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Abstract
Autonomous Vehicle (AV) technology has the potential to fundamentally transform the automotive 
industry, reorient transportation infrastructure, and significantly impact the energy sector. Rapid 
progress is being made in the core artificial intelligence engines that form the basis of AV technology. 
However, without a quantum leap in testing and verification, the full capabilities of AV technology 
will not be realized. Critical issues include finding and testing complex functional scenarios, verifying 
that sensor and object recognition systems accurately detect the external environment independent 
of weather conditions, and building a regulatory regime that enables accumulative learning. The 
significant contribution of this article is to outline a novel methodology for solving these issues by 
using the Florida Poly AV Verification Framework (FLPolyVF).

© 2019 The Authors. Published by SAE International. This Open Access article is published under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits distribution, and reproduction 
in any medium, provided that the original author(s) and the source are credited.
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1. �Introduction

In recent years, AVs have attracted considerable attention 
from academia, industries, and governments. Perception, 
decision-making, and action are the three major processes 

required for driving a vehicle. Currently, decision-making 
and perception are controlled by human drivers, and the 
action process is performed by the vehicles. According to a 
report by the National Highway Traffic Safety Administration, 
94% of the 37,461 traffic fatalities in 2016 were caused by 
human error [1, 2]. AVs are designed to conduct the decision-
making and perception aspects of driving, and it is hoped that 
AVs will reduce accidents related to human error. In addition, 
studies show that autonomous driving technologies can posi-
tively affect the economy, safety, and traffic congestion [3]. 
Despite all of these advantages, one of the major barriers for 
wide-scale adoption of AVs is the lack of testing and verifica-
tion regime to assure safety. To address this barrier, a process 
that builds an engineering argument for assuring safety must 
be developed. Typically, this argument is built based on the 
following principles:

	 1.	 Conceptual Model: A conceptual understanding of 
the problem is created and supported through 
virtual models.

	 2.	 Test Regime: Using the conceptual model, a test 
regime is built to test the model and build an 
argument for correctness.

	 3.	 Completeness: The state space of tests is examined 
within the modeling environment to develop metrics 
for comprehensiveness.

	 4.	 Accumulative Learning: A structure is constructed 
where field testing feeds back into this flow such that 
safety is always rising.

Intertwined with the above methodology is the classic V 
paradigm [4, 5] that is used as a mechanism to enable concur-
rent design and test. In this paradigm, mathematical models, 
which have been correlated with a bottom-up component-
level characterization stage, are used early in the design stage. 
As the design is refined, physical components can be substi-
tuted to a point when system-level tests can be performed on 
the whole physical design. Modeling issues are often corrected 
with a virtual-to-physical diagnostics flow. The combination 
of the conceptual safety regime and the V design process has 
been effectively used to build robust systems in many domains.

The above flow has been used very successfully by the 
automotive industry to verify conventional cars for many years. 
However, the addition of perception and decision-making has 
added an order-of-magnitude level of complexity to solve the 
safety problem. Critical open issues are listed as follows:

	 1.	 Conceptual Model: What are the conceptual models 
that are appropriate for the perception and decision-
making stages of AV operation?

	 2.	 Test Regime: What is the test regime, which can build 
confidence as to the operation of the AV?

	 3.	 Completeness: How do we understand the state space 
sufficiently to understand the risks surrounding 
completeness? How do we address the issues of 
tester bias?

	 4.	 Accumulative Learning: How do we know the next 
version of the vehicle or even software updates are 
improving safety?

We observe that today none of the above questions is 
answered sufficiently for AVs. The current commercial solu-
tions are using ad hoc methods such as miles driven [6] to 
provide some indication of safety. However, no fundamental 
structure has been offered to demonstrate the robustness of 
AV products. Furthermore, without the answers to the above-
mentioned questions, regulators do not have the means to 
address safety issues or even to clearly communicate these 
issues to operators or the public.

In the remainder of this article, we describe a conceptual 
framework for addressing the critical verification issues for AVs 
and introduce a mathematical modeling abstraction, which is 
essential to enable the effective functioning of the environment. 
This work intends to answer the questions above for AVs.

2. �Characteristics 
of the Solution

2.1. �Hardware Design
We observe that the realm of AV verification has many similari-
ties to complex hardware verification. In the realm of hardware, 
millions of extremely sophisticated components (transistors) 
are assembled to form a higher-level function that is embodied 
in a semiconductor chip. The cost of the development of semi-
conductor chips is very high, and simulating the whole chip at 
the physics level is impossible. Even at the highest level of 
abstraction, most semiconductor chips can be simulated only 
in the low kilohertz range while the chips themselves run in 
the gigahertz range. Thus, in any design project, a minimal 
simulation budget exists (a day of real-world operation) to run 
all the tests to assure safe operation for the lifetime of the part.

What are the analogies to AV verification?

•• First, much like hardware, AVs consist of complex 
components (sensors, object recognition systems, radar, 
etc.). Simulating everything at the most detailed level is 
similarly impossible. 

•• Second, much like hardware, AVs need to compress 18 
years of human traffic learning into a reasonable 
development cycle.

•• Third, AVs have the same need for robustness relative to 
environmental conditions.

•• Finally, AVs have the same need for completeness and 
accumulated learning.
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World-class hardware verification teams solve these 
problems with a variety of approaches. The first and most 
important of these is the use of abstraction as a powerful tool 
to decompose the problem. Within hardware, various abstrac-
tion levels have been developed (transistor, gate, RTL, micro-
architecture, architecture, network stack) that separate 
concerns and build an inductive proof for verifying the whole 
semiconductor chip. As an example, the transistor design team 
focuses entirely on the task of making sure the semiconductor 
physics process produces a behavior consistent with a transistor 
under all environmental conditions. A cell designer relies on 
this behavior to build larger components and only verifies that 
the combination works as expected. Thus, via this recursive 
process, a chip is built and verified. These separation of 
concerns and abstractions are so powerful that whole multi-
billion-dollar markets (fabless, ASIC) [7] have been built based 
on these concepts.

Even though the described inductive process of hardware 
verification is very effective in demonstrating equivalence 
between abstraction levels, it still requires the verification of 
the highest level of abstraction. In this area, hardware 
verification has used a variety of techniques, such as formal 
verification, constrained random test generation, and real-
world test injection, to model and test the overall function 
[8,  9]. Finally, a profound concept of coverage analysis exists 
to model completeness. The combination of all of the above 
has created an environment where most semiconductor chips 
are typically functional on the first pass of manufacturing 
despite the enormous complexity and size [10].

How can AV verification use the powerful methods devel-
oped for hardware verification? The key is the development of 
an enabling abstraction level.

2.2. �AV Framework
In this section, we introduce a critical enabling abstraction 
approach to aid in the task of AV verification, which we term 
FLPOLY Scenario Abstraction (FLPolySA). FLPolySA has the 
following high-level characteristics:

	 1.	 Wireframe/Building Block: Components are very 
simple rectilinear objects that model the physical 
characteristics of the environment.

