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Abstract— Electromigration (EM) is considered to be one of
the most important reliability issues for current and future ICs
in 10-nm technology and below. In this article, we propose a fast
analytic solution to compute the stress evolution in the confined
multisegment interconnect wires. The new method, called the
accelerated separation of variables (ASOV) method, aims to find
the analytic solutions of the partial differential equations of
stress in confined interconnect metals based on the SOV method.
It offers several improvements over the existing plain SOV-based
method. First, we show that the accuracy of the solution depends
on the structure of the interconnects. As a result, the number of
required eigenvalues is structure and problem dependent, instead
of fixed numbers used by the existing SOV method. Second, for
the straight line multisegment and star-structured multiterminal
interconnects, analytical expressions are formulated to calculate
the eigenvalues directly instead of using numerical methods as in
the existing SOV method. Third, we propose a linear Gaussian
elimination (GE) algorithm by exploiting the banded structure
with the serrated-edge form of the transcendental matrix, which
can significantly speed up GE process, and is the key computing
step in the SOV-based solution framework. Fourth, instead of
using the simple bisection search, we propose to use an enhanced
determinant-based secant iterative method to find the eigenvalues
of the transcendental matrix. Numerical results show that a good
agreement is achieved between analytical and numerical results
on two special cases, and the resulting algorithm can lead to
3-5X speedup over the existing plain SOV-based solution on a
number of multisegment interconnects benchmarks.

Index Terms— Analytical expressions, eigenvalues, electro-
migration (EM), Gaussian elimination (GE), secant method,
separation of variables (SOV) method, Wittrick—Williams (WW)
algorithm.
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I. INTRODUCTION

LECTROMIGRATION (EM) has become one of the most

critical design issues and limiting factors for nanometer
VLSI designs because of the shrinking size and increasing
current density of the interconnects as technology scales down
to deep nanometers. As a result, EM verification became a
critical step for chip signoff. It was well known that existing
Black- and Blech-based EM models are subject to growing
criticism due to their over conservativeness, which leads to
excessive design guard band [1].

Recently, a number of physics-based EM models and
assessment techniques have been proposed [1]-[14]. These
EM models are primarily based on the hydrostatic stress
diffusion kinetics in the confined metal wires and, there-
fore, have a more accurate time-to-failure estimation for
general interconnect wires over a wide range of stress con-
ditions. However, finding the solutions to Korhonen’s differ-
ential equations for complex on-chip interconnect networks
requires high computational cost by using numerical methods
such as finite difference method (FDM) [10], [15], [16]
and finite element analysis (FEA) [13]. This is because
numerical methods cannot avoid discretization of space and
time, which increase the number of unknown variables
significantly.

In order to facilitate the EM reliability assessment for
large interconnect trees, several analytical solutions have
been developed to solve the diffusion-like partial differential
equations (PDEs), describing the dynamic hydrostatic stress.
Korhonen er al. [17] first proposed an analytical solution for
a single wire, which is the simplest interconnect structure.
Recently, based on the Laplace transformation technique,
the analytical expressions were provided to describe the
hydrostatic stress evolution in star-structured multiterminal
interconnects such as the straight-line three-terminal wires,
the T-shaped four-terminal wires, and the cross-shaped five-
terminal wires. Then, an integral transform technique [18] was
employed to solve 1-D Korhonen’s equation for straight line
multisegment interconnects with different current densities.
However, the aforementioned methods are only suitable for
specific interconnect structures, not for general multisegment
interconnect trees. In order to estimate the transient hydrostatic
stress evolution for general interconnect networks, a separation
of variables (SOV) method [19] based on eigenvalues and
eigenfunctions was proposed to address the 2-D interconnect
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tree structures. Afterward, another analytic solution for a
single wire with inhomogeneous boundary conditions (BCs),
which considers the temperature-induced migration effects,
was obtained through an integrating factor technique [14].
In this article, we mainly focus on the SOV method [19],
which can be applied for more general multisegment inter-
connects. The existing SOV-based method, however, com-
putes eigenvalues numerically using the Wittrick—Williams
(WW) algorithm [19], which costs the most time espe-
cially for large interconnects as shown in this article. As a
result, more efficient approaches to determine the eigenvalues
are highly desirable to further improve this existing SOV
method.

In this article, we propose a new analytic solution to
compute the stress evolution over time in the confined mul-
tisegment interconnect wires. The new method is still based
on the SOV solution framework to solve the PDEs of stress.
The proposed method has few important improvements over
the exiting SOV method. Our new contributions are given as
follows.

1) We show that the accuracy of the solution depends
on the structure of the interconnects. As a result, the
number of required eigenvalues is structure and problem-
dependent, instead of fixed numbers used by the existing
SOV method.

