
AutoDNNchip: An Automated DNN Chip Predictor and Builder
for Both FPGAs and ASICs

Pengfei Xu1, Xiaofan Zhang2, Cong Hao2, Yang Zhao1, Yongan Zhang1, Yue Wang1, Chaojian Li1,
Zetong Guan1, Deming Chen2, Yingyan Lin1

1Rice University, TX, USA, 2University of Illinois at Urbana-Champaign, IL, USA
{eiclab, zy34, yz87, yw68, cl114, zg20, yingyan.lin}@rice.edu, {xiaofan3, congh, dchen}@illinois.edu

ABSTRACT

Recent breakthroughs in Deep Neural Networks (DNNs) have fu-

eled a growing demand for domain-specific hardware accelerators

(i.e., DNN chips). However, designing DNN chips is non-trivial

because: (1) mainstream DNNs have millions of parameters and

operations; (2) the design space is large due to the numerous de-

sign choices of dataflows, processing elements, memory hierarchy,

etc.; and (3) an algorithm/hardware co-design is needed to allow

the same DNN functionality to have a different decomposition,

which would require different hardware IPs that correspond to

dramatically different performance/energy/area tradeoffs. There-

fore, DNN chips often take months to years to design and require a

large team of cross-disciplinary experts. To enable fast and effective

DNN chip design, we propose AutoDNNchip − a DNN chip genera-

tor that can automatically generate both FPGA- and ASIC-based

DNN chip implementation (i.e., synthesizable RTL code with opti-

mized algorithm-to-hardware mapping (i.e., dataflow)) given DNNs

from machine learning frameworks (e.g., PyTorch) for a designated

application and dataset without humans in the loop. Specifically,

AutoDNNchip consists of two integrated enablers: (1) a Chip Predic-

tor, built on top of a graph-based accelerator representation, which

can accurately and efficiently predict a DNN accelerator’s energy,

throughput, latency, and area based on the DNN model parameters,

hardware configuration, technology-based IPs, and platform con-

straints; and (2) a Chip Builder, which can automatically explore

the design space of DNN chips (including IP selection, block config-

uration, resource balance, etc.), optimize chip design via the Chip

Predictor, and then generate synthesizable RTL code with optimized

dataflows to achieve the target design metrics. Experimental results

show that our Chip Predictor’s predicted performance differs from

real-measured ones by <10% when validated using 15 DNN models

and 4 platforms (edge-FPGA/TPU/GPU and ASIC). Furthermore,

both the FPGA- and ASIC-based DNN accelerators generated by our

AutoDNNchip can achieve better (up to 3.86× improvement) per-

formance than that of expert-crafted state-of-the-art accelerators,

showing the effectiveness of AutoDNNchip. Our open-source code

can be found at https://github.com/RICE-EIC/AutoDNNchip.git.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA ’20, February 23ś25, 2020, Seaside, CA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7099-8/20/02. . . $15.00
https://doi.org/10.1145/3373087.3375306

ACM Reference Format:

Pengfei Xu, Xiaofan Zhang, CongHao, Yang Zhao, Yongan Zhang, YueWang,

Chaojian Li, Zetong Guan, Deming Chen, Yingyan Lin. 2020. AutoDNNchip:

An Automated DNN Chip Predictor and Builder for Both FPGAs and ASICs.

In 2020 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays (FPGA’20), February 23-25, 2020, Seaside, CA, USA. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3373087.3375306

1 INTRODUCTION

We have seen the rapid adoption of Deep Neural Networks (DNNs)

for solving real-life problems, such as image classification [1, 2],

object detection [3], natural language processing [4], etc. Although

DNNs enable high-quality inferences, they also require a large

amount of computation and memory demand during deployment

due to their inherently immense complexity [5ś9]. Moreover, DNN-

based applications often require not only high inference accuracy,

but also aggressive hardware performance, including high through-

put, low end-to-end latency, and limited energy consumption. Re-

cently, we have seen intensive studies on DNN accelerators in

hardware, which attempt to take advantage of different hardware

design styles, such as GPUs, FPGAs, and ASICs, to improve the

speed and efficiency of DNN inference and training [10? ś21].

However, developing customized DNN accelerators presents

significant challenges as it asks for cross-disciplinary knowledge

in machine learning, micro-architecture, and physical chip design.