	 2.	 Dynamic and Static: There are two types of objects - 
static objects that do not move and dynamic objects 
that move with a predetermined vector. These 
components are not responsive.

	 3.	 Assertions: Both the dynamic and static 
components contain metadata that assert 
expected behavior.

	 4.	 Newtonian Physics: The behavior of the components 
follows the rules of simple Newtonian physics. A 
critical idea that is modeled is the notion that mass 
with velocity/acceleration/gravity will lead to the 
expected behavior.

	 5.	 Unit Under Test (UUT): An ego car can enter this test 
and has the potential to achieve success or failure if 
none of the error assertions fires.

The precise details of the model will be explained in the 
following sections. However, at this point, it is important to 
motivate the design of FLPolySA. There are many powerful 
consequences for choosing this higher-level simple 
abstraction structure:

	 1.	 Mathematical Language: The abstraction allows for 
precise capture of the modeling environment and 
provides a basis to reason about this environment.

	 2.	 Extended Coverage: A single abstract model contains 
within it many underlying combinations. As an 
example, the black-box car could be used to model 
vehicles from any brand.

	 3.	 System Coverage: A signature process for the whole 
model can be used to drive a test coverage process. A 
signature process is required to understand what 
scenarios have been examined earlier and when a 
scenario is indeed new.

	 4.	 Separation of Concerns: The abstraction allows the 
sensor/object recognition problem to be addressed 
independently from the decision-making problem.

Overall, FLPolySA helps address many of the critical 
issues mentioned in the introduction as missing aspects for 
AV verification. Figure 1 shows the conceptual layering of this 
abstraction approach.

	 1.	 Newtonian Physics: The function of this layer is to 
model movement and momentum, and detect 
collisions. This is the physical world.

	 2.	 Assertions: Layered over the physical world is the idea 
of good or bad.

	 3.	 Design for Experiments: This environment is set up such 
that the test has no memory and thus is repeatable.

	 4.	 Inputs and Constraints: Layered in the outermost 
layer is the machinery for inputs and constraints that 

 FIGURE 1  Scenario abstraction levels.
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drive a singular test. This machinery is set up to 
be able to run constrained pseudorandom tests and 
collect ongoing coverage (Figure 2).

With the introduction of FLPolySA, an overall architec-
ture can be developed for FLPolyVF. Figure 3 shows the blocks 
and flows among the blocks in this environment. The critical 
pieces include

	 1.	 Scenario Test Generation: Using seed and a 
constraints matrix, pseudorandom experiments can 
be generated and tested automatically against the 
UUT. The objective of this part of the flow is to 
simulate millions of configurations and try to find 
test cases that cause the ego car to fail. This part of the 
flow requires the mathematics to understand input 
constraints and enable a signature flow for deciding 
whether a test has been generated earlier.

	 2.	 Scenario Database/Coverage: The notion of scenario 
coverage is critical in FLPolyVF. This is the method 
that can be used as a basis for regulatory approval, 
limit redundant simulation, and form the basis of an 
ongoing testing and verification database. The 
scenario abstraction provides an excellent method to 
capture this information, and furthermore, the 
defined mathematics has a strong concept of 
equivalence classes that allows for more in-depth 
optimization of the coverage database.

	 3.	 Test Track Diagnostics: Once a test fails, there is a 
need to diagnose the test at a deeper level of 

abstraction. This can be detailed simulation models to 
a physical test track environment, and FLPolyVF 
allows for this path through a synthesis process from 
the scenario test to a physical instantiation.

	 4.	 Sensor Testing and Verification: A critical part of an 
AV is the object recognition system and sensors. The 
scenario abstraction can provide test cases with built-
in criteria of success such that the sensor/object 
recognition problem can be verified separately.

	 5.	 Scenario Abstraction: Just as there is a need for 
synthesis from the scenario level, there is a need to 
abstract the scenario construct from the physical 
environment. A classic example is a “real-world” 
accident that must be analyzed much more completely 
in the simulation framework. In addition, it is 
common to test for “cousin” bugs [11] with this flow.

	 6.	 Industry/Regulators Communication: There is a need 
to communicate unambiguously among the industry 
participants and the regulators. The FLPolyVF 
scenario abstraction provides an excellent means for 
this communication.

The remainder of this article is organized as follows: 

•• Section III discusses the related work; 

•• Section IV defines the scenario level of abstraction in a 
mathematically unambiguous fashion and also provides 
theorems and proofs critical to enable the proposed AV 
testing and verification flow;

•• Section V provides an illustrative example;

•• Section VI provides details on the FLPolyVF instated 
in software;

•• Section VII offers some conclusions.

3. �Related Work
Several simulation-based approaches have been introduced 
previously for the testing and verification of AVs [12, 13, 14, 
15, 16, 17].

Hallerbach et al. [12] described a simulation-based crit-
ical-scenario identification platform through the use of a 
metrics-based filter to define critical situations. This method 
is useful in generating interesting test cases. However, there 
is no concept of coverage/completeness, and the technique is 
highly dependent on the definition of the critical scenario 
metric that has the danger to be arbitrary.

A methodology for verifying the safety of connected and 
autonomous vehicles (CAVs) is discussed in [13]. This approach 
checks the safety of CAVs during its online operation, via 
reachability analysis, to account for different possible math-
ematical models of behavior under uncertain conditions such 
as the existence of disturbances and sensor noise. This 
approach is a companion to the core system for just verifica-
tion. The model has some interesting properties but creates 

 FIGURE 2  Scenario abstraction and FLPolyVF.
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 FIGURE 3  FLPolySA overview.
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another system that must be verified. Without a framework 
for verification neither the core nor the verification system 
can be evaluated from a safety point of view.

An accelerated evaluation for AVs using piecewise 
mixture models is presented in [15]. The method addresses 
significant issues with today’s best practices adopted by the 
automotive industry. The proposed method uses enhanced 
statistics of the surrounding vehicles and the importance of 
sampling theory. Although the described method can reduce 
the evaluation time, their approach is limited in terms of 
implementation, and it ensures only that the evaluation results 
are statistically accurate.

One of the main methods in robot testing, the procedural 
content generation (PCG) [17], also tries to overcome the chal-
lenge of time-consuming and costly manual test creation. PCG 
is used in fault discovery for robot control software [18] and 
is considered to have the potential to be  adapted for AV 
software verification because it generates environments and 
creates, executes, and prioritizes the scenarios. However, these 
approaches suffer from the fundamental issue that the software 
can be built correctly but does the wrong function.