2) We derive the analytic formula for eigenvalues of the
straight line multisegment and star-structured multiter-
minal interconnects in VLSI layout instead of using
numerical methods as in existing SOV method. As a
result, more efficient analytic solutions can be derived
for those multisegment interconnects.

3) We propose a linear Gaussian elimination (GE)
algorithm by exploiting the banded structure with
the serrated-edge form of the transcendental matrix.
The resulting solver can lead to better performance
than the general sparse GE process.

4) Instead of using the simple bisection search to find
the roots in the transcendental matrix, we propose to
use determinant-based secant method for searching the
roots or eigenvalues of the transcendental matrix. Such
a secant-based root search algorithm leads to CPU
time reduction for the proposed analytic solution to
EM analysis.

Numerical results show that the resulting algorithm can
lead to 3-5X speedup over the existing SOV-based solution
on a number of multisegment interconnects benchmarks. The
rest of this article is organized as follows. Section II reviews
the recently proposed physics-based EM models and existing
SOV-based solutions. We also highlight the major computing
bottlenecks of the existing SOV method. Section III presents
our new analytic solutions to the eigenvalues for straight
line and star-structured multisegment interconnects. Section IV
presents the new accelerated SOV (ASOV) solution for EM
stress analysis for general multisegment interconnect wires.
Section V presents the numerical results for the proposed
method and comparison against existing works. Section VI
concludes this article.

II. REVIEW OF EM AND AN ANALYTICAL
ELECTROMIGRATION MODEL

A. Physics-Based EM Modeling

EM is a physical phenomenon of the migration of metal
atoms along a direction of the applied electrical field [20], [21].
The momentum exchange between atoms and the conducting
electrons results in metal density depletion at the cathode
and a corresponding metal accumulation at the anode ends
of the metal wire. Since the thin layers of refractive met-
als form diffusion barriers for Cu atoms preventing them
from diffusing into interlayer dielectrics (ILD) and intermetal
dielectrics (IMD), the EM occurs primarily on the interconnect
tree, which is a continuously connected, highly conductive
metal within one layer of metallization, terminated by dif-
fusion barriers. When a metal wire is embedded into a rigid
confinement, the wire volume changes induced by the atom
depletion and accumulation due to migration create tension
at the cathode end and compression at the anode end of
the wire. The lasting electrical load increases these stresses,
as well as the stress gradient along the metal wire. The stress
generated inside the embedded metal wire is a prime cause
of the void and hillock formation at the opposite ends of the
wire [1], [22], [23]. Degradation of the electrical resistance of
the interconnect segment can be derived from the solution of
kinetics equation describing the time evolution of stress in the
interconnect segments [17]. The void nucleation time could
be obtained when stress reaches the critical value o and
extracted kinetics of the void volume evolution governs the
evolution of wire resistance [24].

The physics-based analytical model considering the void
nucleation and kinetics of void size evolution was proposed
by Korhonen et al. [17] and further developed by other
researchers. For a general interconnect wires with n nodes,
including p interior junction nodes x, € {X,1,X2,...,Xrp}
and g block terminals xj € {xp1, Xp2, . .., Xpq}, the hydrostatic
stress distribution o (x, t) along the wire is described by the
following Korhonen’s equation:

60‘,‘j(x,t) _ i 60,-j(x,t) n Gij 10
ot ox ox
BC: Oij, (xi, l‘) = O'ijz(xi, t),t >0

aO'ij(x,t)
BC: Zkij (T
T

X=X,
j r

1

+G,‘j)-nr:0, t>0

a .. ,t
BC:K,'j 70-1]()6 )

+Gij |=0, t>0
X=Xp
ICZO‘ij(x,O)ZO'ij’T (1)

where ij denotes a branch connected to nodes i and j,
n, represents the unit inward normal direction of the interior
junction node r on branch ij, the value of which is +1
for right direction and —1 for left direction of the branch
with assumption of x; < xj, G = Eg%/Q is the EM
driving force, and k = D,BQ/(kpT) is the diffusivity of
stress. E is the electric field and g is the effective charge.
D, = Doexp(—E,/(kpT)), which is the effective atomic
diffusion coefficient. Do is the preexponential factor, B
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is the effective bulk elasticity modulus, Q is the atomic
lattice volume, kp is Boltzmann’s constant, 7 is the absolute
temperature, and E, is the EM activation energy. o7 is the
initial thermal-induced residual stress.