Specifically, to build accelerators on FPGAs or ASICs, it is inevitable

to include (1) customized architectures for running DNNworkloads,

(2) RTL programming for implementing accelerator prototypes, and

(3) reiterative verifications for validating the functionality correct-

ness. The whole task requires designers to have a deep understand-

ing of both DNN algorithms and hardware design. In response

to the intense demands and challenges of designing DNN accel-

erators, we have seen rapid development of high-level synthesis

(HLS) design flow [22ś25] and DNN design automation frame-

works [16, 26ś30] that improve the hardware design efficiency by

allowing DNN accelerator design from high-level algorithmic de-

scriptions and using pre-defined high-quality hardware IPs. Still,

they either rely on hardware experts to trim down the large de-

sign space (e.g., use pre-defined/fixed architecture templates and

explore other factors [16, 29]) or conduct merely limited design ex-

ploration and optimization, hindering the development of optimal

DNN accelerators that can be deployed into various platforms.

To address the challenges above, we propose AutoDNNchip, an

end-to-end automation tool for generating optimized FPGA- and

ASIC-based accelerators from machine learning frameworks (e.g.,

Pytorch/Tensorflow) and providing fast and accurate performance

estimations of hardware accelerators implemented on various tar-

geted devices. The main contributions of this paper are as follows:

a
rX

iv
:2

0
0
1
.0

3
5
3
5
v
4

[c

s.
D

C
]

 1
0
 J

u
n
 2

0
2
0

Algorithm 1 Run-time sim. in the fine-grained Chip Predictor

1: Input: One accelerator design described by graph G ;
2: For each edдe in G
3: ipstar t ←− edдe

′s starting node;
4: ipend ←− edдe

′s ending node;
5: Add ipstar t to ipend .prev ;
6: Add ipend to ipstar t .next ;
7: Initialize energy and latency: E = 0, cycles = 0;
8: While not all inference outputs are stored back
9: cycles ←− cycles + 1;
10: For each ip in G
11: If (ip is idle) & (all needed inputs ∈ outputs of ip .prev)
12: ip ←− busy ;
13: ip jumps to the next state;
14: If (ip is idle) & (not all needed inputs ∈ outputs of ip .prev)
15: ip .idle_cycles ←− ip .idle_cycles + 1;
16: If (ip is busy) & (not all outputs for ip is ready)
17: Update the ready outputs for ip ;
18: If (ip is busy) & (all outputs for ip is ready)
19: ip ←− idle ;
20: E ←− E + Eip ;

21: L ←−
cycles

дlobal clk f r eq
;

22: ipbott leneck ←− ip with minimum idle cycles.

For better understanding, Fig. 7 uses a toy example to show that

the Chip Predictor’s fine-grained mode (see Fig. 7 (c)) can more

accurately estimate the required latency than its coarse-grained

mode. In this 3×3 systolic array with the local-data-forwarding and

computation operations being pipelined, we assume each MAC unit

takes 3 cycles to do the computation and 1 cycle to forward the

data to its nearby MAC units. In the coarse-grained mode case, we

add the intra-IP latency in the graph’s critical path to estimate the

overall latency (see Fig. 7 (b)), resulting in an estimated latency of

15 cycles. In the fine-grained mode case (see Fig. 7 (c)), we define

the state machine for each MAC unit and adopt Algorithm 1 to

keep track of when each MAC unit jumps to the next state. In this

particular example, MAC 2 will wait at cycle 0 since its required

input data a00 is not ready, and it will jump to next state to start

computing at cycle 1 when all its required inputs are ready. We

can see that the fine-grained mode’s estimated latency (7 cycles,

the same as the ground truth) is more accurate for modeling the

overlapped computation and data transferring in this example. In

practical designs, the overall latency is not determined by merely

one stage, so the Chip Builder will launch the Chip Predictor to

simulate the whole graph iteratively in order to generate an optimal

design for the whole accelerator system.

6 THE PROPOSED CHIP BUILDER

Fig. 2 elaborates the design flow of AutoDNNchip that leverages

the Chip Builder’s two-stage DSE engine. To effectively explore

the design space (e.g., the design factors in Table 1), AutoDNNchip

involves three major steps as shown in Fig. 2: (1) the 1st-stage

DSE: an early stage architecture and IP configuration exploration

to efficiently rule out infeasible designs using the Chip Predictor’s

coarse-grained mode; (2) the 2nd-stage DSE: an inter-IP pipeline

exploration and IP optimization to effectively boost the performance

of the remaining design candidates resulting from the 1st-stage DSE;

and (3) a design validation through RTL generation and execution.

