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Classification using Hyperdimensional
Computing: A Review
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Abstract—Hyperdimensional (HD) computing is built
upon its unique data type referred to as hypervectors.
The dimension of these hypervectors is typically in the
range of tens of thousands. Proposed to solve cognitive
tasks, HD computing aims at calculating similarity among
its data. Data transformation is realized by three opera-
tions, including addition, multiplication and permutation.
Its ultra-wide data representation introduces redundancy
against noise. Since information is evenly distributed over
every bit of the hypervectors, HD computing is inherently
robust. Additionally, due to the nature of those three op-
erations, HD computing leads to fast learning ability, high
energy efficiency and acceptable accuracy in learning and
classification tasks. This paper introduces the background
of HD computing, and reviews the data representation,
data transformation, and similarity measurement. The
orthogonality in high dimensions presents opportunities
for flexible computing. To balance the tradeoff between
accuracy and efficiency, strategies include but are not
limited to encoding, retraining, binarization and hard-
ware acceleration. Evaluations indicate that HD computing
shows great potential in addressing problems using data
in the form of letters, signals and images. HD computing
especially shows significant promise to replace machine
learning algorithms as a light-weight classifier in the field
of internet of things (IoTs).

Index Terms—Hyperdimensional (HD) computing, clas-
sification accuracy, energy efficiency.

I. INTRODUCTION

THE emergence of hyperdimensional (HD) computing is
based on the cognitive model developed by Kanerva [1].
HD computing grew out of cognitive science in answer
to the binding problem of connectionist (neural-net)
models. When variables and their values are superposed
over the same vector, representing which value is asso-
ciated with which variable requires a formal model. This
was initially solved using tensor product variable binding
by Smolensky [2] and later by Plate[3] using holographic
reduced representation (HRR). The advantage of HRR
over tensor product is that it keeps vector dimensionality
constant. Systems based on these representations go by
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many names: HRR, HD, binary spatter code (BSD) [4],
binary sparse distributed code (BSDC) [5], multiply-
add-permute (MAP) [6], vector symbolic architecture
(VSA) [7], and semantic pointer architecture. All rely on
high dimensionality, randomness, abundance of nearly
orthogonal vectors and computing in superposition.

Instead of computing traditional numerical values,
HD computing performs cognition tasks—such as face
detection, language classification, speech recognition,
image classification, etc—by representing different types
of data using hypervectors, whose dimensionality is in
the thousands, e.g., 10,000-d, where d refers to dimen-
sionality. The human brain contains about 100 billion
neurons and 1000 trillion synapses; therefore all possible
states of a human brain can be described by a high-
dimensional vector. In that sense, HD computing is a
form of brain-inspired computing. Randomly or pseudo-
randomly defined, these hypervectors are composed of
independent and identically distributed (i.i.d.) compo-
nents, which can be binary, integer, real or complex [8].
As a brain-inspired computing model, HD computing
is robust, scalable, energy efficient and requires less
time for training and inference [9]. These features are
a result of its ultra-wide data representation and under-
lying mathematical operations. One thing that should
be emphasized is the concept of orthogonality of the
hypervectors.

The remainder of this paper is organized as follows.
Section II presents the background on HD computing, in-
cluding the data representation, data transformation and
similarity measurement. Section III illustrates the general
methodology in HD computing and its applicability in
learning and inference tasks. Then two common encod-
ing methods to form hypervectors from the input data
are presented, and strategies to improve accuracy and/or
efficiency are pointed out. Some classical applications
as well as several sophisticated designs are reviewed in
Section IV. Possible future directions of HD computing
are also pointed out in this section. Finally, Section V
concludes the paper.



TABLE I: Comparisons between classical computing and HD computing for Classification.
Computing Paradigm Classical Computing HD Computing

Data Type Bit Hypervector
Data Transformation Addition, Multiplication, Logic Add-Multiply-Permute

Storage Memory Item Memory, Associative Memory
Training Weights Class Hypervectors
Testing Run Pre-trained Classifier Associate Query Hypervectors with Class Hypervectors

Model Complexity High Low
Accuracy Very High Acceptable

Feature Extraction Easy Difficult
Number of Features Many One

II. BACKGROUND ON HD COMPUTING

In this section, we review HD computing and present
a comparison between HD and classical computing. We
also describe the similarity metrics for hypervectors and
typical mathematical operations used in HD computing.

A. Classical Computing vs HD Computing

Data representation, data transformation and data re-
trieval play an important role in any computing system.
To be more specific, classical computing deals with bits.
Each bit is 0 or 1. This can be realized by the absence or
presence of electric charge. In terms of computation, data
transformation is inevitable. The arithmetic/logic unit
(ALU) computes new data using logical operation and
four arithmetic operations, including addition, subtrac-
tion, multiplication and division [10]. The main memory
allows the data to be written and read. Compared to clas-
sical computing, HD computing employs hypervectors
as its data type, whose dimensionality is typically in the
thousands. These ultra-wide words introduce redundancy
against noise, and are, therefore, inherently robust.

To transform data, HD computing performs three
operations: multiplication, addition and permutation. HD
computing transforms the input hypervectors, which are
pre-stored in the item memory to form associations or
connections. In a classification problem, the hypervectors
associated with classes are trained during training pro-
cess. During the testing process, the test hypervectors are
compared with the class hypervectors. The hypervectors
generated from training data are referred to as class
hypervectors and are stored in the associative memory,
while those generated from the test data are referred to as
query hypervectors. An associative search is performed
to make a prediction as to which class a given query hy-
pervector most likely belongs. A comparison between the
classical and HD computing paradigms is summarized
in Table I. Traditional classification methods achieve
high accuracy using complex models. Training these
models typically takes longer time and requires more
energy consumption. The models in HD classification

are simpler and can be trained in less time with high
energy efficiency. However, their accuracy is acceptable,
though not as high as traditional models. This is because
the accuracy is dependent on feature encoding which is
not as well understood as traditional classification.

