
Secret Sharing MPC on FPGAs in the Datacenter
Pierre-François Wolfe∗, Rushi Patel†, Robert Munafo‡, Mayank Varia§, and Martin Herbordt¶

∗ † ‡ ¶ Dept. of Electrical and Computer Engineering & §Dept. of Computer Science,
Boston University, Boston, USA

Email: ∗pwolfe@bu.edu, †ruship@bu.edu, ‡rmunafo@bu.edu, §varia@bu.edu, ¶herbordt@bu.edu

Abstract—Multi-Party Computation (MPC) is a technique
enabling data from several sources to be used in a secure
computation revealing only the result while protecting the orig-
inal data, facilitating shared utilization of data sets gathered
by different entities. The presence of Field Programmable Gate
Array (FPGA) hardware in datacenters can provide accelerated
computing as well as low latency, high bandwidth communication
that bolsters the performance of MPC and lowers the barrier to
using MPC for many applications. In this work, we propose a
Secret Sharing FPGA design based on the protocol described by
Araki et al. [1]. We compare our hardware design to the original
authors’ software implementations of Secret Sharing and to work
accelerating MPC protocols based on Garbled Circuits with
FPGAs. Our conclusion is that Secret Sharing in the datacenter is
competitive and when implemented on FPGA hardware was able
to use at least 10× fewer computer resources than the original
work using CPUs.

Index Terms—Multiparty Computation, Secret Sharing, Secure
Computation, FPGA, Datacenter, Cloud Service

I. INTRODUCTION

Many organizations face the problem of wanting to perform
useful computations when the underlying data is sensitive. Cryp-
tographically secure multi-party computation (MPC) allows
people to outsource encoded versions of their data to several
compute parties, who can then analyze the data without reading
it. As defined in pending legislation within the United States
Senate, “the term ‘secure multi-party computation’ means a
computerized system that enables different participating entities
in possession of private sets of data to link and aggregate their
data sets for the exclusive purpose of performing a finite number
of pre-approved computations without transferring or otherwise
revealing any private data to each other or anyone else” [2].

MPC has been an active area of research for about 40
years [3]–[6], and it has been deployed to protect data in
the healthcare [7], [8], education [9], [10], finance [11]–[13],
and technology [14], [15] sectors. Nevertheless, recent surveys
reveal a few companies with specialized MPC offerings For
adoption of MPC to increase, it is necessary to continue to
improve the performance and ease of use of general-purpose
systems. Existing work has shown that acceleration of general-
purpose MPC can translate into viable systems [16].

The crux of this and related work is whether MPC is
amenable to hardware acceleration. There are two main
techniques for achieving MPC: Secret Sharing consumes
significantly lower bandwidth but requires low latency, and
Garbled Circuits are compute-bound in any environment with
sufficiently high bandwidth. Between these two options, Gar-
bled Circuits appear more amenable to hardware acceleration,

which is the subject of substantial prior research, especially with
FPGAs [17]–[27]. However, the overall trend of consolidating
computing into data centers changes this calculus. Evans et
al. note that “[b]andwidth within a data center is inexpensive”
with the caveat that there are security questions that must be
given careful consideration in this context [3].

Our exploration finds a compelling argument for hardware
acceleration of MPC via Secret Sharing: when deployed in a
datacenter, the low latency between accelerators (e.g., within a
node, bump-in-the-wire, etc.) can enable Secret Sharing MPC
to make more effective use of the available bandwidth than
their Garbled Circuit counterparts [28]. We propose FPGAs
as a hardware platform to maximize the performance of MPC
in the datacenter because they provide high bandwidth and
minimize latency by integrating compute and communication.

In this paper, we explore different datacenter models,
consider the steps necessary to create a viable MPC cloud
service, examine the trade-off between Garbled Circuits and
Secret Sharing, implement Secret Sharing in hardware, test this
hardware design, and assess its scalability. We conclude by
proposing directions for future work toward a complete MPC
cloud service.

We summarize the contributions in this work:
• We believe we are the first group to report on Secret

Sharing MPC on FPGA hardware. We demonstrate that
given a set of reasonable security assumptions, MPC on
FPGAs in the datacenter is viable for a real service.

