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ABSTRACT

Recent breakthroughs in Deep Neural Networks (DNNs) have fu-

eled a growing demand for domain-specific hardware accelerators

(i.e., DNN chips). However, designing DNN chips is non-trivial

because: (1) mainstream DNNs have millions of parameters and

operations; (2) the design space is large due to the numerous de-

sign choices of dataflows, processing elements, memory hierarchy,

etc.; and (3) an algorithm/hardware co-design is needed to allow

the same DNN functionality to have a different decomposition,

which would require different hardware IPs that correspond to

dramatically different performance/energy/area tradeoffs. There-

fore, DNN chips often take months to years to design and require a

large team of cross-disciplinary experts. To enable fast and effective

DNN chip design, we propose AutoDNNchip − a DNN chip genera-

tor that can automatically generate both FPGA- and ASIC-based

DNN chip implementation (i.e., synthesizable RTL code with opti-

mized algorithm-to-hardware mapping (i.e., dataflow) ) given DNNs

from machine learning frameworks (e.g., PyTorch) for a designated

application and dataset without humans in the loop. Specifically,

AutoDNNchip consists of two integrated enablers: (1) a Chip Predic-

tor, built on top of a graph-based accelerator representation, which

can accurately and efficiently predict a DNN accelerator’s energy,

throughput, latency, and area based on the DNN model parameters,

hardware configuration, technology-based IPs, and platform con-

straints; and (2) a Chip Builder, which can automatically explore

the design space of DNN chips (including IP selection, block config-

uration, resource balance, etc.), optimize chip design via the Chip

Predictor, and then generate synthesizable RTL code with optimized

dataflows to achieve the target design metrics. Experimental results

show that our Chip Predictor’s predicted performance differs from

real-measured ones by <10% when validated using 15 DNN models

and 4 platforms (edge-FPGA/TPU/GPU and ASIC). Furthermore,

both the FPGA- and ASIC-based DNN accelerators generated by our

AutoDNNchip can achieve better (up to 3.86× improvement) per-

formance than that of expert-crafted state-of-the-art accelerators,

showing the effectiveness of AutoDNNchip. Our open-source code

can be found at https://github.com/RICE-EIC/AutoDNNchip.git.
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1 INTRODUCTION

We have seen the rapid adoption of Deep Neural Networks (DNNs)

for solving real-life problems, such as image classification [1, 2],

object detection [3], natural language processing [4], etc. Although

DNNs enable high-quality inferences, they also require a large

amount of computation and memory demand during deployment

due to their inherently immense complexity [5ś9]. Moreover, DNN-

based applications often require not only high inference accuracy,

but also aggressive hardware performance, including high through-

put, low end-to-end latency, and limited energy consumption. Re-

cently, we have seen intensive studies on DNN accelerators in

hardware, which attempt to take advantage of different hardware

design styles, such as GPUs, FPGAs, and ASICs, to improve the

speed and efficiency of DNN inference and training [10? ś21].

However, developing customized DNN accelerators presents

significant challenges as it asks for cross-disciplinary knowledge

in machine learning, micro-architecture, and physical chip design.

Specifically, to build accelerators on FPGAs or ASICs, it is inevitable

to include (1) customized architectures for running DNNworkloads,

(2) RTL programming for implementing accelerator prototypes, and

(3) reiterative verifications for validating the functionality correct-

ness. The whole task requires designers to have a deep understand-

ing of both DNN algorithms and hardware design. In response

to the intense demands and challenges of designing DNN accel-

erators, we have seen rapid development of high-level synthesis

(HLS) design flow [22ś25] and DNN design automation frame-

works [16, 26ś30] that improve the hardware design efficiency by

allowing DNN accelerator design from high-level algorithmic de-

scriptions and using pre-defined high-quality hardware IPs. Still,

they either rely on hardware experts to trim down the large de-

sign space (e.g., use pre-defined/fixed architecture templates and

explore other factors [16, 29]) or conduct merely limited design ex-

ploration and optimization, hindering the development of optimal

DNN accelerators that can be deployed into various platforms.

To address the challenges above, we propose AutoDNNchip, an

end-to-end automation tool for generating optimized FPGA- and

ASIC-based accelerators from machine learning frameworks (e.g.,

Pytorch/Tensorflow) and providing fast and accurate performance

estimations of hardware accelerators implemented on various tar-

geted devices. The main contributions of this paper are as follows:

a
rX

iv
:2

0
0
1
.0

3
5
3
5
v
4
  
[c

s.
D

C
] 

 1
0
 J

u
n
 2

0
2
0











Algorithm 1 Run-time sim. in the fine-grained Chip Predictor

1: Input: One accelerator design described by graph G ;
2: For each edдe in G
3: ipstar t ←− edдe

′s starting node;
4: ipend ←− edдe

′s ending node;
5: Add ipstar t to ipend .prev ;
6: Add ipend to ipstar t .next ;
7: Initialize energy and latency: E = 0, cycles = 0;
8: While not all inference outputs are stored back
9: cycles ←− cycles + 1;
10: For each ip in G
11: If (ip is idle ) & (all needed inputs ∈ outputs of ip .prev )
12: ip ←− busy ;
13: ip jumps to the next state;
14: If (ip is idle ) & (not all needed inputs ∈ outputs of ip .prev )
15: ip .idle_cycles ←− ip .idle_cycles + 1;
16: If (ip is busy) & (not all outputs for ip is ready)
17: Update the ready outputs for ip ;
18: If (ip is busy) & (all outputs for ip is ready)
19: ip ←− idle ;
20: E ←− E + Eip ;

21: L ←−
cycles

дlobal clk f r eq
;

22: ipbott leneck ←− ip with minimum idle cycles.