B. Data Representation

Data points of HD computing correspond to
hypervectors—vectors of bits, integers, real or complex
numbers. These are roughly divided into two categories:
binary and non-binary. For non-binary hypervectors,
bipolar and integer hypervectors are more commonly
employed. Generally speaking, non-binary HD algo-
rithms achieve higher accuracy, while the binary counter-
part is more hardware-friendly and has higher efficiency
(see also [11]).

C. Similarity Measurement

As shown in Table II, two common similarity mea-
surements are adopted in the existing HD algorithms,
namely, cosine similarity and Hamming distance. Other
similarity measures include dot product (e.g., in MAP)
and overlap (e.g., in BSDC).

TABLE II: Similarity Measurements in HD Computing.
Measurement Similar Orthogonal

Hamming distance 0 0.5
Cosine similarity 1 0

For non-binary hypervectors, cosine similarity, de-
fined by Eq. (1), is used to measure their similarity,
focusing on the angle and ignoring the impact of the
magnitude of hypervectors, where | · | denotes the mag-
nitude. Unlike the inner product operation [12] of two
vectors that affects magnitude and orientation, the cosine
similarity only depends on the orientation. In most HD
algorithms with non-binary hypervectors, cosine simi-
larity is more often used than inner product. Moreover,
when cos(A,B) is close to 1, this implies an extremely
high level of similarity. For example, cos(A,B) = 1
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indicates two hypervectors A and B are identical. When
they are at right angle, then cos(A,B) = 0, and the two
orthogonal vectors are considered dissimilar.

cos(A,B) =
A ·B
|A||B|

(1)

For binary hypervectors with dimensionality d, whose
components are either 0 or 1, normalized Hamming
distance calculated in Eq. (2) is used to measure their
similarity [8]. When the Hamming distance of two hy-
pervectors is close to 0, then they are defined as similar.
For example, Ham(A,B) = 0 indicates every single bit
is same at each position, and A and B are identical.
When Ham(A,B) = 0.5, A and B are orthogonal
or dissimilar. Ham(A,B) = 1 when A and B are
diametrically opposed.

Ham(A,B) =
1

d

d∑
i=1

1A(i) 6=B(i) (2)

Fig. 1: Orthogonality in high dimensions [1, 13, 14]

One thing that should be emphasized is orthogonality
in high dimensions. To put it simply, the randomly
generated hypervectors are nearly orthogonal to each
other when the dimensionality is in the thousands. Take
binary hypervectors as an example. Assume X and Y
are chosen independently and uniformly from {0, 1}d
and the probability p of any bit being 1 is 0.5. Then
Ham(X,Y ) is binomially distributed. Fig. 1 shows the
probability density function (PDF) of Ham(X,Y ) for
15,000 pairs of randomly selected binary vectors with
different dimensions d. As d increases, more vectors be-
come orthogonal. Such orthogonality property is of great
interest because orthogonal hypervectors are dissimilar.
Moreover, operations performed on these orthogonal
hypervectors can form associations or relations.

D. Data Transformation
Three types of operations, add-multiply-permute, are

employed in HD computing. The inverse operation for
multiplication is also referred to as release [14]. The

release operation is also used to denote inverse addition.
Each operation processes and generates d-dimensional
hypervectors. In the following, we illustrate examples of
data transformations using binary hypervectors. Without
doubt, data transformation can also be employed to
non-binary hypervectors, which is in essence similar to
the manipulations over binary hypervectors. The only
difference is from the point of hardware; for binary hy-
pervectors, the pointwise multiplication can be realized
by an exclusive or (XOR) gate.

1) Addition: Pointwise addition, also referred to as
bundling, computes a hypervector Z using Eq. (3) from
the input hypervectors {X1, X2, · · · , Xn}. Compared
to random hypervectors, the generated Z is maximally
similar to the n inputs X1, X2, · · · , Xn, i.e., Hamming
distance between Z and any of the n inputs is at a
minimum.

Z = [X1 +X2 + · · ·+Xn], (3)

where [·] indicates the sum hypervector Z is thresholded
and binarized to {0, 1}d based on the majority rule. For
convenience, Eq. (4) shows an example for the pointwise
addition of three 10-bit binary vectors.

A = 0 0 0 0 1 1 0 0 1 1,

B = 1 0 1 1 0 0 0 1 0 1,

C = 0 0 1 0 1 0 1 1 0 1,
[A+B + C] = 0 0 1 0 1 0 0 1 0 1.

(4)

Generally speaking, the addition over odd number
of hypervectors has no ambiguity, whereas the addition
over an even number can favor either 0 or 1 using
the majority function defined in Eq. (5). However, this
approach may lead to a biased result for adding two
hypervectors. Therefore, the bias in adding even number
of hypervectors is usually reduced by adding an extra
random vector [15]. Fig. 2 illustrates addition of 10,000-
dimensional random hypervectors repeated for 3,000
times. Comparing Fig. 2(b) to Fig. 2(c), we see that
specifying in favor of 0 or 1 has little impact over
addition. It can be observed from Fig. 2 that the sum
is nearly equally similar to the input operands.

Majority(p1, · · · , pn) =

{
b 12 +

(
∑n

i=1 pi)− 1
2

n c, favor 0,
b 12 +

∑n
i=1 pi

n c, favor 1.
(5)

2) Multiplication: Pointwise multiplication, also
called binding, aims to form associations between two
related hypervectors. A and B are bound together to
form X = A⊕B, which is approximately orthogonal to
both A and B, where ⊕ represents the XOR operation.
Eq. (6) shows the pointwise multiplication of two 10-bit
binary vectors. In a more general case, as shown in Fig.
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(a) A+B+C=X . (b) A+B=X in favor of 0. (c) A+B=X in favor of 1.
Fig. 2: Hamming distance distribution of addition for 10,000-bit hypervectors over 3000 cases. (a) Addition over

odd number of hypervectors; (b) and (c) shows the addition over even number favoring 0 and 1, respectively.