Step I. Early Stage Architecture and IP Configuration Ex-

ploration.As shown in the middle part of Fig. 2, this step considers

the following exploration. First, the DNN model from a mainstream

machine learing framework is applied to the DNN parser to extract

the DNN layer information, e.g., layer types (CONV, Pooling, ReLU,

Algorithm 2 IP-pipeline co-optimizationusing the Chip Builder

1: Input: Design space DG with N2 graphs;
2: For each G in DG

3: For each edдe in G
4: ipstar t ←− edдe

′s starting node;
5: ipend ←− edдe

′s ending node;
6: Add ipstar t to ipend .prev ;
7: Add ipend to ipstar t .next ;
8: While simulated (using Algorithm 1) latency LG does not converge
9: ip ←− simulated bottleneck IP (i.e., ipbott leneck from Algorithm 1);
10: If inter-IP pipeline is adopted for ip and ip .next
11: allocate more resource to ip ;
12: Else
13: adopt inter-IP pipeline between ip and ip .next ;
14: update the state machine of ip ;
15: update the state machine of ip .next ;
16: Select top Nopt candidates in DG

Reorg [31], etc.), feature map inter-connections (Concat, Add, etc.),

and layer shapes (shape of weight and feature map tensors). Sec-

ond, according to the given DNNmodel, performance requirements

(e.g., latency and throughput) and hardware budgets (e.g., resource

and power budget of FPGA or ASIC), a design space of size N1 is

generated by fetching commonly-used or promising hardware ar-

chitecture templates and hardware IP templates from the Hardware

IP pool. For example, when the given resource budgets are tight, a

folded hardware architecture will be chosen instead of a flattened

one; whereas flattened structures which facilitate IP pipelines are

preferred when there are sufficient budgets. Third, an architecture

and IP configuration optimization is then performed to rule out

most of the infeasible choices and trim down the design space to N2

(N2 < N1) promising candidates, e.g, more efficient with a lower la-

tency. This fast early exploration makes use of the analytical nature

of the Chip Predictor’s coarse-grained mode.

Step II. Inter-IP Pipeline Exploration and IPOptimization.

This step accepts the resulting N2 designs and performs further

exploration and IP optimization using Algorithm 2. First, inter-IP

pipelines are inserted into different locations of the corresponding

computation graphs, resulting in a new design space of size N3,

i.e., N3 new graphs with different inter-IP pipeline designs. Sec-

ond, for each of these graphs, the bottleneck IPs will be recorded

during Algorithm 1’s run-time simulations and then optimized via

deeper inter-IP pipeline design or re-allocating more resource until

convergence based on the Chip Predictor’s fine-grained mode’s

predicted performance, as shown inAlgorithm 2. Third, the topNopt

design candidates will be chosen according to the Chip Predictor’s

predicted energy consumption or/and latency, and then passed to

the next step for validation through RTL generation and execution.

Step III. Design Validation through RTL Generation and

Execution. In this step, we generate RTL code for the top Nopt

optimized designs through an automated code generation proce-

dure: (1) For the FPGA back-end, the generated files include the

testbench for a board-level implementation, the binary file for the

quantized-and-reordered weights, and the C-code for the HLS IP

implementation. We use Vivado [22] to actually generate the bit-

stream and meanwhile eliminate the designs that fail in place and

route (PnR) to guarantee that AutoDNNchip’s generated designs

are valid; (2) For the ASIC back-end, the generated files include the

RTL testbench for the DNN model, the quantized-and-reordered

weights, the synthesizable RTL code, and the memory specifica-

tions. The RTL code could be further passed to an EDA tool like

REFERENCES
[1] K. Simonyan and A. Zisserman, łVery Deep Convolutional Networks for Large-

Scale Image Recognition,ž CoRR, vol. abs/1409.1556, 2014.
[2] Y.Wang, Z. Jiang, X. Chen, P. Xu, Y. Zhao, Y. Lin, and Z.Wang, łE2-Train: Training

State-of-the-art CNNs with Over 80% Energy Savings,ž in Advances in Neural
Information Processing Systems, pp. 5139ś5151, 2019.

[3] S. Ren, K. He, R. Girshick, and J. Sun, łFaster R-CNN: Towards real-time object
detection with region proposal networks,ž in Advances in neural information
processing systems, pp. 91ś99, 2015.

[4] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and G. Zweig,
łThe Microsoft 2016 conversational speech recognition system,ž in Acoustics,
Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on,
pp. 5255ś5259, IEEE, 2017.

[5] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, łOn-demand deep model
compression for mobile devices: A usage-driven model selection framework,ž
in Proceedings of the 16th Annual International Conference on Mobile Systems,
Applications, and Services, pp. 389ś400, ACM, 2018.

[6] Y. Wang, T. Nguyen, Y. Zhao, Z. Wang, Y. Lin, and R. Baraniuk, łEnergynet:
Energy-efficient dynamic inference,ž in Advances in Neural Information Processing
Systems (Workshop), 2018.

