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Abstract—Running intensive compute tasks across the fifth
generation mobile network of edge devices introduces distributed
computing challenges: edge devices are heterogeneous in the
compute, storage, and communication capabilities; and can
exhibit unpredictable straggler effects and failures. In this work,
we propose an error-correcting-code inspired strategy to execute
computing tasks in edge computing environments, which is de-
signed to mitigate variability in response times and errors caused
by edge devices’ heterogeneity and lack of reliability. Unlike
prior coding approaches, we incorporate partially unfinished
coded tasks into our computation recovery, which allows us to
achieve smooth performance degradation with low-complexity
decoding when the coded tasks are run on edge devices with a
fixed deadline. By further carrying out coding on edge devices
as well as a master node, the proposed computing scheme also
alleviates communication bottlenecks during data shuffling and
is amenable to distributed implementation in a highly variable
and limited network. Such distributed encoding forces us to solve
new decoding challenges. Using a representative implementation
based on federated multi-task learning frameworks, extensive
performance simulations are carried out, which demonstrate
that the proposed strategy offers significant gains in latency and
accuracy over conventional coded computing schemes.

Index Terms—edge computing, coding theory, distributed
learning

I. INTRODUCTION

As the Internet-of-Things (IoT) begins to be deployed in
the fifth generation (5G) mobile network, devices such as
smartphones, smart speakers, and wearable hardware will
increasingly pervade our lives, appearing in environments
ranging from the industrial to residential. These devices will,
and indeed many already do, generate increasing amounts of
data, e.g., by sensing users’ inputs and surrounding infor-
mation about their environments. This data can be used for
applications such as scene analysis, speech recognition, and
task-specific assistance by analyzing it at real-time cognitive
engines located at both mobile devices (where the data is col-
lected) and cloud servers. However, such an edge computing
setting introduces new challenges compared to existing dis-
tributed environments such as servers in data centers. Unlike
homogeneous datacenter servers, mobile devices located at
the network edge or mobile edge clouds have heterogeneous
communication, computation, energy, and storage capabilities.
Their connectivity topology may also be more complex than
that of worker nodes in data centers. Such distributed heteroge-
neous environments require parallel processing due to highly
latency-sensitive resource-intensive (human-in-loop) systems
to achieve device learning objectives. Moreover, edge devices
likely exhibit unpredictable latency due to various factors
such as hardware reliability (e.g., disk failures, battery limits),

varying network conditions, shared resource contention, and
unbalanced workloads.

To design scalable and robust systems in these edge com-
puting environments, we therefore need to address their unreli-
ability and variable response times. MDS (maximum distance
separable)-based coded computing has received considerable
attention from the research community to speed up dispersed
computing systems by injecting redundancy computations [1]–
[8]. It has been shown that the coding approach can speed up
machine learning in distributed settings by a multiplicative
factor that is proportional to the amount of injected redun-
dancy. For example, several coding techniques have been
proposed that compute large linear transforms in a distributed
way [9], convolve two long vectors using parallel processors
[10], evaluate nonlinear functions by exploiting the modern
multicore setups [11], multiply large matrices [12], and enable
a hierarchical computing system [13]. However, most of these
works assume balanced and i.i.d. data processed at homoge-
neous worker nodes since they were designed to distribute
datasets among many worker nodes in a single data center.
Edge computing, however, should deal with system challenges
– edge devices are heterogeneous in terms of computing
capability, communication resource, battery, etc.

In the light of these system challenges, previous works
suffer from a number of performance and scalability prob-
lems. The primary limitation is that (n, k)-coded computation
schemes based on MDS coding can not recover the desired
computation if k coded computations are not collected within
the deadline. Since many edge devices may not be able to
fully complete or return their computations due to limited bat-
tery, limited communication capability, and/or mobility, MDS
coding can often fail, forcing the master node to wait longer
for additional complete computation results from its workers.
In addition, unlike in data center environments with well-
understood failure statistics, it is difficult to know what value
should be set for k, the number of data partitions, to achieve
the best coding performance when the coded computation is
distributed among n worker edge devices.

The second limitation is that the previous works have not
considered dynamically changing network topologies beyond
carrying out coding in the master node. Due to the mobility of
wireless edge nodes, their network connectivity could degrade
quickly, and some edge nodes could disappear during learning.
Thus, the master node does not have control on the structure
of the generator matrix used by the worker nodes, as this
generator matrix will change if worker nodes disappear.

In this work, we propose to address these two fundamen-



tal limitations by developing error-correcting-code inspired

techniques that outperform MDS-based coding techniques for

matrix-vector multiplication (y = Xw), which is a fundamen-

tal step for many data analytics algorithms, such as principal

component analysis, logistic regression, collaborative filtering,

etc. However, designing such techniques poses several research

challenges. First, in contrast to common coding theory [14]

or network coding settings (see [15], [16], and references

therein), the contents of the redundancy data depend on

the actual data matrix, but should not depend on the task

weight vector, even though the decoding procedure should

be performed on the coded computations (i.e., the data mul-

tiplied by the weight vector), not the coded data. We thus

face decoding challenges. The actual computations can be

associated with different coded computations, depending on

the task weight vector. This is different from common coding

theory or network coding settings where redundancy symbols

are uniquely determined by information symbols, which do not

allow us to recover unique target computations in our setting.