• We demonstrate that Secret Sharing outperforms state-of-
the-art methods for implementing MPC in the datacenter.

• Using 5.5% of FPGA fabric in a consumer cloud environ-
ment, we match the throughput of an optimized 20-core
CPU implementation saturating a typical 10Gbps network
connection. This result scales with available bandwidth:
a single FPGA is able to saturate a 200Gbs link with a
throughput of ∼26 million AES operations per second.

II. BACKGROUND

A. Datacenter Model

The primary motivation of this work is to create an effective
cloud datacenter that can offer MPC-as-a-service that is easy to
use and has high performance. Because MPC requires multiple
computing parties for security and low latency networking
for performance, we consider processing hardware owned by
different parties and housed within a single datacenter. This
arrangement permits secure data storage across the computing



parties close to processing locations. Concretely, we imagine a
scenario where a small number of FPGAs are connected over
high-speed interconnects and have the benefit of drawing data
from servers all co-located within the datacenter.

FPGA hardware acceleration has seen increasing adoption
in datacenters. As described in Section II-B, FPGA hardware
properties and co-location yield high throughput for MPC
protocols based on Secret Sharing, which makes the most
effective use of available bandwidth. Maximizing throughput is
a focus for this work as this metric determines how efficiently
multiple client tasks can be completed.

B. MPC Paradigms

MPC protocols support an arbitrary number N of compute
parties and tolerate an arbitrary threshold T of ‘bad’ parties
working together, where this coalition might try to break
confidentiality to learn other people’s data or to tamper with the
integrity of the calculation. In this work, we examine a 3-party
protocol tolerating 1 adversarial party who “semi-honestly”
follows the protocol and only tries to break confidentiality.
This matches a scenario in which a small number of FPGAs
owned by different parties are co-located within a datacenter.

General-purpose MPC designs often represent the agreed-
upon computation as an arithmetic or Boolean circuit, and
follow the Garbled Circuit or Secret Sharing approaches.
Garbled Circuits rely on one compute party generating a (large)
encoded version of the entire circuit, which it then transmits
to a second party who can evaluate the encoded circuit on
encoded inputs in order to recover the answer. On the other
hand, Secret Sharing-based MPC systems have the compute
parties evaluate each gate of the circuit in parallel on their own
pieces or shares of the data, with a small amount of network
communication required for each multiplication or AND gate
(none is required for addition or XOR gates).

The computation and communication overhead of MPC
manifests itself differently for Garbled Circuits and Secret
Sharing. Even with optimizations [29]–[33], Garbled Circuits
have a small number of communication rounds but a large
communication size (80-128× the size of the original data), ren-
dering them beneficial in high-latency scenarios but detrimental
when processing large datasets. Conversely, Secret Sharing
approaches require a low-latency environment because they
involve many rounds of communication, however they consume
substantially less bandwidth per computational step.

To date, most MPC implementations are in software, and thus
rely on general-purpose processing hardware and commodity
networking equipment. In this scenario, Secret Sharing tends
to be network latency-bound whereas Garbled Circuits are
often compute-bound. Consequently, most of the prior focus
in hardware acceleration has been directed toward Garbled
Circuits. Our work specifically considers MPC implementa-
tions in the datacenter, where Secret Sharing systems offer
higher maximum throughput and the network latency can be
low enough to realize meaningful performance benefits by
optimizing the computation with FPGAs.

Start Secret Share

RandomValue Random

XOR

X3X1 X2

XOR XORXOR

A1A2 A3

X3A3X1A1X2A2

Finish Secret Share

Fig. 1: Initial Secret Sharing

C. Selected MPC Protocol

Within the category of MPC protocols based on Secret
Sharing, we selected a protocol by Araki et al. [1], [34] for
FPGA acceleration due to its simplicity and its impressive
performance in software. The Araki et al. protocol employs
exactly 3 parties, and it tolerates 1 adversarial party that is
presumed to follow the protocol. Also, communication occurs
in a ring topology, where each party only needs to communicate
with 1 of the other 2 parties.

