
A Gradient-Interleaved Scheduler for Energy-Efficient
Backpropagation for Training Neural Networks

Nanda Unnikrishnan
University of Minnesota

Minneapolis, USA
unnik005@umn.edu

Keshab K. Parhi
University of Minnesota

Minneapolis, USA
parhi@umn.edu

Abstract—This paper addresses design of accelerators using systolic
architectures for training of neural networks using a novel gradient inter-
leaving approach. Training the neural network involves backpropagation
of error and computation of gradients with respect to the activation
functions and weights. It is shown that the gradient with respect to the
activation function can be computed using a weight-stationary systolic
array while the gradient with respect to the weights can be computed
using an output-stationary systolic array. The novelty of the proposed
approach lies in interleaving the computations of these two gradients to
the same configurable systolic array. This results in reuse of the variables
from one computation to the other and eliminates unnecessary memory
accesses. The proposed approach leads to 1.4− 2.2× savings in terms of
number of cycles and 1.9× savings in terms of memory accesses. Thus,
the proposed accelerator reduces latency and energy consumption.

Index Terms—Neural Network, Deep learning, Accelerator architec-
tures, Processor scheduling, Gradient interleaving, Systolic array

I. INTRODUCTION

Deep neural networks (DNNs) have permeated into all facets of our
daily lives as seen in advances for recommender systems, automated
photo recognition, and automatic text generations. Inference, in
particular, has been extensively investigated because of its inherent
advantages in data privacy, response time and bandwidth demand over
cloud-based inference. Deep learning networks such as [1]–[5] have
led to a massive surge in data center workloads. Fully connected
layers in particular consume over 90% of the inference workloads
currently in Google’s datacenters [6].

The common understanding in the community is that machine
learning algorithms are efficient because they have a large one time
cost and subsequent inference cost is minimal. This mindset needs
to be re-evaluated as we may be severely underestimating the cost of
training. There have been numerous architectures that have reported
energy consumption for inference [7]–[9] but very few for training
[10], [11]. The energy consumption for training can be extrapolated
from some energy-efficient architectures [8] as 54kJ for a single
epoch considering training a simple network like Alexnet of Imagenet
challenge. Thus we can see that even training a small neural network
can consume significant energy.

Specifically, it has been shown that compared to the cost of
execution, the cost of memory accesses dominates the energy con-
sumption of these accelerators [12]. This has led to the develop-
ment of memory-centric schedules that try to minimize the memory
bandwidth to the DRAM. This can be achieved by treating it as
a caching problem, selecting appropriate block sizes and blocks
to maximize the reuse of the SRAM contents [13]. The majority
of modern schedulers process the neural network in a layerwise
manner and each layer is sequentially scheduled. Further approaches
have tried to formulate it as an optimization problem/heuristics
by careful partitioning [14]. Here, however, optimizations are only

This research was supported in part by the National Science Foundation
under grant number CCF-1814759.

D

D

Err

Forward pass

a(4)

δ(4)δ(3)δ(2)δ(1)

Backward pass

a(3)a(2)a(1)

G(1)
G(2) G(3) G(4)

Ground 
truth

Loop 1
Loop 2
Loop 3
Loop 4

W(1)

D

D

W(2)
D

D

W(3)
D

D

W(4)
D

D

D D

Fig. 1. Training loops for a 4-layer fully-connected neural network.

limited to intralayer optimizations, which may not exploit the benefits
of advantages between layers. This is the case with layer fusion
schedules that try to deconstruct the operations within the layer and
try to maximize the reuse of variables across layers [15]. Finally,
an important aspect is to formulate the dependence graph of the
entire training flow and schedule it accordingly. This can maximize
parallelism while reducing memory bandwidth [16]. However, there
is a dearth of research that specifically targets the training of the
fully-connected layer.

Research on the fully connected layer has been focused on ex-
ploiting sparsity during the inference phase [7], [17]. Unstructured
pruning techniques have found some success at the training stage
[18]; however, structured sparsity could be better suited for training
[7]. Flexible architectures have shown promise at taking advantage
of the relative strengths of the different flows at different stages
of the CNN [8], [19], [20]. However, the overall impact is yet to
be addressed completely [21]. The proposed configurable systolic
array and interleaved scheduler maximize the use of a variable while
eliminating intermediate results. The key contribution of this paper is
a new scheduling approach for interleaving computations of multiple
gradients, as opposed to scheduling these sequentially.