[7] J. Shen, Y. Fu, Y. Wang, P. Xu, Z. Wang, and Y. Lin, łFractional Skipping: To-
wards Finer-Grained Dynamic Inference,ž in The Thirty-Forth AAAI Conference
on Artificial Intelligence, 2020.

[8] J. Wu, Y. Wang, Z. Wu, Z. Wang, A. Veeraraghavan, and Y. Lin, łDeep k-Means:
Re-Training and Parameter Sharing with Harder Cluster Assignments for Com-
pressing Deep Convolutions,ž in Thirty-fifth International Conference on Machine
Learning, 2018.

[9] Y. Wang, J. Shen, T.-K. Hu, P. Xu, T. Nguyen, R. Baraniuk, Z. Wang, and Y. Lin,
łDual dynamic inference: Enabling more efficient, adaptive and controllable deep
inference,ž IEEE Journal of Selected Topics in Signal Processing, 2019.

[10] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, łOptimizing FPGA-based
accelerator design for deep convolutional neural networks,ž in Proceedings of
International Symposium on Field-Programmable Gate Arrays, pp. 161ś170, ACM,
2015.

[11] Y. Lin, S. Zhang, and N. Shanbhag, łVariation-Tolerant Architectures for Convo-
lutional Neural Networks in the Near Threshold Voltage Regime,ž in 2016 IEEE
International Workshop on Signal Processing Systems (SiPS), pp. 17ś22, Oct 2016.

[12] S. Liu, A. Papakonstantinou, H. Wang, and D. Chen, łReal-time object track-
ing system on FPGAs,ž in 2011 Symposium on Application Accelerators in High-
Performance Computing, pp. 1ś7, IEEE, 2011.

[13] Z. Liu, Y. Dou, J. Jiang, J. Xu, S. Li, Y. Zhou, and Y. Xu, łThroughput-optimized
FPGA accelerator for deep convolutional neural networks,ž ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 10, no. 3, p. 17, 2017.

[14] X. Zhang, X. Liu, A. Ramachandran, C. Zhuge, S. Tang, P. Ouyang, Z. Cheng,
K. Rupnow, and D. Chen, łHigh-performance video content recognition with
long-term recurrent convolutional network for FPGA,ž in 2017 27th International
Conference on Field Programmable Logic and Applications (FPL), pp. 1ś4, IEEE,
2017.

[15] C. Zhuge, X. Liu, X. Zhang, S. Gummadi, J. Xiong, and D. Chen, łFace recognition
with hybrid efficient convolution algorithms on FPGAs,ž in Proceedings of the
2018 on Great Lakes Symposium on VLSI, pp. 123ś128, ACM, 2018.

[16] X. Zhang, J.Wang, C. Zhu, Y. Lin, J. Xiong,W.-m. Hwu, andD. Chen, łDNNBuilder:
an automated tool for building high-performance DNN hardware accelerators for
FPGAs,ž in Proceedings of the International Conference on Computer-Aided Design,
p. 56, ACM, 2018.

[17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al., łIn-datacenter performance analysis of a
tensor processing unit,ž in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), pp. 1ś12, IEEE, 2017.

[18] Google Inc., łEdge TPU.ž https://coral.withgoogle.com/docs/edgetpu/faq/, ac-
cessed 2019-09-01.

[19] Y. Lin and J. R. Cavallaro, łEnergy-efficient convolutional neural networks via sta-
tistical error compensated near threshold computing,ž in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1ś5, May 2018.

[20] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, andO. Temam,
łShidiannao: Shifting vision processing closer to the sensor,ž in ACM SIGARCH
Computer Architecture News, vol. 43, pp. 92ś104, ACM, 2015.

[21] Y.-H. Chen, J. Emer, and V. Sze, łEyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,ž in Computer Architecture (ISCA),
2016 ACM/IEEE 43th Annual International Symposium on, pp. 367ś379, IEEE Press,
2016.

[22] Xinlinx, łVivado High-Level Synthesis.ž https://https://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.html, accessed 2019-09-16.

[23] D. Chen, J. Cong, Y. Fan, G. Han,W. Jiang, and Z. Zhang, łxpilot: A platform-based
behavioral synthesis system,ž SRC TechCon, vol. 5, 2005.

[24] D. Chen, J. Cong, Y. Fan, and L.Wan, łLopass: A low-power architectural synthesis
system for FPGAs with interconnect estimation and optimization,ž IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 4, pp. 564ś577,
2009.