For a single wire with material-blocking BC,
Korhonen et al. [17] have found the closed-form solution.
Recently, Chen et al. [4], [25] proposed an analytic solution
for multisegment interconnect wires using the Laplace
transformation-based method. However, this method is only
limited to a few common wire patterns such as straight
s-terminal wires, T-shaped four terminal wires, and cross-
shaped five terminal wires. Later on, Wang et al. [ 18] proposed
a more general solution for straight multisegment wires based
on eigenvalues and eigenfunctions method. He further
proposed an SOV method to deal with more general multiseg-
ment interconnect tree wires [19]. Abbasinasab and Marek-
Sadowska [14] also proposed analytic solutions of stress in
the multisegment interconnect wires. However, this article
mainly focuses on the steady-state solution of Korhonen’s
equation for multisegment wires, considering the temperature-
induced migration effects (spatial temperature gradients are
significant in interconnect wires). Authors indeed discussed
the analytic solutions to the modified Korhonen’s equation
(with temperature-induced migration effects) using a method
similar to the Laplace transformation-based method [25] and
obtained the closed form for a single wire segment. However,
as the work in [25] shows, it is very difficult to obtain the
analytic solutions for more general multisegment wires using
the Laplace transformation-based method.

B. Review of the Separation of Variables Solution for
Korhonen’s Equation

In this section, we briefly review the SOV method proposed
in [19], which can be applied to any multisegment interconnect
structures without any restrictions.

The SOV method is an analytical method to handle the typ-
ical initial-boundary value problem (IBVP). Before applying
the SOV method to solve the coupled Korhonen’s equations,
we can homogenize both the governing equation and BCs
through subtracting the transient stress distribution o (x, t) by
the steady-state stress distribution o (x, 00), which is formu-
lated by

o(x,1) =0(x,00) —o(x,1). 2)

The solutions o (x,00) for the steady-state stress prob-
lem can be obtained easily and efficiently in [2] and [7].
Using the transformation equation (2), Korhonen’s equation
(1) can be transformed to homogeneous IBVP, which is
described by

aa'ij(x,t) aza'ij(xat)
= Ki: t>0 3
or, Yooaxr ¥
BC: gij, (xi, 1) = 6ijp (xi, 1), t>0 4)
00ij(x,1)
BC:ZK,"iuax =010 6)
ij "
06ii(x,t
BC: ij Ulj(x ) =0, 1>0 (©)
A ox x=xp
IC : 6 (x, 0) = 0y (x, 00) — 3.7 )

After homogenization of Korhonen’s equation, the SOV
method is employed to obtain the general solution to (3),
which is the linear combination of the product of temporal
function I';; ,,, (¢) and spatial distribution ¢;; ,, (x), as given by

o
oij(x,1) = Z Gijm(x) - Tijp (1) (8)
m=1
where m represents the mth component of an infinite series,
temporal function

Cijm(t) = Cijn - € iin? 9)
and spatial distribution
@ijm (x) = Ajjm sin(w;j,mx) + Bjjm cos(wijmx) (10)
with the notation w;;j ,, defined by
i..
R — (11)
ij

where 4;;, represents the mth eigenvalue on branch ij.

Then, the eigenvalues /;;,, and coefficients A;j u, Bijm,
and Cjjn can be determined by BCs (4)—(6) and initial
conditions (7), respectively.

First, BCs (4)—(6) are used to find the eigenvalues A;;
and coefficients A;; ,, and Bjj,,. By substituting the general
solution (8) to continuous stress conditions (4), the values of
the eigenvalues ;;,, and coefficients C;; ,, on all branches
are the same as the following equations, respectively:

Cijl,m = Cijz,m = Cm
/Iijl,m = /1ijz,m = /1m~ (12)

Assuming x; < x;, the inward normal component of atom

flux on both ends of branch ij can be calculated by

0ijm(x) Oijm(x)
ox ox

X=X; X=X;

5¢’;_/,m (X)
Ox

_ 5¢’;_/,m (X)
Ox

.nj
x:x]-
_ | —@ijm cot@ijmlij)  @ijm cs(@ijmli) | | Pijom(xi)
@ijm csC(@ijmlij) —wij.m cot(wijmlij) | | Pijm(x;)
(13)

X=X

where /;; is the length of branch ij.

To satisfy the conservation of the atom flux at junction
nodes and block boundaries, substituting the equations in (12),
the general solution (8), and the edge equations (13) to the
BCs (5) and (6), we obtain

K(m)-¢=0 (14)

where K is an n x n matrix, and the vector is described by

& = [Bijm(xX1), Bijm (x2)s - - - Bijm (x)1” . (15)

In order to solve the nonlinear transcendental equation
det(K(4,,)) = 0, the WW algorithm [26] is utilized to
determine eigenvalues. The method is based on the following
observation: the number of eigenvalues not exceeding u is
calculated by

N(p) = Non(u) + s{K*(u)} (16)
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where K (u) is the triangular form of K(u) using the GE
process, s{-} is a sign-count function that returns the number
of negative main diagonal elements of the matrix, and the
number of natural eigenvalues on decoupled branches with
zero Dirichlet BCs on both ends is calculated by

Ay
NOn(m:ZU K{J
ij

ij

A7)

where |x] is the floor function that outputs the greatest
integer less than or equal to x. By checking (16), we can
determine the range of each eigenvalues and we can use
bisection method to approach eigenvalues in an iterative way.
However, this is also the major cost of the WW method. Once
the eigenvalues 4,, are determined, the coefficients A;; , and
Bijm can be calculated by BCs (4)-(6).

