
	 205

ARTICLE INFO
Article ID: 12-02-04-0015
Copyright © 2019
The Authors
doi:10.4271/12-02-04-0015

History
Received:	 19 Feb 2019
Revised:	 13 May 2019
Accepted:	 06 Dec 2019
e-Available:	 18 Dec 2019

Keywords
Testing and verification
framework, Autonomous
vehicles, Model of
computation, Safety

Citation
Alnaser, A., Akbas, M.,
Sargolzaei, A., and
Razdan, R., “Autonomous
Vehicles Scenario Testing
Framework and Model of
Computation,” SAE Int. J.
of CAV 2(4):205–218, 2019,
doi:10.4271/12-02-04-0015.

ISSN: 2574-0741
e-ISSN: 2574-075X

Autonomous Vehicles Scenario
Testing Framework and Model
of Computation

Ala Jamil Alnaser, Mustafa Ilhan Akbas, Arman Sargolzaei, and Rahul Razdan,
Florida Polytechnic University, USA

Abstract
Autonomous Vehicle (AV) technology has the potential to fundamentally transform the automotive
industry, reorient transportation infrastructure, and significantly impact the energy sector. Rapid
progress is being made in the core artificial intelligence engines that form the basis of AV technology.
However, without a quantum leap in testing and verification, the full capabilities of AV technology
will not be realized. Critical issues include finding and testing complex functional scenarios, verifying
that sensor and object recognition systems accurately detect the external environment independent
of weather conditions, and building a regulatory regime that enables accumulative learning. The
significant contribution of this article is to outline a novel methodology for solving these issues by
using the Florida Poly AV Verification Framework (FLPolyVF).

© 2019 The Authors. Published by SAE International. This Open Access article is published under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits distribution, and reproduction
in any medium, provided that the original author(s) and the source are credited.

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

206	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019

© 2019 The Authors.

1. �Introduction

In recent years, AVs have attracted considerable attention
from academia, industries, and governments. Perception,
decision-making, and action are the three major processes

required for driving a vehicle. Currently, decision-making
and perception are controlled by human drivers, and the
action process is performed by the vehicles. According to a
report by the National Highway Traffic Safety Administration,
94% of the 37,461 traffic fatalities in 2016 were caused by
human error [1, 2]. AVs are designed to conduct the decision-
making and perception aspects of driving, and it is hoped that
AVs will reduce accidents related to human error. In addition,
studies show that autonomous driving technologies can posi-
tively affect the economy, safety, and traffic congestion [3].
Despite all of these advantages, one of the major barriers for
wide-scale adoption of AVs is the lack of testing and verifica-
tion regime to assure safety. To address this barrier, a process
that builds an engineering argument for assuring safety must
be developed. Typically, this argument is built based on the
following principles:

	 1.	 Conceptual Model: A conceptual understanding of
the problem is created and supported through
virtual models.

	 2.	 Test Regime: Using the conceptual model, a test
regime is built to test the model and build an
argument for correctness.

	 3.	 Completeness: The state space of tests is examined
within the modeling environment to develop metrics
for comprehensiveness.

	 4.	 Accumulative Learning: A structure is constructed
where field testing feeds back into this flow such that
safety is always rising.

Intertwined with the above methodology is the classic V
paradigm [4, 5] that is used as a mechanism to enable concur-
rent design and test. In this paradigm, mathematical models,
which have been correlated with a bottom-up component-
level characterization stage, are used early in the design stage.
As the design is refined, physical components can be substi-
tuted to a point when system-level tests can be performed on
the whole physical design. Modeling issues are often corrected
with a virtual-to-physical diagnostics flow. The combination
of the conceptual safety regime and the V design process has
been effectively used to build robust systems in many domains.

The above flow has been used very successfully by the
automotive industry to verify conventional cars for many years.
However, the addition of perception and decision-making has
added an order-of-magnitude level of complexity to solve the
safety problem. Critical open issues are listed as follows:

	 1.	 Conceptual Model: What are the conceptual models
that are appropriate for the perception and decision-
making stages of AV operation?

	 2.	 Test Regime: What is the test regime, which can build
confidence as to the operation of the AV?

	 3.	 Completeness: How do we understand the state space
sufficiently to understand the risks surrounding
completeness? How do we address the issues of
tester bias?

	 4.	 Accumulative Learning: How do we know the next
version of the vehicle or even software updates are
improving safety?

We observe that today none of the above questions is
answered sufficiently for AVs. The current commercial solu-
tions are using ad hoc methods such as miles driven [6] to
provide some indication of safety. However, no fundamental
structure has been offered to demonstrate the robustness of
AV products. Furthermore, without the answers to the above-
mentioned questions, regulators do not have the means to
address safety issues or even to clearly communicate these
issues to operators or the public.

In the remainder of this article, we describe a conceptual
framework for addressing the critical verification issues for AVs
and introduce a mathematical modeling abstraction, which is
essential to enable the effective functioning of the environment.
This work intends to answer the questions above for AVs.

2. �Characteristics
of the Solution

2.1. �Hardware Design
We observe that the realm of AV verification has many similari-
ties to complex hardware verification. In the realm of hardware,
millions of extremely sophisticated components (transistors)
are assembled to form a higher-level function that is embodied
in a semiconductor chip. The cost of the development of semi-
conductor chips is very high, and simulating the whole chip at
the physics level is impossible. Even at the highest level of
abstraction, most semiconductor chips can be simulated only
in the low kilohertz range while the chips themselves run in
the gigahertz range. Thus, in any design project, a minimal
simulation budget exists (a day of real-world operation) to run
all the tests to assure safe operation for the lifetime of the part.

What are the analogies to AV verification?

•• First, much like hardware, AVs consist of complex
components (sensors, object recognition systems, radar,
etc.). Simulating everything at the most detailed level is
similarly impossible.

•• Second, much like hardware, AVs need to compress 18
years of human traffic learning into a reasonable
development cycle.

•• Third, AVs have the same need for robustness relative to
environmental conditions.

•• Finally, AVs have the same need for completeness and
accumulated learning.

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019	 207

© 2019 The Authors.

World-class hardware verification teams solve these
problems with a variety of approaches. The first and most
important of these is the use of abstraction as a powerful tool
to decompose the problem. Within hardware, various abstrac-
tion levels have been developed (transistor, gate, RTL, micro-
architecture, architecture, network stack) that separate
concerns and build an inductive proof for verifying the whole
semiconductor chip. As an example, the transistor design team
focuses entirely on the task of making sure the semiconductor
physics process produces a behavior consistent with a transistor
under all environmental conditions. A cell designer relies on
this behavior to build larger components and only verifies that
the combination works as expected. Thus, via this recursive
process, a chip is built and verified. These separation of
concerns and abstractions are so powerful that whole multi-
billion-dollar markets (fabless, ASIC) [7] have been built based
on these concepts.

Even though the described inductive process of hardware
verification is very effective in demonstrating equivalence
between abstraction levels, it still requires the verification of
the highest level of abstraction. In this area, hardware
verification has used a variety of techniques, such as formal
verification, constrained random test generation, and real-
world test injection, to model and test the overall function
[8, 9]. Finally, a profound concept of coverage analysis exists
to model completeness. The combination of all of the above
has created an environment where most semiconductor chips
are typically functional on the first pass of manufacturing
despite the enormous complexity and size [10].