For better understanding, Fig. 7 uses a toy example to show that

the Chip Predictor’s fine-grained mode (see Fig. 7 (c)) can more

accurately estimate the required latency than its coarse-grained

mode. In this 3×3 systolic array with the local-data-forwarding and

computation operations being pipelined, we assume each MAC unit

takes 3 cycles to do the computation and 1 cycle to forward the

data to its nearby MAC units. In the coarse-grained mode case, we

add the intra-IP latency in the graph’s critical path to estimate the

overall latency (see Fig. 7 (b)), resulting in an estimated latency of

15 cycles. In the fine-grained mode case (see Fig. 7 (c)), we define

the state machine for each MAC unit and adopt Algorithm 1 to

keep track of when each MAC unit jumps to the next state. In this

particular example, MAC 2 will wait at cycle 0 since its required

input data a00 is not ready, and it will jump to next state to start

computing at cycle 1 when all its required inputs are ready. We

can see that the fine-grained mode’s estimated latency (7 cycles,

the same as the ground truth) is more accurate for modeling the

overlapped computation and data transferring in this example. In

practical designs, the overall latency is not determined by merely

one stage, so the Chip Builder will launch the Chip Predictor to

simulate the whole graph iteratively in order to generate an optimal

design for the whole accelerator system.

6 THE PROPOSED CHIP BUILDER

Fig. 2 elaborates the design flow of AutoDNNchip that leverages

the Chip Builder’s two-stage DSE engine. To effectively explore

the design space (e.g., the design factors in Table 1), AutoDNNchip

involves three major steps as shown in Fig. 2: (1) the 1st-stage

DSE: an early stage architecture and IP configuration exploration

to efficiently rule out infeasible designs using the Chip Predictor’s

coarse-grained mode; (2) the 2nd-stage DSE: an inter-IP pipeline

exploration and IP optimization to effectively boost the performance

of the remaining design candidates resulting from the 1st-stage DSE;

and (3) a design validation through RTL generation and execution.

Step I. Early Stage Architecture and IP Configuration Ex-

ploration.As shown in the middle part of Fig. 2, this step considers

the following exploration. First, the DNN model from a mainstream

machine learing framework is applied to the DNN parser to extract

the DNN layer information, e.g., layer types (CONV, Pooling, ReLU,

Algorithm 2 IP-pipeline co-optimizationusing the Chip Builder

1: Input: Design space DG with N2 graphs;
2: For each G in DG

3: For each edдe in G
4: ipstar t ←− edдe

′s starting node;
5: ipend ←− edдe

′s ending node;
6: Add ipstar t to ipend .prev ;
7: Add ipend to ipstar t .next ;
8: While simulated (using Algorithm 1) latency LG does not converge
9: ip ←− simulated bottleneck IP (i.e., ipbott leneck from Algorithm 1);
10: If inter-IP pipeline is adopted for ip and ip .next
11: allocate more resource to ip ;
12: Else
13: adopt inter-IP pipeline between ip and ip .next ;
14: update the state machine of ip ;
15: update the state machine of ip .next ;
16: Select top Nopt candidates in DG

Reorg [31], etc.), feature map inter-connections (Concat, Add, etc.),

and layer shapes (shape of weight and feature map tensors). Sec-

ond, according to the given DNNmodel, performance requirements

(e.g., latency and throughput) and hardware budgets (e.g., resource

and power budget of FPGA or ASIC), a design space of size N1 is

generated by fetching commonly-used or promising hardware ar-

chitecture templates and hardware IP templates from the Hardware

IP pool. For example, when the given resource budgets are tight, a

folded hardware architecture will be chosen instead of a flattened

one; whereas flattened structures which facilitate IP pipelines are

preferred when there are sufficient budgets. Third, an architecture

and IP configuration optimization is then performed to rule out

most of the infeasible choices and trim down the design space to N2

(N2 < N1) promising candidates, e.g, more efficient with a lower la-

tency. This fast early exploration makes use of the analytical nature

of the Chip Predictor’s coarse-grained mode.

Step II. Inter-IP Pipeline Exploration and IPOptimization.

This step accepts the resulting N2 designs and performs further

exploration and IP optimization using Algorithm 2. First, inter-IP

pipelines are inserted into different locations of the corresponding

computation graphs, resulting in a new design space of size N3,

i.e., N3 new graphs with different inter-IP pipeline designs. Sec-

ond, for each of these graphs, the bottleneck IPs will be recorded

during Algorithm 1’s run-time simulations and then optimized via

deeper inter-IP pipeline design or re-allocating more resource until

convergence based on the Chip Predictor’s fine-grained mode’s

predicted performance, as shown inAlgorithm 2. Third, the topNopt

design candidates will be chosen according to the Chip Predictor’s

predicted energy consumption or/and latency, and then passed to

the next step for validation through RTL generation and execution.

Step III. Design Validation through RTL Generation and

Execution. In this step, we generate RTL code for the top Nopt

optimized designs through an automated code generation proce-

dure: (1) For the FPGA back-end, the generated files include the

testbench for a board-level implementation, the binary file for the

quantized-and-reordered weights, and the C-code for the HLS IP

implementation. We use Vivado [22] to actually generate the bit-

stream and meanwhile eliminate the designs that fail in place and

route (PnR) to guarantee that AutoDNNchip’s generated designs

are valid; (2) For the ASIC back-end, the generated files include the

RTL testbench for the DNN model, the quantized-and-reordered

weights, the synthesizable RTL code, and the memory specifica-

tions. The RTL code could be further passed to an EDA tool like
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