Second, using orthogonality of eigenfunctions and initial
conditions (7), the coefficients C,, can be determined by

220 (Pijm (x) - Gij (x, 0))

Cn = 18
> By () - fiyn () (1o

where the inner product is defined by
(fij (x) - gij(x)) = / : fij (x)gij (x)dx. (19)

Finally, the original transient hydrostatic stress o (x, ) is
obtained by inverse transformation as shown in the following
equation:

o(x,t) =0(x,00) —a(x,1). (20)

C. Key Computing Steps in Existing SOV Method

In this SOV-based solution, the key computing step lies
in (16), in which K(u) has to be triangularized by the GE
processes many times using the WW algorithm. Specifically,
the Gaussian elimination procedure has super-linear time com-
plexity depending on the sparsity of the matrix. Here, we refer
to Ng as the total number of multiplications used in GE, which
determines its time complexity.

Another key step is to search eigenvalues by the bisection
method. Based on the stop criterion (tmax /2Nitef) < g,
the number of iterative steps of the bisection method is

evaluated by
Vo = [ (222)]

where [x] is the ceiling function that returns the greatest
integer greater than or equal to x, umax i the value of the
maximum eigenvalue, and € is the absolute error. Basically,
Niter will be bounded by a fixed number. The maximum
number of the GE of the bisection method is approximated
by

21

Nbisec ~ N(#max; NT) - Niter

= N(tmax, N1) - {logz (#I:ax)—‘

(22)

where subscript “bisec” indicates the bisection method,
N(tmax, N7) is the number of eigenvalues not exceeding
Mmax Of the interconnect tree with N7 T-junctions. Note that

node 1 2 3 n-2 n-1 n
segment 1 2 n-2 n-1

Fig. 1. Straight line multisegment interconnect with n — 1 segments.

Nbisec 1s not only related with the number of the interconnect
tree T-junctions N7 but also depends on the maximum eigen-
value umax and specific convergence accuracy €. Npisec > NT
in general.

Therefore, the overall time complexity to estimate the
eigenvalues depends on the multiplications of GE Ng and
iterations of the bisection algorithm MNpjsec, expressed as

Niotal = NG X Nbisec

= NG - N(tmax, Nr) - | logy (222 ].
As a result, the key idea is how to reduce the computing costs

associated with Ng and Npjsec.

(23)

III. ANALYTICAL SOLUTIONS OF EIGENVALUES
FOR SPECIAL CASES

As mentioned above, the proposed SOV method pro-
vides the analytical solution of the physics-based EM model.
However, eigenvalues have to be determined by the WW
algorithm, which is a time-consuming numerical procedure.
In this section, based on the SOV framework, we first present
analytical methods to calculate the eigenvalues for two special
cases, called straight line multisegment and star-structured
multiterminal interconnects, which are commonly seen in the
VLSI layout. In Section IV, we will present two strategies to
accelerate the WW algorithm for the general case.

A. Straight Line Multisegment Interconnects

As shown in Fig. 1, 1-D straight line multisegment intercon-
nect wire is the typical wire structure and topology in VLSI
power grid networks. We notice this is the same wire structure
handled by the proposed integral transform-based technique
in [18]. However, in this article, we note that the general
SOV method can also handle this case with analytic eigen-
values, and numerical eigenvalues computation is no longer
needed.

Specifically, based on the angle transformation formula
tan(ax + bx) = (tan(ax) + tan(bx))/(1 — tan(ax) tan(bx)),
the zero points for the following equations are the same:

tan(ax) + tan(bx) = 0 24)
tan((a + b)x) = 0. (25)
With the BCs (4)—(6) and equivalent equations (24), (25),

we have
Ltotal
tan =0
(“ NG )
where Lo is the total length of the wire.
The eigenvalues, which are the roots of (26), are then given
by

(26)

i/Km
Ui = [ 5 i=1,2,...
Liotal

27)
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() (b) ©

Fig. 2. Multiterminal ~ interconnect
(b) five-terminal, and (c) six-terminal.

structures: (a) four-terminal,

[T 11
A

* Poles|

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
H

Fig. 3. Relationship between zero and pole points of the transcendental
equation (28).

