound on the private sample complexity. Our results improve over those obtained in a recent
work (Bassily et al., 2018) for the agnostic PAC setting. In particular, we give an improved construction that
yields a tighter upper bound on the sample complexity. Moreover, unlike (Bassily et al., 2018), our accuracy
guarantee does not involve any blow-up in the approximation error associated with the given hypothesis class.

Given any hypothesis class with VC-dimension d, we show that our construction can privately answer up
tom classification queries with average excess error α using a private sample of size≈ d

α2 max
(
1,
√
mα3/2

)
(assuming the privacy parameter ε = Θ(1)). Using recent results on private learning with auxiliary public
data, we extend our construction to show that one can privately answer any number of classification queries
with average excess error α using a private sample of size ≈ d

α2 max
(

1,
√
dα
)

. When α = O
(

1√
d

)
and

the privacy parameter ε = Θ(1), our private sample complexity bound is essentially optimal.
Keywords: Differential privacy, agnostic PAC model, classification queries.

1. Introduction

In this paper, we revisit the problem of answering a sequence of classification queries in the agnostic PAC
model under the constraint of (ε, δ)-differential privacy. An algorithm for this problem is given a private
training dataset S = {(x1, y1), . . . , (xn, yn)} of n i.i.d. binary-labeled examples drawn from some unknown
distributionD overX×Y , whereX denotes an arbitrary data domain (space of feature-vectors) and Y denotes
a set of binary labels (e.g., {0, 1}). The algorithm is also given as input some hypothesis class H ⊆ {0, 1}X
of binary functions mapping X to Y . The algorithm accepts a sequence of classification queries given by
a sequence of i.i.d. feature-vectors Q = (x̃1, x̃2, . . .), drawn from the marginal distribution of D over X ,
denoted as DX . Here, the feature-vectors defining the set of queries Q do not involve any privacy constraint.
The queries are also assumed to arrive one at a time, and the algorithm is required to answer the current query
x̃j by predicting a label ŷj for it before seeing the next query (online setting). The goal is to answer up to a
given numberm of queries (which is a parameter of the problem) such that, (i) the entire process of answering
the m queries is (ε, δ)-differentially private, and (ii) the average excess error in the predicted labels does not
∗
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exceed some desired level α ∈ (0, 1); specifically, 1
m

∑m
j=1 1 (ŷj 6= ỹj) ≤ α + min

h∈H
err (h;D) , where ỹ is

the corresponding (hidden) true label, and min
h∈H

err(h;D) is the approximation error associated with H, i.e.,

the least possible true (population) error that can be attained by a hypothesis in H (see Section 2 for formal
definitions).

One could argue that a more direct approach for differentially private classification would be to design a
differentially private learner that, given a private training set as input, outputs a classifier that is safe to publish
and then can be used to answer any number of classification queries. However, there are several pessimistic
results that either limit or eliminate the possibility of differentially private learning even for elementary prob-
lems such as one-dimensional thresholds (Bun et al., 2015; Alon et al., 2018). Therefore, it is natural to study
the problem of classification-query release under differential privacy as an alternative approach.

A recent formal investigation of this problem was carried out in (Bassily et al., 2018). This recent work
gives an algorithm based on a combination of two useful techniques from the literature on differential privacy,
namely, the sub-sample-and-aggregate technique (Nissim et al., 2007; Smith and Thakurta, 2013) and the
sparse-vector technique (Dwork and Roth, 2014). The algorithm by Bassily et al. (2018), hereafter denoted
as ASubSamp, assumes oracle access to a generic, non-private (agnostic) PAC learner B for H. In this work,
we give non-trivial improvements over the results of (Bassily et al., 2018) in the agnostic PAC setting. More
details on the comparison with (Bassily et al., 2018) are given in the “Related work” section below. Our
improvements are in terms of the attainable accuracy guarantees and the associated private sample complexity
bounds in the agnostic setting. These improvements are achieved via importing new ideas and techniques
from literature (particularly, the elegant agnostic-to-realizable reduction technique of (Beimel et al., 2015)) to
provide an improved construction for the one that appeared in (Bassily et al., 2018).

Main results

In this work, we formally study algorithms for classification queries release under differential privacy in the
agnostic PAC model. We focus on the sample complexity of such algorithms as a function of the privacy and
accuracy parameters as well as the number of queries to be answered. For simplicity, in the expressions given
below for our upper bounds, we will assume that ε = Θ(1).

• We give an algorithm for this problem that is well-suited for the agnostic setting. Our algorithm is a two-
stage construction that is based on a careful combination of the relabeling technique of (Beimel et al., 2015)
and the private classification algorithmASubSamp by Bassily et al. (2018) (see “Techniques” section below).

• We show that our construction provides significant improvements over the results of Bassily et al. (2018)
for the agnostic setting:

– The error guarantees in (Bassily et al., 2018) involves a constant blow-up (a multiplicative factor ≈
3) in the approximation error min

h∈H
err(h;D) associated with the given hypothesis class H. Using our

construction, we give a standard excess error guarantee that does not involve such a blow-up.

– We show that our construction can answer up to m queries with average excess error α using a private
sample whose size ≈ VC(H)/α2 ·max

(
1,
√
mα3/2

)
(assuming ε is a constant, e.g. 0.1), where VC(H)

is the VC-dimension of H. Note that this implies that we can answer up to ≈ 1/α3 queries with private
sample size that is essentially the same as the standard non-private sample complexity in the agnostic
PAC model. i.e., that many queries can be answered with essentially no additional cost due to privacy.

– Using a recent result of Alon et al. (2019) on the sample complexity of semi-private learners (introduced
by Beimel et al. (2013)), we show that our construction immediately leads to a universal private clas-
sification algorithm that can answer any number of classification queries using a private sample of size
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≈ VC(H)
α2 · max

(
1,
√
VC(H)α

)
, which is independent of the number of queries. We note that when

α = O
(

1/
√
VC(H)

)
and assuming the privacy parameter ε = Θ(1), our sample bound nearly matches

the standard non-private sample complexity in agnostic PAC model. This implies that in this regime, we
attain a nearly optimal sample complexity bound for privately answering any number of classification
queries. Equivalently, our bound is nearly optimal for any class H with VC(H) = O(1/α2). We note
that the setting studied by Alon et al. (2019) is tantamount to the setting of offline (batch) classification
where the whole set of unlabeled data (the set of queries in our case) is available and given to the al-
gorithm beforehand. Whereas, as described earlier, in this work we study the online setting (which was
also studied by Bassily et al. (2018)). Hence, the upper bound on the private sample complexity obtained
by Alon et al. (2019) is not valid in our setting.