How can AV verification use the powerful methods devel-
oped for hardware verification? The key is the development of
an enabling abstraction level.

2.2. �AV Framework
In this section, we introduce a critical enabling abstraction
approach to aid in the task of AV verification, which we term
FLPOLY Scenario Abstraction (FLPolySA). FLPolySA has the
following high-level characteristics:

	 1.	 Wireframe/Building Block: Components are very
simple rectilinear objects that model the physical
characteristics of the environment.

	 2.	 Dynamic and Static: There are two types of objects -
static objects that do not move and dynamic objects
that move with a predetermined vector. These
components are not responsive.

	 3.	 Assertions: Both the dynamic and static
components contain metadata that assert
expected behavior.

	 4.	 Newtonian Physics: The behavior of the components
follows the rules of simple Newtonian physics. A
critical idea that is modeled is the notion that mass
with velocity/acceleration/gravity will lead to the
expected behavior.

	 5.	 Unit Under Test (UUT): An ego car can enter this test
and has the potential to achieve success or failure if
none of the error assertions fires.

The precise details of the model will be explained in the
following sections. However, at this point, it is important to
motivate the design of FLPolySA. There are many powerful
consequences for choosing this higher-level simple
abstraction structure:

	 1.	 Mathematical Language: The abstraction allows for
precise capture of the modeling environment and
provides a basis to reason about this environment.

	 2.	 Extended Coverage: A single abstract model contains
within it many underlying combinations. As an
example, the black-box car could be used to model
vehicles from any brand.

	 3.	 System Coverage: A signature process for the whole
model can be used to drive a test coverage process. A
signature process is required to understand what
scenarios have been examined earlier and when a
scenario is indeed new.

	 4.	 Separation of Concerns: The abstraction allows the
sensor/object recognition problem to be addressed
independently from the decision-making problem.

Overall, FLPolySA helps address many of the critical
issues mentioned in the introduction as missing aspects for
AV verification. Figure 1 shows the conceptual layering of this
abstraction approach.

	 1.	 Newtonian Physics: The function of this layer is to
model movement and momentum, and detect
collisions. This is the physical world.

	 2.	 Assertions: Layered over the physical world is the idea
of good or bad.

	 3.	 Design for Experiments: This environment is set up such
that the test has no memory and thus is repeatable.

	 4.	 Inputs and Constraints: Layered in the outermost
layer is the machinery for inputs and constraints that

 FIGURE 1  Scenario abstraction levels.

©
 2

0
19

 T
he

 A
ut

ho
rs

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

208	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019

© 2019 The Authors.

drive a singular test. This machinery is set up to
be able to run constrained pseudorandom tests and
collect ongoing coverage (Figure 2).

With the introduction of FLPolySA, an overall architec-
ture can be developed for FLPolyVF. Figure 3 shows the blocks
and flows among the blocks in this environment. The critical
pieces include

	 1.	 Scenario Test Generation: Using seed and a
constraints matrix, pseudorandom experiments can
be generated and tested automatically against the
UUT. The objective of this part of the flow is to
simulate millions of configurations and try to find
test cases that cause the ego car to fail. This part of the
flow requires the mathematics to understand input
constraints and enable a signature flow for deciding
whether a test has been generated earlier.

	 2.	 Scenario Database/Coverage: The notion of scenario
coverage is critical in FLPolyVF. This is the method
that can be used as a basis for regulatory approval,
limit redundant simulation, and form the basis of an
ongoing testing and verification database. The
scenario abstraction provides an excellent method to
capture this information, and furthermore, the
defined mathematics has a strong concept of
equivalence classes that allows for more in-depth
optimization of the coverage database.

	 3.	 Test Track Diagnostics: Once a test fails, there is a
need to diagnose the test at a deeper level of

abstraction. This can be detailed simulation models to
a physical test track environment, and FLPolyVF
allows for this path through a synthesis process from
the scenario test to a physical instantiation.

	 4.	 Sensor Testing and Verification: A critical part of an
AV is the object recognition system and sensors. The
scenario abstraction can provide test cases with built-
in criteria of success such that the sensor/object
recognition problem can be verified separately.

	 5.	 Scenario Abstraction: Just as there is a need for
synthesis from the scenario level, there is a need to
abstract the scenario construct from the physical
environment. A classic example is a “real-world”
accident that must be analyzed much more completely
in the simulation framework. In addition, it is
common to test for “cousin” bugs [11] with this flow.

	 6.	 Industry/Regulators Communication: There is a need
to communicate unambiguously among the industry
participants and the regulators. The FLPolyVF
scenario abstraction provides an excellent means for
this communication.

The remainder of this article is organized as follows:

•• Section III discusses the related work;

•• Section IV defines the scenario level of abstraction in a
mathematically unambiguous fashion and also provides
theorems and proofs critical to enable the proposed AV
testing and verification flow;

•• Section V provides an illustrative example;

•• Section VI provides details on the FLPolyVF instated
in software;

•• Section VII offers some conclusions.

3. �Related Work
Several simulation-based approaches have been introduced
previously for the testing and verification of AVs [12, 13, 14,
15, 16, 17].

Hallerbach et al. [12] described a simulation-based crit-
ical-scenario identification platform through the use of a
metrics-based filter to define critical situations. This method
is useful in generating interesting test cases. However, there
is no concept of coverage/completeness, and the technique is
highly dependent on the definition of the critical scenario
metric that has the danger to be arbitrary.

A methodology for verifying the safety of connected and
autonomous vehicles (CAVs) is discussed in [13]. This approach
checks the safety of CAVs during its online operation, via
reachability analysis, to account for different possible math-
ematical models of behavior under uncertain conditions such
as the existence of disturbances and sensor noise. This
approach is a companion to the core system for just verifica-
tion. The model has some interesting properties but creates

 FIGURE 2  Scenario abstraction and FLPolyVF.

©
 2

0
19

 T
he

 A
ut

ho
rs

 FIGURE 3  FLPolySA overview.

©
 2

0
19

 T
he

 A
ut

ho
rs

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019	 209

© 2019 The Authors.

another system that must be verified. Without a framework
for verification neither the core nor the verification system
can be evaluated from a safety point of view.

An accelerated evaluation for AVs using piecewise
mixture models is presented in [15]. The method addresses
significant issues with today’s best practices adopted by the
automotive industry. The proposed method uses enhanced
statistics of the surrounding vehicles and the importance of
sampling theory. Although the described method can reduce
the evaluation time, their approach is limited in terms of
implementation, and it ensures only that the evaluation results
are statistically accurate.

One of the main methods in robot testing, the procedural
content generation (PCG) [17], also tries to overcome the chal-
lenge of time-consuming and costly manual test creation. PCG
is used in fault discovery for robot control software [18] and
is considered to have the potential to be adapted for AV
software verification because it generates environments and
creates, executes, and prioritizes the scenarios. However, these
approaches suffer from the fundamental issue that the software
can be built correctly but does the wrong function.