The rest of the paper is structured as follows. Section II focuses
on the backpropagation equation and how systolic arrays and inter-
leaving of gradients can be used to optimize the design. Section III
evaluates the proposed methodology. Finally, in Section IV we
summarize the main conclusions of the paper.

II. INTERLEAVING FOR BACKPROPAGATION ALGORITHM

The operation of a fully-connected layer can be easily written
in terms of a matrix-matrix multiplication. Thus it is natural that
many of the traditional scheduling approaches are derived from past
implementations. These primarily involve developing blocks or tiles
from the matrices and finding the optimal size and order to schedule
these blocks. Backpropagation involves recursive feedback loops. The
iteration period in recursive computing systems has a fundamental
lower bound, referred as the iteration bound [22], [23].



𝑊𝑙 𝑊𝑙 𝑊𝑙 𝑊𝑙 𝑊𝑙

𝑊𝑙 𝑊𝑙 𝑊𝑙 𝑊𝑙 𝑊𝑙

𝑊𝑙 𝑊𝑙 𝑊𝑙 𝑊𝑙 𝑊𝑙

𝑊𝑙 𝑊𝑙 𝑊𝑙 𝑊𝑙 𝑊𝑙

𝜕𝐸

𝜕𝑎𝑙−1
𝜕𝐸

𝜕𝑎𝑙−1
𝜕𝐸

𝜕𝑎𝑙−1
𝜕𝐸

𝜕𝑎𝑙−1
𝜕𝐸

𝜕𝑎𝑙−1

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D
D D D D

D D D D

D D D D

D

D

D

𝟎 𝟎 𝟎 𝟎 𝟎

𝛿1
𝑙𝛿2

𝑙𝛿𝐵
𝑙

𝛿1
𝑙𝛿2

𝑙𝛿𝐵
𝑙

𝛿1
𝑙𝛿2

𝑙

𝛿1
𝑙

Fig. 2. Systolic array that computes δ(l−1) in a weight-stationary mode.

Systolic arrays [24] and other spatial architectures have inherent
advantages when it comes to data reuse. Their spatial dataflow
pattern allows for more efficient reuse of data. Although current
implementations achieve high speedups, these do not exploit all the
possible avenues of reuse available. To illustrate this, we focus on
the backpropagation algorithm which is the backbone in the training
of neural networks.

The forward pass or inference for the fully-connected layers is
well understood and can easily be represented as a matrix-vector
multiplication as follows:

z(l) =W (l)a(l−1) (1)

a(l) = f(z(l)) (2)

where l represents the layer being processed, W (l) is the weight
matrix of the fully-connected layer, and f is the activation function
for that layer. This paper does not attempt to optimize the forward
pass computations and Eqs. (1) and (2) are no longer discussed.

For the fully-connected layer, there are two sets of gradients that
need to be computed. The first is to calculate the gradients for each
weight matrix. The latter requires computation of the gradient with
respect to the activation function. These can be summarized by the
following set of equations:

δ(l−1) =
∂E

∂a(l−1)
� f ′(z(l−1)) (3)

where
∂E

∂a(l−1)
= (W (l)T δ(l)) (4)

G(l) =

(
∂E

∂W (l)

)
= δ(l)a(l−1)T (5)

where E represents the loss function, δ(l) represents the training error
gradient backpropagated to layer l, and f ′ represents the derivative
of the activation function. The notation � represents the Hadamard
product of matrices.

A. Computation of δ(l−1)

To compute (4) the architecture shown in Fig. 2 is considered. The
array consists of P × Q processing elements (PEs), where P and
Q represent the horizontal and vertical dimensions of the systolic
array. The PEs are interconnected along the horizontal and vertical
directions and each contains a pipeline register. The array is set up
in a weight-stationary mode, where one of the inputs, W , is held
constant inside the local memory of the cell. The weights are first
loaded into the array from the edge. It takes Q cycles where P
words are loaded per cycle into the systolic array. Though in this
example only a single weight stored in each processing element is
considered, the same technique can be extended to process multiple

𝛿1
𝑙𝛿2

𝑙𝛿𝐵
𝑙

𝛿1
𝑙𝛿2

𝑙𝛿𝐵
𝑙

𝛿1
𝑙𝛿2

𝑙

𝛿1
𝑙 𝐺𝑙 𝐺𝑙 𝐺𝑙 𝐺𝑙 𝐺𝑙

𝐺𝑙 𝐺𝑙 𝐺𝑙 𝐺𝑙 𝐺𝑙

𝐺𝑙 𝐺𝑙 𝐺𝑙 𝐺𝑙 𝐺𝑙

𝐺𝑙 𝐺𝑙 𝐺𝑙 𝐺𝑙 𝐺𝑙

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D
D D D D

D D D D

D D D D

D

D

D

Fig. 3. Systolic array that computes G(l) in an output-stationary mode.