Techniques: Our algorithm is a two-stage construction. In the first stage, the input training set is pre-
processed once and for all via a relabeling procedure due to Beimel et al. (2015) in which the labels are
replaced with the labels generated by an appropriately chosen hypothesis in the given hypothesis class H.
This step allows us to reduce the agnostic setting to a realizable one. In the second stage, we first sample a
new training set from the empirical distribution of the relabeled set in the first stage, then feed it to ASubSamp

of Bassily et al. (2018) together with other appropriately chosen input parameters. To formally prove the
accuracy guarantee of our construction, in our analysis we use some tools from learning theory (e.g., the
uniform-convergence argument of Claim 10). As mentioned earlier, we also use the framework of semi-
private learning (Beimel et al., 2013; Alon et al., 2019) to transform our algorithm into a universal private
classification algorithm.

Related work

Our results are most closely related to the results given by Bassily et al. (2018). They provide formal accuracy
guarantees for their algorithm in both the realizable and agnostic settings of the PAC model. However, the
accuracy guarantees Bassily et al. (2018) provide for the agnostic setting is far from optimal. In particular,
their guarantees involves a constant blow-up in the approximation error min

h∈H
err(h;D), which would limit the

utility of their construction in scenarios where the approximation error is not negligible. In fact, in most typical
scenarios in practice, the approximation error associated with the hypothesis (model) class is a non-negligible
constant, (e.g., the test error attained by some state-of-the-art neural networks on benchmark datasets can be
as large as 5%, or 10%). Our improved construction avoids this blow-up in the approximation error.

The construction by Bassily et al. (2018) can answer up to m queries with average excess error α+O(γ)

(where γ = min
h∈H

err(h;D) is the approximation error) using a private sample of size≈ VC(H)
α2 ·max (1,

√
mα)

(follows from Theorem 3.5 Bassily et al., 2018). Given our results discussed in the “Main results” section
above, it follows that our sample complexity bound is tighter than that of Bassily et al. (2018) by roughly
a factor of max (1,min (

√
mα, 1/α)). In particular, our bound is tighter by roughly a factor of

√
mα for

1
α ≤ m < 1

α3 , and it is tighter by roughly a factor of 1
α for m ≥ 1

α3 . Equivalently, for the same private sample
size, our construction can answer roughly a factor of 1/α2 more queries than that of Bassily et al. (2018).

Bassily et al. (2018) also extend their construction to provide a semi-private learner that can finally pro-
duce a classifier. This is done by answering a sufficiently large number of queries then applying the knowledge
transfer technique using the new training set formed by the set of answered queries. The output classifier can
then be used to answer any subsequent queries, and hence, their extended construction provides a universal
private classification algorithm. Their private sample complexity bound for this task is ≈ VC(H)3/2/α5/2

(see Theorem 4.3 Bassily et al., 2018). On the other hand, our universal private classification algorithm yields
a private sample complexity bound ≈ VC(H)

α2 · max
(

1,
√

VC(H)α
)

, which is tighter than that of Bassily
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et al. (2018) by roughly a factor of min

(√
VC(H)
α , 1

α3/2

)
. Moreover, our bound is nearly optimal when

α = O
(

1/
√

VC(H)
)

.

Other related works: Dwork and Feldman (2018) consider the same problem, but focus on the sample
complexity of a single query. In the agnostic PAC setting, their accuracy guarantee does not suffer from the
constant blow-up in the approximation error as in the results of Bassily et al. (2018). However, their sample
complexity upper bound scales as ≈ VC(H)/ε α3, which is sub-optimal. Assuming ε = Θ(1), our bound
in the single-query setting (i.e., m = 1) is essentially optimal as it nearly matches the standard non-private
sample complexity in the agnostic PAC model. In an independent work, Dagan and Feldman (2019) further
study the connections between uniform stability and differential privacy in the context of PAC learning, and
give a new algorithm that yields a sample complexity bound of ≈ VC(H)/α2 + VC(H)2/ε α in the single-
query setting. Their bound exhibits the optimal dependence on ε, and when VC(H) ≤ ε/α, it is tighter than
our bound by a factor of 1/ε. They also give a new, simpler algorithm based on connections to uniform
stability that yields the same bound as ours in the single-query setting.

Prior to the work of Bassily et al. (2018); Dwork and Feldman (2018), there have been several works
that considered similar problem settings, (e.g. Hamm et al., 2016; Papernot et al., 2017, 2018). The last two
references gave different algorithms and offered extensive empirical evaluation, however, they do not provide
any formal accuracy guarantees.

2. Preliminaries

Notation: For classification tasks we denote the space of feature vectors by X , the set of labels by Y , and
the data universe by U = X ×Y . A function h : X → Y is called a hypothesis and it labels data points in the
feature spaceX by either 0 or 1 i.e. Y = {0, 1}. A set of hypothesesH ⊆ {0, 1}X is called a hypothesis class.
The VC dimension of H is denoted by VC(H). We use D to denote a distribution defined over U = X × Y ,
and DX to denote the marginal distribution over X . A sample dataset of n i.i.d. draws from D is denoted by
S = {(x1, y1), · · · , (xn, yn)}, where xi ∈ X and yi ∈ Y .

Expected error: The expected error of a hypothesis h : X → Y with respect to a distribution D over
U is defined by err(h;D) , E

(x,y)∼D
[1(h(x) 6= y)]. The excess expected error is defined as err(h;D) −

min
h∈H

err(h;D).

Empirical error: The empirical error of a hypothesis h : X → Y with respect to a labeled set S is denoted
by êrr(h;S) , 1

n

∑n
i=1 1(h(xi) 6= yi).

The problem of minimizing the empirical error on a dataset is known as Empirical Risk Minimization (ERM).
We use hERMS to denote the hypothesis that minimizes the empirical error with respect to a dataset S, hERMS ,
arg min
h∈H

êrr(h;S).

Expected disagreement: The expected disagreement between a pair of hypotheses h1 and h2 with respect to
a distribution DX is defined as dis(h1, h2;DX ) , E

x∼DX
[1(h1(x)) 6= h2(x))] .

Empirical disagreement: The empirical disagreement between a pair of hypotheses h1 and h2 w.r.t. an

unlabeled dataset Su = {x1, . . . , xn} is defined as d̂is(h1, h2;Su) , 1
n

n∑
i=1

1(h1(xi)) 6= h2(xi)).