Khastgir et al. [19] defined an automated constrained
randomized test scenario generation framework for ADAS and
AVs. The structure first creates random-based scenarios by
varying the conditions, such as environment variables or
vehicle trajectories, in a driving simulator. Then, each base case
is randomized in real time by using constrained randomization
again during the test to find the edge cases. Bagschik et al. [16]
described a knowledge-based scene generation for AVs. The
process of scenario generation is a big challenge in the methods
mentioned above. A framework is introduced by the authors
in [20] to improve the process of automatic test case generation
for high-fidelity models that has long execution times. The
framework uses low-fidelity models to evaluate specific proper-
ties analytically or computationally with provable guarantees.
Although this improves the process, the test scenario coverage
is an important challenge for both frameworks.

Li et al. [21] suggested a framework to combine scenario-
based and functionality-based testing methodologies. The
framework defines a new semantic diagram for driving intel-
ligence using the relationship among testing scenarios, tasks,
and features. In that diagram, scenarios and functionalities
were shown as two transverses with opposite directions and
used to test the AVs in simulation. Li et al. [21] also designed
a simulation platform that creates a digital twin of the real
testing ground to record and reproduce the behaviors in real
life. The focus of the work is to optimize test construction
from a cost and efficiency point of view. However, evaluation
of the edge test scenarios and a framework for coverage
remains a significant challenge for this framework.

Heinz et al. [22] verified the safety benefits of automated
driving functions leveraging two de facto open standards
(i.e., OpenDRIVE and OpenSCENARIO) for describing road
networks and dynamic content in driving simulation. Their
method focuses on building interesting scenario tests within
the constraints of physical test resources. While this is an
effective effort, it does not address the issue of overall safety.

Shai et al. [23] put forward a scalable sensing system and
safety standards for AVs, based on a classic sense-plan-act
robot control architecture, which can maximize safety
through minimizing sensing and planning errors. They
presented a data fusion technique that enabled them to
validate sensing errors with a significantly smaller amount of
data. To reduce planning errors, they suggested a responsi-
bility-sensitive model that helps to identify the responsible
entity in case of an accident. Safe longitudinal distance and
safe lateral distance were the two major variables considered
for evaluating the safety benefits of AVs. This is an important
measure of safety; however, the conditions under which these
might be violated are not addressed.

Recently, an industry-driven initiative called ENABLE-S3
invested in verification automated cyber-physical systems by
more efficient and effective methods [24]. Rooker et al. [25]
focused on improving the validation of autonomous systems
for smart farming using ENABLE-S3. Gerwinn et al. [26]
proposed a method for safety assessment and made the simula-
tion results to correlate the safety of advanced driver-assistance
systems in real-world scenes. This has been done by defining
requirements on the environmental situation and producing
statistical evidence for system safety. These two efforts combine
with ENABLE-S3 framework try to combine simulation and
physical types of verification to optimize the cost and time of
testing. Our proposed framework and the model of computa-
tion can easily be adopted by this initiative to verify commercial
AVs in both the physical and simulation worlds.

There are several other research studies, such as [27],
which focused on testing of controller’s operation of AVs. [27]
have presented a verification methodology for control and
path-planning algorithms used in AVs. The method is inter-
esting but is limited to testing the controller part of the AV.
Our framework and model of computation (MoC) is general
and focuses on verification of all different parts of AVs and
their interactions with each other.

Overall, the core contributions of this article and the
FLPolyVF are differentiated from the existing solutions by
providing a coherent verification framework that is enabled
with the FLPolySA. The proposed framework addresses all
the abovementioned challenges.

4. �Scenario Mathematical
Model for FLPolySA

4.1. �Overview
In this section, we formally define FLPolySA. This formal defi-
nition is critical to describe the model at the level of abstraction
used in our approach. Figure 3 shows the core “engine” of the
abstraction, which consists of a Newtonian evaluation whose
inputs are the current scene/situation, the performance char-
acteristics of the UUT, and the desired action of the UUT. The
combination of these produces the next time step scene.

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

210	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019

© 2019 The Authors.

The remainder of this section defines the structure for
FLPolySA, focusing on three concepts:

•• Assertions: The concept of pass/fail is provided by the
assertions in FLPolySA.

•• Equivalence Classes: The equivalence classes are used as
the basis for coverage.

•• Concatenation: The rules for combining scenarios are
defined by the concatenation concept.

All of these concepts form the core elements of a discrete
event engine that can be built in a virtual simulation environ-
ment. It should be noted that while we are focused on AV
scenarios, the same infrastructure can be used for marine,
drones, and even pedestrian robots.

4.2. �Preamble
We will consider a Euclidean three-dimensional (3D) space,
with time as one additional dimension. We will be using the
Real Cartesian coordinate system where 3D vector-valued
functions determine the position, velocity, and acceleration
of all moving objects with respect to time [28]. All motion and
mechanics of motion in our space will follow the basic
Newtonian laws of motion, that is, all motion is described
using the centers of mass of the actors and the UUT. However,
the Relative Distance (RD) between the actors, constants, and
the UUT will be measured edge to edge.

We let the map r(t): ℝ → ℝ3 be the position function for
a moving or static object in our space. Then v(t) = ṙ(t) and
a(t) = r (̈t) are the velocity and acceleration vectors, respec-
tively. Furthermore, we use Newton’s Principle of Determinacy,
which states that all motions of a system of, say, n objects are
uniquely determined by their initial positions and
initial velocities.

In addition, since all the objects in this environment are
treated as bounded rectangular boxes, the relative edge-to-
edge distance is computed as a distance between two bounded
planes (including their edges). More explicitly, suppose
we have two rectangular 3D objects O and T and let O1: a1 x +
b1 y + c1 z + d1 = 0 be one of the sides of O and T1: A1 x + B1 y +
C1 z + D1 = 0 be one of the sides of T where the x, y, and z are
bounded for both planes. Also, let P(x1, y1, z1) be any point on
the plane O1. Then we can calculate the distance between the
two sides O1 and T1 as follows:

	

D O T between P and T

A x B y C

P O

P O

1 1 1

1 1 1 1

1

1

,() = { }

=
+ +

Î

Î

min

min

Distance

11 1 1

1
2

1
2

1
2

z D

A B C

+

+ +

ì
í
ï

îï

ü
ý
ï

þï

	 Eq. (1)

Thus we will define the relative edge-to-edge distance
between O and T (denoted by RD(O, T)) as

	 RD O T D O T i ji j, , ,() = () £ £ £ £{ }min .1 6 1 6 	

4.3. �Scene Definition and
Properties

We model a Scene κ as κ = [C0, C1, …, Ck]
Remarks:

•• The scene vectors forming the columns of a scene matrix
can possibly have different sizes. Therefore, we fill in the
empty entries with zeros and define the size of the scene
matrix to be

	 max .number of rows in kiC{ }´ +()1 	

•• The scene vector Ck is computed at a specific time step, and
it represents the scene as a snapshot of the reality around the
UUT at that time step. A scene represents the space-time
(4D space) around the UUT up to the current point of time.