weights simultaneously. Once the weights are loaded, δ(l) is loaded
at the Western edge, and is staggered by a clock cycle with each
row of the design. Once the results are calculated in each PE the
partial sums are accumulated vertically in the array. The pipelined
architecture is used to assume a simple PE design with a low critical
path delay. This proceeds for B more cycles where B is the number
of data points in the mini-batch for training. In a traditional design
once these calculations are complete the contents of the array are no
longer required and are discarded.

B. Computation of G(l)

To compute (5) the architecture shown in Fig. 3 is considered. To
enable a more useful computation, rather than computing (5) directly,
the transpose of the gradient is computed as follows:

G(l)T =

(
∂E

∂W (l)

)T

= a(l−1)δ(l)T (6)

Rewriting (5) to (6) is the key to reducing memory access for
computing the gradients in the configurable systolic array. Note that
most high-level synthesis [25]–[28] systems cannot automate this
reformulation. As with the earlier case, for Fig. 3, the array consists of
P×Q processing elements. The array is set up in an output-stationary
mode, where the partial sums G(l) are held constant inside the local
memory of the cell.

Once again, δ(l) are passed into the array along the Western edge
and the new input a(l−1) is passed into the Southern edge of the
array. Both inputs are staggered by a clock cycle and passed into the
array and the array processes the inputs in a wavefront manner. The
gradients thus generated are accumulated in-place for the mini-batch
of B. Once these calculations are complete the contents of the array
have to be shifted out. That requires an additional Q cycles where
P words are unloaded per cycle from the systolic array.

C. Interleaving of gradients

To improve performance or reduce the number of memory ac-
cesses, traditional approaches have often looked at (4) to (6) in
isolation. However, there are multiple avenues of data reuse to exploit
looking at the commonalities between the equations. One way to
exploit this is through interleaving, and this has been extensively
studied in signal processing systems to reuse hardware and com-
putations across different data points [29]. The key approach is to
treat the entire backpropagation as a form of a feedback system
that can be modeled as a data-flow graph. This enables us to apply
the techniques developed in optimizing signal processing systems to



TABLE I
DATAFLOW IN THE SYSTOLIC ARRAY ALONG THE VERTICAL AND HORIZONTAL DIRECTIONS

Time
T0 T1 T2 T3 T4Node I/Os

PEx,y

PEx−1,y δy,n δy,n δy,n+1 δy,n+1 δy,n+2

PEx,y−1 ax,n resx,y−1 ax,n+1 resx,y−1 ax,n+2

resx,y acc(δy,nax,n) resx,y−1+δy,nwx,y acc(δy,n+1 ax,n+1) resx,y−1+δy,n+1wx,y acc(δy,n+2ax,n+2)

PEx,y+1

PEx−1,y+1 0 δy+1,n δy+1,n δy+1,n+1 δy+1,n+1

PEx,y 0 ax,n resx,y ax,n+1 resx,y
resx,y+1 0 acc(δy+1,nax,n) resx,y+δy+1,nwx,y acc(δy+1,n+1 ax,n+1) resx,y+δy+1,n+1wx,y

PEx+1,y

PEx,y 0 δy,n δy,n δy,n+1 δy,n+1

PEx+1,y−1 0 ax+1,n resx+1,y−1 ax+1,n+1 resx+1,y−1

resx,y+1 0 acc(δy,nax+1,n) resx,y−1+δy,nwx+1,y acc(δy,n+1ax+1,n+1) resx,y−1+δy,n+1wx+1,y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

128 256 512 1024 2048 4096

IS WS OS InterSch

(a)

0

0.2

0.4

0.6

0.8

1

1.2

128 256 512 1024 2048 4096

IS WS OS InterSch

(b)

Fig. 4. Normalized single loop performance of the interleaved scheduler versus traditional dataflow approaches while varying network size (Normalized to
WS). a) Normalized number of memory access. b) Normalized number of cycles. InterSch denotes proposed Interleaved Scheduler.

improve the backpropagation algorithm. Based on the requirements
from Sections II-A and II-B, this paper proposes to interleave [23] the
gradient computations for (4) and (6). To enable this new paradigm
of computing we propose to develop configurable systolic arrays that
can switch between different modes of operation on a per cycle basis.
This is only possible due to the reformulation of (5) to (6) as in
both cases δ(l−1) is input at the Western edge of the array. Thus
interleaving (4) and (6) allows for the reuse of δ(l−1) across both
equations.