3, for two randomly generated 10,000-bit binary hyper-
vectors, their pointwise multiplication result is dissimilar
to both of them.

A = 0 0 0 0 1 1 0 0 1 1,

B = 1 0 1 1 0 0 0 1 0 1,
A⊕B = 1 0 1 1 1 1 0 1 1 0.

(6)

Fig. 3: Hamming distance distribution of multiplication
X = A⊕B for 10,000-bit hypervectors over 3000 cases.

3) Permutation: Permutation ρ is a unique unary
operation for HD computing, which shuffles the hyper-
vector, let us say A. The resulting permuted hypervector
ρ(A) is quasi-orthogonal to the initial A, i.e, the normal-
ized Hamming distance is close to 0.5. Mathematically,
permutation can be realized by multiplying a permutation
matrix. As a specific permutation, circular shift is widely
employed for its friendly hardware implementation. Eq.
(7) shows a circular shift of a 10-bit binary vector with
Ham(A, ρ(A)) = 0.4. Expected Hamming distance is
supposed to be 0.5 for ultra-wide hypervectors. Fig. 4
indicates the permutation result shows dissimilarity with
the original 10,000-bit hypervector.

A = 0 0 0 0 1 1 0 0 1 1,
ρ(A) = 1 0 0 0 0 1 1 0 0 1.

(7)

Fig. 4: Hamming distance distribution of permutation for
10,000-bit hypervectors over 3000 cases.

Examples. We illustrate applications of above oper-
ations. For more details, please refer to [16]. Assume
that A,B,C, P, S,X, Y, Z represent 10,000-d random
hypervectors:

• Encode a pair: To encode “x = a”, where x is
a variable with numerical value same as a, use
multiplication to bind their corresponding hypervec-
tors X and A. The encoding is represented by the
generated hypervector P = X ⊕A.

• Release the value from the pair:

X ⊕ P = X ⊕ (X ⊕A)︸ ︷︷ ︸
X⊕X cancels out

= A
(8)

• Represent a set: Given the set s = {a, b, c}, we have

S = [A+B + C] (9)

• Encode a data record: Given a record with a set of
bound pairs d =‘(x = a)&(y = b)&(z = c)’, the
record is encoded as:

D = [X ⊕A+ Y ⊕B + Z ⊕ C] (10)
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• Extract the value from a record: To retrieve the
value of x:

A′ = X ⊕D
= X ⊕ [X ⊕A+ Y ⊕B + Z ⊕ C]︸ ︷︷ ︸

distributed

= X ⊕X ⊕A+X ⊕ Y ⊕B +X ⊕ Z ⊕ C
= X ⊕X ⊕A︸ ︷︷ ︸

=A

+
(
X ⊕ Y ⊕B +X ⊕ Z ⊕ C

)︸ ︷︷ ︸
noise

≈ A
(11)

• Encode a sequence: Given (a, b), then

AB = ρ(A)⊕B (12)

• Extend the sequence: Extend (a, b) to (a, b, c) using:

ABC = ρ(AB)⊕ C
= ρ
(
ρ(A)

)
⊕ ρ(B)⊕ C

(13)

• Extract the first element of the sequence:

ρ−1ρ−1(ABC ⊕BC)

= ρ−1ρ−1(ρ
(
ρ(A)

)
⊕ ρ(B)⊕ C ⊕ ρ(B)⊕ C)

= ρ−1ρ−1(ρ
(
ρ(A)

)
= A

(14)
where ρ−1 is the inverse operation of permutation
ρ.

III. LEARNING AND CLASSIFICATION BY HD
COMPUTING

The first wave of using HD for classification started
in 1990s [17–20]. The current applications of HD for
classification can be interpreted as the second wave.

A. The HD Classification Methodology

A system diagram for the classification tasks using HD
computing is shown in Fig. 5. In general, 1). during the
learning phase, the encoder employs randomly generated
hypervectors (pre-stored in the item memory) to map
the training data into HD space. A total of k class
hypervectors are trained and stored in the associative
memory. 2). During the inference phase, the encoder
generates the query hypervector for each test data. Then
the similarity check is conducted in the associative
memory between the query hypervector and every pre-
trained class hypervector. Finally, the label with the
closest distance is returned.

Fig. 5: Classification overview with HD computing [21]
.

B. Encoding Methods for HD Computing

HD computing can address various types of input
data, including letters, signals and images. However, we
need to map those input data into hypervectors, and this
process corresponds to encoding. The encoding process
is somewhat similar to extraction of features. Among
the existing HD algorithms, the two encoding methods
commonly used include record-based encoding and N -
gram-based encoding. A toy example related speech
signals is used for illustration.

Using Mel-frequency cepstral coefficients (MFCCs)
[22], the voice information stored in continuous signals
can be mapped into the frequency domain. A feature
vector with N elements can be obtained. Each element
has its feature value, which is evenly discretized or
quantized from {Fmin, Fmax} to m different levels.

Fig. 6: Record-based encoding [23]. Note iM refers to
item memory, which stores the position hypervectors,
and CiM refers to continuous item memory [13], which

stores level hypervectors.