[25] K. Rupnow, Y. Liang, Y. Li, D. Min, M. Do, and D. Chen, łHigh level synthesis of
stereo matching: Productivity, performance, and software constraints,ž in 2011
International Conference on Field-Programmable Technology, pp. 1ś8, IEEE, 2011.

[26] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, łDeepBurning: automatic generation of
FPGA-based learning accelerators for the neural network family,ž in Proceedings
of the 53rd Annual Design Automation Conference, p. 110, ACM, 2016.

[27] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, łCaffeine: Towards uni-
formed representation and acceleration for deep convolutional neural networks,ž
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2018.

[28] Y. Guan, H. Liang, N. Xu, W.Wang, S. Shi, X. Chen, G. Sun, W. Zhang, and J. Cong,
łFP-DNN: An automated framework for mapping deep neural networks onto
FPGAs with RTL-HLS hybrid templates,ž in 2017 IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 152ś
159, IEEE, 2017.

[29] R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik, B. Keller,
A. Klinefelter, N. Pinckney, P. Raina, et al., łMAGNet: A Modular Accelerator
Generator for Neural Networks,ž in Proceedings of the International Conference on
Computer-Aided Design (ICCAD), 2019.

[30] J. Wang, Q. Lou, X. Zhang, C. Zhu, Y. Lin, and D. Chen, łDesign flow of accelerat-
ing hybrid extremely low bit-width neural network in embedded FPGA,ž in 2018
28th International Conference on Field Programmable Logic and Applications (FPL),
2018.

[31] X. Zhang, H. Lu, C. Hao, J. Li, B. Cheng, Y. Li, K. Rupnow, J. Xiong, T. Huang,
H. Shi, et al., łSkyNet: a Hardware-Efficient Method for Object Detection and
Tracking on Embedded Systems,ž arXiv preprint arXiv:1909.09709, 2019.

[32] Google Inc., łPixel Phone 2 XL.ž https://store.google.com/product/pixel_3?srp=
/product/pixel_2/, accessed 2019-09-01.

[33] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu, and D. Chen,
łFPGA/DNN Co-Design: An efficient design methodology for IoT intelligence on
the edge,ž in Proceedings of the Design Automation Conference, p. 206, ACM, 2019.

[34] H. Kwon, M. Pellauer, and T. Krishna, łMAESTRO: an open-source infrastruc-
ture for modeling dataflows within deep learning accelerators,ž arXiv preprint
arXiv:1805.02566, 2018.

[35] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A.Mukkara, R. Venkatesan,
B. Khailany, S.W. Keckler, and J. Emer, łTimeloop: A Systematic Approach to DNN
Accelerator Evaluation,ž in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 304ś315, IEEE, 2019.

[36] K. He, X. Zhang, S. Ren, and J. Sun, łDeep residual learning for image recognition,ž
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770ś778, 2016.

[37] Xilinx Inc., łAvnet Ultra96.ž https://www.xilinx.com/products/boards-and-kits/1-
vad4rl.html, accessed 2019-09-01.

[38] NVIDIA Inc., łNVIDIA Jetson TX2.ž https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-tx2/, accessed 2019-09-01.

[39] J. Deng, W. Dong, R. Socher, L. jia Li, K. Li, and L. Fei-fei, łImagenet: A large-scale
hierarchical image database,ž in In CVPR, 2009.

[40] J. Hu, J. Goeders, P. Brisk, Y. Wang, G. Luo, and B. Yu, ł2019 DAC system design
contest on low power object detection,žWhen Accuracy meets Power: 2019 DAC
System Design Contest on Low Power Object Detection, 2019.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, łImageNet Classification with Deep
Convolutional Neural Networks,ž in Advances in Neural Information Processing
Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.),
pp. 1097ś1105, Curran Associates, Inc., 2012.

[42] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, łMobileNetV2:
Inverted Residuals and Linear Bottlenecks,ž in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[43] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, łEyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,ž IEEE Journal
of Solid-State Circuits, vol. 52, no. 1, pp. 127ś138, 2017.

[44] Google Inc., łTensorflow Lite.ž https://www.tensorflow.org/lite, accessed 2019-
09-01.

	Abstract
	1 Introduction
	2 Background and related works
	3 Overview of AutoDNNchip
	4 One-For-All Design Space Description
	5 The Proposed Chip Predictor
	5.1 Overview
	5.2 The Chip Predictor's Coarse-grained Mode
	5.3 The Chip Predictor's Fine-grained Mode

	6 The Proposed Chip Builder
	7 Experiment Results
	7.1 Validation of the Chip Predictor
	7.2 Evaluation for the Chip Builder and AutoDNNchip

	8 Conclusions
	Acknowledgments
	References