Realizable setting: In the realizable setting of the PAC model, there exists a h∗ ∈ H such that err(h∗;D) = 0
i.e., the true labeling function is assumed to be in H. In this case, the distribution D can be described by DX
and the hypothesis h∗ ∈ H. Such a distribution D is called realizable by H. Hence, for realizable distribu-
tions, the expected error of a hypothesis h will be denoted as err(h; (DX , h∗)) , E

x∼DX
[1(h(x) 6= h∗(x))].
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Definition 1 (Differential Privacy (Dwork et al., 2006a,b)) Let ε, δ > 0. A (randomized) algorithm M :
Un → R is (ε, δ)-differentially private if for all pairs of datasets S, S′ ∈ Un that differs in exactly one data
point, and every measurable O ⊆ R, with probability at least 1− δ over the coin flips of M , we have:

Pr (M(S) ∈ O) ≤ eε · Pr
(
M(S′) ∈ O

)
+ δ.

We study private classification algorithms that take as input a private labeled dataset S ∼ Dn, and
a sequence of classification queries Q = (x̃1, . . . , x̃m) ∼ DmX , defined by m unlabeled feature-vectors
from X , (where m is an input parameter), and output a corresponding sequence of predictions, i.e., labels,
(ŷ1, . . . , ŷm). Here, we assume that the classification queries come one at a time and the algorithm is required
to generate a label for the current query before seeing and responding to the next query. The goal is: i) af-
ter answering m queries the algorithm should satisfy (ε, δ)-differential privacy, and ii) the labels generated
should be (α, β)-accurate with respect to a hypothesis classH: a notion of accuracy which we formally define
shortly. We give a generic description of the above classification paradigm in Algorithm 1 below (denoted as
APrivClass).

Algorithm 1 APrivClass: Private Classification-Query Release Algorithm
Input: Private dataset: S ∈ (X ×Y)n, upper bound on the number of queries: m, online sequence of classi-

fication queries: Q = (x̃1, x̃2, . . . , x̃m), hypothesis class: H, privacy parameters ε, δ > 0, accuracy: α,
and failure probability: β

1: for j = 1, . . . ,m do
2: ŷj ← PrivLabel(S,H, {(x̃i, ŷi)}j−1

i=1 , x̃j) {Generic procedure that, given S,H, the history
{(x̃i, ŷi)}j−1

i=1 , and the current query x̃j , generates a label ŷj}
3: Output ŷj

The algorithm APrivClass invokes a procedure PrivLabel, which is a generic classification procedure that
given the input private training set S, the knowledge of hypothesis class H, and the previous queries and
outputs, it generates a label for an input query (feature-vector) x̃ ∈ X .

Definition 2 ((ε, δ, α, β, n,m)-Private Classification-Query Release Algorithm) LetH be a hypothesis
class H ⊆ {0, 1}X . Let ε, δ, α, β ∈ (0, 1). A randomized algorithm A (whose generic format is described in
Algorithm 1) is said to be an (ε, δ, α, β, n,m)-PCQR (private classification-query release) algorithm for H,
if the following conditions hold:

1. For any sequence Q ∈ Xm, A is (ε, δ)-differentially private with respect to its input dataset.

2. For every distribution D over X × Y , given a dataset S ∼ Dn and a sequence V , ((x̃1, ỹ1), . . . ,
(x̃m, ỹm)) ∼ Dm (where x̃i’s are the queried feature-vectors inQ and ỹi’s are their true hidden labels),
A is (α, β)-accurate with respect toH, where our notion of (α, β)-accuracy is defined as follows: With
probability at least 1− β over the choice of S, V , and the internal randomness in PrivLabel (Step 2 in
Algorithm 1), we have

1

m

m∑
j=1

1(ŷj 6= ỹj) ≤ α+ γ,

where γ , min
h∈H

err(h;D).

In the realizable setting, we have an analogous definition where γ = 0. In this case, we say that the algorithm
is a PCQR algorithm forH in the realizable setting.
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2.1. Previous work on private classification-query release (Bassily et al., 2018)

Bassily et al. (2018) give a construction for a PCQR algorithm (referred to asASubSamp), which combines the
sub-sample-aggregate framework (Nissim et al., 2007; Smith and Thakurta, 2013) with the sparse-vector tech-
nique (Dwork and Roth, 2014). They provide formal privacy and accuracy guarantees with sample complexity
bounds for ASubSamp in both the realizable and agnostic settings of the PAC model. As in the sparse-vector
technique, one important input parameter to ASubSamp is cut-off paramter T , which gives bound on the num-
ber of the so-called “unstable queries” that ASubSamp can answer before the privacy budget is consumed. We
formally describe ASubSamp and the notion of “unstable queries” in Appendix B for completeness. Here, we
restate the results by Bassily et al. (2018) for the realizable and agnostic settings.

Lemma 3 (Realizable Setting: follows from Theorems 3.2 & 3.4, (Bassily et al., 2018)) Let ε, δ > 0 and,
α, β ∈ (0, 1). Let H be a hypothesis class with VC(H) = d. Suppose that B in ASubSamp is a PAC learner
for H. Let D be any distribution over U that is realizable by H. There is a setting for the cut-off parameter
T = max

(
1, Õ (mα)

)
such that ASubSamp is an (ε, δ, α, β, n,m)-PCQR algorithm for H in the realizable

setting where the private sample size is n = Õ
(
d
ε α ·max (1,

√
mα)

)
.

In the agnostic setting, the accuracy guarantee of (Bassily et al., 2018) is not compatible with Definition 2;
the accuracy guarantee therein has a sub-optimal dependency on the approximation error, γ (where γ ,
min
h∈H

err(h;D)). In particular, their result entails a blow-up in γ by a constant factor (≈ 3). This significantly

limit the applicability of this result in scenarios where γ � α.

Lemma 4 (Agnostic Setting: follows from Theorems 3.2 & 3.5, (Bassily et al., 2018)) Let ε, δ, α, β ∈ (0, 1).
Let H be a hypothesis class with VC(H) = d. Suppose B in ASubSamp is an agnostic PAC learner for H. Let
D be any distribution over U , and let γ , min

h∈H
err(h;D). Let S ∼ Dn denote the input private sample to

ASubSamp. Let V , ((x̃1, ỹ1), . . . , (x̃m, ỹm)) ∼ Dm, where x̃i’s are the queried feature-vectors inQ and ỹi’s
are their true (hidden) labels. Let (ypriv1 , . . . , yprivm ) denote the output labels ofASubSamp. There is a setting for

the cut-off parameter T = max
(

1, Õ (m (α+ γ))
)

such that: 1) ASubSamp is (ε, δ)-differentially private

with respect to the input training set; 2) when the private sample is of size n = Õ
(

d
ε α2 ·max (1,

√
mα)

)
,

then with probability at least 1− β over S, V and the randomness in ASubSamp, we have:

1

m

m∑
j=1

1(yprivj 6= ỹj) ≤ α+ 3γ.