1) Record-based Encoding: This encoding method
employs two types of hypervectors, representing the
feature position and feature value, respectively. It may be
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noted that a variation of record-based encoding based on
permutations and a chain of binding operations was pro-
posed in [24]. In this encoding, position hypervectors
IDi are randomly generated to encode the feature posi-
tion information in a feature vector, where 1 ≤ i ≤ N .
The feature value information is quantized to m level
hypervectors {L1,L2, · · · ,Lm}. For an N -dimensional
feature, a total of N level hypervectors L̄i should be
generated, which are chosen from m level hypervectors
{L1,L2, · · · ,Lm} based on the feature value. Note
that, position hypervectors IDi are orthogonal to each
other, while level hypervectors {L1,L2, · · · ,Lm} are
supposed to have correlations between the neighbours.
To realize this, in [25] the first level hypervector L1

represents the feature value Fmin. Then each time,
d/m randomly selected bits are flipped to generate the
next level hypervector, where d is the dimensionality
of the hypervectors. The continuous bit-flipping was
first introduced in [23] and later followed by other
use cases [26–28]. This bit-flipping approach ensures
the correlations between neighbor levels, while the last
level hypervector Lm is nearly orthogonal to L1. The
encoding occurs by binding each position hypervector
with its level hypervector. As described in Eq. (15), the
final encoding hypervector H can be obtained by adding
these results together. The entire encoding process is
illustrated in Fig. 6.

H = L̄1 ⊕ ID1 + L̄2 ⊕ ID2 + · · ·+ L̄N ⊕ IDN ,

L̄i ∈ {L1,L2, · · · ,Lm}, where 1 ≤ i ≤ N.
(15)

Fig. 7: N -gram-based encoding [29]. CiM stores level
hypervectors which are mutually orthognal.

2) N -gram-based Encoding: The method of mapping
N -gram statistics into hypervectors was proposed in
[30]. First random level hypervectors are generated. Then
the feature values are obtained by permuting these level

hypervectors in this encoding method. For example, the
level hypervector L̄i corresponding to the i-th feature
position is rotationally permuted by (i − 1) positions,
where 1 ≤ i ≤ N . We can get the final encoded
hypervector H by Eq. (16). Such an encoding process is
illustrated in Fig. 7.

H = L̄1 ⊕ ρL̄2 ⊕ · · · ⊕ ρN−1L̄N ,

L̄i ∈ {L1,L2, · · · ,Lm}, where 1 ≤ i ≤ N.
(16)

Remark. As stated in [29], for speech recognition,
the N -gram-based encoding method achieves lower ac-
curacy than record-based counterpart. This encoding
method is also used to address data types of letters, such
as language recognition [21] and DNA sequencing [31].

C. Benchmarking Metrics in HD Computing

In HD computing, there is always a tradeoff between
accuracy and efficiency, e.g., see [32]. As shown in
Fig. 8, a large amount of work has been carried out to
improve the classification accuracy, energy efficiency, or
both at the same time.

1) Accuracy: In terms of accuracy, the encoding
method plays a significant role since each encoding
may not be efficient for different types of data. Good
encoding for HD to achieve high accuracy is hard
[33]. In this sense, an appropriate choice of encoding
method can improve the accuracy. Efficient encoding
approaches have been presented in [34]. The approach
in [29] integrates different encoding methods together to
achieve higher accuracy at the expense of hardware area.
Compared to single-pass training, retraining iteratively
improves the training accuracy [28]. Thus the classifi-
cation accuracy is improved by using a more accurately
trained model. Moreover, using binary hypervectors may
degrade the accuracy. Hence with enough resources, non-
binary models can be used to achieve high accuracy.

2) Efficiency: For efficiency, improvements mainly
focus on algorithm and hardware characteristics. From
the algorithm perspective, dimension reduction is the
most natural way to realize efficiency. Simulations show
that slightly reducing the dimensionality of hypervectors,
the classification accuracy still remains in an acceptable
range but saves hardware resources [25]. Binarization,
which refers to employing binary hypervectors instead of
non-binary model, accelerates computation and reduces
hardware resources [35]. The precision is degraded by
quantizing the non-binary HD model. QuantHD has
been proposed in [25] to achieve higher efficiency with
minimal impact on accuracy. Sparsity was introduced
in HD computing in the framework of BSDC [36].
Tradeoff between dense and sparse binary vectors has
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Fig. 8: Two benchmarking metrics in HD computing and some possible ways to improve these metrics.

been presented in [32]. By introducing the concept of
sparsity to hypervector representation, [37] proposes
a novel platform, SparseHD, which reduces inference
computations and leads to high efficiency. From the hard-
ware perspective, HD computing involves a large number
of bit-wise operations, as well as the same computation
flow for different HD applications, making FPGA a nice
platform for hardware acceleration [38]. Moreover, as
proposed in [39], combining HD computing with the
concept of in-memory computing, which is featured
as RAM storage and parallel distribution, may create
opportunities for HD acceleration. Additionally, several
emerging nanotechnologies, including carbon nanotube
field-effect transistors (CNFETs) [40], resistive RAM
(RRAM) [9], and monolithic 3D integration [41], have
demonstrated implementations of HD computing at high
speed [40]. Dimensionality reduction has been evaluated
in an actual prototyped system using vertical RRAM
(VRRAM) in-memory kernels in [42].

IV. APPLICATIONS IN HD CLASSIFICATION

In what follows, some classical HD computing appli-
cations in classification tasks as well as several novel
design approaches that can balance tradeoff of accuracy
and efficiency are described. They are categorized based
on their input data types, namely letters, signals and
images.

A. Letters

1) European Language Recognition Using HD Com-
puting: HD computing for European language recogni-
tion was first explored by [30]. Literature [40] presents
an HD computing nanosystem, which implements
HD operations based on emerging nanotechnologies—
CNFETs, RRAM and 3D integration—offering large
arrays of memory and resulting in reduction of energy

consumption. From its three-letter sequence called tri-
grams, such a nanosystem can identify the language of
a given sentence [40]. Define a profile by a histogram
of trigram frequencies in the unclassified text. The basic
idea is to compare the trigram profile of a test sentence
with the trigram profiles of 21 languages, and then find
the target language which has the most similar trigram
profile [30].