B. Star-Structured Multiterminal Interconnects

The second wire structure that we can solve with known
eigenvalues is the star-structured multiterminal wires, as shown
in Fig. 2. We notice that Chen et al. [4], [25] recently
developed analytical solutions for stress evolution for similar
star-based multiterminal interconnect structures by using the
Laplace transformation technique. However, in this article,
we show that the general SOV method can still solve the
same wire structures with analytic eigenvalues and the start
structured is also the special case of the SOV method with
known eigenvalues.

Specifically, the transcendental equation to estimate the
eigenvalues is given by

i tan (,u ﬁ) =0

k=0 Ve
where Ly is the length of the kth branches and N denotes the
number of the branches in the multiterminal interconnects.

Fig. 3 shows the curve of the transcendental function, which
is written by

(28)

N
Ly
f(p)= D tan (u—) : (29)
There exists only one eigenvalue between two adjacent poles,
which are shown by green dots in Fig. 3. The sequence of
poles of (28) can be easily calculated by

1\ Vxn {2
={m-= , m=1,2,...
p 2 Ly

Then, the elements of sequence {z (1), u,(2), ...} are sorted
in ascending order and do not contain the same value.

(30)

Based on Cauchy’s integral theorem and the use of complex
integration, Luck and Stevens [27] develop a simple root-
finding algorithm to formulate an explicit expression for the
roots of the transcendental equations. By using the singularities
of the reciprocal of the transcendental function, the method can
be able to determine the zero points of the equations. With
the application of the convenient method on (28), we give an
analytical expression of eigenvalues, expressed as

2 )
/ w(@)e’*do
L i=12,...

ui =hi +R; 31

T
w(@)el?do
0
where j denotes the imaginary number and the function w(0)
is defined as
: |
e
f () #=hitRie!
1
= - (32)
> o tan (i + Riei) 24 )
With the relationship between zero and pole points of (28),

the radius and center of the closed path are, respectively,
determined by

w@) =

R = ﬂp(i + 1; - ,Up(i)

hi = up(i) + R;.

(33)
By using Fourier transformation, the nth Fourier series
coefficient for any x(¢) is calculated by

1 2 )
A, = —/ x(t)e/"Mdr. (34)
2z Jo

T

It can be observed that the term ( fozn w(0)e/20do)/

(fOZI w(0)e/?dh) in (31) is equal to the ratio of the second
Fourier series coefficient over the first one for the function
w(0). Fourier series coefficients can be efficiently calculated
by using fast Fourier transform (FFT). Therefore, it is very
convenient to determine the eigenvalues explicitly.

IV. PROPOSED ACCELERATED SOV FOR
DyNAMIC EM STRESS ANALYSIS

For general multisegment interconnect wires with arbitrary
topology, one has to find the eigenvalues using the numerical
method. In this section, we try to improve the efficiency of
computing eigenvalues, which is the key step in the SOV
framework for solving EM-induced stress.

In the new SOV method, called the ASOV method, the basic
idea is to reduce Ng and Npisec by means of linear-time
GE and more efficient determinant-based secant for finding
eigenvalues. We will illustrate the two major ideas in this
section.

A. Proposed Linear-Time Gaussian Elimination for
Banded Matrices

Based on the general solutions and BCs, we first observe
that K is a real symmetric matrix. In the process of GE,
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n

Fig. 4. Banded and step-type symmetric matrix.

Algorithm 1 Fast Linear-Time GE

Data: Transcendental matrix K, bandwidth m, and
step size s.
Result: Upper triangular matrix K A,
1t for i< 1ton—(m—s)do
/* Move the m x m block by s rows and s

columns due to the step type structure */
2 if mod(i, s) == 0 then
| p=i
4 end
/* Do Gaussian elimination of m x m block */

5 T‘:—l/K“‘;
6 for j«—i+1top+m—1do

=K,
/* Eliminate upper triangular matrix due to the
symmetric structure */
8 for k< jtop+m—1do
| Kk = Kji + [Ki;

10 end
11 end
12 end

each reduced matrix is also symmetric so that only the upper
triangular part needs to be recorded and calculated. Therefore,
the time of triangulation of a symmetric matrix is cut in half
in contrast to a common matrix.

Second, for treelike structures, we further observed that K
commonly is a banded and stairlike matrix with bandwidth m
and step size s, as shown in Fig. 4. K;; denotes the ith row
and jth column of K. For such matrix, the area of Gaussian
elimination can be constrained in an m x m nonzero block
with a shift of s rows and s columns [28]. As a result, huge
products involving zero elements can be avoided, and such a
banded serrated-edge matrix can be solved more efficiently by
Algorithm 1.

In order to characterize the efficiency of Algorithm 1,
the detailed study [28] gives an expression

Nyg(n) =am —>b)+c (35)
where Ny denotes the total number of multiplications used in
the fast GE algorithm, a = 14+(1/5) 371 [i+G(i4+1)/2)],
b=m—s,andc = Zl’-”:_ls_l (1+i+(@i(i+1)/2)) are constants,
which depend on bandwidth m and step size s.