3. Private Release of Classification Queries in the Agnostic PAC Setting

In this section we give an improved construction for the private classification-query release algorithm of
Bassily et al. (2018) in the agnostic setting. Our construction can privately answer up to m queries with
excess classification error α, and input sample size Õ

(
VC(H)
ε α2 ·max

(
1,
√
m α3/2

))
, (where Õ hides log

factors of m, 1
α ,

1
δ ,

1
β ). Comparing to the result by Bassily et al. (2018) for the agnostic setting, where the

private sample size is ≈ VC(H)
ε α2 · max(1,

√
mα) (Lemma 4), our sample complexity bound is tighter by a

factor of ≈
√
mα when 1

α ≤ m < 1
α3 , and it is tighter by a factor of ≈ 1

α when m ≥ 1
α3 .

Overview

Our construction is made up of two phases. The first phase is a pre-processing phase in which a subset S′, of
the input private sample S, is relabeled using a “good” hypothesis ĥ ∈ H to obtain a new sample S′′. This

6



PRIVATELY ANSWERING CLASSIFICATION QUERIES IN THE AGNOSTIC PAC MODEL

phase is a reenactment of the elegant technique due to Beimel et al. (2015), which was called LabelBoost
Procedure therein. By construction ĥ is chosen such that its empirical error is close to that of the ERM
hypothesis. Hence, we can formally show that when input sample size is sufficiently large, ĥ attains low
excess error. Moving forward, one may view ĥ as if it is the true labeling hypothesis, and hence the agnostic
setting can be reduced to the realizable setting. In Section 3.1, we describe this pre-processing phase and state
its guarantees.

Now as we reduced the problem to the realizable setting, in the next phase we invoke the techniques
of (Bassily et al., 2018). In the second phase, the relabeled training set S′′ is used to provide input training
examples toASubSamp (described in Section 2.1). Note that S′′ is no longer i.i.d. from the original distribution.
We form a new dataset Ŝ by sampling data points uniformly with replacement from S′′ and then feed Ŝ to
ASubSamp as input. This new training set Ŝ is now i.i.d. from the empirical distribution of S′′. Via a uniform-
convergence argument (see Claim 10), we can show that that this re-sampling step does not impact our desired
accuracy guarantees. We also need to carefully calibrate the privacy parameters of ASubSamp to take into
account the fact that Ŝ may contain repetitions of the elements in S′′. AlgorithmASubSamp uses Ŝ to privately
generate labels for an online sequence of classification queries. We formally show that for any setting of the
target parameters (accuracy, privacy, and total number of queries), there is a sufficient size for the original
input sample S such that our construction attains the desired accuracy and privacy guarantees w.r.t. the entire
sequence of queries. We formally describe our construction and provide formal analysis for its privacy and
accuracy guarantees in Section 3.2.

3.1. From the agnostic to the realizable setting: A generic reduction

In this section, we describe the pre-processing procedure, denoted as ARelabel (given by Algorithm 2 below),
which follows from the relabeling technique devised by Beimel et al. (2015).

The algorithm ARelabel operates on a private labeled dataset S′ ∼ Dn′
and on a hypothesis class H. Let

S′u denote the unlabeled version of S′, i.e., S′u = {x1, . . . , xn′}, and
∏
H(S′u) denote the set of all possible

dichotomies that can be generated byH on the set S′u. First the algorithm chooses a finite subset H̃ ofH such
that each dichotomy in

∏
H(S′u) is represented by one of the hypotheses in H̃ . Note that by Sauer’s lemma

(see Sauer, 1972), the size of H̃ is O
(
(n′/d)d

)
, where d = VC(H). Next, ARelabel chooses a hypothesis ĥ

using the exponential mechanism with privacy parameter ε̃ = 1 and a score function q(S′, h) = −êrr(h;S′).
Finally, ARelabel uses ĥ to rebalel S′u, and outputs this labeled set S′′.

Algorithm 2 ARelabel: Relabel Procedure

Input: Private dataset: S′ ∈ (X × Y)n
′
, a hypothesis class: H

1: H̃ ← ∅
2: Let S′u = {x1, . . . , xn′} be the unlabeled version of S′.
3: For every (y1, . . . , yn′) ∈

∏
H(S′u) = {(h(x1), . . . , h(xn′)) : h ∈ H}, add to H̃ any arbitrary hypothesis

h ∈ H s.t. h(xi) = yi, ∀i ∈ [n′].
4: Use the exponential mechanism with inputs S′, H̃ , privacy parameter ε̃ = 1, and a score function
q(S′, h) , −êrr(h;S′) to select ĥ from H̃ .

5: Relabel S′u using ĥ, and denote this relabeled dataset as S′′.
6: Output S′′.

The following lemmas give the privacy and accuracy guarantees of ARelabel. Lemma 5 follows directly
from (Beimel et al., 2015). We prove Lemma 6 in Appendix A.
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Lemma 5 (Lemma 4.1 in (Beimel et al., 2015) restated) Let A be an (1, δ)- differentially private algo-
rithm. Let B be an algorithm that on input dataset S′ invokes A on the output of ARelabel(S

′,H). Then,
B is (4, 4eδ)- differentially private.

Lemma 6 LetH be a hypothesis class with VC(H) = d. Let α, β ∈ (0, 1). LetD be an arbitrary distribution
over X × Y , and S′ ∼ Dn′

be an input dataset to ARelabel, where n′ ≥ 256 (d+log(3/β))
α2 . With probability at

least 1− β, hypothesis ĥ (generated in Step 4 of ARelabel) satisfies the following:

err
(
ĥ;D

)
− err

(
hERMS′ ;D

)
≤ α,

where hERMS′ is the ERM hypothesis w.r.t. the input sample S′.