The workflow involves 3 distinct steps. First, data holders
split their data into shares held by the 3 compute parties.
Then, the parties iteratively compute over these shares without
revealing any secrets. Finally, the compute parties reveal their
shares to the output party who can reconstruct the final answer.

In the share phase, anyone holding a secret value v ∈ {0, 1}
can split this secret among the 3 compute parties as follows.
• The data holder selects x1, x2, x3 uniformly from {0, 1}

subject to the constraint that x1 ⊕ x2 ⊕ x3 = 0.
• The data holder sends (xi, ai) to each compute party,

where ai = xi−1 ⊕ v is a one-time pad of the secret.
The one-time pad hides the secret value v from any single
party Pi. See Figure 1 for an illustration.

In the compute phase, the parties work together to compute
shares of the result of each XOR or AND gate in a privacy-
preserving manner. It is easiest to imagine fan-in 2 operations
proceeding sequentially with inputs (xi, ai) and (yi, bi), though
we stress that this process is embarrassingly parallel.
• XOR operation: Each share of the XOR of the two values

simply equals the XOR of the two input shares (see Figure
2) because a one-time pad is homomorphic under the ⊕
operation. The parties do not need to communicate.

• AND operation: Calculating shares of the result of an
AND gate is more complex; it requires each compute
party to compute a non-trivial amount of Boolean logic
and transmit one bit of information to one other compute
party. First, the parties produce correlated random values
α1, α2, and α3 that XOR to 0 but are independent of any



Start XOR Computation

XiAi YiBi

YiXi Ai Bi

XOR XOR

Zi Ci

ZiCi

Finish XOR Computation

Fig. 2: Party i’s contribution toward computing an XOR gate

secret values; if the parties distribute short keys before
the computation, they can generate correlated randomness
quickly using a PRF such as AES (Figure 3a). Second,
each compute party follows the circuit shown in Figure
3b that consumes the correlated randomness generated
above; Araki et al. show that the resulting values Ri have
the property that R1 ⊕R2 ⊕R3 equals the result of the
AND gate. Finally, each party Pi transmits Ri to another
party Pi+1, and then re-builds shares of the result in our
desired format {(zi, ci)} (Figure 3c).

In the reconstruction phase, we presume that the compute
parties have calculated shares {(x′i, a′i)} corresponding to the
output value v′. Then, the parties can reconstruct v′ by revealing
their shares and computing

⊕3
i=1 a

′
i =

⊕3
i=1(x

′
i ⊕ v) = v.

There exist extensions of the Araki et al. protocol that
permit additional parties or provide stronger security against
a malicious attacker [35]–[37]. An FPGA implementation of
this protocol provides an ideal starting point from which to
explore the benefits of acceleration for related schemes with
different features, and the possibility of dynamically switching
between them to improve performance further [38], [39].

D. FPGA Models

Several FPGA deployment models are possible with varying
trade-offs. Options from lowest to highest performance include:
(1) co-processor, (2) bump-in-the-wire, (3) single-node cluster,
(4) enclave/silo on FPGA. The enclave/silo approach where
one FPGA is allocated into several regions for different parties
is appealing from a performance perspective as it would
enable near zero latency and near infinite bandwidth. Such
an arrangement does raise many difficult questions about the
isolation of the parties which go beyond the scope of the
current work. Within this hierarchy, the Amazon AWS F1
instances we consider fall into the single-node cluster category.
Amazon describes two different inter-board communication
approaches.The F1.4xlarge, and F1.16xlarge instances should
have a 400Gbps serial ring link but support is only planned in
a future release. Communication between FPGAs is possible
at 12Gbps over PCIe. In testing the proposed Secret Sharing
block, an AWS F1.2xlarge instance was used rather than the
the 4x or 16x as initial testing only required a single FPGA.