Second, unlike coded shuffling in cloud computing, it is

difficult to track what cached data resides at which edge

worker devices. Since the overhead could be high if the master

node has to track which previously joined edge devices have

what coded data over iterations, it is reasonable for each

edge device to make its own coding decision to improve

the statistical efficiency of the learning procedure. Even if

the master node chooses the coding coefficients for all edge

devices, it still has no control over the structure of the

generator matrix G, because some coded computations might

not be returned due to mobility, battery, or network congestion,

which cannot be assumed to be known a priori. The master

node then cannot always control how edge devices re-encode

the coded data as needed for matrix-vector multiplications, and

the reconstructed generator matrix G is arbitrarily determined

rather than pre-designed. Thus, a master node needs to decode

with an arbitrary generator matrix. However, it is known in

coding theory that it is NP-hard to decode a linear code with

an arbitrary generator matrix [17].

We provide four key insights into this problem, which serve

as building blocks that enable us to design a coded computing

strategy that overcomes the uncontrollable edge environment

and limits the error of the final machine learning models

encountered when stragglers occur. Our first insight is to treat
the difference from the complete computation as additive noise,

instead of flagging unfinished task as erasures. This error

model allows us to exploit intermediate results to evaluate

the reliability of each computation. Our second insight is

to carefully combine the ideas of quantization, quantized
data encoding, and multi-stage computation decoding via
modulo operations to resolve the aforementioned nonunique

redundancy symbols. This key methodology is highlighted

in Theorem 1 in Section III. Our third insight is to jointly
carry out coding on edge nodes as well as the master node,

instead of carrying out coding on the master side only and

then injecting task redundancy to edge nodes, during data

shuffling between distributed nodes. In this way, we ensure that
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Fig. 1. The system model of coded edge computing.

only a few coded multicast generates sufficient randomness

and alleviate communication bottlenecks. Finally, we combine
a reconstructed generator matrix from control information
(consequently the corresponding parity check matrix) with the
idea of sphere decoding (allowing low complexity decoding).
This component of decoding enables to identify candidates

for coded computations and recover the actual computations

by harnessing reliability.

The rest of the paper is organized as follows. The next

section describes the system model that we assume in design-

ing our proposed coded computing strategy. The main con-

tributions of the paper (our proposed coded edge computing

strategy) appear in Section III. In Section IV, we evaluate

the overall performance of the proposed strategy for matrix-

vector multiplications and for federated learning, showing that

it consistently outperforms MDS-based coded computing and

uncoded computing over a range of straggler settings.

II. SYSTEM MODEL

We consider a system model that performs distributed edge

computing where (i) the master node in the edge environment

executes a data analytics algorithm and (ii) the master node

assigns partial replications of the training data X via coding

techniques to many nearby edge devices that may be one or

multiple hops away. The edge devices are used to accelerate

the multiplication of X with the task weight vector w and

mitigate the effect of straggling edge devices; with our pro-

posed coding strategy, they can also significantly reduce the

errors caused by stragglers. Each device j multiplies a coded

subset of the training data X′
j by w and returns the (possibly

unfinished) coded computations at the deadline Tdl. Instead of

ignoring the coded computation results of slow edge devices

as erasures, while waiting for k fast edge devices like the

MDS-coded approach, our proposed strategy fully utilizes the
intermediate computation results returned within the deadline

Tdl from all edge devices. We recover the desired output by

treating the difference from the optimal solution as additive

noise: ej = yj − y∗
j for j = [1 : n], where n is the number

of edge devices serving the master node. Our system model

of coded edge computing is illustrated in Figure 1.

Once the results from the edge users are received, the master

node must decode them by reconstructing the associated gen-

erator matrix G, which depends on which coded computations

are received. Some coded computations might not be returned



due to mobility of edge devices, battery outage, or network
congestion. The master node then decodes the erroneous
received computations to recover the actual computations.

III. CODED STRATEGY FOR EDGE COMPUTING

We first provide an overview of our proposed coded strategy
for edge computing, as shown in Algorithm 1. We focus on
computing a basic matrix-vector multiplication y = Xw,
which is a fundamental step for many data analytics algo-
rithms [1].

The first steps in our strategy are to quantize the available
training data X and weight vector w at the master node, and
then encode the quantized data (lines 1 and 2). The master
node then distributes the encoded data and quantized task
weight vector to its nearby edge devices (line 3) so that each
device can compute its own matrix-vector multiplication (lines
4 and 5).

At deadline Tdl, all edge devices return their partially or
completely finished computations back to the master node (line
6). We denote these results as y′j + ej for each edge device
j, where ej models the error in the device’s computation
due to not finishing the computations or other error factors.
This error can be large; devices that have failed, e.g., lost
network connectivity, would not return any computations and
we can assume that their computations are entirely unfinished
(i.e., ej = −y′j). In practice, we would not know ej as we
only observe the computed result y′j + ej , not y′j ; however,
modeling incompleteness as a computation error allows us to
recover a more accurate estimate of y than standard coding
techniques, by leveraging partially finished results.

The master node finally decodes the received coded com-
putations by remapping them into binary forms via modulo 2
operations and carefully combining multi-level stage decoding
and sphere decoding (lines 9 to 12), finally returning an
estimate ŷ of Xw.

We describe each step of our strategy in detail below.