Khastgir et al. [19] defined an automated constrained 
randomized test scenario generation framework for ADAS and 
AVs. The structure first creates random-based scenarios by 
varying the conditions, such as environment variables or 
vehicle trajectories, in a driving simulator. Then, each base case 
is randomized in real time by using constrained randomization 
again during the test to find the edge cases. Bagschik et al. [16] 
described a knowledge-based scene generation for AVs. The 
process of scenario generation is a big challenge in the methods 
mentioned above. A framework is introduced by the authors 
in [20] to improve the process of automatic test case generation 
for high-fidelity models that has long execution times. The 
framework uses low-fidelity models to evaluate specific proper-
ties analytically or computationally with provable guarantees. 
Although this improves the process, the test scenario coverage 
is an important challenge for both frameworks.

Li et al. [21] suggested a framework to combine scenario-
based and functionality-based testing methodologies. The 
framework defines a new semantic diagram for driving intel-
ligence using the relationship among testing scenarios, tasks, 
and features. In that diagram, scenarios and functionalities 
were shown as two transverses with opposite directions and 
used to test the AVs in simulation. Li et al. [21] also designed 
a simulation platform that creates a digital twin of the real 
testing ground to record and reproduce the behaviors in real 
life. The focus of the work is to optimize test construction 
from a cost and efficiency point of view. However, evaluation 
of the edge test scenarios and a framework for coverage 
remains a significant challenge for this framework.

Heinz et al. [22] verified the safety benefits of automated 
driving functions leveraging two de facto open standards 
(i.e., OpenDRIVE and OpenSCENARIO) for describing road 
networks and dynamic content in driving simulation. Their 
method focuses on building interesting scenario tests within 
the constraints of physical test resources. While this is an 
effective effort, it does not address the issue of overall safety.

Shai et al. [23] put forward a scalable sensing system and 
safety standards for AVs, based on a classic sense-plan-act 
robot control architecture, which can maximize safety 
through minimizing sensing and planning errors. They 
presented a data fusion technique that enabled them to 
validate sensing errors with a significantly smaller amount of 
data. To reduce planning errors, they suggested a responsi-
bility-sensitive model that helps to identify the responsible 
entity in case of an accident. Safe longitudinal distance and 
safe lateral distance were the two major variables considered 
for evaluating the safety benefits of AVs. This is an important 
measure of safety; however, the conditions under which these 
might be violated are not addressed.

Recently, an industry-driven initiative called ENABLE-S3 
invested in verification automated cyber-physical systems by 
more efficient and effective methods [24]. Rooker et al. [25] 
focused on improving the validation of autonomous systems 
for smart farming using ENABLE-S3. Gerwinn et  al. [26] 
proposed a method for safety assessment and made the simula-
tion results to correlate the safety of advanced driver-assistance 
systems in real-world scenes. This has been done by defining 
requirements on the environmental situation and producing 
statistical evidence for system safety. These two efforts combine 
with ENABLE-S3 framework try to combine simulation and 
physical types of verification to optimize the cost and time of 
testing. Our proposed framework and the model of computa-
tion can easily be adopted by this initiative to verify commercial 
AVs in both the physical and simulation worlds.

There are several other research studies, such as [27], 
which focused on testing of controller’s operation of AVs. [27] 
have presented a verification methodology for control and 
path-planning algorithms used in AVs. The method is inter-
esting but is limited to testing the controller part of the AV. 
Our framework and model of computation (MoC) is general 
and focuses on verification of all different parts of AVs and 
their interactions with each other.

Overall, the core contributions of this article and the 
FLPolyVF are differentiated from the existing solutions by 
providing a coherent verification framework that is enabled 
with the FLPolySA. The proposed framework addresses all 
the abovementioned challenges.

4. �Scenario Mathematical 
Model for FLPolySA

4.1. �Overview
In this section, we formally define FLPolySA. This formal defi-
nition is critical to describe the model at the level of abstraction 
used in our approach. Figure 3 shows the core “engine” of the 
abstraction, which consists of a Newtonian evaluation whose 
inputs are the current scene/situation, the performance char-
acteristics of the UUT, and the desired action of the UUT. The 
combination of these produces the next time step scene.
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The remainder of this section defines the structure for 
FLPolySA, focusing on three concepts:

•• Assertions: The concept of pass/fail is provided by the 
assertions in FLPolySA.

•• Equivalence Classes: The equivalence classes are used as 
the basis for coverage.

•• Concatenation: The rules for combining scenarios are 
defined by the concatenation concept.

All of these concepts form the core elements of a discrete 
event engine that can be built in a virtual simulation environ-
ment. It should be noted that while we are focused on AV 
scenarios, the same infrastructure can be used for marine, 
drones, and even pedestrian robots.

4.2. �Preamble
We will consider a Euclidean three-dimensional (3D) space, 
with time as one additional dimension. We will be using the 
Real Cartesian coordinate system where 3D vector-valued 
functions determine the position, velocity, and acceleration 
of all moving objects with respect to time [28]. All motion and 
mechanics of motion in our space will follow the basic 
Newtonian laws of motion, that is, all motion is described 
using the centers of mass of the actors and the UUT. However, 
the Relative Distance (RD) between the actors, constants, and 
the UUT will be measured edge to edge.

We let the map r(t): ℝ → ℝ3 be the position function for 
a moving or static object in our space. Then v(t) =  ṙ(t) and 
a(t) = r (̈t) are the velocity and acceleration vectors, respec-
tively. Furthermore, we use Newton’s Principle of Determinacy, 
which states that all motions of a system of, say, n objects are 
uniquely determined by their initial positions and 
initial velocities.

In addition, since all the objects in this environment are 
treated as bounded rectangular boxes, the relative edge-to-
edge distance is computed as a distance between two bounded 
planes (including their edges). More explicitly, suppose 
we have two rectangular 3D objects O and T and let O1: a1 x + 
b1 y + c1 z + d1 = 0 be one of the sides of O and T1: A1 x + B1 y + 
C1 z + D1 = 0 be one of the sides of T where the x, y, and z are 
bounded for both planes. Also, let P(x1, y1, z1) be any point on 
the plane O1. Then we can calculate the distance between the 
two sides O1 and T1 as follows:
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1 1 1 1
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	 Eq. (1)

Thus we will define the relative edge-to-edge distance 
between O and T (denoted by RD(O, T) ) as

	 RD O T D O T i ji j, , ,( ) = ( ) £ £ £ £{ }min .1 6 1 6 	

4.3. �Scene Definition and 
Properties

We model a Scene κ as κ = [C0, C1, …, Ck]
Remarks:

•• The scene vectors forming the columns of a scene matrix 
can possibly have different sizes. Therefore, we fill in the 
empty entries with zeros and define the size of the scene 
matrix to be

	 max .number of rows in kiC{ }´ +( )1 	

•• The scene vector Ck is computed at a specific time step, and 
it represents the scene as a snapshot of the reality around the 
UUT at that time step. A scene represents the space-time 
(4D space) around the UUT up to the current point of time.

•• N is chosen to be large enough to capture effects near the 
UUT, but small enough for all of the reasonably small 
number of equivalence classes.