TABLE I: Araki et al. Result Analysis

Araki et al. Results Verification
Cores AES/sec Gbps/serv. Gbps/serv.

w/over.
Error

1 100103± 1632 0.572 0.559 2.19%
5 530408± 7219 2.99 2.96 0.85%

10 975237± 3049 5.47 5.45 0.35%
16 1242310± 4154 6.95 6.94 0.10%
20 1324117± 3721 7.38 7.40 0.28%

III. SYSTEM DESIGN AND IMPLEMENTATION

A. Analysis of Original Implementation

Obtaining the secure operation metrics enables comparison
of the FPGA design to the original results. Inspection of the
original results of this Secret Sharing implementation for secure
AES [35] reveals the use of the Bristol Fashion Key Expanded
AES [40] requiring 5440 secure AND operations. The test
described by Araki et al. is embarrassingly parallel, simultane-
ously running 12800 independent secure AES computations
per core in each node. The total AES operations performed can
be used to verify the number of bits communicated. Runtime
is obtained from the AES/sec rate and total number of AES
operations. Including a reasonable overhead for TCP/IP of
2.74% [41] the verified network rates closely match the reported
results with less than 2.5% error (Table I). The FPGA design
can be reasonably compared to this system using the 5440
AND/AES conversion.

B. FPGA Implementation

Here we cover some FPGA implementation details for the
chosen MPC protocol. Two OpenCores projects were used, one
for AES [42] and one for a RNG [43] for faster development.
Amazon Web Services (AWS) reference designs [44] and
hardware were used for testing the preliminary scheme.

At startup, each party generates a random key for the PRF
and shares it with one other party. Currently, each party uses
one RNG module [43] to generate the key. The security of this
RNG block was not examined; a deployed version might use a
physically unclonable function (PUF) or other secure hardware
RNG.

Each party contains one PRF instance that is alternately
evaluated in counter mode, using each of the two keys the
party holds and the same counter. Each output pair is then
XORed to produce a new correlated random number. As the
keys are only set at startup, the 21 clock cycle pipeline delay
for the selected PRF was only experienced at initialization.

The MPC AND module itself consists of a few bitwise
operations that produce the intermediate Ri values (Figure 3b).
Most latency occurs in the transmission of the Ri values, since
the final step (Figure 3c) cannot begin without those values.

C. Analysis of FPGA Implementation

The MPC AND hardware operation must be fed data and
triggered by external logic. The first implementation uses an
Arria 10 and NIOS II softcore. A NIOS custom instruction
was used to load data and start the operation. The custom
instruction enables simple software control of the hardware



Start Corr. Rand. for Pi

Random

ID++Ki Ki+1

PRF PRF

XOR

αi

End Corr. Rand. for Pi

(a) correlated random value

Start AND for Pi

YiBi

Ai Bi

αi

Yi

XiAi

Xi

AND AND

XOR

XORRi

Transmit Ri to party Pi+1

or 3-way XOR

(b) initial computation and exchange

Receive Ri−1 from party Pi−1

Ri Ri−1

XOR

Ci Zi

ZiCi

Finish AND for Pi

(c) final computation

Fig. 3: Party i’s contribution toward computing an AND gate

MPC AND operation. The second implementation uses Amazon
Web Service (AWS) FPGAs available through its Elastic
Compute Cloud (Amazon EC2). Specifically, Xilinx Virtex
UltraScale+ VU9P FPGAs are accessible via a virtual machine
in EC2 F1 instances. Amazon includes a hardware shell for
software/hardware co-design between the node CPU (Intel
Xeon E5-2686 v4) and FPGA. Software to control the FPGA
uses provided DMA functions and PCIe function templates.
This furnishes the mechanism for loading data, controlling
operations, and retrieving results.

The PCIe packets are translated through the Amazon shell
and utilize multiple AXI bus configurations to send and receive
data with the software system. We use the general purpose
AXI bus supporting a 512 bit data packet to provide a single
message containing two secret share vectors (4×128-bits) prior
to starting the hardware operations. The HDL design takes
each AXI bus message, parses the information, and relays data
to the desired AND module.

D. Design Improvements and Additions

Based on the minimal data dependencies and flow in Figure
3, in principle a fully pipelined MPC AND module (128
Boolean MPC ANDs) can execute one AND operation per
clock cycle. Such a design would saturate a 10Gbps network
connection when operated at 78.13 MHz. Operating at the
higher frequencies used commonly by FPGAs would require
higher bandwidth. For example, at 200 MHz, a single MPC
module of this type saturates a 25.6Gbps link.

IV. RESULTS

A. Testing and Data

The MPC AND module on FPGA was assessed in regards
to its resource utilization with varying levels of duplication
and based on the latency of evaluation.