201

-%(.)000 0.001 0.002 0.003 0.004 0.005
u

Fig. 5. Relationship between the determinant A, (x), number of eigenval-
ues N(u), and number of natural eigenvalues N, (¢).

For Nr T-junctions interconnect structure shown in Fig. 8§,
we have m = 3 and s = 2. By using formula (35), the
computational complexity of fast GE is linear, expressed as

Nfc(n) =450 —1) (36)

so that the triangulation of the matrix can be solved very
efficiently. We remark that the general multisegment wire
tree structures will always lead to such banded, serrated-edge
matrix structure, suitable for the proposed GE method.

B. Proposed Fast Determinant Secant Method

The second improvement comes from a fast eigenvalues
estimation strategy. Instead of using the brutal-force bisection
method in WW algorithm, more efficient secant method is
applied. The secant method is essentially the finite difference
Newton—Raphson method. As a result, we will have a superlin-
ear convergence. The new method consists of two main stages,
including eigenvalues separation stage and subinterval iteration
stage.

In the secant method, we first need to find the interval or the
lower and upper bounds of the interval having only one
eigenvalue and confirm the continuity of the transcendental
matrix determinant in the interval, which is the eigenvalues
separation stage. Let N(u) be the number of eigenvalues not
larger than u], where u is the eigenvalue space variable.
Fig. 5 shows the relationship between A, (), which is the
determinant value of matrix K (to be explained later), N(u),
and Ny, (). The value of N(u) changes at the zero points, and
the step jump of Np,(x) is produced at the pole points [29].
Assuming that u; is separated from its adjacent eigenvalues
ti—1 and p;4q with the lower bound u; and the upper bound
Uy, We have

Wim1l < < pi < fly < fit1 37

where u; denotes the ith eigenvalue. To satisfy the require-
ment (37), the numbers of eigenvalues at lower and upper
bounds have the relationship, represented by

N(uu) = N(ui) + 1. (38)
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Fig. 6. Relationship between determinant A, and u in two cases: (a) u; < l¢
and (b) u; > pe.

Second, we have to ensure that the determinant has no
poles between x; and u,. The poles lead to discontinuity of
determinant and are generated as the number of natural eigen-
values No, (u) changes. Therefore, no pole check is given by

NOn(,ul) = NOn(/uu)- (39)

In this stage, the simple bisection procedure is employed
to subdivide the interval until the obtained lower and upper
bounds meet the two requirements, i.e., the eigenvalue
check (38) and no pole check (39).

After this, we use the secant method to find an eigen-
value. For the secant method, similar to the Newton—Raphson
method, we need to find the approximate derivative to estimate
the next step. For each subinterval, the curve of the determi-
nant is “S” like, as shown in Fig. 6. There are two possible
situations: the eigenvalue locates in the left side or right side
of the center u., which is the center of two adjacent poles.
If the eigenvalue is below ., then xo = w«; and x; = xo + 9,
where ¢ is a small value. Otherwise, x9 = u, is chosen
and x; = xo — 0. Then we can find x;41 = x; — (x; —
xi—1)/(An(xi) — Ap(xi—1))An(xi), (= 1,2,...) to obtain
the approximated sequences {xo, x1, x2, ...}. The iteration of
the secant method stops when |A,| is equal or approximate
to zero. In rare cases, the secant iteration procedure fails to
obtain an eigenvalue, so we then have to continue to use the
bisection method.

In addition to the computation costs savings from the secant
method mentioned before, we can further reduce the com-
puting costs associated with determining the roots of | K (u)].
Specifically, the key computing step in the secant method is
to compute the number of eigenvalues N(u) for a given u
and compute the determinant value of the A,(u) = |K(u)|,
which can be obtained by multiplying the diagonal elements
when it was triangularized

An(u) = 1K ()] =[] a

i=1

(40)

where a;(i = 1,2,...,n) are the leading diagonal elements
of K. Furthermore, If we find i to make determinant
An(ui) equal to zero, these u; are the eigenvalues.

Fig. 7. Substructure procedure for the interconnect tree with 4 T-junctions.

