
Fair Write Attribution and Allocation for
Consolidated Flash Cache

Wonil Choi
Pennsylvania State University

wuc138@cse.psu.edu

Bhuvan Urgaonkar
Pennsylvania State University

bhuvan@cse.psu.edu

Mahmut Kandemir
Pennsylvania State University

mtk2@cse.psu.edu

Myoungsoo Jung
KAIST

mj@camelab.org

David Evans
Samsung Semiconductor

david.evans@samsung.com

Abstract
Consolidating multiple workloads on a single flash-based
storage device is now a common practice. We identify a new
problem related to lifetime management in such settings: how
should one partition device resources among consolidated
workloads such that their allowed contributions to the de-
vice’s wear (resulting from their writes including hidden
writes due to garbage collection) may be deemed fairly as-
signed? When flash is used as a cache/buffer, such fairness
is important because it impacts what and how much traffic
from various workloads may be serviced using flash which
in turn affects their performance. We first clarify why the
write attribution problem (i.e., which workload contributed
how many writes) is non-trivial. We then present a tech-
nique for it inspired by the Shapley value, a classical con-
cept from cooperative game theory, and demonstrate that
it is accurate, fair, and feasible. We next consider how to
treat an overall “write budget” (i.e., total allowable writes
during a given time period) for the device as a first-class
resource worthy of explicit management. Towards this, we
propose a novel write budget allocation technique. Finally,
we construct a dynamic lifetime management framework for
consolidated devices by putting the above elements together.
Our experiments using real-world workloads demonstrate
that our write allocation and attribution techniques lead to
performance fairness across consolidated workloads.
CCS Concepts. • Information systems → Flash mem-
ory; Storagemanagement; •Theory of computation→
Solution concepts in game theory.
Keywords. flash lifetime, fair allocation, Shapley value

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378502

ACM Reference Format:
Wonil Choi, Bhuvan Urgaonkar, Mahmut Kandemir, Myoungsoo
Jung, and David Evans. 2020. Fair Write Attribution and Allocation
for Consolidated Flash Cache. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20), March 16–20, 2020,
Lausanne, Switzerland. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3373376.3378502

1 Introduction
With growing capacity and penetration of flash devices, it is
increasingly common to see multiple workloads consolidated
within a single device, be it a single solid-state drive (SSD)
or a flash array [11, 12, 50, 66–68]. Compared to hosting just
one workload, as has been the common case in the past, the
emerging consolidated devices are expected to face a signif-
icantly increased intensity of I/O requests and/or storage
capacity demands to accommodate multiple workloads’ data.

It is inevitable in any system provisioned in a cost-conscious
manner (i.e., for less than anticipated worst-case needs) that
sometimes the needs of users (“demand”) exceed available ca-
pacity (“supply”). Episodes of such supply-demandmismatch
will only increase in their severity (frequency and duration)
in consolidated SSDs. Two canonical concepts (both accom-
panied by “demand shedding,” e.g., by admission control)
have long been used for resource allocation during supply-
demand mismatches across a variety of computing systems:
priorities (relative importance of workloads) and fairness.
When priorities are identical notions of fairness offer princi-
pled ways for resource allocation during periods of scarcity.
Lifetime Fairness:What andWhy?Multiple SSD resources
may need to be fairly partitioned in consolidated settings,
among which bandwidth to host (in bytes/sec or I/O oper-
ations/sec, IOPS, as appropriate) [19, 20, 27, 28, 49, 55, 58,
60, 61] and storage capacity [2–4, 31, 37, 39] have received
the most attention in literature. Flash is commonly used
to form a read cache and write buffer layer (simply “cache”
henceforth) between the volatile DRAM and the slower per-
sistent magnetic hard disk drives (HDDs). We argue that, in
such a flash-based caching layer, an additional resource –
flash lifetime – should be viewed as a first-class resource
at par with capacity and bandwidth that should be explicitly
allocated in principled ways suggested by notions of fairness.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1063

https://doi.org/10.1145/3373376.3378502
https://doi.org/10.1145/3373376.3378502
https://doi.org/10.1145/3373376.3378502

In some storage systems, e.g., high-end clouds for finan-
cial services [16, 47], it may be possible to use the flash
device without being constrained by lifetime concerns (i.e.,
the higher cost of more frequent flash replacement may be
acceptable). However, not all settings have this luxury and
administrators may want to have more control over how
long a flash device lasts. In fact, even in the more high-end
environments, during some tail end of a flash device’s life-
time (the specifics being device and workload dependent),
there may be a need to ensure the device lasts a certain
period rather than expiring suddenly. Reasons for being re-
luctant to replace devices unexpectedly are numerous. For
one, the transfer of contents from the about-to-fail device to
its replacement may only be possible during idle periods so
as not to degrade foreground workload performance. Also,
market forces have been known to cause unpredictable price
hikes due to shortage of flash devices [42].

Since operating the device for a prescribed duration would
be made difficult by the lack of predictability about workload
properties (especially too far into the future), some form
of limiting writes over relatively short periods of reason-
able predictability (we call these “epochs”) would be needed.
Specifically, in each epoch for which a fixed number of avail-
able writes (we call this “overall write budget”) is prescribed
by the administrator, the budget may be divided among the
consolidated workloads and each individual workload may
be allowed to issue only the number of writes allocated to it
(with the remainder serviced by a slower HDD)1. This sets
up the context for the problem that we address in this paper:
given an epoch and the overall write budget prescribed to the
epoch, how do we fairly allocate the budget across competing
workloads running together during the epoch?

Importantly, we find that, ignoring lifetime (write budget)
and only limiting fairness concerns to bandwidth and capac-
ity can result in performance unfairness across consolidated
workloads – the difference between response times of con-
solidated workloads is an intuitively appealing metric for
performance fairness; closer the response times, fairer the
allocation. Specifically, our experiments reveal that non-fair
write allocations (not to mention the case of no write alloca-
tion) result in significant differences in the response times of
consolidated workloads. This is because workloads allocated
larger portions of the write budget can get performance ben-
efits from using the faster flash layer for relatively more of
their write operations.
Why Fair Lifetime Allocation is Challenging: Defining
what a fair allocation means for flash lifetime (i.e., the write

1Our lifetime management knob is write regulation, which is an option
only in systems where writes disallowed by flash can be serviced by some
other persistent medium. Examples include flash as a cache/buffer for HDD
(which we study) [15, 34, 44, 46, 56] or a secondary store combining SSD
and HDD [45, 62, 65]. For purely SSD-based secondary stores, such write
regulation is not an option (i.e., as all writes must be serviced by the flash
devices) which makes lifetime fairness a moot and ill-posed concern.

Table 1. Simulated separate vs combined GC writes for
real-world workloads. Details of the workloads and exper-
imental setup can be found in Table 4 and Section 7.1. G(·)
means the numbers of GC writes. G(W1), G(W2), or G(W3)
represents the case where each workload uses the entire
OP space, whereas G(W1,W2,W3) indicates the case where
workloads W1, W2, and W3 share the OP space. Generally,
(G(W1)+G(W2)+G(W3)) < G(W1,W2,W3).

G(W1) G(W2) G(W3) G(W1)+G(W2)+G(W3) G(W1,W2,W3)
1,602,427 2,813,291 173,492 4,589,210 7,894,349

budget) is much less clear than it is for conventional re-
sources. There are two main reasons for this:
• Indirect control: Unlike a resource like bandwidth, a re-
source manager cannot directly control the “consumption”
of lifetime. Flash lifetime consumption occurs due to the
servicing of writes by the flash device. The number of writes
itself depends on the allocation of over-provisioned (OP)
capacity, user-transparent extra storage capacity on a flash
device – see Section 2.1 for more details. Besides the writes
a workload directly issues (host writes), an additional (often
major) contributor of writes is the garbage collection (GC).
The number of GC writes a workload causes is affected by
the OP capacity allocated to it [13, 53, 59] – in general, the
more OP capacity, the fewer the GC writes. Thus, a fair write
allocation needs to be realized by a correspondingly suitable
allocation of OP capacity.
• Non-trivial attribution: A key building block for imple-
menting fair resource allocation is accurate attribution of the
consumption of the resource to the users. However, write
attribution in flash is far from being a simple matter. To ap-
preciate this, suppose a workload A, when using an SSD
without any other co-located workloads, results in total
of W (A) = H (A) + G(A) writes, where H (A) denotes the
number of host writes, G(A) the number of GC writes, and
W (A) the total number of writes. When two workloads A
and B are co-located on that same SSD, generally, the total
number of writes generated can be expressed asW (A,B) =
H (A)+H (B)+G(A,B) > (H (A)+G(A))+(H (B)+G(B)), where
we denote by G(A,B) andW (A,B) the number of GC writes
and total writes generated when A and B are co-located –
see Table 1 as an example where two scenarios using three
real-world workloads are compared in terms of the num-
ber of GC writes: separate vs combined. This is because
with smaller OP allocation, each workload’s GC writes grow.
The difference, G(A,B) − (G(A) +G(B)), crucially depends
on how OP capacity was allocated to A and B. How should
G(A,B) − (G(A) + G(B)) be attributed to A and B? It is not
clear at all what the “right” answer to this is.
Our Approach: For the write attribution problem, we draw
upon the idea of Shapley value [54] from classical economics.
Here the setting is that of a coalitional game (wherein the
participants play in compliance with the rules of the game
set by an external agent) and the problem is that of fairly
dividing the proceeds of the game (i.e., total gains) among

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1064

the participants. The write budget and portions of the budget
attributed to individual workloads are analogous to the total
gain and the portions of the total gain assigned to individual
players, respectively. The behavior of the flash drive (e.g.,
how GC writes reduce with an increase in OP capacity) is
analogous to the rules set by the external entity.