4.4. �Scenario Definition and 
Properties

With the basic components of the model and their behavior 
defined, we now integrate the intersection of fundamental 

Definition 1. A Scene Vector Ck is a vector of real numbers 
representing the 3D spherical environment around the 
Vehicle or UUT within Nk units of distance at a moment of 
time (or time step) k = tΔt. The distance Nk will be called 
the Radius of the scene vector. Furthermore, a scene vector 
is broken down to four main components or sub-vectors:

	 1.	 The parameters describing the Ego or UUT, such as its 
dimensions, position, velocity, and acceleration vectors.

	 2.	 The dynamic actors, which are the moving 
components in this sphere. Each dynamic actor has its 
own velocity and acceleration vectors as well as the 
RD between the actor and the UUT.

	 3.	 The constants or static components, which would 
include the RD between the UUT and any nonmoving 
object or structure in the scene in addition to the 
dimensions of the object.

	 4.	 The communication between the UUT and the other 
actors and components in the scene, which would 
include physical, electronic, and wireless 
communications between the actors and other 
components in the scene, such as an actor signaling to 
change lanes in front of the UUT.

Definition 2. A Scene κ is the 3D environment constructed 
by accumulating the scene vectors with consecutive time 
steps up to the present time step. Also, the scene radius 
N = max {scene radii for all the scenes vectors up to the 
present time step k}.
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physics mathematically with decision-making by the UUT. 
Newtonian physics is the driving paradigm, and at decision 
points, the UUT can change desired behaviors.

Notice that the communication from other actors in the 
scene can be in many formats, such as a turn signal of another 
vehicle or the flashing lights from an emergency vehicle. Also, 
the Desired Inputs, which would be  new values for the 
velocity and/or acceleration vectors of the ego, cannot happen 
suddenly (Figure 4).

Cς has the new values for the parameters/variables in the 
scene vector based on the actions of the UUT within the capa-
bilities of the UUT. So Cς would incorporate the decisions 
made by the UUT at the Scenario in the scene. Therefore, Cς 
could have many entries identical to Ck except it will also have 
entries, such as velocities and RDs, computed using the basic 
laws of motion and based on new vectors for the velocity and 
acceleration (both longitudinal and latitudinal), depending 
on whether the UUT increased or decreased its speed or 
changed its direction or lane.

Assume we have a scene in which the UUT will be driving 
along a road and at time step t an obstacle (such as a stop sign) 
is detected in the path of the UUT. Here we have a scenario, 
call it ς, where the UUT will make a change to its current 
velocity and/or acceleration vectors to avoid a collision. These 
changes that the UUT desires cannot happen suddenly (e.g., 
the UUT cannot come to an immediate stop, or change lanes 
instantly). Suppose the vector Ck = [r(k), v(k), a(k),*] is a scene 

vector at time step k, where r, v, and a are the position, velocity, 
and acceleration vectors of the UUT and * represents the other 
entries. Also, assume the UUT’s desired action is to stop, then 
its input is v = 0. Thus

	
V r k v k a k Communication by actors v desired( ) ( ) ( ) *éë ùû( )
= =

, , , , ,

CVV CC 1k+ .
	

The new scene vector Cς is computed by using Newtonian 
laws of motion taking in as input the entries of the current 
scene vector Ck, such as location, velocity, and acceleration as 
functions of time (or time step) as well as the desired action 
of the ego, be it change in speed or direction. Then it produces 
realistic values for all the variables and parameters, such as a 
realistic stopping distance or change in direction vector using 
formulas such as

Deceleration Rate D k

Braking v k

k

= ( )

=
( ) - ( )( )é

ë
ê
ê

ù

û
ú
ú

2
2

Distance 	
Eq. (2)

where

	 Braking
v k

Distance =
( )2

2 mg
,	 Eq. (3)

μ is the coefficient of friction between the road surface 
and the tires, and g is gravity. Hence, if we denote the new 
position and new velocity vector rς(k) and vς(k), respectively, 
we have

	 CV V V= ( ) ( ) ( ) **éë ùûr k v k D k, , , .	

4.5. �Assertion Definition 
and Properties

We have defined the inner core as shown in Figure 1 around 
the general intersection of Newtonian physics, vehicle 
dynamics, communication, and decision-making by the 
UUT. To this point, there is no concept of good/bad or pass/
fail. Assertions allow us to overlay these concepts on 
the model.

Definition 3. Given a scene κ, the Next State function ς is a 
function with the input of the current scene vector, 
communication from other actors, and the desired action of 
the UUT. The State function output is a newly computed 
scene vector following the Newtonian laws of motion. That 
is, suppose Ck is the scene vector at time step k, then 
we define the new vector Cς = Ck + 1 = ς (Ck, Ego’s Desired 
Input, Communication from other actors) to be the next 
state vector. A Scenario occurs when the ego makes a 
decision, that is, when the ego wants to change its 
parameter (mainly velocity and/or acceleration vectors) to 
new Desired Inputs.

 FIGURE 4  A scenario as a function of current and 
desired inputs.
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Definition 4. Given a scene κ with a radius N, we define the 
Assertion function ϑ as a function with the domain being 
the set of scene matrices and the range is the interval [0,1], 
which has a predetermined set of weighted assertions. The 
output of this function is a probability (or a percentage) 
calculated as a weighted average based on the 
predetermined assertions where an output of 0 means the 
UUT fails and an output of 1 represents the UUT passing.
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As previously mentioned, we consider the RDs between 
the UUT and any other actors (dynamic or constant) as an 
edge-to-edge distance. Therefore, we identify the threshold 
constant as being a drivable surface by asserting that the RD 
between the UUT and that actor is zero and can’t be positive. 
Otherwise, the vehicle is floating above the road, which is a 
nonrealistic situation. Similarly, we identify the nondrivable 
surfaces, such as sidewalks, by asserting that the distance 
between them and the UUT must remain strictly positive, 
that is, if the RD between the UUT and the sidewalk (for 
instance) becomes nonpositive, the assertion must fire.

4.5.1. The Formulation Let κ be a scene with radius N 
given by a matrix of size n × (k + 1) where k is the current 
time step. Now assume that there are m assertions placed on 
κ; let A be an m × n × (k + 1) matrix called the Assertion Ma-
trix. The j-th layer of A is an m × n matrix which corresponds 
to the j-th column (scene vector) in κ where each row repre-
sents an assertion and each column represents one of the pa-
rameters in the scene vector. In other words, the entries in 
each row are the weights representing the relation between 
the assertion and the parameters in the scene vectors. Next, 
we define the Assertion function ϑ as follows:

	 J k k k( ) = -A 0 ,	

Here the product Aκ is obtained by multiplying the j-th 
layer of A by the j-th column of κ. In addition, κ0 is an m × 
1 × (k + 1) matrix with each layer consisting of the vector 
[denoted by C_(0, j) for j = 0, 1, …, k] of acceptable values of 
the parameters for each assertion for each time step.