Algorithm 1 Error-Correcting Data Encoding and
Computation Decoding for Edge Computing

Input: Training data X := [x(p, q)] ∈ Rv×d and task weight
vector w := [w(q)] ∈ Rd×1 stored on the master node

1: Quantize Q(X)← X
2: Encode X′j ←

∑k
i=1 gijQ(Xi), j ∈ [1 : n]

3: Distribute X′j and Q(w) to edge device j ∈ [1 : n]
4: for coded training data j = 1, 2, · · · , n in parallel over
n edge devices (local computations) do

5: Compute y′j := X′jQ (w) ∈ R v
k×1

6: return y′j + ej back to the master node
7: end for
8: for quantization levels l = 1, 2, · · · , N do
9: Call level-l decoder, returning level-l candidates m̃l(p)

satisfying the parity check
10: end for
11: Form r̂′i(p) by the combinations of m̃l(p), computing the

likelihoods Li

12: Recover r̂(p) such that r̂(p)G = r̂′i∗(p), where i∗ =
arg maxi |Li|

13: return ŷ ←
[
ŷT1 ŷT2 · · · ŷTk

]
, where r̂(p) :=

[ŷ1(p) ŷ2(p) · · · ŷk(p)] for p ∈ [1 : vk ]

A. Quantization, Data Encoding and Coded Computations

In this section, we denote the (p, q)-elements of the training
data X by x(p, q) and outline the quantization, encoding, and
coded computation steps in lines 1 to 7 of Algorithm 1.

Quantization. The training data X are quantized with N1

levels into Q(X) := [Q (x(p, q))] by the binary representation
with remapping terms as follows:

Q (x(p, q)) = γ1

(
N1∑
r=1

2r−1bx(p,q),r − β1

)
,

where the coefficients bx(p,q),r are chosen to minimize the
quantization error |x(p, q)−Q (x(p, q)) | and γ1 and β1 scale
the training data x(p, q) so that it falls within the achievable
quantization range, obtained by Algorithm 5 in Appendix B.

Denote the (q, 1)-element of w by w(q). Similar to the
training data, the task weight vector w is also quantized
with N2 levels into Q(w) := [Q(w(q))] by the binary
representation with remapping terms as follows:

Q (w(q)) = γ2

(
N2∑
r=1

2r−1bw(q),r − β2

)
,

where again the bw(q),r’s are chosen to minimize the quantiza-
tion error |w(q)−Q (w(q)) | and γ2 and β2 are scaling factors
obtained by Algorithm 5.

Data encoding. To encode the quantized
training data Q(X), we divide it into k row-splits[
Q(XT

1 ) Q(XT
2 ) · · · Q(XT

k )
]T ∈ Rv×d, where

Q(Xi) ∈ R v
k×d. The quantized data are then encoded

as n linear combinations of these k row-splits, i.e.,
X′j =

∑k
i=1 gijQ(Xi), j ∈ [1 : n] where the generator

matrix G = [gij ] ∈ Zk×n2 . We choose n to equal the
number of edge devices, so that each device is sent a
coded computation, and choose k depending on the estimated
straggler probability. Denote the (p, q)-elements of Q(Xi) and
X′j by Q (xi(p, q)) and x′j(p, q), respectively, for p = [1 : vk ]
and q = [1 : d]. We can then write the collection of the
(p, q)-elements in each of the k row-splits as Q (x(p, q)) ≡
[Q (x1(p, q)) Q (x2(p, q)) · · · Q (xk(p, q))]. Similarly,
we define x′(p, q) ≡ [x′1(p, q) x′2(p, q) · · · x′n(p, q)] as
the collection of (p, q)-elements from n coded row-splits
X′j . Thus, the quantization encoding procedure for the
(p, q)-element of X can be summarized as:

x′(p, q) = Q (x(p, q))G.

The master node distributes the quantized task weight vector
Q(w) and the coded row-splits of the training data, X′j =[
x′j(p, q)

]
∈ R v

k×d, with coding information {gij}, i ∈ [1 : k]
in its header, to each of its n edge devices.

Coded computations. Each edge device j aims to compute
the multiplication of its coded row-split training data with the



quantized task weight vector, i.e., to find y′j := X′jQ (w) ∈
R v
k×1. We assume that, instead of sequentially computing each

of the v
k elements of y′j , the device randomly permutes these

elements and computes them in random order. Unfinished
computations, e.g., if the device does not have time to compute
some of the y′j elements, would then appear at random
locations in y′j , allowing us to treat incomplete computations
as random errors.

At deadline Tdl, edge device j returns its (intermediate or
complete) coded computation y′j + ej back to the master
node. We assume that the device also sends the locations of
unfinished computations {p|ej(p) 6= 0} and the number of un-
finished calculations at each location p̃ (or more precisely, the
locations of Q(w(q)) corresponding to unfinished calculations
at p̃) in its control information. The distribution of the error
vector ej is estimated by Algorithm 6 in Appendix C based
on this information.

The aformentioned procedure of data and task weight vector
quantization, quantized data encoding and distribution by the
master node and computations of coded data and weight vector
on edge devices is summarized by Algorithm 2.