•• N is chosen to be large enough to capture effects near the
UUT, but small enough for all of the reasonably small
number of equivalence classes.

4.4. �Scenario Definition and
Properties

With the basic components of the model and their behavior
defined, we now integrate the intersection of fundamental

Definition 1. A Scene Vector Ck is a vector of real numbers
representing the 3D spherical environment around the
Vehicle or UUT within Nk units of distance at a moment of
time (or time step) k = tΔt. The distance Nk will be called
the Radius of the scene vector. Furthermore, a scene vector
is broken down to four main components or sub-vectors:

	 1.	 The parameters describing the Ego or UUT, such as its
dimensions, position, velocity, and acceleration vectors.

	 2.	 The dynamic actors, which are the moving
components in this sphere. Each dynamic actor has its
own velocity and acceleration vectors as well as the
RD between the actor and the UUT.

	 3.	 The constants or static components, which would
include the RD between the UUT and any nonmoving
object or structure in the scene in addition to the
dimensions of the object.

	 4.	 The communication between the UUT and the other
actors and components in the scene, which would
include physical, electronic, and wireless
communications between the actors and other
components in the scene, such as an actor signaling to
change lanes in front of the UUT.

Definition 2. A Scene κ is the 3D environment constructed
by accumulating the scene vectors with consecutive time
steps up to the present time step. Also, the scene radius
N = max {scene radii for all the scenes vectors up to the
present time step k}.

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019	 211

© 2019 The Authors.

physics mathematically with decision-making by the UUT.
Newtonian physics is the driving paradigm, and at decision
points, the UUT can change desired behaviors.

Notice that the communication from other actors in the
scene can be in many formats, such as a turn signal of another
vehicle or the flashing lights from an emergency vehicle. Also,
the Desired Inputs, which would be new values for the
velocity and/or acceleration vectors of the ego, cannot happen
suddenly (Figure 4).

Cς has the new values for the parameters/variables in the
scene vector based on the actions of the UUT within the capa-
bilities of the UUT. So Cς would incorporate the decisions
made by the UUT at the Scenario in the scene. Therefore, Cς
could have many entries identical to Ck except it will also have
entries, such as velocities and RDs, computed using the basic
laws of motion and based on new vectors for the velocity and
acceleration (both longitudinal and latitudinal), depending
on whether the UUT increased or decreased its speed or
changed its direction or lane.

Assume we have a scene in which the UUT will be driving
along a road and at time step t an obstacle (such as a stop sign)
is detected in the path of the UUT. Here we have a scenario,
call it ς, where the UUT will make a change to its current
velocity and/or acceleration vectors to avoid a collision. These
changes that the UUT desires cannot happen suddenly (e.g.,
the UUT cannot come to an immediate stop, or change lanes
instantly). Suppose the vector Ck = [r(k), v(k), a(k),*] is a scene

vector at time step k, where r, v, and a are the position, velocity,
and acceleration vectors of the UUT and * represents the other
entries. Also, assume the UUT’s desired action is to stop, then
its input is v = 0. Thus

	
V r k v k a k Communication by actors v desired() () () *éë ùû()
= =

, , , , ,

CVV CC 1k+ .
	

The new scene vector Cς is computed by using Newtonian
laws of motion taking in as input the entries of the current
scene vector Ck, such as location, velocity, and acceleration as
functions of time (or time step) as well as the desired action
of the ego, be it change in speed or direction. Then it produces
realistic values for all the variables and parameters, such as a
realistic stopping distance or change in direction vector using
formulas such as

Deceleration Rate D k

Braking v k

k

= ()

=
() - ()()é

ë
ê
ê

ù

û
ú
ú

2
2

Distance 	
Eq. (2)

where

	 Braking
v k

Distance =
()2

2 mg
,	 Eq. (3)

μ is the coefficient of friction between the road surface
and the tires, and g is gravity. Hence, if we denote the new
position and new velocity vector rς(k) and vς(k), respectively,
we have

	 CV V V= () () () **éë ùûr k v k D k, , , .	

4.5. �Assertion Definition
and Properties

We have defined the inner core as shown in Figure 1 around
the general intersection of Newtonian physics, vehicle
dynamics, communication, and decision-making by the
UUT. To this point, there is no concept of good/bad or pass/
fail. Assertions allow us to overlay these concepts on
the model.

Definition 3. Given a scene κ, the Next State function ς is a
function with the input of the current scene vector,
communication from other actors, and the desired action of
the UUT. The State function output is a newly computed
scene vector following the Newtonian laws of motion. That
is, suppose Ck is the scene vector at time step k, then
we define the new vector Cς = Ck + 1 = ς (Ck, Ego’s Desired
Input, Communication from other actors) to be the next
state vector. A Scenario occurs when the ego makes a
decision, that is, when the ego wants to change its
parameter (mainly velocity and/or acceleration vectors) to
new Desired Inputs.

 FIGURE 4  A scenario as a function of current and
desired inputs.

©
 2

0
19

 T
he

 A
ut

ho
rs

Definition 4. Given a scene κ with a radius N, we define the
Assertion function ϑ as a function with the domain being
the set of scene matrices and the range is the interval [0,1],
which has a predetermined set of weighted assertions. The
output of this function is a probability (or a percentage)
calculated as a weighted average based on the
predetermined assertions where an output of 0 means the
UUT fails and an output of 1 represents the UUT passing.

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

212	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019

© 2019 The Authors.

As previously mentioned, we consider the RDs between
the UUT and any other actors (dynamic or constant) as an
edge-to-edge distance. Therefore, we identify the threshold
constant as being a drivable surface by asserting that the RD
between the UUT and that actor is zero and can’t be positive.
Otherwise, the vehicle is floating above the road, which is a
nonrealistic situation. Similarly, we identify the nondrivable
surfaces, such as sidewalks, by asserting that the distance
between them and the UUT must remain strictly positive,
that is, if the RD between the UUT and the sidewalk (for
instance) becomes nonpositive, the assertion must fire.

4.5.1. The Formulation Let κ be a scene with radius N
given by a matrix of size n × (k + 1) where k is the current
time step. Now assume that there are m assertions placed on
κ; let A be an m × n × (k + 1) matrix called the Assertion Ma-
trix. The j-th layer of A is an m × n matrix which corresponds
to the j-th column (scene vector) in κ where each row repre-
sents an assertion and each column represents one of the pa-
rameters in the scene vector. In other words, the entries in
each row are the weights representing the relation between
the assertion and the parameters in the scene vectors. Next,
we define the Assertion function ϑ as follows:

	 J k k k() = -A 0 ,	

Here the product Aκ is obtained by multiplying the j-th
layer of A by the j-th column of κ. In addition, κ0 is an m ×
1 × (k + 1) matrix with each layer consisting of the vector
[denoted by C_(0, j) for j = 0, 1, …, k] of acceptable values of
the parameters for each assertion for each time step.

Notice that, since we are using matrix operations, we can
conclude that the Assertion function ϑ is a well-defined
function. This is important because we would like a predictably
repeatable verification system.