• Baseline. Scan through the text and count the tri-
gram to compute a profile. A total of 273 = 19, 683
trigrams are possible for the 26 letters and the space.
Thus the trigram counts can be encoded into a
19,683-dimensional vector and such vectors can be
compared to find the language with the most similar
profile. However, this straightforward and simple
approach generalizes poorly. Specifically, compared
to trigrams, higher-order N -grams will have higher
complexity. For example, the number of possible
pentagrams is 275 = 14, 348, 907.

• HD classification algorithm. 1). Choose a set of
27 letter hypervectors randomly, serving as the
seed hypervector. Note that all training and test
data employ the same seeds. In this design, the
dimensionality is selected to be 10,000. 2). Gen-
erate trigram hypervectors with permutation and
multiplication. For example, let (a, b, c) represent
a trigram. Then rotate the hypervector A twice,
hypervector B once, and use hypervector C with
no change, and then multiply them component by
component as described in Eq. (13). 3). The target
profile hypervector is then the sum of all the trigram
hypervectors in the text. 4). Compare the profile of
a test sentence to the language profiles, and return
the most similar one as the classification result.

Compared to the baseline algorithm, the HD algorithm
generalizes better to any N -gram size when 10,000-
dimensional hypervectors are used.
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Fig. 9: The architecture for language recognition with HD computing [21, 40].

The HD classification hardware architecture for lan-
guage recognition using trigrams proposed in [21] is
shown in Fig. 9. Two main modules are implemented.
They include the encoding module and the search mod-
ule. 1). The encoding module takes a stream of letters as
the input. Each letter is mapped to the HD space and its
corresponding randomly generated hypervector is stored
in the item memory. Here it addresses the trigrams where
each group of three hypervectors produces a trigram
hypervector. Accumulate those trigram hypervectors and
perform the majority operation using the threshold to
generate a text hypervector. 2). During the training phase,
a total of 21 text hypervectors are trained as the learned
class hypervectors and are stored in the associative
memory in the search module. During the testing phase,
the encoding module generates the text hypervector as
a query hypervector. This query hypervector is then
broadcast to the search module and compared to the
stored class hypervectors to predict the language label,
which has the closest similarity. As listed in Table IV,
the HD classifier achieves 96.70% accuracy.

Using the same architecture shown in Fig. 9, and com-
bining with the emerging nanotechnologies—CNFETs,
RRAM and their monolithic 3D integration—the HD
computing hardware implementation achieves classifica-
tion accuracy up to 98% for over > 20, 000 sentences
[40].

B. Signals

1) HD Classification for Speech Recognition: The
development of the Internet of Things (IoT) has mo-
tivated the market need for speech recognition. Though

deep neural networks (DNNs) have been widely used for
speech recognition, it requires expensive hardware and
high energy consumption. This has inspired research for
speech recognition based on HD computing which can
achieve fast computation and energy efficiency.

In [28], VoiceHD, a new speech recognition technique,
is proposed for classifying 26 letters from the spoken
dataset. At the beginning, the voice signal is transformed
to the frequency domain, which contains N frequency ID
channels and M levels. Then VoiceHD maps these ID
and level information into random hypervectors stored
in the item memory. Combining these hypervectors, in
the training phase, VoiceHD encoding module generates
the learned patterns corresponding to 26 hypervectors
that are stored in the associative memory. In the testing
phase, VoiceHD uses the same encoding module to
generate the query hypervector, which is broadcast to the
associative memory. Comparing the query hypervector
with the stored 26 class hypervectors, the hypervector
with maximum similarity is retrieved to predict the letter.
Here, dimensionality d of the hypervectors is 10, 000.

Researchers tested their VoiceHD design over Isolet
dataset [44], where a total of 150 subjects spoke the
name of each letter of the alphabet twice. The key
findings are as follows: 1). Varying the value of M , the
number of levels of the amplitude between −1 and 1,
with N , the number of frequency bins, fixed at 617, the
recognition accuracy increases with increase in M . Note
the encoding efficiency degrades with large M > 10.
The maximum accuracy reaches 88.4% using M = 10.
2). To improve the classification accuracy, researchers
retrain the associative memory by modifying the trained
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Fig. 10: VoiceHD+NN flow for training and testing [28].

Fig. 11: The architecture for Laelaps with HD computing to detect and alarm seizure [43].

class hypervectors. The accuracy can be improved to
93.8%. 3). Combining VoiceHD with a small neural
network, the corresponding VoiceHD + NN flow is
shown in Fig. 10. Such a small NN has three layers.
There are 26 neurons in the first layer, 50 neurons in the
hidden layer and another 26 neurons in the last layer.
The classification accuracy can be improved to be 95.3%.
4). Compared to the pure NN with 93.6% classification
accuracy, VoiceHD and VoiceHD+NN show 4.6× and
2.9× faster training speed, 5.3× and 4.0× faster testing
speed, and 11.9× and 8.6× higher energy efficiency,
respectively.

2) Seizure Detection Using HD Computing: The Lae-
lap algorithm, which utilizes local binary pattern (LBP)
codes to conduct the feature extraction from iEEG sig-
nals, has been proposed in [43] for seizure prediction.
Here HD computing is applied to capture the statistics of
the time-varying LBP codes for all the electrodes. Fig.
11 illustrates the complete processing chain. 1). Since
the down-sampling frequency is 512 Hz, thus every one
second (1s) data contains 512 samples. Among these
samples, the sampled iEEG signals are encoded to 6-bit
LBP codes. This completes the feature extraction part.
2). It utilizes record-based encoding, where two types of
hypervectors are randomly generated. Specifically, each

LBP code is transformed to a d-dimensional hypervector
Ci, while the hypervectors Ei are used to represent the
corresponding electrode name. For every new sample,
the hypervectors Ei and Ci are bound together to form
a composite hypervector S = [C1 ⊕E1 + · · ·Cn ⊕En],
where n is the number of electrodes for a specific patient.
Then the histogram of LBP codes H is computed for
a moving window of 1s with 0.5s overlap. Therefore
the composite hypervector H = [S1 + S2 + · · ·+ S512]
is updated every 0.5s. 3). For learning, two prototype
hypervectors P1 and P2 should be trained. For interictal
prototype vector P1, all H computed over 30s should
be accumulated and normalized to be stored in the as-
sociative memory. Depending on the seizure’s duration,
the ictal prototype vector P2 is generated using all H
over an ictal state, which may last 10s to 30s. 4). For
classification, comparing Pk with a query H , the label is
updated every 0.5s with the shortest Hamming distance
Ham(H,Pk), where k = 1, 2. 5). The algorithm also
generates the seizure alarm. In postprocessing, if the last
10 labels all indicate P2 (tc = 10) and the distance score
∆ > tr, then the seizure alarm is generated.