For the write allocation problem, we first consider feasible
allocations that meet two conditions: (i) the write alloca-
tions for individual workloads do not exceed the total budget
and (ii) the corresponding allocations of OP capacity do not
exceed the total OP capacity. Specifically, we employ an ex-
isting GC estimation model [13] and explore the interplay
between the number of GC writes to be generated and the
OP capacity to be allocated for each workload. Among such
feasible allocations, we then explore multiple intuitively ap-
pealing allocation techniques and empirically compare them
for their efficacy in offering performance fairness.
Contributions:We make the following main contributions:
• We identify the write allocation problem in consolidation
settings: in a certain time duration (epoch), how can one
fairly allocate the total number of available writes (budget)
to the competing workloads? We also find that a fair bud-
get allocation should be followed by the corresponding OP
allocation, a workload’s write consumption depends on its
allocated OP size. We devise and empirically compare four
different write allocation strategies, some of which are in-
spired by the notions from classical economics max-min
fairness and Shapley value.
• We propose a novel write attribution mechanism, inspired
by the notion of fairness provided by Shapley value, as a basis
for fair write allocation. We also address some difficulties
such as (i) estimating the total writes in unobserved subsets
and (ii) applying it to large sets. One interesting observation
with this mechanism is that a certain fraction of the writes
are accounted to read-only workloads as well.
•We propose a novel lifetime management mechanism for
a consolidated flash cache, which puts the write allocation
(division of total budget and total OP), the write attribution
(accounting of consumed writes), and the write control (sup-
pressing write consumption beyond the allocated budget) all
together. We implement this mechanism within (resource-
rich) host system, as the (computation-intensive) attribution
process can be offloaded from flash devices. Using this, device
operators can make the consolidated workloads consume
the lifetime of their flash device fairly and efficiently.

2 Background and Related Work
2.1 Flash Device Basics
A flash device contains several flash packages as its storage
medium and a set of hardware and software modules to
manage these packages. Each package consists of thousands
of “blocks,” where a block is the erase unit for flash memory.
The blocks are grouped into dies or planes, which can be
accessed in parallel. Each block is divided into hundreds

of “pages,” where a page is the unit for reads and writes.
A key feature of flash devices, especially relevant to our
focus on lifetime management, is that they include some
extra capacity (in the form of flash blocks) beyond what
is advertised by the vendors. This extra capacity, which is
referred to as over-provisioned (OP) capacity, is invisible to the
user and can be expressed as a fraction of the user-perceived
capacity [53, 59]. The main purpose of this OP capacity is to
help reduce the performance overheads and lifetime impact
of garbage collection, which we discuss next.

Flash devices need a garbage collection (GC) mechanism,
since (i) the erase unit is much larger than the write unit
and (ii) overwriting data in-place is not allowed. When the
available “clean space” (i.e., pages that are ready to bewritten)
in a device goes below a threshold, GC is invoked to secure
more clean blocks by using an appropriate combination of
writes and erases. When invoked, it selects the (to-be-erased)
victim blocks, copies the valid page data from them to other
blocks, and finally erases them. Thus, the actual number of
writes that the device handles is typically larger than the
number of explicit (host-issued) writes. These GC writes are,
therefore, aptly called “amplified” or “hidden” writes. The
ratio of total writes to host-issued writes is called the write
amplification factor (WAF). Among possible contributors to
the amplified writes (e.g., wear-leveling, data-refresh, and
parity writes), we mainly focus on GC writes, since they are
(i) unknown (the number of GC writes a device experiences is
complicatedly related to its OP capacity; in general, the more
OP capacity, the less GC writes) and (ii) on demand (they
may not be deferred unlike wear-leveling and data-refresh).

As flash memory services more and more write and erase
operations, its cells get damaged progressively till they are
no longer usable. The wear-out rates of cells are close to
one another as they are grouped into pages and blocks that
are used in a “wear-leveled” fashion. Wear leveling refers to
mechanisms within the device that try to keep the number of
writes/erases to its pages/blocks about the same. Therefore,
vendors generally specify the lifetime of their devices in
terms of the number of sustainable writes or erases, which
are referred to as the “program/erase (P/E) cycles.” We use
write count as the lifetime indicator, where the count includes
both host writes and GC writes.
2.2 Our Target System
Our target device is a flash device that forms a part of a
caching + buffering layer between machines/hosts running
our workloads (compute layer) and a slower HDD-based
persistent layer (storage layer). This represents a very pop-
ular manner in which flash devices are currently used [2–
4, 31, 37, 39]. Figure 1(a) illustrates the overview of our target
system where the host system employs a storage hierarchy
consisting of a flash-tier and a HDD-tier. We assume that the
flash device is partially managed by the host system. This is
an important flash-related trend both in research and prac-
tice (e.g., open-channel SSD [6], software-defined flash [48],

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1065

Figure 1. (a) Overview of our target system where the host
employs a flash device as caching-tier and a HDD as backing-
store; (b) our target flash device is consolidation-oriented,
which includes functionalities commonly assumed in litera-
ture; (c) our proposed framework is located within the host
system, which is independent from flash device type.

and cooperative flash management [23]), due to advantages
such as awareness of both host and device information and
application-aware flash management [10, 18, 21, 51].

Among possible designs of a flash device on which multi-
ple workloads are consolidated, we target a soft-partitioned
SSD, as described in Figure 1(b). While detailed functional-
ities can slightly vary across soft-partitioned SSD designs
[11, 27, 28, 50], our target device has the following key char-
acteristics: 1 it is workload-aware, i.e., can distinguish and
treat differently requests belonging to different workloads;
2 a flash block is not shared by different workloads at a
given time; 3 it employs soft partitioning wherein an erased
flash block can be allocated to a workload different from
the one using it before the erasure; hence, partitioning the
total user and OP capacities is realized by dividing the total
user and OP blocks among workloads and by allowing each
workload to use only a number of flash blocks reflecting its
allocation; and 4 it employs a per-workload GC mechanism;
if needed, each workload is responsible for securing clean
blocks by invoking its own GC based on its allocated user
and OP blocks.

We highlight the last two functionalities (3 and 4), which
are used to explore division of OP blocks among consoli-
dated workloads and the number of GCwrites each workload
will generate. Specifically, we allocate the total OP capacity
(blocks) to consolidated workloads as a part of our lifetime al-
location, and each workload is forced to use only its allocated
OP blocks for GC. One can implement these functionalities
using an open-channel SSD [6] or add necessary interfaces
to a multi-stream SSD [11].
2.3 Scope of Our Work
While there exist many variants, we target flash caching-tier
which acts as a write buffer as well as a read cache operates
as follows. Figure 2 illustrates how each workload uses its
allocated blocks and what kinds of traffic it experiences. The

Figure 2. Each workload has its own user blocks (used as
both read cache and write buffer) and OP blocks. This flash
cache experiences three types of writes: (1) writes from the
host, (2) writes during GC, and (3) writes from read misses.