Suppose we have a scene, then we can attach an assertion
to almost every actor in the scene. For example, we define the
assertion that the UUT shall not collide with any obstacle or
other actors in the scene, which means that the RD to the
obstacle or actor must remain strictly positive. In other words,
we use the assertions per entity as observers to the UUT and
the scene as a whole to give meaning to anything that
might happen.

All the assertions placed on any scene can be formulated
as functions of actual physical parameters of the scene. For
instance, one could use the safe distances, as defined in [23],
as parameters (entries) in the scene vector. Thus, by comparing
these computed distance values using the actual velocity and
acceleration of the UUT and the other actors with known safe
and legal distances, we will have a measure of passing or
failure of the UUT.

4.6. �Equivalence Classes
The scenes are represented by real vectors, so it follows imme-
diately that two scenes are equivalent if they have the same
radius, and their corresponding scene vectors are equivalent.
While this might indicate that scenes would be considered

equivalent even if they have external factors that might affect
them, such as daytime versus nighttime, here we are consid-
ering the scenes as seen by the AV. Because of our separation
of concerns principle, we have an underlying assumption that
the AV has a perfect understanding of the environment
around it. If the AV observes a difference, then that triggers
a generation of another scene that would have different param-
eters. Factors such as environmental conditions or electro-
magnetic interference are other layers of verification that can
be built on top of our model.

Remarks:
Assume two scenes ε and ρ with the same radius N are

equivalent. Then

•• For each actor in a scene vector, the distance between
that actor and the UUT is an entry in the scene vector.
Hence, for each actor in one of the scenes - say, ε - there
is an actor in the other scene ρ such that both actors are
the same distance away from the UUT. Otherwise, the
vectors will not be equivalent because the entries in the
vectors corresponding to the distances between the
actors and the UUT would be different.

•• For a scene ρ, suppose a situation happens at time step k
which is represented by the scene vector Ck. That is, at
the time step k the UUT made a decision generating a
scenario ς and producing the vectors Cς. Here, unless the
vectors Cς and Ck are equivalent, then the scenario ς
would have moved us from one equivalence class
to another.

•• Because of the limitations of reality and the finite
number of actors that a scene can have, the number of
equivalence classes for each particular value of the
radius N is finite. Moreover, there is a finite number of
values of N that we would need in real life.

In a pseudorandom test generation paradigm, it is essen-
tial to build new tests efficiently. In this paradigm, this means
building tests in different equivalence classes. With our
formulation, we can use the Gram-Schmidt Algorithm [29]
to accelerate this process. This enables the creation of class
representatives of the equivalence classes. Once this list of
representative scenes is obtained, one only needs to use these
scenes to generate tests that will cover all possible situations,
including the edge cases. One could also specifically target
these edge cases to check the response of the autonomous
system and determine its efficiency of making decisions.
Furthermore, one could use explicit edge cases to test how the
AV will behave in low visibility or any sensor failure.

4.7. �Combining Scenes and
Scenarios

In a real-life “trip,” the AV will travel through different road
environments (such as in town, on a highway, etc.) and move
from one scene to another. Therefore, it is necessary to define
how one can transition smoothly from one scene to another.
To that end we define the operator, which will allow us to
concatenate scenes continuously.

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019	 213

© 2019 The Authors.

Let Λ1 = [C0, C1, …, Ck] be a scene matrix of size n × (k + 1)
and Λ1 = [Ck+1, Ck+2, …, Cτ] be a second scene matrix with
size l × (τ - k). Assume also that Λ1 has the assertion function
ϑ1 with the assertion matrix A of size m × n × (k + 1) and Λ2
has the assertion function ϑ2 with the assertion matrix B of
size p × l × (τ - k). Now, let Δ = Λ1 ⨄ Λ2 (Figure 5).

Next, we define the new operator ⊕ and Concatenations
Assertion Function ξ as follows:

	

x J JD() = ()Å ()éë ùû = -()Å -()éë ùû

= -

1 1 2 2 1 1 0 2 2 0

0 0 1 0

L L L L L LA A

A

, ,

,C C(() ¼ -()éë ùûéë
Å -() ¼ -()éë ù+ + -

, , C

C , , C

A

B B

k k k

k k k

C

C C

1

0 1 2 1 2

,

, ,t t t ûûùû
	

where Aj and Bj are the j-th layers of the assertion matrices
and Cx,y is the vector of acceptable values corresponding to
the scene vector Cy. The result of the ⊕ operator will be a large
multilayer matrix listing all the results with respect to the
time step.

For example, if both scene matrices consist of a single
column, that is, if Λ1 = [C1] and Λ2 = [C2] with m and p asser-
tions, respectively, then

	x J JD() = Å[] = - ùû Å -éëéë ùûéë ùû1 1 2 2 0 1 0 2 2 0() ()() (), ,C C C CA BC C 	

The output ξ(Δ) is a two-layer matrix with size (m + p) ×
1 × 2 column matrix listing the output of ϑ1 (C1) and then ϑ2
(C2) with zeros filling in all the extra entries (Figure 6).

Notice that

•• ξ and the ⊕ operator are well defined since the result is
essentially a matrix listing the results of ϑ1 (C1) and then
ϑ2 (C2).

•• The scene vector C2 is treated as a result of a scenario
function, which occurs at the time step right after C1, that
is, C2 is a function of the time step at which the transition
from Λ1 to Λ2 happens. In other words, concatenating
two scenes creates a scenario between the scenes.

4.8. �Discussion of Key
Properties and Future
Extensions

At this point, it is worthwhile to summarize the impact of this
foundational work and point to the direction of future exten-
sions of this work. With the work to date, a model of computa-
tion has been created, which clearly integrates Newtonian
physics and decision-making from the UUT. Further, this is
done in a manner that allows for easy inclusion of vehicle prop-
erties. This core baseline formulates the world of Physics.

Above the world of Physics sits the world of humans with
notions of success and failure. These are clearly captured with
the definitions of assertions, and the intersection of assertions
with the physics model yielding an overall pass/fail score.
Along with the assertion infrastructure, there exists an
infrastructure for detecting equivalent tests through the
equivalent class structure. Note all items are defined with a
scope (called the Radius), which enables a much higher level

Definition 5. Let ρ and ε be two scene vectors with radii Nρ
and Nε, respectively. We define the operator ⨄ as follows:

	 D = +r e∪ 	 Eq. (4)

where the concatenation of the scenes satisfies the
following:

•• Let r1(k) and r2(k) be the position vector functions in ρ
and ε, respectively, and let k = k0 be the moment in time
where the transition from ρ to ε that will happen, then r1
(k0) = r2 (k0).

•• The situations that involve quick sharp turns or shifting
from, say, two lanes to three are impossible in real life.
The transition operator must connect r_1 and r_2 using
legal road structures. This can be accomplished by
inserting a scene (or more) with a small radius between
ρ and ε. In addition, we use smoothing functions to
ensure that the roads are connected smoothly (i.e., the
edges of the roads are connected) on the time interval
(k0 - ϵ, k0 + ϵ) where ϵ is a suitable fixed positive
constant.