Table I summarizes the data flow and operations in the array
along the vertical (y) and horizontal (x) directions. Each node in
the array has inputs from the PEx−1,y−1, and an output res that
represents result. PEx,y and PEx,y+1 show the relationship between
PEs that are adjacent to one another along the vertical direction.
Similarly, PEx,y and PEx+1,y show the relationship between PEs
that are adjacent to one another along the horizontal direction. T0,
T1 etc. represent consecutive time steps. From Table I the inherent
advantages of the systolic arrays is that once W , δ(l−1) and a(l)

are loaded to the array, these are reused multiple times by different
PEs. The proposed interleaving also enables δ(l) to be used in both
calculations and it moves with a single cycle delay horizontally.
Along the vertical direction the interconnects transfer data alternating
between the result for (4) and (6). This reuse of δ effectively reduces
the number of accesses to the on-chip memory by B×bN

Q
c× bM

P
c.

Here, N ×M is the dimension of the weight matrix.
Finally, once the gradients are obtained, the weights can be updated

as per the following equation:

W (l)(k + 1) = F
(
W (l)(k), G(l)(k)

)
(7)

where k represents the iteration step of the algorithm and F represents
the gradient update optimizer such as stochastic gradient descent
(SGD), Adam, etc. From a careful observation of the computations
of (4) and the reformulated (6) it can be seen that each element
of the gradient matrix that is generated from the above architecture
is located in the same PE as the corresponding element of the
weight matrix. This is the other advantage of reformulating (5) as

it fortuitously aligns the intended variables. The gradient G(l) is a
temporary variable that is generated and must ultimately update the
weight matrix; however, due to the conventional approach, it must
be stored after creation and recalled from the memory to update the
weight as per (7). However, with the proposed configurable systolic
arrays, the weight matrix can be updated in-place without the need
to store or retrieve the temporary variable G(l). Thus, a further
3×B × bN

P
c × bM

Q
c accesses are saved.

III. PERFORMANCE EVALUATION OF INTERLEAVED GRADIENTS

A. Methodology

To evaluate the effectiveness of the proposed methodology versus
traditional dataflow models, we use the structure shown in Fig. 1 as
a reference. Each layer in Fig. 1 can be modeled for the number of
neurons or network size to accommodate various sizes of the fully-
connected layer. To enable fast and rapid design space exploration
we developed a simulation tool over the open-source python-based
NN simulation framework SCALE-sim1 [21].

For evaluation, the underlying PE array size was chosen based
on the configuration of Google TPU [6], a 128x128 systolic array
with a matrix-vector multiply unit, and the batch size of the input is
configurable. The scope of the proposed work is to limit the number
of access to the on-chip memory so all numbers will be reported for
the on-chip SRAM without regard to the DRAM access and latency.

B. Single-layer scheduling

To measure the single loop efficiency, the innermost loop in Fig. 1
(loop 4) is used as a basis for evaluation. For the evaluation of the
forward pass Eq. (1), as the architecture is flexible, the proposed
design is just modeled to match the number of cycles and accesses
of the baseline dataflow. For comparison, we evaluate the 3 traditional
dataflow models, i.e., weight-stationary (WS), output-stationary (OS),
and input-stationary (IS). For the computations in the backward
pass, the traditional dataflow computes each equation, Eqs. (4),
(6) and (7), as a separate matrix-matrix operation, whereas in the

1https://github.com/ARM-software/SCALE-Sim



z(1)

z(2)

z(3)

z(4)

G(1)

G(2)

G(3)

G(4)

δ(1)

δ(2)

δ(3)

δ(4)

W(1)

W(2)

W(3)

W(4)

Proposed interleaved
schedule
Layer 4
Layer 3
Layer 2

Layer 1

0 100000 200000 300000 400000 500000 600000 700000 800000

1 Proc #1

2 Proc #1

2 Proc #2

3 Proc #1

3 Proc #2

3 Proc #3

InterSch #1

Number of cycles 

Fig. 5. Number of cycles to evaluate the proposed interleaved Scheduler versus baseline output-stationary dataflow for upto 3 Processors.