Algorithm 2 Quantization, Data Encoding and Coded
Computation

Input: Training data X := [x(p, q)] ∈ Rv×d and task weight
vector w := [w(q)] ∈ Rd×1 stored on the master node

1: Q(X) ← [Q (x(p, q))] =[
γ1

(∑N1

r=1 2r−1bx(p,q),r − β1
)]

(Algorithm 5)

2: Q(w)← [Q (w(q))] =
[
γ2

(∑N2

r=1 2r−1bw(q),r − β2
)]

3: Divide Q(X) into
[
Q(XT

1 ) Q(XT
2 ) · · · Q(XT

k )
]T

,
where Q(Xi) ∈ R v

k×d for i ∈ [1 : k]
4: X′j ←

∑k
i=1 gijQ(Xi), j ∈ [1 : n] by a generator matrix

G = [gij ] ∈ Zk×n2 i.e., x′(p, q) ← Q (x(p, q))G for p ∈
[1 : vk ] and q ∈ [1 : d]

5: Distribute X′j =
[
x′j(p, q)

]
∈ R v

k×d with {gij , i ∈ [1 :
k]} to its edge device j ∈ [1 : n]

6: Distribute Q(w) to its all edge devices
7: for coded training data j = 1, 2, · · · , n in parallel over
n edge devices (local computations) do

8: Compute y′j ← X′jQ (w) ∈ R v
k×1 by random permu-

tation order
9: return y′j+ej back to the master node with location in-

formation {p|ej(p) 6= 0} and the number of unfinished
calculations at each location p̃ ∈ {p|ej(p) 6= 0} (or
more precisely, the locations of Q(w(q)) corresponding
to unfinished calculations at p̃ ∈ {p|ej(p) 6= 0})

10: end for

B. Computation Decoding

The master node finally decodes all of the received coded
computations {y′j + ej | j ∈ [1 : n]} to recover the actual
(quantized) computations corresponding to each of the k row-
splits in the training data, i.e., {yi | yi := Q (Xi)Q (w) ∈
R v
k×1, i ∈ [1 : k]}. Denote the (p, 1)-elements of yi and y′j

by yi(p) and y′j(p), respectively. We use r(p) to denote the col-
lection of the (p, 1)-elements [y1(p) y2(p) · · · yk(p)] from the
k original computations yi, which we are trying to compute.
We analogously use r′(p) ≡ [y′1(p) y′2(p) · · · y′n(p)] to denote
the collection of the (p, 1)-elements from the n coded com-
putations y′j = X′jQ(w), and z(p) ≡ [e1(p) e2(p) · · · en(p)]
to denote the collection of (p, 1)-elements in the n errors ej .

We show that a generator matrix G for encoding original
data into coded data can also be used for encoding the actual
computations into coded computations.

Theorem 1. If the encoding procedure for the original data
X is expressed in terms of each (p, q)-element as follows:

x′(p, q) = Q(x(p, q))G (1)

and the original and coded computations are given by yi =
Q(Xi)Q(w) for i = [1 : k] and y′j = X′jQ(w) for j = [1 : n],
respectively, the encoding procedure for the original compu-
tations is also expressed using the same generator matrix G
in terms of (p, 1)-element as follows:[

m′b,l(p)−
l−1∑
r=1

2r−l
(
mb,r(p)G−m′b,r(p)

)]
mod 2

= mb,l(p)G mod 2,

where mb,r(p) = [br,1(p) br,2(p) · · · br,k(p)], m′b,r(p) =
[b′r,1(p) b′r,2(p) · · · b′r,n(p)],

r(p) = γ1γ2

(
N∑
r=1

2r−1 [br,1(p) · · · br,k(p)]− β′p11×k

)
,

and

r′(p) = γ1γ2

 N ′∑
r=1

2r−1
[
b′r,1(p) · · · b′r,n(p)

]
− β′p11×kG

 .

Proof. See the proof in Appendix A.

The decoding procedure then proceeds sequentially across
the quantization levels, and finally the results from each level
are combined to recover the actual computation ŷ, our estimate
of y = Xw.

Choosing candidates with sequential decoding. For each
p = [1 : v

k ], the master node employs sequential decoding
across quantization levels; it computes a candidate set of coded
bits m̂j,l(p) for each quantization level of coded computations
r′(p). We describe this procedure for recovering the level-
1 coded computations; subsequent levels are decoded analo-
gously. Applying the remapping operation to

u(p) = r′(p) + z(p) = r(p)G+ z(p),

we write the level-1 received coded computation as

ũlevel,1(p) =
1

γ1γ2
u(p) + β′p11×kG,

=
N∑
r=1

2r−1m′b,r(p) + zlevel,1(p), (2)



where m′b,r(p) :=
[
b′r,1(p) b′r,2(p) · · · b′r,n(p)

]
consists of the

coded quantization bits for level r in r′(p), N = N1 +N2 +1,
zlevel,1(p) = 1

γ1γ2
z(p) and

β′p = −
min

(
[Q(xT (p, 1)) · · · Q(xT (p, d))]Q(w)

)
γ1γ2

.

We can estimate β′p, the minimum of the quantized compu-
tations rescaled by γ1γ2, from the recovered computations in
the previous epoch of data analytics algorithms, task weight
vector w in the current epoch and its differential update.
Candidates of n bits in each level can be separately decoded
by the modulo-2 operation. Applying the modulo-2 operation
on the level-1 received computations ũlevel,1(p) in (2), all the
quantization bits except level-1 bits are completely removed.
Hence, the master node sees a noisy version of the level-1
coded computation over Zn2 .