•• When concatenating two scenes, say, Λ_1 = [C0, C1, …,
Ck] and Λ2 = [D0, D1, …, Dk], the operator must connect
the last column of the first scene with the first column
of the second scene. This is accomplished by identifying
D0 = Ck+1. Also, we assume that the scenes are not
overlapping (or might have a slight overlap).

 FIGURE 5  Concatenation of the scenes.

©
 2

0
19

 T
he

 A
ut

ho
rs

 FIGURE 6  The result of the verification function ξ(Δ).

©
 2

0
19

 T
he

 A
ut

ho
rs

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

214	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019

© 2019 The Authors.

of reuse. This method of definition enables the creation of a
coverage matrix. Finally, the concatenation operators allow
for the building of larger trips by combining atomic tests.

Overall, this MOC answers the questions of the conceptual
model, test regime, completeness, and accumulated learning
outlined in the introduction. Further, since all the tests are
nonresponsive, the accumulation of the tests can be used in a
sign-off regime. With a formal definition, in the future,
we envision the ability to use branch-and-bound algorithms,
such as those found in Automatic Test Pattern Generation [30],
to automatically generate the “edge” test cases, which are driven
by attempting to trigger failures on the assertions.

5. �Implementation
Example for Scenario
Generation

In this section we present a simple example to demonstrate
the main computational steps. Let us start with a scene of
radius N in which we have the UUT driving behind another
car (actor 1). Assume that r(k), v(k), and a(k) are the position,
velocity, and acceleration vectors of the ego at time step k. Let
r1(k), v1(k), and a1(k) be the position, velocity, and acceleration
vectors of the of the actor at time step k. Also, let d1(k) be the
distance between actor 1 and the UUT. In addition, suppose
that the actor brakes suddenly at time step k = 0 (Figure 7).

Here we can construct the scene vector:

	 C0 1

1

1

1

0

0

0

0

0

0

0

=

()
()
()

()
()
()
()
*

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

r

v

a

N

d

r

v

a

úú
ú
ú
ú
ú
ú
ú

	

where “ * ” represents that other entries in the vector.
A scenario ς takes place at this time step. The input of ς is

C0 as well as the desired input of the ego, which
would be reducing the speed to maintain safe relative
distance d1.

	 V VC C C0 1 1

1

1

1

1

1

1

1

1

1

1

,v

r

v

a

N

d

r

v

a

desired() = = =

()
()
()

()
()
()
()
**

é

ë

êê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

	

Here the scene can be constructed as follows:

	 k = [] =

()
()
()

()
()
()
()
*

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

C ,0 0 1

1

1

1

0

0

0

0

0

0

0

C

r

v

a

N

d

r

v

a

ùù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

()
()
()

()
()
()
()
**

é

ë

ê
ê
ê
ê
ê
ê

r

v

a

N

d

r

v

a

1

1

1

1

1

1

1

1

1

1

1

êê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

	

Observe that there is nothing inherently good or bad
about the previous vectors and their entries. They are simply
physical quantities describing motion in 3D space. Next,
we consider the assertions that will enable the labeling of the
behavior as pass or fail:

•• The velocity of the ego v(k) does not exceed the speed
limit vlimit for any time step k.

•• The RD between the UUT and the actor is less that the
radius of the scene.

•• The relative distance d1(k) exceeds the minimum safety
distance dmin as defined in [23].

	 d v a
v a

a

v

a
r accel

r accel

brake

f
min max

max

min

= + +
+()

-r
r

r

1

2 2 2
2

2
2

,

,

, mmax ,brake

é

ë
ê
ê

ù

û
ú
ú
+

	

where vr is the velocity of the rear car (the ego) and vf is the
velocity of the car in the front (the actor).

Now we define the assertion function ϑ on the scene κ
as follows:

	 J k() = -éë ùû -éë ùûéë ùûA A0 0 0 0 1 1 0 1C CC , C, , ,	

 FIGURE 7  Scene at time step k = 0.

©
 2

0
19

 T
he

 A
ut

ho
rs

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019	 215

© 2019 The Authors.

where A0 and A1 are the two layers of the assertion matrix A.
Here, we can use

	 A A0 1

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

= =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

�
�
�

,	

	 C and C0 0 0 1, , .=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

v

N

d

v

N

d

limit

min

limit

min

	

Thus,

	 J k() =
() -
() -
() -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

() -v v

d N

d d

v v

d

0

0

0

1

11

1

1

limit

min

limit

, (() -
() -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

N

d d1 1 min

	

Note that we are always checking if the distance between
the actor and the UUT is more than the radius N, because if
that is the case, then the actor is no longer of any consequence
in the scene and can be ignored. Furthermore, the UUT would
have failed any of the assertions if the corresponding entry is
positive or negative, depending on the setup. For this partic-
ular example, the UUT would be considered as passed if the
entries in ϑ(κ) have the following signs:

	 J k() =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

negative value

negative value

positive value

neg

,

aative value

negative value

positive value

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

.	

As mentioned previously, the purpose of this simple
example is to illustrate how the calculations would work and
how the assertions are layered on top of the Newtonian
physics. In the same manner, assertions can be used to define
Passing and Failure in any situation, for instance, considering
the Lane Detection Systems that are currently available in
many cars. The objective of this system is to keep the car in
its lane by detecting the lane markings on the road. Therefore,
one can design assertions to test that system by defining the
minimum latitudinal distance that the UUT must maintain
between itself and the lane markings using the formula in
[23], then testing the actual distance in a very similar way as
was done in the example above.

6. �Software
Implementation

The scenario testing framework and model of computation
described in this article must be implemented in a simulation
system that offers the characterization of the physical world,
test scenario generation, and coverage analysis. Therefore,
scenario generation software is going to be the core of the
practical testing functionality that supports the model of

computation. The framework generating the tests will
be providing high-performance computing, high data storage,
high network bandwidth, and simulation execution. The simu-
lation platform is going to be accompanied by several software
tools for the simulation and control, which include rendering,
debugging, and analysis software.

The simulation model architecture in Figure 8 provides
the framework for the implementation of FLPolyVF concep-
tual layers given in Figure 1. “Newtonian Physics Layer” in
the conceptual model is provided by the simulation tool’s
main physics engine, and it specifies the basic structure of the
scenario environment. This consists of objects with mass,
rectilinear bounding-box shapes, and vector trajectory. This
method of implementation allows focusing only on the neces-
sary components for the realization of the model
of computation.

The “Assertions Layer” is implemented by functional
blocks that can be adjusted by the simulation designer
according to the scenarios. The “Design for Experiments”
includes instantiating critical inputs and seeding them using
constrained random generation. These functions are imple-
mented by the main program, simulation controls, and
scene generation.

The “Inputs and Constraints” is the active control layer
of the simulation architecture, consisting of critical inputs
provided for every object, such as the trajectory or
the acceleration.

The simulation framework uses MATLAB Automated
Driving System Toolbox Release R2018b [31] as its foundation
for the proof-of-concept implementation and extends it for
the necessary FLPolyVF-specific functionality.