It turns out that the two computing steps are related and
can be further accelerated. One important observation is that
N(u) and A, (@) computations are not unique (although the
results are the same) and depends on how we define the
building blocks of the interconnect trees. Specifically, based
on (16), the total number of eigenvalues consists of the number
of eigenvalues of decoupled substructures Ny, and that of the
upper triangular matrix K2,

We illustrate this concept in Fig. 7, which consists of
five substructures (or decoupled subsystems) named 7 to V.
At nodes 9 and 10, we divide the whole interconnect tree
structure into five substructures, each of which can be solved
individually and has the corresponding eigenvalues. The sub-
structure concept is very similar to the domain decomposition
method. After partitioning, we can compute the eigenvalues
for each substructure and the top level structure, which only
has two nodes (nodes 9 and 10 in this case). K becomes a
2 x 2 matrix K, [30]

(41)

By applying the WW algorithm, the number of eigenvalues
not exceeding u is given by
N() = Noa () + s {K3 ()} 42)

where the number of eigenvalues for substructures has five
components (as we have five substructures)

No2(u) = Ny(u) + Nyp(u) + Ny (u) + Ny (@) + Ny (1)

(43)
10
s{K}} =D slai) (44)
i=9
10
Ar(u) = [K2 ()| = [ [ ai- (45)
i=9

It is was shown that the zero points for A, in (40) from the
original system and A; are the same [29]. As a result, we just
need to compute A; as far as finding zeros (eigenvalues) are
concerned.

In fact, we can partition the whole system in such a way
that we only keep one node at the top, and the substructure
consists of all the rest of the nodes and branches. Then,
K| becomes a 1 x 1 matrix or a scalar. Then, we have

N(u) = Not(u) + s{K{'} = Not(u) + s{an}
Ar(u) = |Ki(w)] = an

(46)
(47)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2020 at 00:28:52 UTC from IEEE Xplore. Restrictions apply.



428 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2020

N
Ny

Fig. 8. N T-junctions interconnect structure.

3

o Analytical(t=1x10°)
—— COMSOL(t=1x10%)

Stress (GPa)

b 5 b % onN s o @

o Analytical(t=5x10"s)|
-2.0f —— COMSOL(t=5x10"s)|
-25f| +  Analytical(t=5x10°s)
3.0 —— COMSOL(t=5x10%s)|
S350 o Analytical(t=5x10°)|
401 | COMSOL(t=5x10°)|

0 1 2 3 4 5 6 7 8 3 4 5
Position (x10m) Position (x10*m)

(@) (b)

o
©
©

Fig. 9. Hydrostatic stress evolution of (a) ten-segment and (b) six-terminal
interconnect structures.

where
n—1

Not () = Noa () + _ stai}.
i=1

(48)

As we can see, computing A becomes very trivial as it is
actually equivalent to the last diagonal element, a,, during the
GE process. Again, A1 and A, have equivalent zeros. As a
result, we do not need to explicitly compute A,, which leads
to significant computing saving, as shown in Section V.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present some numerical results and
validate both the accuracy and efficiency of the ASOV method.
First, we use two simple cases such as ten-segment wires
and six-terminal interconnect tree to demonstrate the accu-
racy of analytical eigenvalues, which is compared with the
WW algorithm. Then, a number of T-junction interconnect
structures shown in Fig. 8 are utilized to illustrate the impact
of the number and accuracy of eigenvalues on the existing
SOV method. Furthermore, we compare the proposed ASOV
method against the conventional SOV method. All programs
are implemented in C++4 and tested on a standard computer
with a 2.7-GHz i5 CPU, 8-GB memory, and macOS operating
system.

A. Validation of Analytical Eigenvalue Formula

For validation, ten-segment wires and six-terminal intercon-
nect tree are simulated by the analytical eigenvalues method.
Fig. 9(a) shows the hydrostatic stress distribution for the ten-
segments wire with current densities as j; = 4 x 10° A/m?,
j2=2x10° A/m?, j3=1x10° A/m?, j; =3 x 10° A/m?,
js = —=5x10° A/m?, jo = 4x10° A/m?, j; =2x10° A/m?,
jg = 6 x 10° A/m?, jo = 3 x 10° A/m?, and jjo =
2 x 10° A/m?. Fig. 9(b) shows the transient stress evolution
for the six-terminal interconnect with current densities as

TABLE I
ACCURACY OF EIGENVALUES

nth eigenvalue Anal(yilcil fg?tmd (szleigi)gt,h 1H11 ) Rel. Err.

1 0.00223689427 0.00223689806 0.00017%

2 0.00261161738 0.00261161499 0.00009%

3 0.00312481621 0.00312479614 0.00064%

4 0.00388826929 0.00388816100 0.00279%

5 0.00569238397 0.00569171006 0.01184%
——4x109A/m,]2—2x109A/m,J3 = —1x

109 A/m?, j4 =3 x 10° A/m?, and js = —5 x 10° A/m?
at time t = 1 x 10%s. In both cases, the results from
the proposed method and commercial software COMSOL
Multiphysics have a good agreement. Therefore, that is to say,
the accuracy of eigenvalues is good enough to estimate the
hydrostatic stress.

Table I describes the eigenvalues from analytical expres-
sion (31) and the WW algorithm. In (31), we use the FFT
algorithm with the size L = 16 to calculate the first and second
Fourier series coefficients, and the WW algorithm is employed
with stop criterion € = 107!, As we can see, the results from
analytical expression are in good agreement with that of the
WW algorithm.