Notice that, since we are using matrix operations, we can 
conclude that the Assertion function ϑ is a well-defined 
function. This is important because we would like a predictably 
repeatable verification system.

Suppose we have a scene, then we can attach an assertion 
to almost every actor in the scene. For example, we define the 
assertion that the UUT shall not collide with any obstacle or 
other actors in the scene, which means that the RD to the 
obstacle or actor must remain strictly positive. In other words, 
we use the assertions per entity as observers to the UUT and 
the scene as a whole to give meaning to anything that 
might happen.

All the assertions placed on any scene can be formulated 
as functions of actual physical parameters of the scene. For 
instance, one could use the safe distances, as defined in [23], 
as parameters (entries) in the scene vector. Thus, by comparing 
these computed distance values using the actual velocity and 
acceleration of the UUT and the other actors with known safe 
and legal distances, we will have a measure of passing or 
failure of the UUT.

4.6. �Equivalence Classes
The scenes are represented by real vectors, so it follows imme-
diately that two scenes are equivalent if they have the same 
radius, and their corresponding scene vectors are equivalent. 
While this might indicate that scenes would be considered 

equivalent even if they have external factors that might affect 
them, such as daytime versus nighttime, here we are consid-
ering the scenes as seen by the AV. Because of our separation 
of concerns principle, we have an underlying assumption that 
the AV has a perfect understanding of the environment 
around it. If the AV observes a difference, then that triggers 
a generation of another scene that would have different param-
eters. Factors such as environmental conditions or electro-
magnetic interference are other layers of verification that can 
be built on top of our model.

Remarks:
Assume two scenes ε and ρ with the same radius N are 

equivalent. Then

•• For each actor in a scene vector, the distance between 
that actor and the UUT is an entry in the scene vector. 
Hence, for each actor in one of the scenes - say, ε - there 
is an actor in the other scene ρ such that both actors are 
the same distance away from the UUT. Otherwise, the 
vectors will not be equivalent because the entries in the 
vectors corresponding to the distances between the 
actors and the UUT would be different.

•• For a scene ρ, suppose a situation happens at time step k 
which is represented by the scene vector Ck. That is, at 
the time step k the UUT made a decision generating a 
scenario ς and producing the vectors Cς. Here, unless the 
vectors Cς and Ck are equivalent, then the scenario ς 
would have moved us from one equivalence class 
to another.

•• Because of the limitations of reality and the finite 
number of actors that a scene can have, the number of 
equivalence classes for each particular value of the 
radius N is finite. Moreover, there is a finite number of 
values of N that we would need in real life.

In a pseudorandom test generation paradigm, it is essen-
tial to build new tests efficiently. In this paradigm, this means 
building tests in different equivalence classes. With our 
formulation, we can use the Gram-Schmidt Algorithm [29] 
to accelerate this process. This enables the creation of class 
representatives of the equivalence classes. Once this list of 
representative scenes is obtained, one only needs to use these 
scenes to generate tests that will cover all possible situations, 
including the edge cases. One could also specifically target 
these edge cases to check the response of the autonomous 
system and determine its efficiency of making decisions. 
Furthermore, one could use explicit edge cases to test how the 
AV will behave in low visibility or any sensor failure.

4.7. �Combining Scenes and 
Scenarios

In a real-life “trip,” the AV will travel through different road 
environments (such as in town, on a highway, etc.) and move 
from one scene to another. Therefore, it is necessary to define 
how one can transition smoothly from one scene to another. 
To that end we define the operator, which will allow us to 
concatenate scenes continuously.
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Let Λ1 = [C0, C1, …, Ck] be a scene matrix of size n × (k + 1) 
and Λ1 = [Ck+1, Ck+2, …, Cτ] be a second scene matrix with 
size l × (τ - k). Assume also that Λ1 has the assertion function 
ϑ1 with the assertion matrix A of size m × n × (k + 1) and Λ2 
has the assertion function ϑ2 with the assertion matrix B of 
size p × l × (τ - k). Now, let Δ = Λ1 ⨄ Λ2 (Figure 5).

Next, we define the new operator ⊕ and Concatenations 
Assertion Function ξ as follows:

	

x J JD( ) = ( )Å ( )éë ùû = -( )Å -( )éë ùû

= -

1 1 2 2 1 1 0 2 2 0

0 0 1 0

L L L L L LA A

A

, ,

,C C(( ) ¼ -( )éë ùûéë
Å -( ) ¼ -( )éë ù+ + -

, , C

C , , C

A

B B

k k k

k k k

C

C C

1

0 1 2 1 2

,

, ,t t t ûûùû
	

where Aj and Bj are the j-th layers of the assertion matrices 
and Cx,y is the vector of acceptable values corresponding to 
the scene vector Cy. The result of the ⊕ operator will be a large 
multilayer matrix listing all the results with respect to the 
time step.

For example, if both scene matrices consist of a single 
column, that is, if Λ1 = [C1] and Λ2 = [C2] with m and p asser-
tions, respectively, then

	x J JD( ) = Å[ ] = - ùû Å -éëéë ùûéë ùû1 1 2 2 0 1 0 2 2 0( ) ( )( ) ( ), ,C C C CA BC C 	

The output ξ(Δ) is a two-layer matrix with size (m + p) × 
1 × 2 column matrix listing the output of ϑ1 (C1) and then ϑ2 
(C2) with zeros filling in all the extra entries (Figure 6).

Notice that

•• ξ and the ⊕ operator are well defined since the result is 
essentially a matrix listing the results of ϑ1 (C1) and then 
ϑ2 (C2).

•• The scene vector C2 is treated as a result of a scenario 
function, which occurs at the time step right after C1, that 
is, C2 is a function of the time step at which the transition 
from Λ1 to Λ2 happens. In other words, concatenating 
two scenes creates a scenario between the scenes.

4.8. �Discussion of Key 
Properties and Future 
Extensions

At this point, it is worthwhile to summarize the impact of this 
foundational work and point to the direction of future exten-
sions of this work. With the work to date, a model of computa-
tion has been created, which clearly integrates Newtonian 
physics and decision-making from the UUT. Further, this is 
done in a manner that allows for easy inclusion of vehicle prop-
erties. This core baseline formulates the world of Physics.

Above the world of Physics sits the world of humans with 
notions of success and failure. These are clearly captured with 
the definitions of assertions, and the intersection of assertions 
with the physics model yielding an overall pass/fail score. 
Along with the assertion infrastructure, there exists an 
infrastructure for detecting equivalent tests through the 
equivalent class structure. Note all items are defined with a 
scope (called the Radius), which enables a much higher level 

Definition 5. Let ρ and ε be two scene vectors with radii Nρ 
and Nε, respectively. We define the operator ⨄ as follows:

	 D = +r e∪ 	 Eq. (4)

where the concatenation of the scenes satisfies the 
following:

•• Let r1(k) and r2(k) be the position vector functions in ρ 
and ε, respectively, and let k = k0 be the moment in time 
where the transition from ρ to ε that will happen, then r1 
(k0) = r2 (k0).