The software implementation of the simulation frame-
work is divided into several functional blocks as shown in
Figure 8. The “Main Program” block of the simulation model
serves as an interface for the user when running the simula-
tions. This interface allows users to control their simulation
preferences and set the number of runs. The “Main Program”

 FIGURE 8  Simulation model architecture.

©
 2

0
19

 T
he

 A
ut

ho
rs

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

216	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019

© 2019 The Authors.

block also manages programmable generation and classifica-
tion of scenarios. Hence, when the scenarios are automatically
generated, the system classifies them by their characteristics.

The “Scene Matrix/Assertion Generator” block takes
input from the main program to run a simulation. The
matrices represent the scenario inputs, and these inputs
provide various attributes to each object in the scenario,
including subcategories such as location and orientation. The
system provides options to create matrices either by using the
matrix generator or manually from the main program. When
the parameters are set for simulation, they are passed as input
to the “Scene Generator” block for the definition of scenes.

The “Scene Generator” block in the simulator takes the
matrices defined in the “Scene Matrix/Assertion Generator”
block and first stitches together a road scene. Then the vehicles
and other actors in the scene are placed in this road scene.
The simulation keeps track of the inputs to the scene and
records them along with the results of the simulation, such as
the passing or failing of the vehicle or any other details
surrounding the scenario. This information is passed back to
the main program as feedback.

A sample scenario created in our simulation system is
given in Figure 9. The scenario contains two actors - the
vehicle under test and another additional actor. In this simple
simulation scenario, a vehicle cuts close in front of the
ego vehicle.

There are two input matrices to define this scenario: the
road matrix, rMatrix, and the actor matrix, aMatrix. The
rMatrix represents the conditions of the road and the aMatrix
represents the actors on the road. In order to define our
example scenario, rMatrix and aMatrix are created as follows:

	 rMatrix =
é

ë
ê

ù

û
ú

1 20 3 2 1 1 50 0 3 0

1 20 2 2 1 1 50 0 3 0

.

.
,	

	 aMatrix = []1 2 1 55 1 1 1 0 	

In the road matrix, each index represents a particular
part of the condition in the simulation. These are the number
of road pieces, road piece length, number of lanes in the road
piece, the lane of the ego vehicle, bidirectional or unidirec-
tional information, the existence of a mid lane, speed limit,
and road slickness angle. The number of rows in the rMatrix
depends on the number of pieces on the road. Since the
example scenario consists of two road pieces, these pieces are
stitched together in the simulation.

The actor matrix, aMatrix, contains information about
the actors on the road. The actor information in our initial
simulation settings consists of actor type, path type, car type,
moving speed, dimensions and starting location. In the
aMatrix, the fifth index is also a matrix that describes the
dimensions of the actor.

The implementation example demonstrates the potential
capabilities of the implementation methodology to use the
model of computation and also the usability of the model of
computation for practical testing purposes. However, it is
important to note that the current simulation model will
be extended to cover the requirements of the model of
computation fully.

7. �Conclusion
The AVs are making their way into our lives. Different compa-
nies in the transportation industry are racing to put these
vehicles on the road. There are many potential benefits of using
AV technology, such as providing safe rides and reducing
traffic congestion. However, AVs have to be verified before
they hit the roads.

The major contributions of this article are proposing the
FLPolyVF and the introduction of the scenario level of abstrac-
tion, which is at the center of this framework. The FLPolyVF
connects functional verification, sensor verification, diagnos-
tics, and industry/regulatory communication with the
scenario abstraction level. The scenario level follows a four-
layered scheme: the Newtonian physics layer, the assertions,
the design for experiment, and the constraints on the input.
A mathematically consistent definition is offered for the
scenario level of abstraction that includes the mathematical
machinery to support higher-level functional flows. Finally,
with the definition of the FLPolyVF and the scenario abstrac-
tion, we are building the experimental framework (using
MATLAB) to implement the abstraction.

Contact Information
Ala' J. Alnaser
Advanced Mobility Institute
Florida Polytechnic University
Lakeland, FL USA
aalnaser@floridapoy.edu

 FIGURE 9  Simulation scenario example.

©
 2

0
19

 T
he

 A
ut

ho
rs

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

aalnaser@floridapoy.edu

	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019	 217

© 2019 The Authors.

Mustafa lhan Akbas
Embry-Riddle Aeronautical University
Lakeland, FL USA
makbas@floridapoy.edu

Arman Sargolzaei
Advanced Mobility Institute
Florida Polytechnic University
Lakeland, FL USA
asargolzaei@floridapoy.edu

Rahul Razdan
Advanced Mobility Institute
Florida Polytechnic University
Lakeland, FL USA
rrazdan@floridapoy.edu

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1919855. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily ref lect the views of the National
Science Foundation.

References
	 1.	 Brubaker, K., “Artificial Intelligence: Issues of Consumer

Privacy, Industry Risks, and Ethical Concerns,” PhD thesis,
Utica College, 2018.

	 2.	 Bertoncello, M. and Wee, D., “Ten Ways Autonomous
Driving Could Redefine the Automotive World,” PhD thesis,
mckinsey.com.

	 3.	 Fagnant, D.J. and Kockelman, K., “Preparing a Nation for
Autonomous Vehicles: Opportunities, Barriers and Policy
Recommendations,” Transportation Research Part A: Policy
and Practice 77:167-181, 2015.

	 4.	 Boulanger, J.-L. et al., “Requirements Engineering in a
Model-Based Methodology for Embedded Automotive
Software,” in Research, Innovation and Vision for the Future,
2008. RIVF 2008. IEEE International Conference on, IEEE,
Ho Chi Minh City, Vietnam, 2008, 263-268.

	 5.	 Lee, W., Park, S., and Sunwoo, M., “Towards a Seamless
Development Process for Automotive Engine-Control
System,” Control Engineering Practice 12(8):977-986, 2004.

	 6.	 Kalra, N. and Paddock, S.M., “Driving to Safety: How Many
Miles of Driving Would It Take to Demonstrate Autonomous
Vehicle Reliability?” Transportation Research Part A: Policy
and Practice 94:182-193, 2016.

	 7.	 Den Hartigh, E., Stolwijk, C., Ortt, R., and Vanhaverbeke,
W., “Asic Commercialization Analysis: Technology
Portfolios and the Innovative Performance of Asic Firms
during Technology Evolution,” in Application Specific
Integrated Circuits-Technologies, Digital Systems and Design
Methodologies (London, UK: IntechOpen, 2018).

	 8.	 Kropf, T., Introduction to Formal Hardware Verification
(Berlin, Germany: Springer Science & Business Media, 2013).

	 9.	 Melham, T.F., “Abstraction Mechanisms for Hardware
Verification,” in VLSI Specification, Verification and
Synthesis (Berlin, Germany: Springer, 1988), 267-291.

	10.	 Matthew Littlefield, “Manufacturing Metrics: First Pass
Yield Benchmark Data,” LNS Research, Industrial
Transformation Blog Jan 24, 2013.

	11.	 Kim, M., Sinha, S., Gorg, C., Shah, H., Harrold, M.J. et al.,
“Automated Bug Neighborhood Analysis for Identifying
Incomplete Bug Fixes,” in International Conference on
Software Testing, Verification and Validation (ICST), Paris,
France, 2010, 383-392.