Initial testing targeted Intel FPGAs, such as the Arria 10, with
the the NIOS II softcore executing test software to load data and
trigger the MPC AND hardware. The limitations of the Avalon
Bus width and the latency a simple softcore design imposes
encouraged us to consider other options. Note, there are still

circumstances where a softcore is viable such as in a design
using local storage and other techniques to overcome the limits
of loading individual data and running an operation in sequence.
Regardless, with the single AND design synthesized in Quartus,
targeting an Arria 10 (10AX115S2F45I1SG) provided initial
insights. The most constrained resource for a single AND was
the 704.5Kb of M20K block memory consumed post-synthesis,
making is possible to estimate the utilization to be ∼1.32%
based on the total 53.260Mb of M20K available on the Arria 10.
With perfect utilization this would permit ∼76 instances. More
realistically perhaps 70% of the fabric might be used allowing
for ∼54 instances of the MPC AND. As implemented, the MPC
AND requires 6 clock cycles between operation which means
that 48 MPC AND instances makes it possible for 8 operations
to occur each cycle. Even with only 8 AND operations per
cycle at 200Mhz the design is able to saturate ∼205Gbps, far
more than the 10Gbps link in the original paper.

With these synthesis results from Quartus but seeking to
avoid the limitations of the NIOS II and to find a more fitting
cloud target we looked to Amazon Web Services (AWS). While
the Amazon AWS F1 instances do not currently offer the
promised high-speed serial ring [44], targeting the boards
available provides hardware utilization insights, and leaves the
possibility of more easily using higher speed communication
when support materializes. Furthermore, the PCIe option, while
lower performance, remains available for future tests.

For a single 1-party block post-routing, the Virtex Ultrascale+
utilizes ∼3.20% of its resources. In order to verify that all three
parties functioned together properly, a 3×party design with 1
AND per party was made to target a single FPGA. This made
it possible to pass data and trigger operations without having to
immediately spend the development time to bring-up the AXI4-
Stream between FPGAs over PCIe. Furthermore, since each 1
party block contains more control logic than just a single MPC
AND it serves as an adequate conservative estimate of how
many AND blocks might fit on one FPGA. Continuing this
line of testing led to duplicating groups of the 3×party block
the results of which are summarized in Table II. The number
of AND modules are used to determine the number of bits per



TABLE II: AWS Implementation Result Analysis

AND Cores Bits Gbps AES (millions op.)/sec
1 128 2.67 0.490
3 384 8.00 1.47
12 1536 32.0 5.89
24 3072 64.0 11.8
48 6144 128 23.5
60 7680 160 29.4

0 10 20 30 40 50 60
0

20

40

60

80

100

AND Cores

Pe
rc

en
t

U
til

iz
at

io
n

Fig. 4: AWS FPGA fabric total utilization

clock cycle that are processed. The F1 instance was clocked
at 125Mhz producing the listed Gbps results. The equivalent
number of AES/sec was determined by dividing by the 5440
AND/AES used in Araki et al. A plot of the FPGA utilization
in Figure 4 shows a fairly linear relationship between number
of AND modules and utilization.

B. Analysis

The tests performed with different quantities of MPC AND
blocks on Amazon AWS provide sufficient data points to
establish that Secret Sharing MPC can be competitive when
implemented on FPGA hardware in the datacenter. The fabric
utilization in the design scales relatively linearly with increases
in the quantity of AND cores.

The original work utilized a software implementation of
the protocol executed on general purpose processors [1], [34].
Specifically, each party used varying numbers of cores from
one or two Xeon processors. The authors were able to nearly
saturate their 10Gbps link (7.38Gbps) between parties when
using all cores in each node. This required about 50% of the
processor’s time. While the authors were limited by multiple
cores causing queuing congestion at the Network Interface
Card (NIC) the use of a CPU appears to have more limited
scaling potential. Using the reported number of AES/sec and
network communication for 1 core, scaling from 73.3% CPU
usage to 100% would appear to show 1 core being capable
of at most ∼130 thousand AES/sec, saturating a ∼0.780Gbps
connection. Multiplying for 20 cores that would amount to a
peak of ∼2.7 million AES/sec and ∼15.6Gbps.