Given ũlevel,1(p) and the information on unfinished com-
putations in the header, the master node can identify τ un-
reliable locations of m′b,1(p) (i.e., locations where we expect
incompleteness errors). It then assumes that these elements
are in locations 1 ≤ j1 < j2 < · · · < jτ ≤ n of m′b,1(p).
Denote m̃1(p) by the vector formed by fixing the elements
as they are in all other locations except j1 < j2 < · · · < jτ
of m′b,1(p). The master node considers all 2τ level-1 vectors
m̃1,1(p), m̃2,1(p), · · · , m̃2τ ,1(p) formed by replacing the
elements of m̃1(p) in locations j1 < j2 < · · · < jτ with all
possible binary numbers of length τ , i.e., binary expansion
of 0, 1, · · · , 2τ − 1. It then identifies level-1 candidates
m̃j,1(p), j ∈ [1 : 2τ ] satisfying m̃j,1(p)HT = 0n−k, i.e.,
codewords of G. Without loss of generality, assume that the
level-1 candidates are m̂1,1(p), m̂2,1(p), · · · , m̂c1,1(p) for
some c1 ∈ [1 : 2τ ]. Note that c1 = 0 if none of m̃j,1(p)
satisfies m̃j,1(p)HT = 0. For each m̂j,1(p), j ∈ [1 : c1], if
c1 > 0, using the level-1 received computation ũlevel,1(p) and
the distribution of 1

γ1γ2
z(p) based on Algorithm 6, the master

node computes the log-likelihood of m̂j,1(p), j ∈ [1 : c1].
It then chooses the m̂j,1(p) with the highest absolute value
of log-likelihood as potentially recovered level-1 coded bits
denoted by m̂b,1(p) and keeps all the level-1 candidates
m̂j,1(p), j ∈ [1 : c1] for the final stage of decoding. If c1 = 0,
the master node sets the potentially recovered level-1 coded
bits by randomly choosing 0 or 1 in locations j1, j2, · · · , jτ .

The master then cancels out the contribution of potentiually
recovered level-1 coded bits m̂b,1(p) from ũlevel,1(p), p ∈ [1 :
n
k ] and scales by 1

2 to get

ũlevel,2(p) =
N∑
r=2

2r−2m′b,r(p)

+
1

2

(
m′b,1(p)− m̂b,1,1:k(p)G

)
+ zlevel,2(p),

where zlevel,2(p) = 1
2γ1γ2

z(p). It then can attempt to decode
for level-2 coded computation by following the same steps
as in the decoding operation of level-1 coded computation.
The recursive procedure continues until coded computation
candidates up to level N are decoded.

Combining the candidate results. Now the master
node chooses Nτ so that the size of the candidates set∏N
l=Nτ+1 cl ≤ C, where C is the predetermined maximum

value. It then considers all possible combinations of candi-
dates from level-1 to level-N by fixing a level-l candidate
as potentially recovered level-l coded bits m̂b,l(p) for l ∈
[1 : Nτ ] and recovers the corresponding coded computations
r̂′i(p), i ∈ [1 :

∏N
l=Nτ+1 cl], because higher quantization

bits are more important than lower quantization bits in de-
coding when reducing the size of candidates set. Using the
received coded computation u(p) and the distribution of z(p)
based on Algorithm 6, it computes the log-likelihood of each
combination and identifies the recovered coded computation
r̂′(p) as the one with the highest absolute values of log-
likelihood. The master node then recovers the desired actual
computation r̂(p) that, when encoded with the generator
matrix G, produces the coded compuation r̂′(p). Combining
r̂(p) = [ŷ1(p) ŷ2(p) · · · ŷk(p)] for p ∈

[
1 : vk

]
, it recovers

the actual computation ŷ =
[
ŷT1 ŷT2 · · · ŷTk

]
. The proposed

decoding procedure is summarized in Algorithm 3.

Algorithm 3 Computation Decoding

1: for computation elements p = 1, 2, · · · , vk in parallel
do

2: r′(p)← [y′1(p) y′2(p) · · · y′n(p)]
3: z(p)← [e1(p) e2(p) · · · en(p)]
4: u(p)← r′(p) + z(p)

5: β′p = −min([Q(xT (p,1)) ··· Q(xT (p,d))]Q(w))
γ1γ2

6: N ← N1 +N2 + 1
7: for quantization levels l = 1, 2, · · · , N do
8: if l = 1 then
9: ũlevel,1(p) ← 1

γ1γ2
u(p) + β′p11×kG =∑N

r=1 2r−1m′b,r(p) + zlevel,1(p), where
m′b,r(p) :=

[
b′r,1(p) b′r,2(p) · · · b′r,n(p)

]
and

zlevel,1(p) := 1
γ1γ2

z(p)
10: else if l ≥ 2 then
11: ũlevel,l(p) ← 1

2
(ũlevel,l−1(p)− m̂b,l−1(p)) =∑N

r=l 2
r−lm′b,r(p) +∑l−1

r=1 2r−l
(
m′b,r(p)− m̂b,r,1:k(p)G

)
+zlevel,l(p),

where zlevel,l(p) := 1
2l−1γ1γ2

z(p).
12: end if
13: ũlevel,l(p) mod 2 ← ∆l(p) +

(zlevel,l(p) mod 2), where ∆l(p) :=(
m′b,l(p) +

∑l−1
r=1 2r−l

(
m′b,r(p)− m̂b,r,1:k(p)G

))
mod 2

14: Find unreliable locations 1 ≤ j1 < j2 < · · · <
jτ ≤ n of ∆l(p) from the information on unfinished
computations

15: Form m̃l(p) by fixing the values of the elements of
∆l(p) in all other locations except j1, j2, · · · , jτ of
∆l(p)

16: Form m̃j,l(p), j ∈ [1 : 2τ ] by replacing the elements
of m̃l(p) in locations j1, j2, · · · , jτ with binary ex-
pansion of [0 : 2τ − 1]