user capacity (blocks) assigned to a workload is divided into
two parts: one part works as a read cache that accommodates
a set of frequently-read data, and the other part is used as a
write buffer that handles all host writes regardless of their
target addresses. In this configuration [46], read and write
requests get serviced as follows:
• Read: If either read cache or write buffer holds (a valid
version of) the requested content, the data is read to the host
(“read hit”). Otherwise (“read miss”), the data is read from the
HDD. We assume a least-recently-used (LRU) cache eviction
policy for moving victims from read cache to HDD. However,
our framework is agnostic to the exact replacement policy.
The data admission (3) leads to a write to flash device.
• Write: Writes from the host (1) are serviced from the
write buffer. If the target data is in the buffer (“write hit”), the
old version becomes invalid and the new version is written
into the buffer. Otherwise (“write miss”), to admit the data
into the buffer, the LRU-selected data is evicted to HDD.
Here, the three types of writes collectively consume the

write budget allocated to the workload. In addition to the two
explicit write types (1 and 3), the flash device inherently
experiences 2 writes coming from the GC execution. How-
ever, in our proposed framework, once the allocated write
budget runs out, the three write sources are removed. Pri-
marily, (i) further host writes are redirected to and serviced
by the HDD. Also, (ii) further read misses are serviced by the
HDD without corresponding data admission into the flash
cache, which would prevent read miss-induced writes into
the flash cache. The two actions above (i)+(ii) can prevent
GC writes from further being generated.
We make a few key assumptions to clearly define our

lifetime allocation problem. The problem of fairly allocating
three resources – capacity, bandwidth, and lifetime in our
case – in a coordinated manner may seem like multi-resource
allocation formulations such as dominant resource fairness
(DRF) [17]. In fact, our problem is more complex, because of
the intricate relationship between allocated capacity (both
user and OP) and corresponding bandwidth and write (1
host writes, 2 GC writes, and 3 read miss-induced writes)
intensity; DRF allows for no such relationships. Leaving
such generalization as a possible future direction, we take a
simpler approach.
Regarding capacity, we first assume that our read cache

allocation is based on trying to equalize read hit ratios across

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1066

workloads. This can be realized by estimating the working
set size of each workload based on a high-precision reuse
distance model, which can be done at runtime, as in [2, 3].
We also assume that the remaining user capacity is evenly
divided among workloads for their write buffers; while the
write buffer size can affect the write miss ratio (and the rate
of data eviction to HDD), this does not cause flash writes.
For bandwidth, we assume that it is plentiful and is never
a bottleneck resource, which may be acceptable in modern
flash devices exhibiting up to several GB/s bandwidth [52].
These assumptions above leave us with a fair allocation

problem for a single resource – lifetime, i.e., write intensity.
Note that writes include host, GC, and read miss-induced
writes in our work.
2.4 Other Related Work
Flash device lifetime has been regarded as a first-class re-
source that needs to be carefully conserved due to its non-
renewable nature. One straightforward way to improve flash
device lifetime is to reduce the size of original data to be
written to the device. Kim et al. [29] employed data dedu-
plication in an SSD, explored possible designs, and investi-
gated deduplication efficiency in terms of lifetime saving and
performance overhead. While the data deduplication which
works in flash page granularity, Wu et al. [63] attempted to
further reduce the number of write operations using fine
granular units. In contrast, Lee et al. [33] employed data
compression in an SSD, designed the FTL to support the data
compression, and analyzed the impact of compression ratios
to the performance and lifetime improvement. Li et al. [35]
observed that simply compressing data generally results in
unused space within page and exploited this to further im-
prove the device lifetime. Zhang et al. [69] also investigated
the feasible ways of better utilizing the unused page space.
On the other hand, there have been efforts to make flash

devices endure more than advertised/guaranteed. Yadgar et
al. [64] employed write-once memory (WOM) code in an
SSD and tried to allow multiple writes before erasing the
cells. Jeong et al. [24] observed that cell damage depends on
the erase voltage level (or erase speed) and proposed erase
voltage scaling to reduce cell damage and hence serve more
write operations. Jimenez et al. [26] suggested to reduce the
bit density of memory cells from multi-level cell (MLC) to
single-level cell (SLC), once the MLC device comes to the
end of its advertised lifespan.
While all the works above have been investigated under

single workload scenarios, they can be employed in consoli-
dated scenarios. Also, their common goal (that is to extend
device lifetime) is orthogonal to ours (that is to divide given
lifetime to consolidated workloads in a fair manner); so, they
can be combined with our proposal.

The lifetime of consolidated flash has been studied in two
different settings: soft-partitioned SSD and hard-partitioned
SSD. Choi et al. [11] presented a soft-partitioned SSD where
a workload’s data can be placed into any physical block,

but a block is not shared by different workloads. Kim et al.
[28] agreed with this design, and further add a function of
partitioning OP space to consolidated workloads, as doing
so can provide a guaranteed service level to each workload.
In contrast, Huang et al. [20] proposed a hard-partitioned
SSD that reserves entire flash chip(s) or memory bus(es) for
each workload. While this design is very good at providing
performance isolation, it needs to regularly swap workloads,
since parts of the SSD (assigned towrite-intensiveworkloads)
can be worn out more than the others (assigned to workloads
with fewer write intensity), which incurs lots of extra writes.

While our ideas of fairly distributing given lifetime among
consolidated workloads can be implemented in both settings,
we target a soft-partitioned SSD where we can divide OP
space and investigate its impact on write allocation deci-
sion. In contrast, OP partitioning is not available in hard-
partitioned SSDs, as OP is already included in the exclusively-
partitioned space. As a result, generally the efficacy of our
solution will be smaller in hard-partitioned SSDs.
2.5 Useful Concepts for Allocation and Attribution
We describe two notions from classical economics that we
draw upon to develop our solutions.
2.5.1 Max-Min Fairness: One of the most popular, single
resource fair allocation strategies is based on max-min fair-
ness [5], which maximizes the minimum allocation received
by a participant. The key property offered that is considered
fair is the following: an attempt to increase the allocation of
a participant is necessarily accompanied by a decrease in the
allocation of another participant with an equal or smaller
allocation. The max-min fairness allocation can be obtained
by the progressive filling [5], which works as follows. It in-
creases all users’ allocations at the same rate (from their
current allocations, initially zero for all) until some user’s
demands are fully met or the resource is exhausted. In the
former case, after eliminating that user from further con-
sideration, it repeats this process for the remaining users
with the remaining resource. The algorithm terminates ei-
ther when all users’ needs are met or the resource has been
fully allocated.
2.5.2 Shapley Value: In game theory, Shapley value [54]
is a tool for distributing the total gain/value generated by a
group of players participating in a coalitional game. Specif-
ically, in a coalitional game where one needs to determine
the payoff for each player based on his/her contribution to
the total gain, Shapley value provides a fair way of doing
so by evaluating a range of cases where different subsets of
players participate. Out of a coalition set N , the payoff for
player i is calculated as follows:

ϕi (V) =
∑

S ⊆N \{i }

|S |!(|N | − 1)!
|N |!

(V (S ∪ {i}) −V (S)), (1)

whereV (S) is the total expected gain a coalition S can make;
here, S is a subset of the original coalition N excluding player
i . Note that, V (S ∪ {i}) −V (S) indicates the contribution of

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1067

Figure 3. High-level view of our framework. In each and
every epoch, (i) the given overall write budget is newly allo-
cated to the given consolidated workloads. At every interval
in an epoch, (ii) the total writes consumed by that moment
are attributed to the workloads; (iii) if the number of writes
attributed to a workload is larger than that allocated to the
workload, its further writes are controlled.

player i , when he/she cooperates with a coalition S ; and, the
contributions of all possible different coalitions are averaged
to determine the payoff of player i in N .

Shapley value is considered desirable, as its attribution has
the following properties thatmay be deemed “fair”: efficiency,
symmetry, null player, and additivity [54]. Because of these
properties, Shapley value has been used in other computing
contexts such as shared energy usage in datacenters [14, 22,
25] or shared bandwidth in networks [9, 38, 57].

3 Budget-Aware Lifetime Management
3.1 High-Level View
Figure 3 illustrates how our lifetime management framework
works in an epoch. An epoch is a window in future (of rela-
tive workload stationarity) over which fair write allocation
decision are made based on predicted workloads. 1 At the
start of each epoch, the given total write budget is distributed
to competing workloads (write allocation). The epoch and
the budget for the epoch are given parameters; they can vary,
depending on the projected device lifetime (administrator’s
decision) and workload consolidation scenarios. Workload
churn can cause the set of consolidated workloads to change
dynamically; some workloads may leave/finish or some may
join/start. Whenever there is such a change, our framework
ends the current epoch and begins a new epoch.
Each workload is allowed to consume only the allocated

writes during the epoch. To this end, our framework in-
troduces a smaller time scale, which is called interval – a
window in the past over which attribution of writes is done.
2 At every interval within the epoch, the overall writes
collectively consumed by all workloads at that moment are
attributed to each workload (write attribution). 3 If the num-
ber of attributed writes is larger than that of the allocated
writes for a workload, the workload’s future writes are con-
trolled (write control) – further writes are not allowed to get

serviced. For the interval, in general, setting it as small as
possible (and hence putting as many intervals as possible
into an epoch) would be better, because frequent invocations
of write attributing (and controlling) can prevent each work-
load from grossly exceeding its allocated budget. But, the
computational overhead of write attribution would pose a
limit on the length of an interval.

3.2 Detailed Activities
We describe the three key activities in details:
1 Write Allocation (+ Corresponding OP Allocation):
We first describe what constitutes a “feasible” allocation; a
fair solution would then be chosen from among all feasible
solutions based on our chosen “fairness criterion”. A feasible
allocation must satisfy two constraints. First, the write bud-
get allocations for individual workloads must collectively
not exceed the total write budget for the current epoch. Sec-
ond, the corresponding allocations of OP capacities must
collectively not exceed the overall OP capacity. What makes
this particularly complex is that the GC writes arising from
a workload depend intimately on the OP capacity allocated
to it; so, the two constraints must be considered jointly. Our
write allocation problem can be expressed as follows:

Find Sf air {B(1), ...,B(i), ...,B(Ncon)}

and OPf air {OP(1), ...,OP(i), ...,OP(Ncon)}

such that B =
∑Ncon

i=1 B(i) and OP =
∑Ncon

i=1 OP(i),

(2)

where B and B(i) are the total write budget and the budget
allocated to workload i , respectively; OP and OP(i) are the
total OP capacity and the OP capacity allocated to workload
i , respectively.Ncon is the number of consolidated workloads.
Among feasible allocations (satisfying the two constraints
above), our goal is to find Sf air and the correspondingOPf air ,
which will be discussed in Section 5.