In comparison, the FPGA AND block we tested for perform-
ing Secret Sharing only requires 3 AND cores per party to
exceed the 7.38Gbps reached with 20 CPU cores, instead being
capable of 8.00Gbps. This uses ∼5% of the fabric available on
the FPGA targeted, a 10× improvement vs the CPU utilization.

Attempting to fully employ the available fabric it is possible
to implement 60 AND cores which would permit saturation of
160Gbps links while performing 29.4 million AES/sec.

These results demonstrate preferable scaling properties
supporting the selection of FPGAs for acceleration. Based
on the results, targeting the anticipated 200Gbps links in the
Amazon F1 would require less than 25% fabric utilization
to reach full saturation if just the pipeline improvement is
made. With a frequency improvement, even less fabric would
be required. The remaining available fabric is beneficial as it
allows for work distribution and additional secure computations.

V. RELATED WORK

There exists earlier research exploring hardware accelerated
MPC, but the efforts have focused on Garbled Circuits rather
than Secret Sharing. The hardware considered has included
GPUs [19], [45]–[47]; most efforts, however, employ FPGAs.
The earliest of these efforts dates to 2010 [17], [18], with more
work recently [23]–[25], and some considering Amazon AWS
[25], [27]. Other work explored garbling entire processors [20],
[22] and specialized problem acceleration [21].

The studies from researchers at Northeastern University
are most relevant here. Their overlay architecture [24] and
identification of datacenters as an ideal place to perform such
computations [26] matches our decisions. With respect to
overlays, they implement blocks to accelerate the garbling
of AND and XOR operations and that do not require the
FPGA image to be recreated and programmed. Instead data
is passed to these processing elements which is much more
efficient. We follow a similar scheme with Secret Sharing.

VI. CONCLUSION

In this paper, we describe one approach to implementing the
underlying MPC AND operation described by Araki et al. [35]
in hardware. We demonstrate the viability of Secret Sharing
MPC in a low latency environment and test the design on an
FPGA in the cloud highlighting greater potential scalability
of the design compared to alternatives. With these insights,
we plan to pursue improvements to this design to increase
the performance further and to implement the higher level
controls necessary to use our Secret Sharing building block in
a complete MPC cloud service.

Some specific future work includes HDL implementation
optimizations while maintaining the same scheme. FPGA to
FPGA communication will be evaluated. Additional research
directions include different viable MPC security models and
hardware security considerations on FPGAs.

VII. ACKNOWLEDGEMENTS

Supported by Red Hat and NSF Grants 1718135, 1739000,
and 1931714. DISTRIBUTION STATEMENT A. Approved for
public release. Distribution is unlimited. This material is based
upon work supported by the United States Air Force under Air
Force Contract No. FA8702-15-D-0001. Any opinions, findings,
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the United States Air Force.



REFERENCES

[1] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
throughput semi-honest secure three-party computation with an honest
majority,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 805–817.
[Online]. Available: https://doi.org/10.1145/2976749.2978331

[2] R. Wyden, “Student right to know before you go act of 2019,” https:
//www.congress.gov/bill/116th-congress/senate-bill/681/all-info, 2019.

[3] D. Evans, V. Kolesnikov, and M. Rosulek, A Pragmatic Introduction to
Secure Multi-Party Computation. NOW Publishers, 2018.

[4] A. C. Yao, “Protocols for Secure Computations.” Annual Symposium on
Foundations of Computer Science - Proceedings, pp. 160–164, 1982.

[5] A. C. C. Yao, “How To Generate and Exchange Secrets.” Annual
Symposium on Foundations of Computer Science (Proceedings), no. 1,
pp. 162–167, 1986.

[6] A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[7] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I. Pagter,
N. P. Smart, and R. N. Wright, “From keys to databases - real-world
applications of secure multi-party computation,” Comput. J., vol. 61,
no. 12, pp. 1749–1771, 2018.

[8] T. Giannopoulos and D. Mouris, “Privacy preserving medical data
analytics using secure multi party computation. an end-to-end use case.”
Ph.D. dissertation, National and Kapodistrian University of Athens, 09
2018.