TABLE II
NUMBER OF CYCLES AND MEMORY ACCESSES FOR A 4 LAYER MLP

SYSTEM

No of Proc Cycles (×103) Utilization Memory accesses (×106)
(OS) 1 840.08 100.00%

129.14(OS) 2 444.96 94.12%
(OS) 3 398.10 69.58%
(IS) 1 536.00 100.00% 76.15

proposed interleaved scheduler methodology the single equivalent
time is stated for processing all of the equations in an interleaved
manner. Performing Eqs. (2) and (3) are not shown but are assumed
to be processed element-wise separately.

Fig. 4 analyzes the effect of the network size on the performance
of the proposed method. It shows the normalized number of cycles
and memory accesses to the local on-chip SRAM. This is obtained
by sweeping and evaluating across different network sizes and batch
sizes. In Fig. 4, for fixed network sizes, the values obtained are
averaged across batch sizes and normalized to the value for weight-
stationary. The proposed methodology reduces the overall number of
cycles to compute this loop by 30%. This corresponds closely to the
formulas provide in Section II-C. Also, the proposed method reduces
the number of single-loop memory accesses by 42%.

C. Multi-layer scheduling

To measure the system efficiency, all computations for the system
in Fig. 1 are evaluated. At the system level, it is important to consider
the dependence graph of all the computations to decide a schedule.
Also, in a fully-connected layer, Eqs. (4), (6) and (7) can be computed
in parallel. Thus to test the design for utilization and parallelizability
we investigate 3 scenarios: a single processor, 2 processors and 3
processors. In the example shown in Fig. 1, the dependence graph is
calculated and a schedule is developed for the above scenarios.

Table II summarizes the number of memory accesses to the local
on-chip SRAM and the number of cycles required to completely
process the system with different number of processors for con-
ventional scheduling and using a single processor for the proposed
method. As seen in Fig. 5 and Table II the proposed method reduces
the overall number of processor cycles ((Number of processors) ×
(cycles/processor)) to compute this loop by 36%, 40% and 55% for
1, 2 and 3 processors, respectively. The proposed method reduces

0

2

4

6

8

10

12

VGG16 Alexnet

M
ill
io
n IS

WS

OS

InterSch

Fig. 6. Number of cycles for common CNN architectures.

0

200

400

600

800

1000

1200

VGG16 Alexnet

M
ill
io
n IS

WS

OS

InterSch

Fig. 7. Number of memory accesses for common CNN architectures.

the total memory accesses by 41%. This corresponds to significant
savings in both processor cycles and memory accesses.

D. Applications to FC Layers in CNNs

In order to benchmark the performance of the system we evaluate
the proposed method on the fully connected layers of well known
convolutional neural networks (CNNs) (VGG16 [2], Alexnet [1]). It
is shown in Fig. 6 that the proposed interleaved scheduler requires
29% less cycles compared to even the best data-flow chosen by
a flexible architecture. In terms of memory accesses, the proposed
method reduces that requirement by a minimum of 40%.

IV. CONCLUSION

This paper proposes a novel scheduling scheme based on inter-
leaving the various computations to reduce the latency and memory
access of the design. It has been shown that the proposed method
outperforms even the best traditional dataflow schemes by a factor
of 1.4× ∼ 2.2× in terms of cycles and by a factor of upto 1.9×
in terms of memory accesses in fully-connected layers found in
common CNNs. Future work will consider the effect of sparsity
and specifically structured sparsity on the training process using the
proposed approach. Currently, this paper focuses exclusively on feed-
forward multi-layer perceptron and it would be of interest to adapt
these techniques to the convolutional and recurrent layers as well.



REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the Ad-
vances in neural information processing systems, 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proceedings of the International
Conference on Learning Representations, ICLR, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan
et al., “Going deeper with convolutions,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 1–9.

[5] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen,
N. Thorat et al., “Google’s multilingual neural machine translation
system: Enabling zero-shot translation,” Transactions of the Association
for Computational Linguistics, vol. 5, pp. 339–351, 2017.

[6] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates et al., “In-datacenter performance analysis of a tensor process-
ing unit,” in Proceedings of the ACM/IEEE International Symposium on
Computer Architecture (ISCA), June 2017, pp. 1–12.