17: Find {m̃j,l(p)} satisfying m̃j,l(p)H
T = 0n−k

18: if |{m̃j,l(p)|m̃j,l(p)H
T = 0n−k}| := cl ≥ 1 then

19: Denote such level-1 candidates set by
{m̂j,l(p), j ∈ [1 : cl]}

20: Compute the log-likelihood Lj,l of m̂j,l(p) for j ∈
[1 : cl] using Algorithm 6

21: m̂b,l(p) ← m̂j∗,l(p), where j∗ =
arg maxj∈[1:cl] |Lj,l|

22: else
23: m̂b,l(p)← m̃j,l(p) by randomly choosing j ∈ [1 :

2τ ]
24: end if
25: end for
26: Choose Nτ satisfying

∏N
l=Nτ+1 cl ≤ C, where C is the

maximum size of the candidates set
27: Recover r̂′i(p), i ∈ [1 :

∏N
l=Nτ+1 cl] from all possible

combinations of level-1 to level-N candidates by fixing
a level-l candidate as m̂b,l(p) for l ∈ [1 : Nτ ]

28: Compute Li of r̂′i(p) using Algorithm 6
29: r̂′(p)← r̂′i∗(p), where i∗ = arg maxi |Li|
30: Recover r̂(p) such that r̂′(p) = r̂(p)G
31: end for
32: return ŷ ←

[
ŷT1 ŷT2 · · · ŷTk

]
, where r̂(p) =

[ŷ1(p) ŷ2(p) · · · ŷk(p)] for p ∈ [1 : vk ]

C. Data Exchange

In order to implement coded edge computing algorithms in
a practical system, the master node and edge devices must
exchange both data and control information. We outline these
exchanges, as well as state information required by the master
node, in this section. In particular, edge devices that help with
multiple rounds of computation can cache coded training data
from prior rounds to improve the performance of the proposed
coded computing strategy.

Initial state. The master node may not initially know the
full network topology due to the distributed, mobile and ad-hoc
properties of edge computing environments. Thus, the master
node must first use a discovery process to find a set of edge
devices available to help carry out its computations.

After this discovery process, the master node sends data
and control information to each device j. The data consists
of the coded row-split training data X′j and the quantized,
current task weight vector Q(w). The control information
includes two commands: a command to multiply each row
of X′j by Q(w) after randomly permuting the row order,
and a command to return the (possibly unfinished) coded
computations, with the indices of the incomplete rows, at the
deadline Tdl.

In epoch ≥ 2, unlike in epoch 1, the master node can take
advantage of cached coded training data at edge devices from
previous epochs and send the new coded training data via
coded multicast to all the previously joined edge devices and
newly joined edge devices. Since new devices do not have
cached data, it also sends (different) newly coded data via
unicast to these nodes.

This data information comes with control information,
which includes coding information on how the coding on the
newly coded data was carried out. If the edge device j has
cached coded data, the master node sends a coded shuffling
command to carry out coding based on both the newly coded
data and cached coded data to generate another set of newly
coded training data that can be stored for later computations.
If not, the edge device j simply stores the sent data and uses
it for computations.

If edge device acts as a relay node and has cached coded
data, the master node conveys a command to carry out
encoding the newly coded data and cached coded data into
the other newly coded data and to forward it to another
edge device, if the edge device has cached coded data. In
the same way as in epoch 1, it also conveys a command to
carry out the multiplication of aforementioned new coded data
and the current task weight vector with random permutations
and a command to return complete coded computations within
deadline.

Each edge device j that is still active at the deadline Tdl
then sends the master node data information consisting of
the (intermediate or complete) coded computations and error
information on the number of unfinished calculations per
computation element.

State for decoding. The master node reconstructs the
generator matrix G, which depends on received coded compu-
tations. Some coded computations might not be returned due
to mobility, battery, or network congestion.

IV. SIMULATION RESULTS

We demonstrate coded edge computing’s advantages over
MDS-based coded computing for matrix-vector multiplication
both alone and within federated multi-task learning.

A. Coded Edge Computing for Matrix-Vector Multiplication

To evaluate the performance of coded edge computing in
practice, we consider a simulation with a master node and
n = 15 edge devices and compare our coded edge computing
strategy to MDS-based coded computing and uncoded com-
puting. We assume 7 non-stragglers and 8 stragglers among the
edge devices. We consider a basic matrix operation y = Xw,
where X ∈ R10k×9 is synthetic training data sampled from the
standard normal distribution and w is a task weight vector with
elements ∈ {−1, 1}. We evaluate the error of the recovered
computation when we vary k, the number of row splits, as well
as the probability a straggler cannot finish its computations and
the level of quantization.

The training data X and task weight vector w are respec-
tively quantized with N1 = 8 and N2 = 2 bits. To test the
effect of k, the number of row splits, we run three experiments
where we divide the quantized training data into k = 8, 10, 11
sub-data splits. In each experiment, the sub-data are then
encoded into 15 coded data elements to be distributed among
the n = 15 edge devices. Note that, depending on the realized
actual training data, the distribution of the coded training
data becomes t location-scale distributions (not normal) with
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(a) (n, k) = (15, 8).
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(b) (n, k) = (15, 10).
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(c) (n, k) = (15, 11).