3.2. A Private Classification-Query Release Algorithm

In this section, we describe our PCQR algorithm AAgPrivCl (Algorithm 3 below) that combines the two tech-
niques given by ARelabel, and ASubSamp. As a PCQR algorithm, AAgPrivCl takes as input: a private dataset
S ∼ Dn, the number of queries m, an online sequence of classification queries Q = (x̃1, . . . , x̃m) ∼ DmX ,
a hypothesis class H, as well as the desired privacy and accuracy parameters. Together with these, AAgPrivCl

also has oracle access to a PAC learner BPAC for H. First, we randomly sample a subset S′ of S of size n′,
where n′ ≈ εn, and invokeARelabel on S′ andH. This sampling step is used to boost the privacy guarantee of
AAgPrivCl. Note that, dataset S′′ (output by ARelabel) is relabeled using hypothesis ĥ ∈ H. In order to ensure
that our input to the next stage is i.i.d., we sample n′ points uniformly with replacement from S′′ to form a
new dataset Ŝ (i.e., Ŝ is made up of n′ i.i.d. draws from the empirical distribution of S′′). Next, we invoke
ASubSamp in the realizable setting on the dataset Ŝ, m, Q, and BPAC as inputs. We set the cut-off parameter

of ASubSamp as T = max
(

1, Õ(mα)
)

, where α is the accuracy parameter of BPAC. The privacy parameters

toASubSamp are set to (ε̂, δ̂) defined in Step 1 ofAAgPrivCl. This is needed to ensure (ε, δ)-differential privacy
for the entire construction. Finally, we output the sequence of private labels {ypriv1 , . . . , yprivm } generated by
ASubSamp for the input sequence of queries.

Algorithm 3 AAgPrivCl: Private Agnostic-PAC Classification-Query Release Algorithm
Input: Private dataset: S ∈ (X × Y)n, upper bound on the number of queries: m, online sequence of

classification queries: Q = (x̃1, x̃2, . . . , x̃m), a hypothesis class: H, oracle access to non-private learner:
BPAC forH, privacy parameters: ε, δ > 0, accuracy parameter: α, and, failure probability: β

1: n′ ← ε
56n, T ← max

(
1, 1

8 mα+ 1
4

√
3mα log

(
m
β

))
,

ε′ ← αmax (1,
√
mα) , ε̂← 1

log(2/δ) min (1, ε′) , δ̂ ← δ
2 emin(1, ε′) log(2/δ)

2: Uniformly sample without replacement a subset S′ of n′ data points from S
3: S′′ ← ARelabel(S

′,H).
4: Ŝ ← Uniformly sample n′ points from S′′ with replacement.
5: Output (ypriv1 , . . . , yprivm )← ASubSamp(Ŝ,m,Q,BPAC, T, ε̂, δ̂, β) .

We formally state the main result of this section in the following theorem.

Theorem 7 LetH be a hypothesis class with VC(H) = d. For any ε, δ, α, β ∈ (0, 1),AAgPrivCl (Algorithm 3)
is an (ε, δ, α, β, n,m)-PCQR algorithm forH, where private sample size

n = O


(
d log

(
1
α

)
+ log

(
m
β

))
log3/2

(
2
δ

)
log
(

mα
min(δ,β/2)

)
ε α2

·max
(

1,
√
mα3/2

) ,

8
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and number of queries m = Ω
(

log(1/αβ)
α

)
.

We will prove the theorem via the following lemmas that establish the privacy and accuracy guarantees of
AAgPrivCl.

Lemma 8 (Privacy Guarantee of AAgPrivCl) AAgPrivCl is (ε, δ)-differentially private (with respect to its in-
put dataset).

Proof Fix the randomness in dataset S′ due to sampling in Step 2 of AAgPrivCl. Let R(·) denote the uniform
sampling procedure in Step 4 inAAgPrivCl; that is, Step 4 can be written as Ŝ ← R(S′′). Note that Steps 4-5 in
AAgPrivCl can now be expressed as a compositionR◦ASubSamp, whereR◦ASubSamp(·) , ASubSamp(R(·)).

Let ε∗ = min (1, ε′), where ε′ = αmax (1,
√
mα) (as defined in Step 1 ofAAgPrivCl). Note that the input

toR◦ASubSamp is the dataset S′′, which is the output ofARelabel. Note that if we can show thatR◦ASubSamp

is (ε∗, δ)-differentially private, then, from Lemma 5, it follows that ARelabel ◦ R ◦ ASubSamp is (ε∗ + 3, 4eδ)-
differentially private. Next, by taking into account account the randomness due to sampling in Step 2, then by
privacy amplification via sampling (Kasiviswanathan et al., 2008; Li et al., 2012), it follows that AAgPrivCl is
(ε, δ)-differentially private. Hence, it remains to show thatR ◦ ASubSamp is (ε∗, δ)-differentially private with
respect to S′′.

Let S′′1 and S′′2 be neighboring datasets. W.l.o.g., assume that S′′1 and S′′2 differ in index j ∈ [n′]. Let r
be the number of times the j-th index is sampled by R. By the definition of R, and Chernoff bound, w.p.
≥ 1− δ/2, we have r ≤ log(2/δ).

Using the result in (Theorem 3.1 Bassily et al., 2018),ASubSamp is (ε̂, δ̂)-differentially private with respect
to Ŝ. Conditioned on r ≤ log(2

δ ) and by the notion of group privacy we have,R ◦ ASubSamp is (rε̂ , rerε̂ δ̂)-
differentially private. Hence, by the above high probability bound on the event r ≤ log(2

δ ), we conclude that
R ◦ ASubSamp is (min (1, ε′) , δ)-differentially private.

Lemma 9 (Accuracy Guarantee of AAgPrivCl) Let H be a hypothesis class with VC(H) = d. Let BPAC
(invoked by ASubSamp) be a PAC learner for H (in the realizable setting). Let D be any distribution over
X × Y , and let γ , min

h∈H
err(h;D). Let S ∼ Dn denote the input private sample to AAgPrivCl, where

n = O


(
d log

(
1
α

)
+ log

(
m
β

))
log3/2

(
2
δ

)
log
(

mα
min(δ,β/2)

)
max

(
1,
√
mα3/2

)
ε α2

 ,

and m ≥ 8 log(1/αβ)
α . Let (ỹ1, . . . , ỹm) denote the corresponding true (hidden) labels for Q. Then, w.p. at

least 1− β (over the choice of S, Q, and the randomness in AAgPrivCl), we have:

1

m

m∑
j=1

1(yprivj 6= ỹj) ≤ α+ γ.

In the proof of Lemma 9 we will use the following claim. We defer its proof after the proof of the lemma.