•• The situations that involve quick sharp turns or shifting 
from, say, two lanes to three are impossible in real life. 
The transition operator must connect r_1 and r_2 using 
legal road structures. This can be accomplished by 
inserting a scene (or more) with a small radius between 
ρ and ε. In addition, we use smoothing functions to 
ensure that the roads are connected smoothly (i.e., the 
edges of the roads are connected) on the time interval 
(k0 - ϵ, k0 + ϵ) where ϵ is a suitable fixed positive 
constant.

•• When concatenating two scenes, say, Λ_1 = [C0, C1, …, 
Ck] and Λ2 = [D0, D1, …, Dk], the operator must connect 
the last column of the first scene with the first column 
of the second scene. This is accomplished by identifying 
D0 = Ck+1. Also, we assume that the scenes are not 
overlapping (or might have a slight overlap).

 FIGURE 5  Concatenation of the scenes.
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 FIGURE 6  The result of the verification function ξ(Δ).
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of reuse. This method of definition enables the creation of a 
coverage matrix. Finally, the concatenation operators allow 
for the building of larger trips by combining atomic tests.

Overall, this MOC answers the questions of the conceptual 
model, test regime, completeness, and accumulated learning 
outlined in the introduction. Further, since all the tests are 
nonresponsive, the accumulation of the tests can be used in a 
sign-off regime. With a formal definition, in the future, 
we envision the ability to use branch-and-bound algorithms, 
such as those found in Automatic Test Pattern Generation [30], 
to automatically generate the “edge” test cases, which are driven 
by attempting to trigger failures on the assertions.

5. �Implementation 
Example for Scenario 
Generation

In this section we present a simple example to demonstrate 
the main computational steps. Let us start with a scene of 
radius N in which we have the UUT driving behind another 
car (actor 1). Assume that r(k), v(k), and a(k) are the position, 
velocity, and acceleration vectors of the ego at time step k. Let 
r1(k), v1(k), and a1(k) be the position, velocity, and acceleration 
vectors of the of the actor at time step k. Also, let d1(k) be the 
distance between actor 1 and the UUT. In addition, suppose 
that the actor brakes suddenly at time step k = 0 (Figure 7).

Here we can construct the scene vector:
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where “ * ” represents that other entries in the vector.
A scenario ς takes place at this time step. The input of ς is 

C0 as well as the desired input of the ego, which 
would  be  reducing  the speed to maintain safe relative 
distance d1.
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Here the scene can be constructed as follows:
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Observe that there is nothing inherently good or bad 
about the previous vectors and their entries. They are simply 
physical quantities describing motion in 3D space. Next, 
we consider the assertions that will enable the labeling of the 
behavior as pass or fail:

•• The velocity of the ego v(k) does not exceed the speed 
limit vlimit for any time step k.

•• The RD between the UUT and the actor is less that the 
radius of the scene.

•• The relative distance d1(k) exceeds the minimum safety 
distance dmin as defined in [23].
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where vr is the velocity of the rear car (the ego) and vf is the 
velocity of the car in the front (the actor).

Now we define the assertion function ϑ on the scene κ 
as follows:

	 J k( ) = -éë ùû -éë ùûéë ùûA A0 0 0 0 1 1 0 1C CC , C, , ,	

 FIGURE 7  Scene at time step k = 0.
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where A0 and A1 are the two layers of the assertion matrix A. 
Here, we can use
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Note that we are always checking if the distance between 
the actor and the UUT is more than the radius N, because if 
that is the case, then the actor is no longer of any consequence 
in the scene and can be ignored. Furthermore, the UUT would 
have failed any of the assertions if the corresponding entry is 
positive or negative, depending on the setup. For this partic-
ular example, the UUT would be considered as passed if the 
entries in ϑ(κ) have the following signs:
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As mentioned previously, the purpose of this simple 
example is to illustrate how the calculations would work and 
how the assertions are layered on top of the Newtonian 
physics. In the same manner, assertions can be used to define 
Passing and Failure in any situation, for instance, considering 
the Lane Detection Systems that are currently available in 
many cars. The objective of this system is to keep the car in 
its lane by detecting the lane markings on the road. Therefore, 
one can design assertions to test that system by defining the 
minimum latitudinal distance that the UUT must maintain 
between itself and the lane markings using the formula in 
[23], then testing the actual distance in a very similar way as 
was done in the example above.

6. �Software 
Implementation

The scenario testing framework and model of computation 
described in this article must be implemented in a simulation 
system that offers the characterization of the physical world, 
test scenario generation, and coverage analysis. Therefore, 
scenario generation software is going to be the core of the 
practical testing functionality that supports the model of 

computation. The framework generating the tests will 
be providing high-performance computing, high data storage, 
high network bandwidth, and simulation execution. The simu-
lation platform is going to be accompanied by several software 
tools for the simulation and control, which include rendering, 
debugging, and analysis software.

The simulation model architecture in Figure 8 provides 
the framework for the implementation of FLPolyVF concep-
tual layers given in Figure 1. “Newtonian Physics Layer” in 
the conceptual model is provided by the simulation tool’s 
main physics engine, and it specifies the basic structure of the 
scenario environment. This consists of objects with mass, 
rectilinear bounding-box shapes, and vector trajectory. This 
method of implementation allows focusing only on the neces-
sary components for the realization of the model 
of computation.

The “Assertions Layer” is implemented by functional 
blocks that can be  adjusted by the simulation designer 
according to the scenarios. The “Design for Experiments” 
includes instantiating critical inputs and seeding them using 
constrained random generation. These functions are imple-
mented by the main program, simulation controls, and 
scene generation.

The “Inputs and Constraints” is the active control layer 
of the simulation architecture, consisting of critical inputs 
provided for every object, such as the trajectory or 
the acceleration.

The simulation framework uses MATLAB Automated 
Driving System Toolbox Release R2018b [31] as its foundation 
for the proof-of-concept implementation and extends it for 
the necessary FLPolyVF-specific functionality.

The software implementation of the simulation frame-
work is divided into several functional blocks as shown in  
Figure 8. The “Main Program” block of the simulation model 
serves as an interface for the user when running the simula-
tions. This interface allows users to control their simulation 
preferences and set the number of runs. The “Main Program” 

 FIGURE 8  Simulation model architecture.
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block also manages programmable generation and classifica-
tion of scenarios. Hence, when the scenarios are automatically 
generated, the system classifies them by their characteristics.

The “Scene Matrix/Assertion Generator” block takes 
input from the main program to run a simulation. The 
matrices represent the scenario inputs, and these inputs 
provide various attributes to each object in the scenario, 
including subcategories such as location and orientation. The 
system provides options to create matrices either by using the 
matrix generator or manually from the main program. When 
the parameters are set for simulation, they are passed as input 
to the “Scene Generator” block for the definition of scenes.