[7] C. Deng, S. Liao, Y. Xie, K. K. Parhi, X. Qian, and B. Yuan, “Per-
mDNN: Efficient compressed DNN architecture with permuted diagonal
matrices,” in Proceedings of the IEEE/ACM International Symposium on
Microarchitecture (MICRO), Oct 2018, pp. 189–202.

[8] Y. Chen, T. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2,
pp. 292–308, June 2019.

[9] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient inference engine on compressed deep neural
network,” in Proceedings of the ACM/IEEE International Symposium on
Computer Architecture (ISCA), June 2016, pp. 243–254.

[10] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ser. ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 269–
284.

[11] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li et al.,
“DaDianNao: A machine-learning supercomputer,” in Proceeding of the
IEEE/ACM International Symposium on Microarchitecture (MICRO),
Dec 2014, pp. 609–622.

[12] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, Dec 2017.

[13] J. Zhang and J. Li, “Improving the performance of OpenCL-based
FPGA accelerator for convolutional neural network,” in Proceedings of
the ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’17. New York, NY, USA: ACM, 2017, pp. 25–34.

[14] X. Chen, S. Peng, L. Jin, Y. Zhuang, J. Song, W. Du, S. Liu, and T. Zhi,
“Partition and scheduling algorithms for neural network accelerators,”
in Proceedings of the International Symposium on Advanced Parallel
Processing Technologies. Springer, 2019, pp. 55–67.

[19] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable intercon-
nects,” in Proceedings of the International Conference on Architectural

[15] Y. Zhuang, S. Peng, X. Chen, S. Zhou, T. Zhi, W. Li, and S. Liu, “Deep
Fusion: A software scheduling method for memory access optimization,”
in Proceedings of the IFIP International Conference on Network and
Parallel Computing. Springer, 2019, pp. 277–288.

[16] J. Li, G. Yan, W. Lu, S. Jiang, S. Gong, J. Wu, J. Yan, and X. Li,
“TNPU: An efficient accelerator architecture for training convolutional
neural networks,” in Proceedings of the Asia and South Pacific Design
Automation Conference, ser. ASPDAC ’19. New York, NY, USA: ACM,
2019, pp. 450–455.

[17] J. Zhu, J. Jiang, X. Chen, and C. Tsui, “SparseNN: An energy-efficient
neural network accelerator exploiting input and output sparsity,” in
Proceedings of the Design, Automation Test in Europe Conference
Exhibition (DATE), March 2018, pp. 241–244.

[18] J. Zhang, X. Chen, M. Song, and T. Li, “Eager pruning: Algorithm
and architecture support for fast training of deep neural networks,” in
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture, ser. ISCA ’19. New York, NY, USA: ACM, 2019, pp.
292–303.
Support for Programming Languages and Operating Systems, 2018, pp.
461–475.

[20] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible
dataflow accelerator architecture for convolutional neural networks,” in
Proceedings of the IEEE International Symposium on High Performance
Computer Architecture (HPCA), Feb 2017, pp. 553–564.

[21] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna,
“SCALE-Sim: Systolic CNN Accelerator Simulator,” arXiv e-prints, p.
arXiv:1811.02883, Oct 2018.

[22] K. Ito and K. K. Parhi, “Determining the minimum iteration period of an
algorithm,” Journal of VLSI signal processing systems for signal, image
and video technology, vol. 11, no. 3, pp. 229–244, Dec 1995.

[23] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation. Hoboken, NJ, USA: Wiley, 1999.

[24] H. T. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),” in Sparse
Matrix Proceedings, vol. 1, 1979, pp. 256–282.

[25] J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Latte: Locality aware
transformation for high-level synthesis,” in Proceedings of the Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), April 2018, pp. 125–128.

[26] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and
Z. Zhang, “HeteroCL: A multi-paradigm programming infrastructure for
software-defined reconfigurable computing,” in Proceedings of the In-
ternational Symposium on Field-Programmable Gate Arrays, ser. FPGA
’19. New York, NY, USA: Association for Computing Machinery, 2019,
p. 242–251.

[27] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J. Fromm
et al., “A hardware–software blueprint for flexible deep learning spe-
cialization,” IEEE Micro, vol. 39, no. 5, pp. 8–16, Sep. 2019.

[28] C.-Y. Wang and K. K. Parhi, “High-level DSP synthesis using concurrent
transformations, scheduling, and allocation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 14,
no. 3, pp. 274–295, March 1995.

[29] K. K. Parhi, “Hierarchical folding and synthesis of iterative data flow
graphs,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 60, no. 9, pp. 597–601, Sep. 2013.