The evaluation shows the Laelaps algorithm outper-
forms other machine learning methods, such as SVM, in
terms of energy efficiency. It is worth noting that many
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simpler seizure detection and prediction algorithms have
been proposed in the literature [45–49]. A fair compar-
ison of classifier accuracy between HD and traditional
classification needs to be explored in future.

3) Quantization in HD Computing: In dealing with
signals, HD computing usually makes use of floating
point models to improve the classification accuracy at
the cost of high computation cost. In [25], QuantHD
is proposed as a quantization of HD model, which
projects the trained non-binary hypervectors to a binary
or ternary model, with elements in {0, 1} or {−1, 0,+1},
to represent class hypervectors. To compensate the ac-
curacy degradation caused by quantization, a retraining
approach is used where an iteration number of 30 is
pre-defined. The similarity check is no longer cosine
metric (non-binary model), but Hamming distance (bi-
nary model) or dot product (ternary model). Compared
to the existing binarized HD computing, such QuantHD
improves on average 17.2% accuracy with a similar
computation cost.

4) HD Computing Using Model Compression: As
a mathematical framework, HD computing can be an
alternative for machine learning problems. This was
envisioned in [50]. Due to the high dimensionality,
the inference of HD computing is quite expensive,
especially when it is applied to the embedded devices
with limited resources. For example, the memory is
limited. Therefore, reducing the high dimensionality of
hypervectors without sacrificing the accuracy has been
investigated in [51]. Thus, CompHD is a general method
that compresses the model size with the minimal loss of
accuracy. The addressed hypervectors are in {−1, 1}d.
Instead of Hamming distance, the similarity metric in
CompHD is cosine similarity.

1st Segment Sth Segment

Cjd CjD Cj1Cjd-D

-1 +1 +1 -1
P1 PS

Compressed
Model C' C'jD C'j1

1st Segment Sth Segment

hd hD h1hd-D

-1 +1 +1 -1
P1 PS

Compressed
Query Q' h'D h'1

Cjd CjD Cj1Cjd-D hd hD h1hd-D

(a) Offline (After training) (b) Online (During inference)

Fig. 12: CompHD for (a) an HD model and (b) a query
data [51].

To reduce the HD model size, it is natural to use low
dimensional hypervectors. However, experimental results
of three practical applications using different dimension-

alities in HD classification show that the efficiency is
improved by reducing model size at the cost of accuracy.

To maintain high accuracy when reducing the dimen-
sionality, the proposed CompHD employs the architec-
ture shown in Fig. 12. With no reduction in model size,
Ci represents the class hypervector, Q represents the
query hypervector, where 1 ≤ i ≤ k. In CompHD, class
hypervectors and query hypervectors are compressed,
which means the original hypervectors are divided into
s segments. To store most of the information in orig-
inal hypervectors with the full size, using Hadamard
method [52], CompHD generates P1, P2, · · · , Ps, which
are in {−1, 1}D and are orthogonal to each other, where
D = d/s. Specifically, the compressed class hypervec-
tor C ′ and query hypervector Q′ are calculated using
multiplication and addition in HD as described by Eq.
(17). By doing so, only little information is lost when
we compress the model size, and high accuracy can be
maintained.

C ′ =
s∑

i=1

PiC
i, Q′ =

s∑
i=1

PiQ
i (17)

Their evaluation shows that, compared to the original
HD classification that purely reduces the dimensionality
with the compression factor s = 20, the classifica-
tion accuracy for the three applications is still in an
acceptable range. In particular, maintaining the same
accuracy as the original, CompHD can on average reduce
model size by 69.7% while still achieving 74% energy
improvement and 4.1× execution time speedup in the
context of activity recognition, gesture recognition and
valve monitoring applications [51]. Therefore, CompHD
is suitable for low-power IoT devices to achieve higher
efficiency with a comparable accuracy.

5) Adaptive Efficient Training for HD Computing:
Single-pass training leads to low accuracy. To improve
this, iterative training might be one efficient solution.
However, a lack of controllability of training iterations
in HD classification may result in slow training or
divergence. To solve this training issue, [54] proposes
a retraining approach, AdaptHD.

The basic idea is illustrated as follows: 1). Conduct the
initial training by using binary hypervectors to generate
the non-binary class hypervectors. 2). Retrain the class
hypervectors by looking at the similarity of each trained
class hypervectors (C) with the training hypervector (H).
Update the model using Eq. (18) if the current training
hypervector leads to a mislcassification error. Otherwise
there is no change. For example, there is a mismatch
if Hi is supposed to belong to Ccorrect but is classified
as Cwrong, where Ccorrect and Cwrong denote different
class hypervectors and Hi represents the ith training
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Fig. 13: Overview of SemiHD framework supporting self-training in HD space [53].

hypervector. 3). After convergence, which means the
last three iterations of retraining show less than 0.1%
accuracy change, then binarize the final trained model
for inference. {

Cwrong = Cwrong − αHi,

Ccorrect = Ccorrect + αHi.
(18)

Insights are gained by their results: 1). Small α needs
more iterations to get the near best accuracy. The smooth
curve indicates small α is better for fine-tuning. 2). Large
α gets to the near best accuracy much faster, but its
high fluctuation may lead to divergence. Based on these
two findings, AdaptHD uses large α first to get the near
best accuracy faster, then changes to smaller α for fine-
tuning until convergence. This is similar to adjusting the
step size in the normalized least mean square (LMS)
algorithm [55]. AdaptHD offers three types of adaptive
methods:

• Iteration-dependent AdaptHD. The change of value
α depends on iterations. In the beginning, α starts
with a large αmax. The learning rate α changes
based on the average error rate in the previous β
iterations. If error rate decreases, indicating conver-
gence, then use smaller α; otherwise, increase α.