The “Scene Generator” block in the simulator takes the 
matrices defined in the “Scene Matrix/Assertion Generator” 
block and first stitches together a road scene. Then the vehicles 
and other actors in the scene are placed in this road scene. 
The simulation keeps track of the inputs to the scene and 
records them along with the results of the simulation, such as 
the passing or failing of the vehicle or any other details 
surrounding the scenario. This information is passed back to 
the main program as feedback.

A sample scenario created in our simulation system is 
given in Figure 9. The scenario contains two actors  - the 
vehicle under test and another additional actor. In this simple 
simulation scenario, a vehicle cuts close in front of the 
ego vehicle.

There are two input matrices to define this scenario: the 
road matrix, rMatrix, and the actor matrix, aMatrix. The 
rMatrix represents the conditions of the road and the aMatrix 
represents the actors on the road. In order to define our 
example scenario, rMatrix and aMatrix are created as follows:

	 rMatrix =
é

ë
ê

ù

û
ú

1 20 3 2 1 1 50 0 3 0

1 20 2 2 1 1 50 0 3 0

.

.
,	

	 aMatrix = [ ]1 2 1 55 1 1 1 0 	

In the road matrix, each index represents a particular 
part of the condition in the simulation. These are the number 
of road pieces, road piece length, number of lanes in the road 
piece, the lane of the ego vehicle, bidirectional or unidirec-
tional information, the existence of a mid lane, speed limit, 
and road slickness angle. The number of rows in the rMatrix 
depends on the number of pieces on the road. Since the 
example scenario consists of two road pieces, these pieces are 
stitched together in the simulation.

The actor matrix, aMatrix, contains information about 
the actors on the road. The actor information in our initial 
simulation settings consists of actor type, path type, car type, 
moving speed, dimensions and starting location. In the 
aMatrix, the fifth index is also a matrix that describes the 
dimensions of the actor.

The implementation example demonstrates the potential 
capabilities of the implementation methodology to use the 
model of computation and also the usability of the model of 
computation for practical testing purposes. However, it is 
important to note that the current simulation model will 
be  extended to cover the requirements of the model of 
computation fully.

7. �Conclusion
The AVs are making their way into our lives. Different compa-
nies in the transportation industry are racing to put these 
vehicles on the road. There are many potential benefits of using 
AV technology, such as providing safe rides and reducing 
traffic congestion. However, AVs have to be verified before 
they hit the roads.

The major contributions of this article are proposing the 
FLPolyVF and the introduction of the scenario level of abstrac-
tion, which is at the center of this framework. The FLPolyVF 
connects functional verification, sensor verification, diagnos-
tics, and industry/regulatory communication with the 
scenario abstraction level. The scenario level follows a four-
layered scheme: the Newtonian physics layer, the assertions, 
the design for experiment, and the constraints on the input. 
A mathematically consistent definition is offered for the 
scenario level of abstraction that includes the mathematical 
machinery to support higher-level functional flows. Finally, 
with the definition of the FLPolyVF and the scenario abstrac-
tion, we are building the experimental framework (using 
MATLAB) to implement the abstraction.
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 FIGURE 9  Simulation scenario example.

©
 2

0
19

 T
he

 A
ut

ho
rs

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

aalnaser@floridapoy.edu


	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019	 217

© 2019 The Authors.

Mustafa lhan Akbas
Embry-Riddle Aeronautical University
Lakeland, FL USA
makbas@floridapoy.edu

Arman Sargolzaei
Advanced Mobility Institute
Florida Polytechnic University
Lakeland, FL USA
asargolzaei@floridapoy.edu

Rahul Razdan
Advanced Mobility Institute
Florida Polytechnic University
Lakeland, FL USA
rrazdan@floridapoy.edu

Acknowledgments
This material is based upon work supported by the National 
Science Foundation under Grant No. CNS-1919855. Any 
opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do 
not necessarily ref lect the views of the National 
Science Foundation.

References
	 1.	 Brubaker, K., “Artificial Intelligence: Issues of Consumer 

Privacy, Industry Risks, and Ethical Concerns,” PhD thesis, 
Utica College, 2018.

	 2.	 Bertoncello, M. and Wee, D., “Ten Ways Autonomous 
Driving Could Redefine the Automotive World,” PhD thesis, 
mckinsey.com.

	 3.	 Fagnant, D.J. and Kockelman, K., “Preparing a Nation for 
Autonomous Vehicles: Opportunities, Barriers and Policy 
Recommendations,” Transportation Research Part A: Policy 
and Practice 77:167-181, 2015.

	 4.	 Boulanger, J.-L. et al., “Requirements Engineering in a 
Model-Based Methodology for Embedded Automotive 
Software,” in Research, Innovation and Vision for the Future, 
2008. RIVF 2008. IEEE International Conference on, IEEE, 
Ho Chi Minh City, Vietnam, 2008, 263-268.

	 5.	 Lee, W., Park, S., and Sunwoo, M., “Towards a Seamless 
Development Process for Automotive Engine-Control 
System,” Control Engineering Practice 12(8):977-986, 2004.

	 6.	 Kalra, N. and Paddock, S.M., “Driving to Safety: How Many 
Miles of Driving Would It Take to Demonstrate Autonomous 
Vehicle Reliability?” Transportation Research Part A: Policy 
and Practice 94:182-193, 2016.

	 7.	 Den Hartigh, E., Stolwijk, C., Ortt, R., and Vanhaverbeke, 
W., “Asic Commercialization Analysis: Technology 
Portfolios and the Innovative Performance of Asic Firms 
during Technology Evolution,” in Application Specific 
Integrated Circuits-Technologies, Digital Systems and Design 
Methodologies (London, UK: IntechOpen, 2018).

	 8.	 Kropf, T., Introduction to Formal Hardware Verification 
(Berlin, Germany: Springer Science & Business Media, 2013).

	 9.	 Melham, T.F., “Abstraction Mechanisms for Hardware 
Verification,” in VLSI Specification, Verification and 
Synthesis (Berlin, Germany: Springer, 1988), 267-291.

	10.	 Matthew Littlefield, “Manufacturing Metrics: First Pass 
Yield Benchmark Data,” LNS Research, Industrial 
Transformation Blog Jan 24, 2013.

	11.	 Kim, M., Sinha, S., Gorg, C., Shah, H., Harrold, M.J. et al., 
“Automated Bug Neighborhood Analysis for Identifying 
Incomplete Bug Fixes,” in International Conference on 
Software Testing, Verification and Validation (ICST), Paris, 
France, 2010, 383-392.

	12.	 Hallerbach, S., Xia, Y., Eberle, U., and Koester, F., 
“Simulation-Based Identification of Critical Scenarios for 
Cooperative and Automated Vehicles,” SAE Intl. J. CAV 
1(2):93-106, 2018, doi:https://doi.org/10.4271/2018-01-1066.