Claim 10 Let H be a hypothesis class with VC(H) = d. Let Su be an an unlabeled training set of size
no, where no ≥ 50d log(1/α)+log(1/β′)

α2 . Then, with probability at least 1 − β′ for any h1, h2 ∈ H, we have∣∣∣dis(h1, h2;DX )− d̂is(h1, h2;Su)
∣∣∣ ≤ α. (Recall that dis(h1, h2;DX ) and d̂is(h1, h2;Su) are the expected

and empirical disagreement rates, respectively, as defined in Section 2.)

9
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Proof of Lemma 9 Consider the description ofARelabel in Algorithm 2. Note that, hypothesis ĥ ∈ H selected
in Step 4 of ARelabel is used to generate labels of S′′ (output dataset of ARelabel). Note that by choosing n to
be sufficiently large, we can ensure that the size of S′′ is given by

n′ = 8000

(
d log

(
1
α

)
+ log

(
m
β

))
polylog

(
m, 1

δ ,
1
β

)
α2

·max
(

1,
√
mα3/2

)
.

Let DS′′ denote the empirical distribution induced by S′′. Note that err(ĥ;DS′′) = 0. In AAgPrivCl, dataset Ŝ
(input to ASubSamp) is created by n′ i.i.d. draws from DS′′ .

From the description ofASubSamp (Algorithm 5),ASubSamp splits Ŝ into k equal-sized sub-samples, where

k = Õ
(√

T
ε̂

)
. Here T is the input cut-off parameter ofASubSamp whose setting is given in Step 1 ofAAgPrivCl.

Note that since m = Ω
(

log(1/αβ)
α

)
, we have T = O(mα). Each sub-sample is then fed separately as an

input to BPAC. For each input sub-sample, BPAC outputs a classifier hj , j ∈ [k]. Hence we end up with an
ensemble of classifiers h1, · · · , hk. Note that the size of the input sub-sample to BPAC is n′

k . Observe that

n′ = 8000

(
d log

(
1
α

)
+ log

(
m
β

))
log3/2

(
2
δ

)
log
(

mα
min(δ,β/2)

)
α2

·max
(

1,
√
mα3/2

)
,

and the number of sub-samples k is set in Step 1 of ASubSamp as follows

k = O


√
mα log(2

δ ) · log
(

mα
min(δ,β/2)

)
ε̂


Hence, using the setting of ε̂ in Step 1 of AAgPrivCl, we have

n′

k
= Ω


(
d log

(
1
α

)
+ log

(
m
β

))
√
mα5/2

·min
(

1,
√
mα3/2

)
·max

(
1,
√
mα3/2

)
= Ω


(
d log

(
1
α

)
+ log

(
m
β

))
α

 = Ω


(
d log

(
1
α

)
+ log

(
16k
β

))
α

 .

By standard results in learning theory, it is easy to see that the size of the input sub-sample to BPAC is sufficient
for BPAC to PAC-learnH with respect to DS′′ with accuracy α

24 and confidence β
16k .

Fix any j ∈ [k]. Using the above fact about BPAC, w.p. at least 1 − β
16k , err(hj ;DS′′) ≤ α

24 . Since
DS′′ is the empirical distribution of S′′, equivalently, we have d̂is(hj , ĥ;S′′u) ≤ α

24 , where S′′u is the unlabeled

version of S′′. Note that the size of S′′ is n′ ≥ 7200

(
d log( 1

α)+log
(

8k
β

))
α2 . Hence, by Claim 10, it follows that

w.p. ≥ 1− β
8k , dis(hj , ĥ;DX ) ≤ α

12 . Equivalently, w.p. ≥ 1− β
8k , err

(
hj ; (DX , ĥ)

)
≤ α

12 .

From the above and the fact that the queries in Q are i.i.d. from DX , we invoke the same counting
argument in the proof of (Theorem 3.2 Bassily et al., 2018) to show that w.p. ≥ 1 − β

4 , the output labels of
ASubSamp satisfy:

1

m

m∑
i=1

1
(
yprivi 6= ĥ(x̃i)

)
≤ α

4
. (1)

10
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Let hERMS′ denote the ERM hypothesis with respect to the dataset S′ constructed in Step 2 of AAgPrivCl. Note
that Lemma 6 implies that w.p. ≥ 1− β/4, err(ĥ;D)− err

(
hERMS′ ;D

)
≤ α/4.

Since the queries and their true labels
(
(x̃1, ỹ1), . . . , (x̃m, ỹm)

)
are drawn i.i.d. from D, then by Cher-

noff’s bound and the fact that m ≥ 8 log(1/β)
α , we get that w.p. ≥ 1− β

2 ,

1

m

m∑
i=1

1
(
ĥ(x̃i) 6= ỹi

)
− 1

m

m∑
i=1

1
(
hERMS′ (x̃i) 6= ỹi

)
≤ α

2
. (2)

Moreover, from the bound on n′ and using a basic fact from learning theory, w.p. ≥ 1−β/8, the ERM hypoth-
esis hERMS′ satisfies: err

(
hERMS′ ;D

)
≤ α/8+γ,where γ = min

h∈H
err(h;D). Again, since

(
(x̃1, ỹ1), . . . , (x̃m, ỹm)

)
are i.i.d. from D, then by Chernoff’s bound and the fact that m ≥ 8 log(1/β)

α , w.p. ≥ 1− β/4, we have

1

m

m∑
i=1

1
(
hERMS′ (x̃i) 6= ỹi

)
≤ α

4
+ γ. (3)

Now, using (1), (2), and (3) together with a simple application of the triangle inequality and the union bound,
we conclude that w.p. ≥ 1− β, 1

m

∑m
j=1 1

(
yprivj 6= ỹj

)
≤ α+ γ.

Proof of Claim 10 For Su ∼ DnoX , define the event

Bad = {∃h1, h2 ∈ H : |dis(h1, h2;DX )− d̂is(h1, h2;Su)| > α}

We will show that P
Su∼DnoX

[Bad] ≤ 2
(
eno
d

)2d
exp (−noα2/8). Hence, by using a standard manipulation, one

can easily show that the right-hand side is bounded by β′ when no is as given in the statement of the claim.
Let H∆ be a hypothesis class defined as H∆ , {h1∆h2 : h1, h2 ∈ H}, where h1∆h2 : X → {0, 1} is
defined as: ∀x ∈ X , h1∆h2(x) , 1(h1(x) 6= h2(x)).