	12.	 Hallerbach, S., Xia, Y., Eberle, U., and Koester, F.,
“Simulation-Based Identification of Critical Scenarios for
Cooperative and Automated Vehicles,” SAE Intl. J. CAV
1(2):93-106, 2018, doi:https://doi.org/10.4271/2018-01-1066.

	13.	 Althoff, M. and Dolan, J.M., “Online Verification of
Automated Road Vehicles Using Reachability Analysis,”
IEEE Transactions on Robotics 30(4):903-918, 2014.

	14.	 Ma, J., Zhou, F., Melson, C.L., James, R. et al., “Hardware-in
the-Loop Testing of Connected and Automated Vehicle
Applications: A Use Case for Queue-Aware Signalized
Intersection Approach and Departure,” Tech. rep., 2018; F.
H. A. (FHWA), “Hardware in the Loop Testing of Connected
and Automated Vehicle Applications: An Update,” Tech.
rep., 2017.

	15.	 Huang, Z., Lam, H., LeBlanc, D.J., and Zhao, D., “Accelerated
Evaluation of Automated Vehicles Using Piecewise Mixture
Models,” IEEE Transactions on Intelligent Transportation
Systems, 19(9):2845-2855, 2017.

	16.	 Bagschik, G., Menzel, T., and Maurer, M., “Ontology Based
Scene Creation for the Development of Automated Vehicles,”
in 2018 IEEE Intelligent Vehicles Symposium (IV), IEEE,
Changshu, Suzhou, China, 2018, 1813-1820.

	17.	 Togelius, J., Yannakakis, G.N., Stanley, K.O., and Browne, C.,
“Search-based Procedural Content Generation: A Taxonomy
and Survey,” IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172-186, 2011.

	18.	 Arnold, J. and Alexander, R., “Testing Autonomous Robot
Control Software Using Procedural Content Generation,” in
International Conference on Computer Safety, Reliability, and
Security, Toulouse, France, 2013, Springer, 33-44.

	19.	 Khastgir, S., Dhadyalla, G., Birrell, S., Redmond, S. et al.,
“Test scenario generation for driving simulators using
constrained randomization technique,” SAE Technical
Paper 2017-01-1672, 2017, doi:https://doi.org/10.4271/2017-
01-1672.

	20.	 Tuncali C.E., Yaghoubi S., Pavlic T.P., and Fainekos G.,
“Functional Gradient Descent Optimization for Automatic
Test Case Generation for Vehicle Controllers,” in
Automation Science and Engineering (CASE), 2017 IEEE
International Conference on, Xi'an, China, 2017, IEEE.

	21.	 Li, L., Huang, W.-L., Liu, Y., Zheng, N.-N., and Wang, F.-Y.,
“Intelligence Testing for Autonomous Vehicles: A New
Approach,” IEEE Transactions on Intelligent Vehicles
1(2):158-166, 2016.

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

makbas@floridapoy.edu
asargolzaei@floridapoy.edu
rrazdan@floridapoy.edu
http://mckinsey.com
http://dx.doi.org/https://doi.org/10.4271/2018-01-1066
https://www.sae.org/publications/technical-papers/content/2017-01-1672
http://dx.doi.org/https://doi.org/10.4271/2017-01-1672
http://dx.doi.org/https://doi.org/10.4271/2017-01-1672

© 2019 The Authors. Published by SAE International. This Open Access article is published under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0/), which permits distribution, and reproduction in any medium, provided that the original author(s) and the source are credited.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work lies
solely with the author(s).

218	 Alnaser et al. / SAE Int. J. of CAV / Volume 2, Issue 4, 2019

	22.	 Heinz, A., Remlinger, W., and Schweiger, J., “Track-/
Scenario-Based Trajectory Generation for Testing
Automated Driving Functions,” in 8. Tagung
Fahrerassistenz, 2017.

	23.	 Shalev-Shwartz, S., Shammah, S., and Shashua, A., “On a
Formal Model of Safe and Scalable Self-Driving Cars,” arXiv
preprint arXiv:1708.06374, 2017.

	24.	 ENABLE-S3, “European Initiative to Enable Validation for
Highly Automated Safe and Secure Systems,” [Online],
https://www.enables3.eu/, last accessed: January 2018.

	25.	 Rooker, M., Horstrand, P., Rodriguez, A.S., Lopez, S.,
Sarmiento, R. et al., “Towards Improved Validation of
Autonomous Systems for Smart Farming,” in Smart Farming
Workshop, Stuttgart, Germany, 2018.

	26.	 Gerwinn, S., Möhlmann, E., and Sieper, A., “Statistical
Model Checking for Scenario-based verification of ADAS,” .
In: Control Strategies for Advanced Driver Assistance Systems
and Autonomous Driving Functions. (Cham, Springer, 2019),
67-87.

	27.	 Lattarulo, R., Pérez, J., and Dendaluce, M., “A Complete
Framework for Developing and Testing Automated Driving
Controllers,” IFAC-PapersOnLine 50(1):258-263, 2017.

	28.	 Grosche, C., Pogosyan, G.S., and Sissakian, A., “Path
Integral Discussion for Smorodinsky-Winternitz Potentials:
I. Two-and Three Dimensional Euclidean Space,” Fortschritte
der Physik/Progress of Physics 43(6):453-521, 1995.

	29.	 Saad, Y. and Schultz, M.H., “Gmres: A Generalized Minimal
Residual Algorithm for Solving Nonsymmetric Linear
Systems,” SIAM Journal on Scientific and Statistical
Computing 7(3):856-869, 1986.

	30.	 Razdan, R., Anwaruddin, M., Kovijanic, P.G., Ganesh, R.,
and Shih, H., “An Interactive Sequential Test Pattern
Generation System,” in ‘Meeting the Tests of Time’,
International Test Conference Proceedings, Washington, DC,
USA, 1989, 38-46.

	31.	 MATLAB, “MATLAB and Automated Driving System
Toolbox Release R2018b,” Natick, Massachusetts,
United States: The MathWorks Inc., 2018.

Downloaded from SAE International by Ala Alnaser, Saturday, January 04, 2020

https://www.enable-s3.eu/

	10.4271/12-02-04-0015: Autonomous Vehicles Scenario Testing Framework and Model of Computation
	10.4271/12-02-04-0015: Abstract
	10.4271/12-02-04-0015: Keywords
	1 Introduction
	2 Characteristics of the Solution
	2.1 Hardware Design
	2.2 AV Framework

	3 Related Work
	4 Scenario Mathematical Model for FLPolySA
	4.1 Overview
	4.2 Preamble
	4.3 Scene Definition and Properties
	4.4 Scenario Definition and Properties
	4.5 Assertion Definition and Properties
	4.5.1 The Formulation
	4.6 Equivalence Classes
	4.7 Combining Scenes and Scenarios
	4.8 Discussion of Key Properties and Future Extensions

	5 Implementation Example for Scenario Generation
	6 Software Implementation
	7 Conclusion
	Contact Information

	Acknowledgments
	Reference s