One challenge in exploring the above problem is that we
need to be aware of the number of GC writes each workload
is likely to generate under any given OP capacity. To obtain
(estimate) the number of GC writes, we employ an existing
analytic model to estimate its WAF value. As the number of
host writes for each workload is easy to acquire, once one
obtains the WAF value from the model, the number of GC
writes can be obtained. In our current implementation, we
employ an accurate WAF value estimation model [13] (for
more details, refer to Equation 20 in [13]). Our employed
model approximates Greedy performance with the following
important parameters: (i) the allocated OP capacity, (ii) the
number of pages in a block, and (iii) the fraction (f) of hot
data and the I/O rate (r) on such hot data. For (iii), we first
build “page data vs the number of updates” for each I/O trace
of Table 4; we then manually find a set of possible (f , r)
pairs that best characterize the hot-cold data separation,
and finally pick the one whose performance is the most
comparable to that of the actual simulation.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1068

N \ {W 1} = S = ∅, {W 2}, {W 3}, {R1}, {W 2,W 3}, {W 2, R1}, {W 3, R1}, {W 2,W 3, R1}; ϕW 1 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8
1 1

4 × {V (W 1) −V (∅)} 2 1
12 × {V (W 1,W 2) −V (W 2)}

3 1
12 × {V (W 1,W 3) −V (W 3)} 4 1

12 × {V (W 1, R1) −V (R1)}
5 1

12 × {V (W 1,W 2,W 3) −V (W 2,W 3)} 6 1
12 × {V (W 1,W 2, R1) −V (W 2, R1)}

7 1
12 × {V (W 1,W 3, R1) −V (W 3, R1)} 8 1

4 × {V (W 1,W 2,W 3, R1) −V (W 2,W 3, R1)}
Table 2. Shapley value accounts the number of writes toW 1 (ϕW 1) by exploring all possible sub-coalitional games and
considering the marginal contribution ofW 1 to the games. The same approach can be used for all other workloads.

2 Write Attribution: To prevent each workload from con-
suming more writes than its allocated budget in an epoch,
there is a need for accounting the total number of writes
and identifying how many writes each workload consumes
in the middle of the epoch. Among various possible ways
of accounting the generated writes, we are interested in the
one that provides a notion of fairness. So, motivated by its
fairness properties, we propose to employ Shapley value
in our write attribution process; and, we also compare our
Shapley value-inspired accounting strategy with the ones
based on two other likely-used accounting policies, which
will be discussed in Section 4.
3 Write Control: Depending on the attribution results, if
necessary, the host writes of workloads whose write budget
run out are prevented until the end of the epoch. Note that
this is possible in the caching-tier of storage hierarchy, while
the main-storage should process all writes coming from the
host/workloads. Specifically, we propose to make the further
writes beyond the allocated budget bypass our target device
of the caching-layer and get serviced from the next-layer
HDD storage. The service time of these writes would be a
bit slowed down, which is referred to as “writes rendered
slow” or “slowed writes”. Our write control mechanism will
be discussed in detail in Section 6.
4 Our Proposed Write Attribution Strategy
4.1 Applying Shapley Value to Write Attribution
Our write accounting problem is to attribute the total num-
ber of serviced writes from a flash device (both host and GC
writes) to the consolidated workloads. We analogize “write
generation” in our consolidated device setting to “benefit
creation” in a coalitional game. Specifically, we analogize con-
solidating multiple workloads to a cooperative gamewherein
we treat the total number of writes generated from the con-
solidation as corresponding to the total surplus in the game.
As Shapley value can determine the payoff of each player, it
can help one attribute writes to different workloads.

To demonstrate Shapley value in a more practical setting,
we assume a flash device where a set of four workloads are
consolidated (4C1 of Table 5; details of individual workloads
– W1, W2, W3, and R1 – are shown in Table 4). Here, we
can define our game as follows: N = {W 1,W 2,W 3,R1}
and V (S) is the total number of writes when workloads in
S (a subset of N) are consolidated. Table 2 describes how
Shapley value derives the number of accounted writes to one
of our workloads,W 1. There are 8 possible subsets S that
excludeW 1 (i.e.,N \{W 1}), and for each subset, the marginal
contribution of W 1 to the increase in the write count is

determined by comparing the subset withW 1with the subset
withoutW 1 (1 ∼ 8). Then, themarginal contributions across
all possible subsets are averaged, based on the cardinalities
and combinations of possible subsets (

∑
n). For all other

workloads, their accounted writes can be calculated in a
similar fashion.

4.2 Challenge: Unobserved Subsets
A potential difficulty in employing Shapley value in our
problem is the unobserved subsets, of which total writes are
unknown online. Actually, we know the total number of
writes only for the case where all the workloads are consoli-
dated – V (W 1,W 2,W 3,R1); however, we do not know the
number of writes in any other subset.
To identify the total number of writes in an unobserved

subset, we need to know the OP partition of the subset; once
we know the OP partition, we can obtain the total number
of writes by using the number of host writes and the WAF
model (introduced in Section 3.2) of each workload. Let us
consider, as an example, the calculation of 2 in Table 2,
where we need to get two unobserved sets, V (W 1,W 2) and
V (W 2). To obtain the latter where W 2 is executed alone,
there is no issue of partitioning capacity as we reserve all the
device capacity (except for its read cache and write buffer)
as its OP. However, for the former whereW 1 andW 2 are
consolidated together, we need to decide how to partition
the OP capacity between them.
Our Heuristic: To this end, we propose an OP allocation
strategy, called Iso-WAF, which is based on our belief that
a fair allocation would equalize write amplifications across
all consolidated workloads. Specifically, this strategy finds
an OP partitioning where WAF values of all workloads are
equal, by keeping increasing the Iso-WAF line starting from
one, and stops at the smallest WAF value that satisfies the
OP capacity constraint. Figure 4 provides an example appli-
cation of Iso-WAF to five different subsets, where Iso-WAF
line stops at different WAF values or capacity partitions. Fig-
ures 4b and 4c show the two cases (5 of Table 2) which the
Shapley value write accounting explores. One can see that
the Iso-WAF value of {W 1,W 2,W 3} (1.137) is larger than
that of {W 2,W 3} (1.038). This is because (i) the available OP
capacity of the former decreases due to the consolidation
ofW 1 (i.e., due to the cache/buffer size ofW 1) and (ii) the
OP capacity should be shared by three workloads, which
collectively make the Iso-WAF line go up. We also want to
compare {W 1,W 2,R1} with {W 1,W 2} through Figures 4d
and 4a (which can be used in the process of calculating ϕR1).

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1069

(a) V (W 1,W 2) (b) V (W 1,W 2,W 3) (c) V (W 2,W 3) (d) V (W 1,W 2,R1) (e) V (W 1,W 2,W 3,R1)
Figure 4. Our Iso-WAF approach finds an OP partition which equalizes WAF values across all consolidated workloads. In each
of OP vs WAF graphs, the Iso-WAF line (increasing from one) stops at the smallest WAF value that satisfies the OP constraint.
Total Writes 17,337,348
Accounting Generated: directly generated by each Even: evenly accounted

Policy over non-read-only Shapley: Shapley value over all
Workloads Generated Even Shapley

W1 5,970,700 5,779,116 5,362,803
W2 10,389,068 5,779,116 8,255,882
W3 977,580 5,779,116 1,770,269
R1 0 0 1,948,394

Table 3. Different policies lead to different accounting re-
sults. Our approach accounts writes to R1 as well.