Fig. 2. Performance of coded edge computing with different code rates and
11 bits quantization.

different parameters that determine the computation error
distribution. We evaluate the effect of device stragglers by
running 11 experiments where we sweep the probability each
straggler cannot finish computing y′(p) from {0, 0.1, · · · , 1};
each straggler’s ability to finish is independent from the
others’. Nodes that do not finish within a given deadline
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Fig. 3. Performance of (15,10)-coded edge computing with different quanti-
zation bits.

return partially finished computations. When τ errors occur,
we assume that each error consist of s ∈ [1 : τ ] unfinished
calculations, and that the number of unfinished calculations per
element is conveyed to the master node from edge device. The
computation decoder of coded edge computing is simulated
with 11 levels of multi-stage decoding per collection of 15
coded computations elements. We assume that MDS-based
coded computing performs decoding per collection of (p, 1)-
elements from the 15 coded computation elements, i.e., it
can recover the actual computation based on each collection
instead of coded subdata.

Simulation results for the mean-squared error (MSE, defined
as the 2-norm of the difference between the actual computation
and the recovered computation) demonstrate that coded edge
computing outperforms MDS-based coded computing and
uncoded computing uniformly for all error probabilities and
numbers of row splits k, as shown in Figure 2. For example,
(15,10)-coded edge computing outperforms MDS-based coded
computing by 21.5–55.3% for error probabilities greater than
or equal to 0.3. In particular, coded edge computing achieves
a larger performance gap from the achievable MSE of MDS-
based coded computing for a lower code rate, because it can
handle stragglers by exploiting partial coded computations
with larger parity information more efficiently than MDS-
based coded computing. As we would expect, the MSE for all
methods increases with the error probability (since more errors
will be made) and with k (since more computation results are
needed to recover the original computation), but coded edge
computing consistently exhibits a lower rate of increase.

Finally, Figure 3’s simulation results for MSE demonstrate
that reducing the number of quantization bits from 11 to
7 degrades the performance of coded edge computing. For
example, coded edge computing can recover quantized actual
computations almost perfectly for lower error probabilities less
than or equal to 0.3, but suffers from inherent quantization
errors. Thus, the selection of quantization bits for coded edge
computing can be chosen to maximize performance within the
predetermined range depending on data analytics algorithms,



while reducing the number of decoding stages.

B. Coded Edge Computing for Federated Multi-Task Learning

We finally apply our coded edge computing strategy to
federated learning as a case study. Federated multi-task learn-
ing (FMTL) has been proposed to overcome the system and
statistical challenges in the federated setting [18]. FMTL aims
to learn local models for each device, namely FMTL node,
from data stored locally at the device, by solving the following
empirical risk minimization (ERM) in the federated setting:

min
W,Ω

m∑
t=1

nt∑
i=1

lt(wt,x
i
t) +R(W,Ω),

where W, Ω, lt(wt,x
i
t), and R(W,Ω) are models, task

relationships, losses, and a regularizer, respectively. In an
alternating fashion, a FMTL node learns a local model by
returning an approximate solution on each device based on a
fixed task relationship matrix and local data, and sending the
update vt to the central server.

We take into account the edge environment by supposing
there are a multitude of edge devices that can communicate
locally with one of the FMTL nodes. We adapt the proposed
method for federated multi-task learning, as shown in Algo-
rithm 4. Our coded strategy is applied to the multiplication of
local training data with a task weight vector, which is executed
when the local solver is called at a FMTL node to return
approximate solutions back to the central server from the node.

Algorithm 4 FMTL [18] with the proposed coded strategy

Input: Data Xt stored on t = 1, . . . ,m devices
Initialize α(0) := 0, v(0) := 0

1: for iterations i = 0, 1, . . . do
2: for iterations h = 0, 1, . . . ,Hi do
3: for devices t ∈ {1, 2, . . . ,m} in parallel do
4: call local solver, returning θht -approximate solution

∆αt by carrying out coded edge computing in
FMTL node t and its edge devices

5: update local variables α← α + ∆αt
6: end for
7: update v← v +

∑
t Xt∆αt

8: end for
9: Update Ω centrally using w(v) := ∇R∗(v)

10: end for
11: w(v) := ∇R∗(v)
12: return W := [w1, · · · ,wm]

To evaluate the performance of coded edge computing in
FMTL, we consider a simulation with m = 17 tasks (or FMTL
nodes), each of which has n = 15 edge devices to which it
connects, throughout the training. An edge device carries out
coded computing for Hi = 1300 rounds of computation. We
compare our coded edge computing strategy to MDS-based
coded computing and uncoded computing. As in Section IV-A,
we assume 7 non-stragglers and 8 stragglers among the edge
devices. We consider the same synthetic training data as in
Section IV-A and training and test output vectors from FMTL’s
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Fig. 4. Performance of FMTL with coded edge computing, MDS-based coded
computing and uncoded computing. (n, k) = (15, 10). Eight edge devices
among 15 become stragglers with the probability of 0.5.

small dataset [18]. The training data X and task weight vector
w are both quantized with 5 bits. The number of row splits is
k = 10. Control information overhead of each edge device is
16 bits. We fix the probability that each straggler cannot finish
computing each element in its output vector as 0.5; again each
straggler’s ability to finish is independent from the others’.
We estimate wall-clock time (in milliseconds) to run federated
learning as in [18].

Simulation results for primal suboptimality (defined by the
difference between optimal ERM value and ERM values of
each scheme) demonstrate that coded edge computing outper-
forms MDS-based coded computing and uncoded computing
uniformly for all estimated time. For example, coded edge
computing outperforms MDS-based coded computing and
uncoded computing by 18.35% and 69.5% for estimated time
800000, respectively. We note that, due to quantization effects,
FMTL with coded edge computing seems to outperform
FMTL without any stragglers in the beginning of training time,
but as learning progresses the quantization error becomes more
prominent.