Let GH∆
denote the growth function of H∆; i.e. for any number t, GH∆

(t) , maxV :|V |=t

∣∣∣∏H∆
(V )

∣∣∣ ,
where

∏
H∆

(V ) is the set of all dichotomies that can be generated by H∆ on a set V of size t. Now for any
set V of size t, every dichotomy in

∏
H∆

(V ) is determined by a pair of dichotomies in
∏
H(V ), and thus we

get |
∏
H∆

(V )| ≤ |
∏
H(V )|2. Hence, by Sauer’s Lemma GH∆

(t) ≤ GH(t) ≤
(
et
d

)2d. Let h0 be the all-zero
hypothesis. Note that h0 ∈ H∆. Now, using a standard VC-based uniform convergence argument we have,

P
Su∼DnoX

[
∃h1, h2 ∈ H : |dis(h1, h2;DX )− d̂is(h1, h2;Su)| > α

]
≤ P

Su∼DnoX

[
∃h ∈ H∆ : |dis(h, h0;DX )− d̂is(h, h0);Su)| > α

]
≤ 2GH∆

exp (−noα2/8) ≤ 2
(eno
d

)2d
exp (−noα2/8)

Note that the first inequality in the third line is non-trivial, and is used unanimously in VC-based uniform
convergence bounds (see e.g. Shalev-Shwartz and Ben-David, 2014).

4. Privately Answering Any Number of Classification Queries

In this section, we describe an universal PCQR algorithm that can answer any number of queries with private
sample size that is independent of the number of queries. The main idea is that after answering a number

11
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of queries ≈ VC(H)
α , we can use the feature-vectors defining those queries as an auxiliary “public” dataset.

Recall that as defined earlier in our problem statement, the set of queries themselves do not entail any privacy
constraints. We can then invoke the framework of semi-private learning introduced by Beimel et al. (2013),
where such auxiliary public dataset can be exploited to finally generate a classifier that is safe to publish. In
particular, a semi-private learner takes as input two types of datasets: a private labeled dataset, and another
auxiliary public dataset. The algorithm needs to satisfy differential privacy only with respect to the private
dataset. Alon et al. (2019) describe a construction of a semi-private learner (referred to as ASSPP), and show
that it suffices to have a public unlabeled dataset of size ≈ VC(H)

α to privately learn any hypothesis class H
with excess error α in the agnostic setting. In particular, for any distribution D over X × Y , given a set of
feature-vectors of size ≈ VC(H)

α drawn i.i.d. from DX , and a private labeled training set of ≈ VC(H)
ε α2 drawn

i.i.d. from D, ASSPP outputs a classifier hpriv ∈ H such that err(hpriv;D) − min
h∈H

err(h;D) ≤ α w.r.t D.

Hence,ASSPP outputs a classifier that can be used to answer any number of subsequent classification queries.
For the sake of completeness, we give a formal description of ASSPP in Appendix B.

Using this result, we can extend our construction in Section 3.2 to allow for privately answering any
number of classification queries using a private training set whose size is independent of the number of
queries. In Algorithm 4 below (denoted as AUnvPrivCl), we describe our universal PCQR algorithm.

Algorithm 4 AUnvPrivCl: Universal Private Classification-Query Release Algorithm
Input: Private dataset: S ∈ Un, number of queries: m, online sequence of classification queries: Q =

(x̃1, . . . , x̃m), hypothesis class: H, oracle access to a non-private PAC learner for H: BPAC, privacy
parameters ε, δ > 0, accuracy parameter α, and failure probability β.

1: mo ← 32 d log(1/α)+log(1/β)
α , m′ ← min(mo,m)

2: Output (ypriv1 , . . . , yprivm′ )← AAgPrivCl

(
S, m′, (x̃1, . . . , x̃m′), H, BPAC, ε, δ, α, β

)
3: if m′ = mo then
4: Tpub ← (x̃1, . . . , x̃mo)
5: hpriv ← ASSPP(S, Tpub,H, ε)
6: for j = mo + 1, . . . ,m do
7: Output yprivj ← hpriv(x̃j)

We finally formalize this observation in the following theorem.

Theorem 11 Let H be any hypothesis class with VC(H) = d. For any ε, δ, α, β ∈ (0, 1) and any m < ∞,
AUnvPrivCl is an (ε, δ, α, β, n,m)-PCQR algorithm forH with private sample size

n = O


(
d log

(
1
α

)
+ log

(
mo
β

))
log3/2

(
2
δ

)
log
(

moα
min(δ,β/2)

)
ε α2

·max

(
1,
√
d α log1/2

(
1

α

)) ,

where mo = O
(
d log(1/α)+log(1/β)

α

)
(as set in Step 1). In particular, when α ≤ 1√

d
, it would suffice to have a

private sample of size n = Õ
(

d
ε α2

)
.

Near-optimality of our sample complexity bound: Note that without any privacy constraints, the sam-
ple complexity of this problem in the agnostic PAC setting is Θ

((
VC(H)+log(1/β)

α2

))
. Note that this fol-

lows from the standard agnostic PAC learning bound and the fact that access to unlabeled data (the set of
queries) does not improve the sample complexity (Ben-David et al., 2008, Theorem 15), unless one makes
assumptions about the conditional distribution of the true label given the unlabeled domain point. Now, when

12
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α = O

(
1√

VC(H)

)
, and assuming ε = Θ(1), our private sample complexity bound in Theorem 11 nearly

matches the non-private sample complexity. This shows that our bound is optimal (up to log factors) in that
parameters regime1.

Remark 12 It is worth mentioning that applying the same technique (the semi-private learner of Alon et al.
(2019)) to the construction of (Bassily et al., 2018) also yields a universal PCQR algorithm but with a worse
sample complexity bound than ours. In particular, it is not hard to see that the resulting sample complexity
bound based on the construction by Bassily et al. (2018) is Õ

(
VC(H)
α2 ·max

(
1,
√
VC(H)

))
, where Õ hides

polylog factors in (1/α, 1/β, 1/δ). Our bound is tighter by a factor of ≈ α when VC(H) = ω(1).
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Appendix A. Proof of Lemma 6

Proof of Lemma 6
Note that the score function for the exponential mechanism is −êrr(h;S′) whose global sensitivity is

1/n′. Now, by using the standard accuracy guarantees of exponential mechanism of (McSherry and Talwar,
2007) (and the fact that its instantiated here with privacy parameter = 1), w.p. ≥ 1− β/3 we have

êrr
(
ĥ;S′

)
− êrr

(
hERMS′ ;S′

)
≤ 2

n′

(
log
(
|H̃|
)

+ log(
3

β
)

)
.