The significant difference in the Iso-WAF values between
these two subsets originates from the large read cache size
of R1. Note that, even though R1 does not need any OP space,
our Iso-WAF partitioning still considers its read cache size,
which causes a decrease in the available OP capacity of the
system. That is, mere existence of a read-only workload re-
duces the total OP capacity, which in turn affects the write
behavior of our write-intensive workloads. Figure 4e depicts
the case where all four workloads are consolidated; with
a further decreased OP availability, the Iso-WAF value in-
creases significantly.
4.3 Accounting Results and Observations
After executing the set of workloads (4C1 of Table 5) on a
device (details of the experimental setup can be found in
Section 7.1), we use our Shapley value-inspired accounting
for attributing the total writes to the individual workloads.
Table 3 compares three different polices and shows how each
policy accounts the total number of writes (17,337,348) to
our four workloads. The first policy (Generated) monitors
all activities (host writes and GC writes) of each workload
and counts the exact number of writes it generates; the phi-
losophy behind this policy is that a workload should be
responsible for exactly what it generates. The second policy
(Even) accounts the same number of writes to all non-read
only workloads; this assigns an even responsibility to all the
non-read only workloads. The last policy (Shapley) employs
Shapley value and calculates ϕ of each workload.
Our Finding: One interesting observation is that Shapley
accounts a significant number of writes to R1 (whereas Gen-
erated and Even attribute no writes to R1). As stated earlier,
this is because our Shapley value-inspired accounting holds
R1 responsible for the writes generated by its consolidated
(co-runner) workloads. Specifically, the read cache of R1
takes a large amount of storage capacity, which reduces the
OP capacities assigned to the consolidated workloads, and
this in turn increases the number of amplified writes from

Figure 5. Execution time of our Shapley value-inspired attri-
bution under varying number (N) of consolidated workloads.

them. As an example, let us investigateW 2: it generates over
65% of the total writes (see the number of writes accounted
toW 2 by Generated), as (i) it issues a lot of host writes and
(ii) it also significantly increases the number of amplified
writes. AsW 2 is sensitive to its assigned OP capacity (Figure
4e), if it had more OP capacity, the number of its amplified
writes and the total number of writes would decrease. In our
consolidated setting however, R1 preventsW 2 from grabbing
a large OP capacity and reducing the number of its ampli-
fied writes, which contributes to the total number of writes.
Interestingly, the number of amplified writes accounted to
R1 is larger than that accounted toW 3. This is because the
impact of high capacity taken by R1 is more significant than
the direct contribution ofW 3 to the total number of writes.
Note also thatW 3 takes a small capacity for both cache and
OP, which means it makes a marginal contribution to the
total number of writes.
4.4 Scalability: When N is Large
Since in our example N is 4 (i.e., the number of consolidated
workloads is 4), the number of possible subsets our Shapley
value-inspired accounting should consider is only 24 = 16,
which does not need much computation time. However, as
the degree of consolidation increases, the number of subsets
exponentially increases. For example, in an aggressively-
consolidated setup (where N is 40), the number of subsets
our accounting needs to consider is 240, which can bring
significant computation overheads.
Our Heuristic: To make our accounting technique feasible
and scalable in high consolidation scenarios, we propose a
heuristic that considers only a fraction of all possible sets
in calculating the Shapley value. The motivation behind
our heuristic is that there is no need to consider the sub-
sets whose sizes are small. This is because a small subset
generates no or few amplified writes, as each participating
workload can have a large amount of OP capacity, and this
makes its WAF value close to 1. Let us consider, as an ex-
ample, a 1TB SSD where N workloads are consolidated, and

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1070

a subset S = {W 1,W 2,W 3,R1} of N . For this subset, each
workload could have hundreds GB for its OP and the WAF
value of each converges to 1. Consequently, the total number
of writes in this subset (V (S)) is just the sum of the host
writes of the participating workloads, which can be obtained
without any calculation. Among all possible subsets, the sub-
sets whose sizes are equal to or smaller than 25 fall into this
category, which can be skipped in the Shapley value calcu-
lation. Note that the total number of such sets is

∑25
i=1

(40
i

)
,

which corresponds to 96% of the total number of possible
sets. Consequently, this heuristic requires us explore in de-
tail only 4% of the entire subsets. However, this can be still
regarded as significant, depending on the available compute
resources. If a slight error in the accounting result is accept-
able, we can further reduce the computation time by pruning
more subsets; the error is defined as the difference in the
attributed writes between considering all possible sets and
subsets. For example, if we drop the subsets whose sizes are
equal to or smaller than 30 from consideration, the number
of subsets our accounting technique needs to explore would
be

∑40
i=31

(40
i

)
, which corresponds to only 0.03% of the total

number of possible subsets! According to our analysis, if we
drop more subsets, e.g., subsets whose sizes are equal to or
smaller than 34 and 35, the number of remaining subsets that
our accounting technique explores would be only 760,099
and 102,091, respectively. Such an aggressive subset pruning
brings 4% and 7% error in accounting, compared to the exact
Shapley value calculation that explores all subsets.
Computation Overhead Analysis:We executed our Shap-
ley value-inspired attribution (implemented using MATLAB
program) on 3.4 GHz Intel Core i7-based host system. Figure
5 plots the CPU computation times of three different strate-
gies: the base Shapley value (No-Heuristic), our heuristic
allowing the error up to 5% (Error-5%), and our heuristic
allowing the error up to 10% (Error-10%). The computation
time of No-Heuristic increases exponentially as the number
of consolidated workloads increases (note that the Y-axis
is in log-scale). When N=16 and 32, the computation times
(over 15 minutes and 1 hour) are not acceptable, when the
sizes of epoch (1 hour) and interval (15 minutes) are con-
sidered. In contrast, Error-5% and Error-10% significantly
reduce the computation time; when N=32, it takes only 4-8
minutes. This indicates that our heuristic makes Shapley
value-inspired attribution a scalable option.

5 Write Allocation Strategies
5.1 Baseline Strategies
5.1.1 EVEN – Partitioning OP Evenly: When consider-
ing the notion of fairness, the first choice that comes to mind
is to (i) evenly partition the OP capacity among workloads
and (ii) estimate the number of writes for each workload with
this even OP share. Specifically, each non-read-only work-
load is given an “equal share” of the available OP capacity,
which is expressed as follows:

OP(i) = OP/(Ncon − Nr ead), (3)
where OP and OP(i) are the total OP capacity and the OP
allocated to non-read-only workload i , respectively, andNcon
and Nr ead are the numbers of the consolidated workloads
and read-only workloads, respectively.

Based on this even OP partitioning, one can estimate the
total number of writes (Ŵ) each workload generates, and this
could be set as the write budget allocated to each workload
(B(i) for workload i), which can be calculated as follows:

B(i) = Ŵ (i) = H (i) ×A(i) = H (i) × fi (OP(i)), (4)

where H (i) and A(i) are the number of host writes and the
WAF value of workload i , respectively. Also, fi andOP(i) de-
note, respectively, the WAF model function and the allocated
OP capacity of workload i .

Unfortunately, the even OP partitioning is not always fea-
sible. The problem is that the sum of estimated number of
writes can be larger than the total write budget, which can
be expressed as follows:∑Ncon

i=1 Ŵ (i) =
∑Ncon

i=1 B(i) > B, (5)

Note that this scenario can frequently occur, since even OP
partitioning lifetime-agnostic.
5.1.2 MMF–PartitioningOP toAchieveMax-Min Fair
Division of Total Budget: To address the above shortcom-
ing of even partitioning, we employ the notion of max-min
fairness to make the sum of estimated writes fit within the
total write budget. Specifically, as EVEN strategy does, this
strategy (i) begins with the even OP partitioning (Equation
3) and (ii) the estimation of the total number of writes each
workload would generate under the even OP share (Equa-
tion 4). However, then, it (iii) uses the progressive filling
algorithm [5] to distribute the total budget to consolidated
workloads based on their estimated number of writes, which
results in the max-min fairness division of the total budget.
As a result, the budget allocated to workload i , (B(i)), can be
calculated as follows:

B(i) = maxmin(Ŵ (i), B), (6)
where ˆW (i) and B are the write budget allocated to workload
i and the total write budget, respectively.

Based on the max-min fairness-based write allocation,
finally, this strategy (iv) re-partitions the total OP capacity.
The OP capacity assigned to workload i , OP(i), is obtained
by back-calculating the allocated budget (B(i)) as a function
of the OP capacity, as expressed below:

OP(i) s .t . B(i) = H (i) × fi (OP(i)), (7)

where H (i) and fi are the number of host writes and the
WAF model function of workload i , respectively. Note that,
if the sum of the estimated writes in all workloads is less
than or equal to the total write budget (i.e., the opposite case
of Equation 5), this MMF strategy would reduce to EVEN.
That is, the max-min fairness-based budget partitioning and
OP partitioning would be the same as those of the EVEN

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1071

strategy (Equations 4 and 3). To sum up, through (i) to (iv),
the MMF strategy makes up for the shortcomings of the
EVEN strategy.
5.1.3 Iso-WAF – Partitioning OP to Equalize Write
Amplification Factor Values: This strategy is rooted in
the ideas that a fair allocation would equalize write amplifi-
cations across all consolidated workloads. So, this strategy (i)
finds an OP partition where the WAF values of all workloads
(excluding the read-only ones for which WAF is zero) are
equal. Among numerous possible partitions, it then selects
the one where the sum of assigned OP capacities is equal to
the total OP capacity. The OP capacity assigned to workload
i , OP(i), is determined by the following constraints:

OP(i) s .t . A(i) = A(j) and
∑Ncon−Nr ead

k=1 OP(k) = OP , (8)

where A(i) is the WAF value of workload i and OP is the
total OP capacity. Ncon and Nr ead are the number of con-
solidated workloads and read-only workloads in them, re-
spectively. Finding the OP partition is easy – based on the
OP-WAF graph, we keep increasing the WAF line starting
from 1, and stop at the smallest WAF value that satisfies∑Ncon−Nr ead

k=1 OP(k) = OP . Note that, as the Iso-WAF line
goes up, the OP capacity that each workload can have de-
creases, and at some point, the sum of the OP capacities
meets the total OP capacity.