• Data-dependent AdaptHD. The value α differs in a
certain iteration for all data points, and it changes
depending on the similarity of the data point with
the class hypervectors. Large distance uses large α
to reduce the difference.

• Hybrid AdaptHD. Combining the two models,
hybrid AdaptHD can achieve high accuracy as
iteration-dependent AdaptHD and fast speedup as
data-dependent AdaptHD.

The evaluation shows that, compared to the existing
HD algorithm, their hybrid AdaptHD can achieve 6.9×
speedup and 6.3× energy-efficiency improvement.

6) A Binary Framework for HD Computing: Gener-
ally speaking, HD classification using binary hypervec-
tors shows lower accuracy but higher energy efficiency
than non-binary ones. This is because the non-binary
framework makes use of the costly cosine similarity
rather than the hardware-friendly Hamming distance
metric. In [35], BinHD uses three main blocks, encoding,
associative search and counter modules, dealing with
binary hypervectors. Their evaluation shows that, over
four practical applications, the proposed BinHD can
reach 12.4× and 6.3× energy efficiency and speedup in
training process, while 13.8× and 9.9× during inference,
compared to the state-of-art HD computing algorithm
with a comparable classification accuracy.

7) HD Computing for Semi-Supervised Learning:
In [53], SemiHD has been proposed as a self-training
or self-learning approach for semi-supervised learning,
where the training data is composed of a small portion
of labeled data and a large portion of unlabeled data.

The SemiHD framework is depicted in Fig. 13 and
the flow is illustrated as follows. 1). Encode all the
data points, labeled and unlabeled, into HD space with
d = 10, 000 dimensions. 2). Start training from the la-
beled data to generate k hypervectors, each representing
one class. 3). Predict the label for unlabeled data points.
Labeling is performed by checking the similarity of
unlabeled data with all the class hypervectors, and return
the label which shows the highest similarity. 4). Select
and add S% of unlabeled data with highest confidence to
labeled data, where S is defined as the expansion rate. In
[53], typically S = 5. 5). Redo the training task based on
the expanded labeled data. Such iterative process stops
when the accuracy does not change more than 0.1%.
6). Once the model has already been trained, perform
the inference task by comparing the similarity of each
test data with the trained model, to return the label with
maximum similarity.
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Fig. 14: Block diagram of the HD Character Recognition System [56].

Their evaluation shows that the SemiHD can on
average improve the classification of supervised HD
by 10.2%. Additionally, compared to the best CPU
implementation, the FPGA counterpart of SemiHD offers
7.11× faster speed and 12.6× energy efficiency.

8) HD Computing for Unsupervised Learning: HD
computing has also been used in several unsupervised
applications. See [57–61].

C. Images

1) HD Classification for Character Recognition: HD
classification has been used for character recognition in
[62] and later in [56]. As shown in Fig. 14, the input
image is composed of 7× 5 = 35 pixels. Each pixel has
two possible values, that is 0 or 1, representing black
or white. 1). Encode each pixel to a binary hypervector
(indexHV). Totally 35 orthogonal indexHVs are stored
in the item memory. 2). Based on HoloGN encoding—
an encoding method proposed in [62] to address image
data using HD computing—the indexHV is shifted de-
pending on the pixel value. Accumulate all 35 indexHVs
and perform a majority rule by a thresholding block
to generate a holoHV for one input image. 3). The
supervised controller will only be activated when this
HD system conducts supervised learning. Otherwise, the
system conducts the one-shot learning. The supervised
controller accumulates the holoHVs for the same class
and employs the thresholding block and generates the
letterHV to be stored in the associative memory. The
total number of letterHVs is 26. 4). During the test phase,
the query hypervector is generated following the same
module with test data. Then the similarity of each query
hypervector is computed for all trained letterHVs to find
the most similar class.

Results in [56] show that HD computing performs well
for character recognition. Further optimization for HD

computing may be conducted by reducing the dimen-
sionality and increasing the input image size. The results
also show that HD computing offers great robustness
against noise. The system of 4,000-bit hypervectors
achieves comparable average accuracy to its 12,000-bit
counterpart at 0% distortion, and achieves an average
accuracy of 89.94% with 14.29% distortion.

D. Summary

As mentioned above, HD computing shows great
potential in dealing with data in the form of signals [28,
43, 65, 66, 75], letters [30, 64], and images [9, 56, 62],
as long as these can be transformed into the HD space.
Such pre-processing may include feature extraction and
encoding. Evaluation shows that HD computing achieves
good results for seizure detection [43, 66]. In addition,
HD computing can also be combined with quantiza-
tion technique to binarize HD model with minimal
accuracy loss [76]. Table III offers more details about
improvement strategies adopted in HD computing for
accuracy and efficiency. As can been seen from Table
IV, HD computing offers an acceptable accuracy, but
with quite high efficiency. In some applications like
DNA sequencing [31], HD computing outperforms other
machine learning methods.