Using the value of n′ given in the lemma statement, together with Sauer’s Lemma (Sauer, 1972) to bound the
size of H̃ , it follows that:

êrr
(
ĥ;S′

)
− êrr

(
hERMS′ ;S′

)
≤ 2

n′

(
d log

(
en′

d

)
+ log

(
3

β

))
≤ 80α2 (d log(1/α) + log(3/β))

256( d+ log(3/β))

≤ α/3. (4)

Given the bound on n′ and the fact that S′ ∼ Dn′
, by a standard uniform convergence argument from learning

theory (Shalev-Shwartz and Ben-David, 2014), we have the following generalization error bounds. With
probability ≥ 1− 2β/3, we have:

|err(ĥ;D)− êrr(ĥ;S′)| ≤ α/3, (5)

|err
(
hERMS′ ;D

)
− êrr

(
hERMS′ ;S′

)
| ≤ α/3 (6)

Putting (4)-(6) together, we conclude that w.p. ≥ 1 − β, we have err
(
ĥ;D

)
− err

(
hERMS′ ;D

)
≤ α. This

completes the proof.

Appendix B. Constructions from previous works

B.1. Description of Algorithm ASubSamp

For completeness, here we briefly describe the algorithm ASubSamp (Algorithm 5 below) due to Bassily et al.
(2018). The input to ASubSamp is a private labeled dataset S = {(x1, y1), . . . , (xn, yn)}, an online sequence
of classification queriesQ = (x̃1, . . . , x̃m), and a generic non-private PAC learner B for a hypothesis classH.
The algorithm outputs a sequence of private labels (ypriv1 , . . . , yprivm ). The key idea in ASubSamp is as follows:
first, it arbitrarily splits S into k equal-sized sub-samples S1, . . . , Sk for appropriately chosen k. Each of those
sub-samples is used to train B. Hence, we obtain an ensemble of k classifiers hS1 , · · · , hSk . Next for each
input query x̃i ∈ Q, the votes (hS1(x̃i), . . . , hSk(x̃i)) are computed. It then applies the distance-to-instability
test (Smith and Thakurta, 2013) on the difference between the largest count of votes and the second largest
count. If the majority vote is sufficiently stable, ASubSamp returns the majority vote as the predicted label for
x̃i; otherwise, it returns a random label. The sparse-vector framework is employed to efficiently manage the
privacy budget over them queries. In particular, by employing the sparse-vector technique, the privacy budget
of ASubSamp is only consumed by those queries where the majority vote is not stable. Algorithm ASubSamp

takes an input cut-off parameter T , which represents a bound on the total number of “unstable queries” the
algorithm can answer before it halts in order to ensure (ε, δ)-differential privacy.
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Algorithm 5ASubSamp Bassily et al. (2018): Private Classification via subsample-aggregate and sparse-vector
Input: Private dataset: S, upper bound on the number of queries: m, online sequence of classification

queries: Q = {x̃1, . . . , x̃m}, hypothesis class H, oracle access to a PAC learner of H: BPAC, unstable
query cutoff: T , privacy parameters: ε, δ > 0, failure probability: β.

1: c← 0, λ←
√

32T log(2/δ)

ε and k ← 34
√

2λ · log (4mT/min (δ, β/2))
2: w ← 2λ · log(2m/δ), ŵ ← w + Lap(λ) {Lap(b) denotes the Laplace distribution with scale b}
3: Split S into k non-overlapping sub-samples S1, · · · , Sk.
4: for j ∈ [k] do
5: hSj ← BPAC(Sj)
6: for i ∈ [m] and c ≤ T do
7: Fi ← {hS1(xi), · · · , hSk(xi)} {For every y ∈ {0, 1}, let ct(y) = # times y appears in Fi.}
8: q̂xi ← arg max

y∈{0,1}
[ct(y)], distŷxi ← largest ct(y) - second largest ct(y)

9: yprivi ← Astab(S, q̂xi , distŷxi , ŵ,
1

2λ) {Stability test for q̂xi , given by Algorithm 6 below.}
10: if yprivi = ⊥, then c← c+ 1, ŵ ← w + Lap(λ)

11: Output yprivi

Algorithm 6 Astab Smith and Thakurta (2013): Private estimator for f via distance to instability
Input: Dataset: S, function: f : Un → R, distance to instability: distf : Un → R, threshold: Γ, privacy

parameter: ε > 0
1: d̂ist ← distf (S) + Lap (1/ε)

2: if d̂ist > Γ, then output f(S), else output ⊥

B.2. Description of Algorithm ASSPP

In Section 4, we use a semi-supervised semi-private learner construction from (Alon et al., 2019) (referred to
asASSPP) to give a construction for a universal PCQR algorithm that can answer any number of classification
queries (Algorithm 4). For completeness, we describe the construction of this semi-private learner ASSPP

in Algorithm 7 below2. Algorithm 7 takes as input two datasets: a private dataset S of size n, and an
unlabeled public dataset Tpub of size mo, and outputs a hypothesis hpriv : X → {0, 1}. The main idea of the
construction in (Alon et al., 2019) is that the public unlabeled dataset can be used to create a finite α-cover
forH (see Definition 13 below), and hence, reducing the task of privately learningH to the task of learning a
finite sub-class ofH (the α-cover).

Definition 13 (α-cover for a hypothesis class) A family of hypotheses H̃ is said to form an alpha-cover for
a hypothesis classH ⊆ {0, 1}X with respect to distribution DX if for every h ∈ H there exists a h̃ ∈ H̃ such
that E

x∼DX

[
1(h(x) 6= h̃(x)

]
≤ α.

2A similar construction of the semi-private learner ASSPP has also appeared in the earlier work by Beimel et al. (2013).
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Algorithm 7 ASSPP Alon et al. (2019): Semi-Supervised Semi-Private Agnostic Learner
Input: Private labeled dataset: S ∈ Un, a public unlabeled dataset: Tpub = (x̃1, · · · , x̃mo) ∈ Xmo ,

a hypothesis classH ⊂ {0, 1}X , and a privacy parameter ε > 0.
1: Let T̃ = {x̂1, . . . , x̂m̂} be the set of points x ∈ X appearing at least once in Tpub.
2: Let ΠH(T̃ ) = {(h(x̂1), . . . , h(x̂m̂)) : h ∈ H} .
3: Initialize H̃Tpub = ∅.
4: for each c = (c1, . . . , cm̂) ∈ ΠH(T̃ ): do
5: Add to H̃Tpub arbitrary h ∈ H that satisfies h(x̂j) = cj for every j = 1, . . . , m̂.
6: Use the exponential mechanism with inputs S, H̃Tpub , ε, and score function q(S, h) , −êrr(h;S) to

select hpriv ∈ H̃Tpub .
7: return hpriv.
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