After that, this strategy (ii) finds a budget allocation where
the WAF values of all workloads (excluding read-only ones)
are equalized. For this, it selects a write allocation where the
sum of the estimated writes is equal to the total write budget.
The write budget allocated to workload i , B(i), is determined
by the following constraints:

B(i) s .t . A(i) = A(j) and
∑Ncon−Nr ead

k=1 Ŵ (k) = B, (9)

where Ŵ (k) and B are the estimated number of writes of
workload k and the total write budget, respectively. Find-
ing the budget allocation is carried out as follows. Based
on the OP-WAF graph, we keep decreasing the WAF line
starting from a large number (e.g., 5), and stop at the smallest
WAF value that satisfies

∑Ncon−Nr ead
k=1 Ŵ (k) = B. As the Iso-

WAF line goes down, the number of estimated writes each
workload generates decreases, and at some point, the sum
of estimated writes meets the total write budget.

5.2 Proposed Strategy: SV – Using Shapley Value
Motivated by the notion of fairness our Shapley value-inspired
accounting provides, we propose to employ the same mech-
anism in the budget allocation as well. Note that the write
accounting deals with attributing the “already-consumed
writes” to participating workloads, whereas the budget allo-
cation deals with assigning the “expected number of writes”
a workload may generate to the workload in advance. Specif-
ically, the strategy uses Iso-WAF method (Section 5.1.3) for
both (i) OP partitioning and (ii) write allocation. Then, as-
suming that the allocated write budget of a workload is the

Label Workload RD/WR Ratio RD Cache(GB) # Host WR
W1 exchange 32.7/67.3 7.53 3,252,015
W2 msnfs 64.1/35.9 21.41 5,658,534
W3 moodle 93.5/06.5 4.93 532,450
W4 hm 32.5/67.5 17.39 5,989,990
W5 prn 19.8/80.2 11.52 14,040,432
R1 readonly1 100.0/00.0 15.00 0
R2 readonly2 100.0/00.0 7.50 0

Table 4. Characteristics of individual workloads.
Degree Consol. Individual Workload
Consol. Scenario W1 W2 W3 W4 W5 R1 R2

2

2C1
2C2
2C3
2C4
2C5

3

3C1
3C2
3C3
3C4
3C5

4

4C1
4C2
4C3
4C4
4C5
4C6

Table 5. Tested consolidation scenarios, each of which com-
bines individual workloads of Table 4.
total number of writes it generates, the strategy (iii) applies
Shapley value to redistribute the total budget. Note that this
SV strategy allocates write budget to read-only workloads,
as the Shapley value-inspired accounting does.
6 Our Write Control Strategy
Different from the prior SSD throttling studies [32, 36], the
write-control mechanism in our framework works as follows:
• Once the framework detects that a workload consumes all
of the allocated budget to it, all the host writes the workload
issues bypass the flash cache and are served directly by the
HDD store. As a result, no more writes (including GC writes)
from that workload are served by the flash device, while it
continues to be executed using the HDDwith increased write
response times. Note however that, all read hits continue to
be served from the read cache; read misses are served from
the HDD without any cache admission (miss-induced write).
• Read-only workloads issue no host writes; so, even if their
attributed writes cannot meet their allocated budgets, the
control mechanism cannot take any action.
7 Evaluation
7.1 Experimental Methodology
Framework:We implemented MMF, Iso-WAF and SV mech-
anisms using MATLAB; and we also designed a consolidated
SSD working with our framework, using the DiskSim [7]
simulator with the SSD extensions [1]. Specifically, we added
mechanisms for supporting workload consolidation (Section
2.2) to the simulator – workload-aware, block-granularity
soft-partitioned, and per-workload GC mechanisms. The
budget allocations obtained from the MATLAB program are
given to the simulator, and the simulation results are used
for write accounting in the MATLAB program.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1072

Figure 6. Fraction of slowed writes to total host writes (under 3 strategies in 6 scenarios). R1/R2 are not applicable (N/A).

Figure 7. Write response times normalized to the case where all writes are handled by SSD (under 3 strategies in 6 scenarios).

Figure 8. Fraction of consumed writes to allocated budget (under 3 strategies in 6 scenarios).

System Configuration: We assume a 80GB SSD, which
consists of 8 packages, each having 10,240 blocks, and a
block consists of 256 4KB pages. We also assume that the
total OP capacity is 5% of total storage capacity (i.e., 4GB).
For the total user capacity (i.e., 76GB), the read cache and
write buffer sizes vary depending on workload consolidation
scenarios. Specifically, the read cache for each individual
workload is allocated such that its read hit ratio is 95%; and,
all the remaining user capacity is equally partitioned for
their write buffers. For GC and WL, we employ greedy [8]
and static [41] algorithms, respectively. For the HDD (paired
with the SSD), we employ a latency model from [30] – 3.6ms
HDD read/write latency. For the SSD latencies [40], we set
200us, 2.6ms, and 3ms for read, write, and erase, respectively
Workloads: We used 5 real-world (write-intensive) work-
loads from [43] and [4] and 2 synthetic (read-only) work-
loads, which are listed in Table 4. Considering the capability
of our target SSD, we constructed various 2 to 4-workload
consolidation scenarios by mixing the individual workloads,
which are listed in Table 5. Note that, consolidating more
workloads is overkill, since doing so makes the collective
write intensities and user capacity demands of consolidated
workloads beyond the SSD capability. We mainly report the
results of 4-workload consolidation scenarios, each of which
collectively needs a lot of writes; so, a fair write allocation is
more important. Note however that, the same analysis can
be applied to 2 and 3-workload scenarios.

The epoch size is set to 1 hour (note that this can be tuned
by the administrator); so, we extracted multiple 1-hour traces
from each individual workload and combined them for con-
solidation workloads. Considering our epoch size (1 hour)
and computational overhead of write attribution, the inter-
val size is set to 15 minutes. The total budget for each epoch

is tightly set to 5M page writes by considering the average
writes our workload consolidation scenarios generate.
SystemsEvaluated:We compared the following threewrite
allocation strategies (note that EVEN is not feasible under
the small budget, as discussed in Section 5.1.1):
•MMF (Section 5.1.2): This employs the max-min fairness
to divide the total budget, assuming an even OP partitioning.
• Iso-WAF (Section 5.1.3): This is based on our proposed
Iso-WAFmechanism for write allocation and OP partitioning.
• SV (Section 5.2): This applies Shapley value to the budget
divided by the Iso-WAF strategy.
Metrics: To evaluate the lifetime fairness of these three
strategies, we focused on the following three metrics:
• Fraction of Slowed Writes (Section 7.2): This metric
indicates the ratio of the slowed writes to the total host
writes. If a very small budget is allocated to a workload, it
would experience many slowed writes; so, the smaller this
metric across workloads, the fairer the write allocation. Note
that this metric is not applicable to read-only workloads.
• Write Response Time (Section 7.2): This metric cap-
tures the impact of the slowed writes on the workload per-
formance. Since all controlled writes get serviced from the
HDD whose latency is longer than that of SSD, the shorter
the write response times across workloads, the fairer the allo-
cation. The values are normalized to the case where all host
writes get serviced from the SSD. For read performance, we
assume that read cache sizes are determined such that read
hit ratios are equalized across workloads (see Section 2.3).
• Budget Consumption Rate (Section 7.3): This metric
represents the ratio of consumed writes to allocated writes.
If a budget allocated to a workload is more than actually
needed, many writes would remain unused, which leads to
a small value of this metric. Hence, the smaller this metric
across workloads, the worse the write allocation.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1073

Individual workloads of 4C2 W1 W2 W4 W5
1 Using our WAF model 20,013 51,125 5,610 11,369
2 Using actual GC information 23,875 45,772 5,233 12,450
Error (1 − 2) ÷ 2 × 100 -16.17% 11.69% 7.21% -8.68%

Table 6. Our model-based vs actual GC value-based write
attribution results in a sample interval of 4C2 scenario.