	13.	 Althoff, M. and Dolan, J.M., “Online Verification of 
Automated Road Vehicles Using Reachability Analysis,” 
IEEE Transactions on Robotics 30(4):903-918, 2014.

	14.	 Ma, J., Zhou, F., Melson, C.L., James, R. et al., “Hardware-in 
the-Loop Testing of Connected and Automated Vehicle 
Applications: A Use Case for Queue-Aware Signalized 
Intersection Approach and Departure,” Tech. rep., 2018; F. 
H. A. (FHWA), “Hardware in the Loop Testing of Connected 
and Automated Vehicle Applications: An Update,” Tech. 
rep., 2017.

	15.	 Huang, Z., Lam, H., LeBlanc, D.J., and Zhao, D., “Accelerated 
Evaluation of Automated Vehicles Using Piecewise Mixture 
Models,” IEEE Transactions on Intelligent Transportation 
Systems, 19(9):2845-2855, 2017.

	16.	 Bagschik, G., Menzel, T., and Maurer, M., “Ontology Based 
Scene Creation for the Development of Automated Vehicles,” 
in 2018 IEEE Intelligent Vehicles Symposium (IV), IEEE, 
Changshu, Suzhou, China, 2018, 1813-1820.

	17.	 Togelius, J., Yannakakis, G.N., Stanley, K.O., and Browne, C., 
“Search-based Procedural Content Generation: A Taxonomy 
and Survey,” IEEE Transactions on Computational 
Intelligence and AI in Games 3(3):172-186, 2011.

	18.	 Arnold, J. and Alexander, R., “Testing Autonomous Robot 
Control Software Using Procedural Content Generation,” in 
International Conference on Computer Safety, Reliability, and 
Security, Toulouse, France, 2013, Springer, 33-44.

	19.	 Khastgir, S., Dhadyalla, G., Birrell, S., Redmond, S. et al., 
“Test scenario generation for driving simulators using 
constrained randomization technique,” SAE Technical 
Paper 2017-01-1672, 2017, doi:https://doi.org/10.4271/2017-
01-1672.

	20.	 Tuncali C.E., Yaghoubi S., Pavlic T.P., and Fainekos G., 
“Functional Gradient Descent Optimization for Automatic 
Test Case Generation for Vehicle Controllers,” in 
Automation Science and Engineering (CASE), 2017 IEEE 
International Conference on, Xi'an, China, 2017, IEEE.

	21.	 Li, L., Huang, W.-L., Liu, Y., Zheng, N.-N., and Wang, F.-Y., 
“Intelligence Testing for Autonomous Vehicles: A New 
Approach,” IEEE Transactions on Intelligent Vehicles 
1(2):158-166, 2016.

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

makbas@floridapoy.edu
asargolzaei@floridapoy.edu
rrazdan@floridapoy.edu
http://mckinsey.com
http://dx.doi.org/https://doi.org/10.4271/2018-01-1066
https://www.sae.org/publications/technical-papers/content/2017-01-1672
http://dx.doi.org/https://doi.org/10.4271/2017-01-1672
http://dx.doi.org/https://doi.org/10.4271/2017-01-1672


© 2019 The Authors. Published by SAE International. This Open Access article is published under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0/), which permits distribution, and reproduction in any medium, provided that the original author(s) and the source are credited.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work lies 
solely with the author(s).

218	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019

	22.	 Heinz, A., Remlinger, W., and Schweiger, J., “Track-/
Scenario-Based Trajectory Generation for Testing 
Automated Driving Functions,” in 8. Tagung 
Fahrerassistenz, 2017.

	23.	 Shalev-Shwartz, S., Shammah, S., and Shashua, A., “On a 
Formal Model of Safe and Scalable Self-Driving Cars,” arXiv 
preprint arXiv:1708.06374, 2017.

	24.	 ENABLE-S3, “European Initiative to Enable Validation for 
Highly Automated Safe and Secure Systems,” [Online], 
https://www.enables3.eu/, last accessed: January 2018.

	25.	 Rooker, M., Horstrand, P., Rodriguez, A.S., Lopez, S., 
Sarmiento, R. et al., “Towards Improved Validation of 
Autonomous Systems for Smart Farming,” in Smart Farming 
Workshop, Stuttgart, Germany, 2018.

	26.	 Gerwinn, S., Möhlmann, E., and Sieper, A., “Statistical 
Model Checking for Scenario-based verification of ADAS,” . 
In: Control Strategies for Advanced Driver Assistance Systems 
and Autonomous Driving Functions.  (Cham, Springer, 2019), 
67-87.

	27.	 Lattarulo, R., Pérez, J., and Dendaluce, M., “A Complete 
Framework for Developing and Testing Automated Driving 
Controllers,” IFAC-PapersOnLine 50(1):258-263, 2017.

	28.	 Grosche, C., Pogosyan, G.S., and Sissakian, A., “Path 
Integral Discussion for Smorodinsky-Winternitz Potentials: 
I. Two-and Three Dimensional Euclidean Space,” Fortschritte 
der Physik/Progress of Physics 43(6):453-521, 1995.

	29.	 Saad, Y. and Schultz, M.H., “Gmres: A Generalized Minimal 
Residual Algorithm for Solving Nonsymmetric Linear 
Systems,” SIAM Journal on Scientific and Statistical 
Computing 7(3):856-869, 1986.

	30.	 Razdan, R., Anwaruddin, M., Kovijanic, P.G., Ganesh, R., 
and Shih, H., “An Interactive Sequential Test Pattern 
Generation System,” in ‘Meeting the Tests of Time’, 
International Test Conference Proceedings, Washington, DC, 
USA, 1989, 38-46.

	31.	 MATLAB, “MATLAB and Automated Driving System 
Toolbox Release R2018b,” Natick, Massachusetts, 
United States: The MathWorks Inc., 2018.

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

https://www.enable-s3.eu/

	10.4271/12-02-04-0015: Autonomous Vehicles Scenario Testing Framework and Model of Computation
	10.4271/12-02-04-0015: Abstract
	10.4271/12-02-04-0015: Keywords
	1 Introduction 
	2 Characteristics of the Solution
	2.1 Hardware Design
	2.2 AV Framework

	3 Related Work
	4 Scenario Mathematical Model for FLPolySA
	4.1 Overview
	4.2 Preamble
	4.3 Scene Definition and Properties
	4.4 Scenario Definition and Properties
	4.5 Assertion Definition and Properties
	4.5.1 The Formulation
	4.6 Equivalence Classes
	4.7 Combining Scenes and Scenarios
	4.8 Discussion of Key Properties and Future Extensions

	5 Implementation Example for Scenario Generation
	6 Software Implementation
	7 Conclusion
	Contact Information


	Acknowledgments
	Reference s 