[9] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk, and R. Talviste,
“Students and taxes: a privacy-preserving social study using secure
computation,” IACR Cryptology ePrint Archive, vol. 2015, p. 1159,
2015.

[10] J. Feigenbaum, B. Pinkas, R. Ryger, and F. Saint-Jean, “Secure
computation of surveys,” in EU Workshop on Secure Multiparty
Protocols, 2004, pp. 2–14. [Online]. Available: https://www.cs.yale.edu/
homes/jf/SMP2004.pdf

[11] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft, “Secure multiparty computation goes live,”
in Financial Cryptography, ser. Lecture Notes in Computer Science, vol.
5628. Springer, 2009, pp. 325–343.

[12] I. Damgård, K. Damgård, K. Nielsen, P. S. Nordholt, and T. Toft,
“Confidential benchmarking based on multiparty computation,” in Fi-
nancial Cryptography, ser. Lecture Notes in Computer Science, vol.
9603. Springer, 2016, pp. 169–187.

[13] A. Abidin, A. Aly, S. Cleemput, and M. A. Mustafa, “An mpc-based
privacy-preserving protocol for a local electricity trading market,” in
CANS, ser. Lecture Notes in Computer Science, vol. 10052, 2016, pp.
615–625.

[14] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in ACM Conference on
Computer and Communications Security. ACM, 2017, pp. 1175–1191.

[15] M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, M. Raykova, S. Saxena,
K. Seth, D. Shanahan, and M. Yung, “On deploying secure computing
commercially: Private intersection-sum protocols and their business
applications,” IACR Cryptology ePrint Archive, vol. 2019, p. 723, 2019.

[16] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?” in NDSS. The Internet Society,
2012.

[17] K. Järvinen, V. Kolesnikov, A. R. Sadeghi, and T. Schneider, “Embedded
SFE: Offloading server and network using hardware tokens,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 6052 LNCS, pp.
207–221, 2010.

[18] ——, “Garbled circuits for leakage-resilience: Hardware implementation
and evaluation of one-time programs,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 6225 LNCS, pp. 383–397, 2010.

[19] T. K. Frederiksen, T. P. Jakobsen, and J. B. Nielsen, “Faster maliciously
secure two-party computation using the GPU,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 8642, no. grant 61061130540, pp.
358–379, 2014.

[20] E. M. Songhori, S. Zeitouni, G. Dessouky, T. Schneider, A. R. Sadeghi,
and F. Koushanfar, “GarbledCPU: A MIPS processor for secure compu-
tation in hardware,” Proceedings - Design Automation Conference, vol.
05-09-June, 2016.

[21] S. U. Hussain, B. D. Rouhani, M. Ghasemzadeh, and F. Koushanfar,
“MAXelerator: FPGA Accelerator for Privacy Preserving Multiply-
Accumulate (MAC) on Cloud Servers,” 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), pp. 1–6, 2018.

[22] E. M. Songhori, M. S. Riazi, S. U. Hussain, A. R. Sadeghi, and
F. Koushanfar, “ARM2GC: Succinct garbled processor for secure
computation,” Proceedings - Design Automation Conference, 2019.

[23] S. U. Hussain and F. Koushanfar, “FASE: FPGA acceleration of secure
function evaluation,” Proceedings - 27th IEEE International Symposium
on Field-Programmable Custom Computing Machines, FCCM 2019, pp.
280–288, 2019.

[24] X. Fang, S. Ioannidis, and M. Leeser, “Secure function evaluation using
an FPGA overlay architecture,” FPGA 2017 - Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 257–266, 2017.

[25] ——, “SIFO: Secure computational infrastructure using FPGA overlays,”
International Journal of Reconfigurable Computing, vol. 2019, 2019.

[26] K. Huang, M. Gungor, X. Fang, S. Ioannidis, and M. Leeser, “Garbled
circuits in the cloud using FPGA enabled nodes,” 2019 IEEE High
Performance Extreme Computing Conference, HPEC 2019, pp. 1–6,
2019.