7.2 Fraction of Slowed Writes and Response Time
Figure 6 compares the three systems in terms of the fraction
of slowed writes to the total host writes. Bars in the graph
are omitted for read-only workloads (R1 and R2), or if the
count of slowed writes is zero.
• A fair allocation tends to suppress the slowed writes across
all workloads. MMF and Iso-WAF make one or more work-
loads experience a lot of slowed writes by allocating too
small budgets to them. In contrast, SV avoids such cases by
fairly distributing the total budget based on the needs.
•Onemight think that SVmakes an unfair allocation for 4C3
as the two write-intensive workloads (W2 & W5) are ren-
dered significantly slow, due to their small budgets. However,
this is because SV allocates a large fraction of the total budget
to the read-only workloads, and this causes a decrease in the
write budget allocated to the write-intensive workloads. In
contrast, MMF and Iso-WAF allocate zero writes to the two
read-only workloads, although lots of writes are attributed
to them from the first interval; actually, they are not fair.
• Figure 7 plots the write response times of the individual
workloads under different allocation strategies. All values
are normalized to the case where all host writes get serviced
from the SSD. The more slowed writes, the longer write
response times are experienced; and, the shorter the write
response times across workloads, the fairer the allocation.
7.3 Budget Consumption Rate
The metrics above (Section 7.2) cannot capture the case
where a very large budget is allocated to one or more work-
loads. The budget consumption rate metric on the other hand
may detect such scenarios, and is plotted in Figure 8.
• MMF and Iso-WAF make many individual workloads have
a value smaller than 1 by allocating them more writes than
they need. In contrast, SV redistributes these surplus writes
over the read-only workloads.
• It can be observed that R1 and R2 under MMF and Iso-WAF
have a value of 0; this is because these two strategies do not
allocate any write to read-only workloads, while writes are
attributed to them. In contrast, SV allocates writes to read-
only workloads as well; consequently, in all consolidation
scenarios, all individual workloads have a value of around 1.
•Many individual workloads have values that are larger than
1 – they consume more than their allocated budgets. This
is because the write accounting and controlling are periodi-
cally performed (every interval); so the number of consumed
writes may already exceed the number of allocated writes.
Under MMF and Iso-WAF, workloads may have high values
of 1.1-1.2, because few writes are allocated to them, and in
turn, they can easily consume more writes beyond allocated

Figure 9. Fraction of slowed writes under the three different
strategies in 4C2 scenario under varying total budget sizes.

budget before the attribution detects it. However, our SV has
values of at most 1.01; SV allocates budget appropriately and
attribution/controlling can be done on time.
7.4 Budget Size Sensitivity
To evaluate how the three different strategies work under
different budget sizes, we observed the fractions of slowed
writes to total host writes using 4C2 scenario, under un-
der small, tight (baseline), and large budget sizes (Figure 9).
When a large budget is prescribed, MMF and Iso-WAF may
be viable options for fair write allocation, as the allocated
budget to each workload is still large. However, MMF and
Iso-WAF fail to regulate the values under a small budget; in
contrast, SV suppresses the values and makes them close to
each other. In general, less the budget, better our SV works.
7.5 Model Error Analysis
To evaluate the trustability of our employed WAF model
[13], using a sample interval from a consolidation scenario
(4C2 of Table 4), we compared the attribution results of our
model-based strategy with an ideal system. For the latter, we
actually executed all 16 (24) subsets in the Shapley value cal-
culation using our simulation framework. Table 6 shows that
our model-based write attribution results differ from those of
the ideal system, due to the accuracy of the employed model.
While some errors introduced, our WAF model-based frame-
work is quite effective in write attribution and allocation.
8 Conclusions
We identified a fundamentally novel problem related to flash
lifetime management where multiple workloads are consoli-
dated on a single flash device. Our problem is based on view-
ing flash lifetime (equivalently total writes) as a first-class
resource that needs to be carefully and explicitly managed.
In particular, we explored what a fair allocation might mean
for this resource. We presented three baselines and a novel
strategy, which is inspired by the idea of the Shapley value.
Using real-world traces, we demonstrated the superiority
of our technique over baselines in helping the consolidated
workloads share the available lifetime fairly and efficiently.
Acknowledgments
We thank Peter Desnoyers, our shepherd, and the anony-
mous reviewers for their valuable feedback. This research is
supported in part by NSF grants 1822923, 1439021, 1629915,
1626251, 1629129, 1763681, 1526750, 1439057, and 1717571.
Dr. Jung’s research is in part supported byNRF 2016R1C1B201
5312, DOE DEAC02-05CH11231, NRF 2015M3C4A7065645,
NRF 2017R1A4A1015498 and KAIST start-up grant.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1074

References
[1] Nitin Agrawal, Vijayan Prabhakaran, TedWobber, John D. Davis, Mark

Manasse, and Rina Panigrahy. 2008. Design Tradeoffs for SSD Perfor-
mance. In USENIX ATC.

[2] Saba Ahmadian, Onur Mutlu, and Hossein Asadi. 2018. ECI-Cache: A
High-Endurance and Cost-Efficient I/O Caching Scheme for Virtual-
ized Platforms. In SIGMETRICS.

[3] Dulcardo Arteaga, Jorge Cabrera, Jing Xu, Swaminathan Sundarara-
man, and Ming Zhao. 2016. CloudCache: On-demand Flash Cache
Management for Cloud Computing. In USENIX FAST.

[4] Dulcardo Arteaga and Ming Zhao. 2014. Client-side Flash Caching for
Cloud Systems. In SYSTOR.

[5] Dimitri Bertseka and Robert Gallager. 1992. Data Networks. In Prentice-
Hall Inc.

[6] Matias Bjorling, Javier Gonzalez, and Philippe Bonnet. 2017. Light-
NVM: The Linux Open-Channel SSD Subsystem. In USENIX FAST.

[7] John S. Bucy, Jiri Schindler, StevenW. Schlosser, and Gregory R. Ganger.
2008. The DiskSim Simulation Environment Version 4.0 Reference
Manual. In CMU-PDL-08-101.

[8] Werner Bux and Ilias Iliadis. 2010. Performance of Greedy Garbage
Collection in Flash-Based Solid-State Drives. In Journal of Performance
Evaluation, VOL. 67, Issue. 11.

[9] Jianfeng Cai and Udo Pooch. 2004. Allocate Fair Payoff for Cooperation
in Wireless Ad Hoc Networks Using Shapley Value. In IPDPS.

[10] Alan Chen. 2015. Integrating Cooperative Flash Management with
SMR Technology for Optimized Tiering in Hybrid Systems. In Storage
Developer Conference.

[11] Samsung (Changho Choi). 2017. AutoStream: Automatic Stream Man-
agement for Multi-stream SSDs in Big Data Era. In Storage Developer
Conference.

[12] Wonil Choi, Bhuvan Urgaonkar, Mahmut Kandemir, and Myoungsoo
Jung. 2019. Fair Resource Allocation in Consolidated Flash Systems.
In USENIX HotStorage.

[13] Peter Desnoyers. 2012. Analytic Modeling of SSD Write Performance.
In SYSTOR.

[14] Mian Dong, Tian Lan, and Lin Zhong. 2014. Rethink Energy Account-
ing with Cooperative Game Theory. In MobiCom.

[15] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan
Stutsman, Mohammad Alizadeh, and Sachin Katti. 2019. Flashield: a
Hybrid Key-value Cache that Controls Flash Write Amplification. In
NSDI.

[16] Abhinav Garg. 2011. Cloud Computing for the Financial Services
Industry. In Sapient Global Markets.

[17] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. 2011. Dominant Resource Fairness: Fair
Allocation of Multiple Resource Types. In NSDI.

[18] Javier Gonzalez. 2018. Denali Open-Channel SSDs. In Flash Memory
Summit.

[19] Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty.
2019. Multi-Queue Fair Queuing. In USENIX ATC.

[20] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta
Sengupta, Bikash Sharma, and Moinuddin K. Qureshi. 2017. Flash-
Blox: Achieving Both Performance Isolation and Uniform Lifetime for
Virtualized SSDs. In USENIX FAST.

[21] Ronnie Huang. 2016. Open-Channel SSDs and Host-Based FTLs. In
Flash Memory Summit.

[22] Mohammad A. Islam and Shaolei Ren. 2016. A New Perspective on
Energy Accounting in Multi-Tenant Data Centers. In USENIX CoolDC.

[23] Mike Jadon. 2015. Replacing the FTL with Cooperative Flash Manage-
ment. In Flash Memory Summit.

[24] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee, and Jihong Kim.
2014. Lifetime Improvement of NAND Flash-based Storage Systems
Using Dynamic Program and Erase Scaling. In USENIX FAST.

[25] Weixiang Jiang, Fangming Liu, Guoming Tang, Kui Wu, and Hai Jin.
2017. Virtual Machine Power Accounting with Shapley Value. In
ICDCS.

[26] Xavier Jimenez, David Novo, and Paolo Ienne. 2013. Pheonix: Reviving
MLC Blocks as SLC to Extend NAND Flash Devices Lifetime. In DATE.

[27] Bryan S. Kim. 2018. Utilitarian Performance Isolation in Shared SSDs.
In USENIX HotStorage.

[28] Jaeho Kim, Donghee Lee, and Sam H. Noh. 2015. Towards SLO Com-
plying SSDs Through OPS Isolation. In USENIX FAST.

[29] Jonghwa Kim, Sangyup Lee, Ikjoon Son, Jongmoo Choi, ChoongHyun
Lee, Sungroh Yoon, Hu ung Lee, Sooyong Kang, Youjip Won, and
Jaehyuk Cha. 2012. Deduplication in SSDs: Model and Quantitative
Analysis. In MSST.