There still exist some interesting papers not discussed
in detail in this review paper. Interested readers can refer
to the following references, which include but are not
limited to: 1). Considering the security issue when IoT
devices release the offload computation to the cloud,
[77] illustrates how the proposed SecureHD accelerates
efficiency with high security. 2). To balance the tradeoff
between efficiency and accuracy, QubitHD [76] is pro-
posed as a stochastic binarization algorthim to achieve
comparable accuracy to the non-binarized counterparts.
SparseHD [37] takes advantage of the sparsity of the
trained HD model for acceleration.
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TABLE III: Summary of the strategies used in HD computing for accuracy and efficiency improvement.

Applications Encode* Model Type**
Platform∆ Accuracy♥ Acceleration♣ Motivation Applicationbase/level train test

QuantHD [25] 1 B/B B/T B/T F, C, G Re, shuffle Q, DR, F speedup+accuracy speech, activity, face, phone position
VoiceHD [28] 1 B/B B B C NN, Re DR, B Replace deep learning speech
CompHD [51] 3 P N N F N DR, Comp DR without accuracy loss activity, gesture, valve monitoring
AdaptHD [54] 1 B/B N B C Re, N B, Adapt accuracy+short time Re speech, face, activity, Cardiotocograms
BinHD [35] 1 B/B B B C Re B speedup speech, face, activity, Cardiotocograms

SemiHD [53] 1 B/B B B F, C Re, N DR, B Replace deep learning 17 popular datasets [63]
Language [21] 2 B B B F B energy saving + robustness language recognition
Character [56] 3 B B B Binary DR data classification in IoT character recognition

Laelap [43] 1 B B B C, G energy efficiency seizure detection
* three encoding methods. 1: record-based encoding, 2: N -gram-based encoding, 3: a novel method.
** symbol “/” is used in record-based encoding. B: binary, P: bipolar, T: Ternary, N: non-binary.
∆ implementation platforms. F: FPGA, C: CPU, G: GPU.
♥ strategies for accuracy improvement. Re: retraining, N: non-binary model, NN: neural network.
♣ strategies for efficiency improvement. DR: dimension reduction, Q: quantization, B: binarization, F: FPGA, Comp: compression, Adapt: adaptive.

TABLE IV: Partial List of applications based on HD computing♣ in [40].
Applications Inputs (#)* Classes (#)** HD (%) Baseline (%)

Language recognition [21, 30] 1 21 96.70% 97.90%
Text categorization [64] 1 8 94.20% 86.40%
Speech recognition [28] 1 26 95.30% 93.60%

EMG gesture recognition [23] 4 5 97.80% 89.70%
Flexible EMG gesture recognition [27] 64 5 96.60% 88.90%

EEG brain-machine interface [65] 64 2 74.50% 69.50%
ECoG seizure detection [66] 100 2 95.40% 94.30%

DNA sequencing [31] 1 99.74% 94.53%
Character recognition [56] 1 10 89.94%

* represents the number of input data.
** represents the number of class hypervectors to be trained and stored in the associative memory.
♣ Other works, like [67–74], are not listed in this table.

HD computing is still in its infancy. Future directions
may include but is not limited to:

• More cognitive tasks: Inspired by [32], apart from
the engineering aspect of HD computing, which
is to solve classification tasks, more “cognition”
aspects of HD computing should be explored. Such
tasks include but are not limited to analogical
reasoning, semantic generalization and relational
representation.

• Feature exaction and encoding method: Since HD
computing cannot directly address data like signals
and images, feature exaction is vital to represen-
tation of information. For example, [75] partially
deals with this by addressing the problem of map-
ping data to a high-dimensional space.

• Similarity measurement: Though cosine similarity
and Hamming distance are currently widely used,
new metrics should be developed that are hardware-
friendly and can lead to high accuracy.

• Multiple class hypervectors: Traditional classifiers
use multi-dimensional features to train a classifier.
Often ranking can be used to select a small number
of features out of many features [78]. It is pos-

sible that multiple class hypervectors, similar to
multiple features in traditional classification, can
be generated to represent a class in HD classifi-
cation. Subsequently, multiple query hypervectors
will need to be compared with their corresponding
class hypervectors for each class. This is a topic for
further research.

• Accuracy improvement: Strategies like retraining
should be explored to further improve the accuracy
of HD computing.

• Hardware acceleration: Rebuilding the specific im-
plementation for HD computing to store and ma-
nipulate a large amount of hypervectors may result
in high speed and energy efficiency. Moreover,
inspired by [32], which discusses tradeoffs related
to the density of hypervectors, a choice between
dense and sparse approaches should be accordingly
made based on the application scenarios. For exam-
ple, adopting sparse representation requires lower
memory footprints.

• General HD computing processor: Inspired by [13],
addressing different types of data with only one
general processor containing a large word-length
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ALU is of great interest.
• Hybrid systems: Hybrid systems are partially based

on HD computing and partially on conventional
machine learning. Only a few examples exist so
far [79–82]. Further research on this topic can be
explored in future.

V. CONCLUSION

This paper has summarized the fundamental arith-
metic operations for the emerging computing model of
HD computing that might achieve high robustness, fast
learning ability, hardware-friendly implementation, and
energy efficiency. Mathematically, HD computing can
be viewed as an alternative in dealing with machine
learning problems. Though in its infancy, HD computing
shows its potential to be used as a light-weight classi-
fier for applications with limited resources. This model
can achieve outstanding classification performance for
certain problems like DNA sequencing. Balancing the
tradeoff between accuracy and efficiency is an important
area of research. Improvements include but are not
limited to encoding, retraining, non-binary model and
hardware acceleration. HD computing sometimes leads
to outstanding classification accuracy, while sometimes
achieves acceptable accuracy but high efficiency. Thus,
users need to evaluate whether HD computing is suit-
able for their application. Additionally, HD computing
can be used in applications such as seizure detection,
speech recognition, character recognition and language
detection. More “cognition” aspects of HD computing,
including analogical reasoning, relationship representa-
tion and analysis, will need to be further developed in
the future.
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