V. CONCLUDING REMARKS

In this work, we propose a coded computing strategy
for dynamically changing edge environments, which pose
new heterogeneity and reliability challenges for executing
distributed computing tasks. In particular, in distributed com-
puting settings we cannot rely on edge devices to finish
their computations within a given deadline (if at all). Our
key methodological insights are to carefully combine data
encoding and computation decoding via quantization and
sphere/multi-stage decoding via modulo operations, which
allow us to exploit partially finished computations from edge
devices. Thus, our scheme is robust to failures (e.g., from
power failures or interruptions in network connectivity) and
long runtimes at edge devices, unlike conventional coded
computing schemes. Performance simulations show that our
proposed approach offers significant gains in both matrix-



vector multiplications and its application to federated learning
over conventional schemes.
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APPENDIX A
PROOF OF THEOREM 1

We first want to show that r′(p) = r(p)G. The coded
computations of (p, 1)-elements r′(p) are given by

r′(p) = [y′1(p) · · · y′n(p)]

=

[
d∑
q=1

x′1(p, q)Q(w(q)) · · ·
d∑
q=1

x′n(p, q)Q(w(q))

]

=

d∑
q=1

Q(w(q))x′(p, q)

=

d∑
q=1

Q(w(q))Q(x(p, q))G

=

[
d∑
q=1

Q(x1(p, q))Q(w(q)) · · ·
d∑
q=1

Q(xk(p, q))Q(w(q))

]
G

= [y1(p) · · · yk(p)]G

= r(p)G.

By remapping both sides,

r′(p)
γ1γ2

+ β′p11×kG =
r(p)G

γ1γ2
+ β′p11×kG

N ′∑
r=1

2r−1
[
b′r,1(p) · · · b′r,n(p)

]
=

N∑
r=1

2r−1 [br,1(p) · · · br,k(p)]G.

(3)

By taking modulo 2 on both sides, we have[
b′1,1(p) · · · b′1,n(p)

]
= [b1,1(p) · · · b1,k(p)]G mod 2.

(4)
We then cancel out the contribution of the level-1 coded bits
in (4) from (3) as follows.

1

2

 N ′∑
r=1

2r−1
[
b′r,1(p) · · · b′r,n(p)

]
− [b1,1(p) · · · b1,k(p)]G


=

N ′∑
r=2

2r−2
[
b′r,1(p) · · · b′r,n(p)

]
+

1

2

([
b′1,1(p) · · · b′1,n(p)

]
− [b1,1(p) · · · b1,k(p)]G

)
=

N∑
r=2

2r−2 [br,1(p) · · · br,k(p)]G.

By taking modulo 2 on both sides, we have{[
b′2,1(p) · · · b′2,n(p)

]
+

1

2

([
b′1,1(p) · · · b′1,n(p)

]
− [b1,1(p) · · · b1,k(p)]G)} mod 2

= [b2,1(p) · · · b2,k(p)]G mod 2.

By the recursive procedure up to level l, we have{[
b′l,1(p) · · · b′l,n(p)

]
+

l−1∑
r=1

2r−l
([
b′r,1(p) · · · b′r,n(p)

]
− [br,1(p) · · · br,k(p)]G)} mod 2

= [bl,1(p) · · · bl,k(p)]G mod 2

for l = [2 : N ], which completes the proof.

APPENDIX B
QUANTIZATION BY THE BINARY REPRESENTATION

Algorithm 5 Quantization by the Binary Representation

Input: Training data X := [x(p, q)] ∈ Rv×d stored on the
master node
Solve minp,q x(p,q)

γ1
= −β1 and minp,q x(p,q)

γ1
+β1 = 2N1−1

for γ1 and β1
1: if minp,q x(p, q) < maxp,q x(p, q) ≤ 0 then
2: β1 ← bβ1c
3: γ1 ← minp,q x(p,q)

−β1

4: else if minp,q x(p, q) < 0 < maxp,q x(p, q) then
5: Set β1 as the closest integer among bβ1c and dβ1e
6: γ1 ← max

(
minp,q x(p,q)
−β1

,
maxp,q x(p,q)

2N1−1−β1

)
7: else if 0 ≤ minp,q x(p, q) < maxp,q x(p, q) then
8: β1 ← dβ1e
9: γ1 ← maxp,q x(p,q)

2N1−1−β1

10: end if

APPENDIX C
ESTIMATION OF COMPUTATION ERROR DISTRIBUTION

Algorithm 6 Estimation of Computation Error Distribution

Input: Coded training data X′ := [x′(p, q)] ∈ R vn
k ×d stored

on the master node
1: Find the best distribution fX′(x′) that fits coded training

data X′

2: for j = 1, 2, · · · , n in parallel do
3: for p ∈ {p|ej(p) 6= 0} in parallel do
4: if Locations k1, k2, · · · , kϕ(j,p) of unfinished

calculations are known then
5: fEj(p,q)(x)← 1

|Q(w(q))|fX′
(

x
−Q(w(q))

)
6: else if The number ϕ(j, p) of locations of unfinished

calculations is known then
7: fEj(p,q)(x) ← d

||Q(w)||2 fX′
(

dx
−||Q(w)||2

)
, q ∈

{k1, k2, · · · , kϕ(j,p)}
8: end if
9: return fEj(p)(x) ←(

fEj(p,k1) ∗ fEj(p,k2) ∗ · · · ∗ fEj(p,kϕ(j,p))

)
(x)

10: end for
11: end for
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