[30] Youngjae Kim, Aayush Gupta, Bhuvan Urgaonkar, Piotr Berman, and
Anand Sivasubramaniam. 2011. HybridStore: A Cost-Efficient, High-
Performance Storage System Combining SSDs and HDDs. In MAS-
COTS.

[31] Ricardo Koller, Ali Jose Mashtizadeh, and Raju Rangaswami. 2015.
Centaur: Host-Side SSD Caching for Storage Performance Control. In
ICAC.

[32] Sungjin Lee, Taejin Kim, Kyungho Kim, and Jihong Kim. 2012. Lifetime
Management of Flash-Based SSDs Using Recovery-Aware Dynamic
Throttling. In USENIX FAST.

[33] Sungjin Lee, Jihoon Park, Kermin Fleming, Arvind, and Jihong Kim.
2011. Improving Performance and Lifetime of Solid-State Drives Using
Hardware-Accelerated Compressions. In IEEE Transactions on Com-
puter Electronics, Vol.57, No.4.

[34] Cheng Li, Philip Shilane, FredDouglis, Hyong Shim, Stephen Smaldone,
and Grant Wallace. 2014. Nitro: A Capacity-Optimized SSD Cache for
Primary Storage. In USENIX ATC.

[35] Jiangpeng Li, Kai Zhao, Xuebin Zhang, Jun Ma, Ming Zhao, and Tong
Zhang. 2015. How Much Can Data Compressibility Help to Improve
NAND Flash Memory Lifetime?. In USENIX FAST.

[36] Qiao Li, Liang Shi, Chun Jason Xue, Kaijie Wu, Cheng Ji, Qingfeng
Zhuge, and Edwin H.-M. Sha. 2016. Access Characteristic Guided Read
and Write Cost Regulation for Performance Improvement on Flash
Memory. In USENIX FAST.

[37] Tian Luo, Siyuan Ma, Rubao Lee, Xiaodong Zhang, Deng Liu, and
Li Zhou. 2013. S-CAVE: Effective SSD Caching to Improve Virtual
Machine Storage Performance. In PACT.

[38] Richard T. B. Ma, Dah Ming Chiu, John C. S. Lui, Vishal Misra, and
Dan Rubenstein. 2010. Internet Economics: The Use of Shapley Value
for ISP Settlement. In IEEE/ACM Transactions on Networking, Vol. 18,
No. 3.

[39] Fei Meng, Li Zhou, Xiaosong Ma, Sandeep Uttamchandani, and Deng
Liu. 2014. vCacheShare: Automated Server Flash Cache Space Man-
agement in a Virtualization Environment. In USENIX ATC.

[40] Micron. 2015. NAND Flash Memory MT29F[128/256]G08E[B/F]EBB,
MT29F[128/256]G08E[B/E]CBB, MT29F512G08EMCBB.

[41] Muthukumar Murugan and David Du. 2011. Rejuvenator: A Static
Wear Leveling Algorithm for Flash Memory. In MSST.

[42] Mohsin Naeem. 2019. Expect Shortage Of SSDs As Many Taiwanese
Producers Shift Towards The Niche Markets. In Appuals.com.

[43] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008.
Write Off-Loading: Practical Power Management for Enterprise Stor-
age. In USENIX FAST.

[44] Yuanjiang Ni, Ji Jiang, Dejun Jiang, Xiaosong Ma, Jin Xiong, and Yuan-
gang Wang. 2016. S-RAC: SSD Friendly Caching for Data Center
Workloads. In SYSTOR.

[45] Junpeng Niu, Jun Xu, and Lihua Xie. 2018. Hybrid Storage Systems: A
Survey of Architectures and Algorithms. In IEEE Access, Vol. 6.

[46] Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H. Noh. 2012.
Caching Less for Better Performance: Balancing Cache Size and Update
Cost of Flash Memory Cache in Hybrid Storage Systems. In USENIX
FAST.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1075

[47] Oracle. 2015. Cloud Computing In Financial Services. In Oracle Cloud
for Industries.

[48] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and
Yuanzheng Wang. 2014. SDF: Software-Defined Flash for Web-Scale
Internet Storage Systems. In ASPLOS.

[49] Stan Park and Kai Shen. 2012. FIOS: A Fair, Efficient Flash I/O Scheduler.
In USENIX FAST.

[50] Western Digital (Liam Parker). 2018. Optimizing SSDs for Multiple
Tenancy Use. In Flash Memory Summit.

[51] Craig Robertson. 2016. Software-Defined Flash: TradeOffs of FTL,
Open-Channel, and Cooperative Flash Management. In Storage Devel-
oper Conference.

[52] Samsung. 2017. Ultra-Low Latency with Samsung Z-NAND SSD. In
Samsung.

[53] SanDisk. 2016. Improving Performance and Endurance with Overpro-
visioning.

[54] Lloyd S. Shapley. 1952. A Value for n-Person Games. In RAND Corpo-
ration.

[55] Kai Shen and Stan Park. 2013. FlashFQ: A Fair Queueing I/O Scheduler
for Flash-Based SSDs. In USENIX ATC.

[56] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. 2017. DIDACache:
A Deep Integration of Device and Application for Flash Based Key-
Value Caching. In USENIX FAST.

[57] Weijie Shi, Chuan Wu, and Zongpeng Li. 2018. A Shapley-value
Mechanism for Bandwidth On Demand between Datacenters. In IEEE
Transactions on Cloud Computing, Vol. 6, No. 1.

[58] David Shue, Michael J. Freedman, and Anees Shaikh. 2012. Per-
formance Isolation and Fairness for Multi-Tenant Cloud Storage. In
USENIX OSDI.

[59] Kent Smith. 2013. Understanding SSD Over Provisioning. In Flash
Memory Summit.

[60] Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata
Ghose, and Onur Mutlu. 2018. MQSim: A Framework for Enabling

Realistic Studies of Modern Multi-Queue SSD Devices. In USENIX
FAST.

[61] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie S.
Kim, Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan
Gomez-Luna, and Onur Mutlu. 2018. FLIN: Enabling Fairness and
Enhancing Performance in Modern NVMe Solid State Drives. In ISCA.

[62] HuiWang and Peter Varman. 2014. Balancing Fairness and Efficiency in
Tiered Storage Systems with Bottleneck-Aware Allocation. In USENIX
FAST.

[63] GuanyingWu and Xubin He. 2012. Delta-FTL: Improving SSD Lifetime
via Exploiting Content Locality. In EuroSys.

[64] Gala Yadgar, Eitan Yaakobi, and Assaf Schuster. 2015. Write Once,
Get 50% Free: Saving SSD Erase Costs Using WOM Codes. In USENIX
FAST.

[65] Zhengyu Yang, Morteza Hoseinzadeh, Allen Andrews, Clay Mayers,
David (Thomas) Evans, Rory (Thomas) Bolt, Janki Bhimani, Ning-
fang Mi, and Steven Swanson. 2017. AutoTiering: Automatic Data
Placement Manager in Multi-Tier All-Flash Datacenter. In IPCCC.

[66] Zhihao Yao, Ioannis Papapanagiotou, and Rean Griffith. 2015. Serifos:
Workload Consolidation and Load Balancing for SSD Based Cloud
Storage Systems. In CoRR, abs/1512.06432.

[67] Ning Zhang, Junichi Tatemura, Jignesh Patel, and Hakan Hacigumus.
2014. Re-evaluating Designs for Multi-Tenant OLTP Workloads on
SSD-based I/O Subsystems. In SIGMOD.

[68] Rui Zhang, Ramani Routray, David M. Eyers, David Chambliss, Prasen-
jit Sarkar, Douglas Willcocks, and Peter Pietzuch. 2011. IO Tetris:
Deep Storage Consolidation for the Cloud via Fine-Grained Workload
Analysis. In CLOUD.

[69] Xuebin Zhang, Jiangpeng Li, Hao Wang, Kai Zhao, and Tong Zhang.
2016. Reducing Solid-State Storage Device Write Stress through Op-
portunistic In-place Delta Compression. In USENIX FAST.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1076

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Flash Device Basics
	2.2 Our Target System
	2.3 Scope of Our Work
	2.4 Other Related Work
	2.5 Useful Concepts for Allocation and Attribution

	3 Budget-Aware Lifetime Management
	3.1 High-Level View
	3.2 Detailed Activities

	4 Our Proposed Write Attribution Strategy
	4.1 Applying Shapley Value to Write Attribution
	4.2 Challenge: Unobserved Subsets
	4.3 Accounting Results and Observations
	4.4 Scalability: When N is Large

	5 Write Allocation Strategies
	5.1 Baseline Strategies
	5.2 Proposed Strategy: SV – Using Shapley Value

	6 Our Write Control Strategy
	7 Evaluation
	7.1 Experimental Methodology
	7.2 Fraction of Slowed Writes and Response Time
	7.3 Budget Consumption Rate
	7.4 Budget Size Sensitivity
	7.5 Model Error Analysis

	8 Conclusions
	Acknowledgments
	References