[27] M. Leeser, M. Gungor, K. Huang, and S. Ioannidis, “Accelerating large
garbled circuits on an FPGA-enabled cloud,” Proceedings of H2RC
2019: 5th International Workshop on Heterogeneous High-Performance
Reconfigurable Computing - Held in conjunction with SC 2019: The
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 19–25, 2019.

[28] T. Schneider and M. Zohner, “GMW vs. Yao? Efficient secure two-party
computation with low depth circuits,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 7859 LNCS, pp. 275–292, 2013.

[29] D. H. U. Beaver, S. M. Micali, and P. M. Rogaway, “The Round
Complexity of Secure Protocols,” ACM, 1990.

[30] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” ACM International Conference Proceeding Series,
pp. 129–139, 1999.

[31] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 5126 LNCS, no. PART 2, pp. 486–498, 2008.

[32] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole - reduc-
ing data transfer in garbled circuits using half gates,” in EUROCRYPT
(2), ser. Lecture Notes in Computer Science, vol. 9057. Springer, 2015,
pp. 220–250.

[33] S. Yakoubov, “A Gentle Introduction to Yao’s Garbled Circuits,” 2017,
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf.

[34] T. Araki, A. Barak, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara,
“Demo: High-throughput secure three-party computation of kerberos
ticket generation,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 1841–1843.
[Online]. Available: https://doi.org/10.1145/2976749.2989035

[35] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara,
A. Watzman, and O. Weinstein, “Optimized Honest-Majority MPC for
Malicious Adversaries - Breaking the 1 Billion-Gate per Second Barrier,”
Proceedings - IEEE Symposium on Security and Privacy, pp. 843–862,
2017.

[36] Furukawa, Jun and Lindell, Yehuda and Nof, Ariel and Weinstein,
Or, “High-Throughput Secure Three-Party Computation for Malicious
Adversaries and an Honest Majority,” in Advances in Cryptology –
EUROCRYPT 2017, Coron, Jean-Sébastien and Nielsen, Jesper Buus,
Ed. Cham: Springer International Publishing, 2017, pp. 225–255.

[37] J. Furukawa and Y. Lindell, “Two-thirds honest-majority MPC for
malicious adversaries at almost the cost of semi-honest,” Proceedings of
the ACM Conference on Computer and Communications Security, pp.
1557–1571, 2019.

[38] D. Demmler, T. Schneider, and M. Zohner, “ABY - A framework for
efficient mixed-protocol secure two-party computation,” in NDSS. The
Internet Society, 2015.



[39] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for ma-
chine learning,” in ACM Conference on Computer and Communications
Security. ACM, 2018, pp. 35–52.

[40] “’bristol fashion’ mpc circuits,” https://homes.esat.kuleuven.be/∼nsmart/
MPC/.

[41] S. Iveson, “Tcp over ip bandwidth overhead,” Sep 2013. [Online].
Available: https://packetpushers.net/tcp-over-ip-bandwidth-overhead/

[42] H. Hsing, “tiny aes,” https://opencores.org/projects/tiny aes, 2012.
[Online]. Available: https://opencores.org/ocsvn/tiny aes/tiny aes/trunk

[43] J. Castillo, “systemc rng,” https://opencores.org/projects/systemc rng,
2004. [Online]. Available: https://opencores.org/ocsvn/systemc rng/
systemc rng/trunk

[44] A. W. Services, “aws fpga,” https://github.com/aws/aws-fpga, 2016.
[Online]. Available: https://github.com/aws/aws-fpga.git

[45] S. Pu, P. Duan, and J.-C. Liu, “Fastplay-A Parallelization Model and
Implementation of SMC on CUDA based GPU Cluster Architecture,”
IACR Cryptology ePrint Archive, vol. 2011, p. 97, 2011.

[46] S. Pu and J. Liu, “Computing Privacy-Preserving Edit Distance and Smith-
Waterman Problems on the GPU Architecture.” IACR Cryptology ePrint
Archive, 2013. [Online]. Available: http://eprint.iacr.org/2013/204.pdf

[47] N. Husted, S. Myers, A. Shelat, and P. Grubbs, “GPU and CPU
parallelization of honest-but-curious secure two-party computation,” ACM
International Conference Proceeding Series, pp. 169–178, 2013.