B. Impacts of the Number of Eigenvalues on the Accuracy
of the Solutions

In order to obtain accurate transient stress, we observe
that the number of eigenvalues N (umax, Nr) should be kept
constant as suggested in [19]. Instead, we find that the number
of eigenvalues required for computing accurate stress using (8)
depends on the structure of the interconnects. In general, more
segments means more eigenvalues are needed, which leads
to more computing efforts. Therefore, it is desirable to use
the least number of terms possible while maintaining high
accuracy in the evaluation of the series.

To illustrate the relationship between the accuracy of
stress and number of eigenvalues, a number of T-junction
interconnect structures, as shown in Fig. 8, were studied.
The length of each branch was set to 60 wum. Under
these conditions, with different number of T-junction,
the eigenvalues for each term are plotted in Fig. 10.
We observe that the number of eigenvalues varies periodically
with increasing terms. If we obtain one period of eigenvalues,
then we can obtain the infinite eigenvalues by periodic
extension. For instance, the blue curve in Fig. 10 is exactly two
periods of the eigenvalues for the 50-T-junction example with
the eigenperiod value as ur, which is presented as the orange
bold line. As a result, we only need one period of eigenvalues
in the calculations, which captures all the useful information
of the whole structure and can guarantee accuracy. In Fig. 10,
the length of one period of eigenvalues is 7, and the number
of eigenvalues increases with the number of T-junctions in
one period. Therefore, as a rule of thumb, we just use 2N7 as
the number of eigenvalues for structures with N7 T-junctions.

To demonstrate the accuracy of one period of eigenvalues,
the transient hydrostatic stress analysis for an interconnect
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TABLE II

IMPACT OF THE NUMBER OF EIGENVALUES ON THE ACCURACY OF
THE STRESS FOR 20 T-JUNCTIONS WITH ¢ = 1 x 107>

5
4 4 Number of . max|[osoy — ocomsoL| | max|osoy —ocomsoL |
. Time(s) — b MLoLL
3 3 eigenvalues (GPa) max|ocomsoL |
2 2 8 1 x 10° 3.6403 84.30%
g1 g1 16 1x 10° 1.4801 34.28%
g0 g0 24 1x10° 0.4999 11.58%
B4 @1 32 1x 10° 0.1111 2.57%
2 2 40 1 x 10° 0.0203 0.47%
3 3 40 1 x 106 0.0014 0.01%
4 4 40 1 x 107 0.0046 0.01%
° z 4F'osincen (x10§m) ° ” " ° : 4Pcswtioen (xﬂogm) ° ? * 40 1x 108 0.0637 0.09%
(©) ()
Fig. 11.  Hydrostatic stress evolution of 20 T-junctions structure using (a) 8,

(b) 16, (c) 24, and (d) 32 eigenvalues.

tree with 20 T-junctions is simulated by COMSOL and the
SOV method. The required accuracy of the FE solution was
confirmed by a fine mesh, and the SOV was simulated with
different eigenvalues (8 to 32), as shown in Fig. 11. In the
SOV method, the absolute error € = 10710 is used for stress
evaluation. As we can see, the SOV methods are not accurate
for the four cases (even with 32 eigenvalues).

However, if we use 40 eigenvalues, which is just twice
of 20 T-junctions, the results are shown in Fig. 12. As we can
see, there exists a very good agreement between the SOV and
COMSOL results for stress evolution at different time points
(as stress approaches the steady state).

To further illustrate the accuracy of the obtained solutions,
we calculate the maximum absolute error between the SOV
method and COMSOL by max|osoyv — ocomsoL|. As shown
in Table II, the maximum absolute error is reduced with the
increasing number of eigenvalues. Compared with the value

of hydrostatic stress, the order of magnitude of the maximum
absolute error for 40 eigenvalues is small enough to ensure
the accuracy of the solution for each time point.

In addition, another main factor to determine the accuracy
of hydrostatic stress is the accuracy of eigenvalues. It can be
seen in Fig. 10 that the number of eigenvalues increases with
the increasing number of N7 in the fixed region from O to ur,
which means that the distance of the adjacent eigenvalues is
reduced. Then, for the linear convergent bisection, it takes
more steps to separate these eigenvalues accurately with
smaller absolute error €. As given in Tables II and III, we
calculate the EM stress of 1000 and 20 T-junctions structure
with the same € = 10_10, 2Nt eigenvalues, and t = 1 x 107 s.
However, the maximum absolute error of 1000 T-junctions
structure is an order of magnitude larger than that in
20 T-junctions structure. However, if we decrease the stop
criterion €, we get better accuracy, as described in Table III.

Above all, the accuracy of the SOV method depends on two
factors, including the number and accuracy of eigenvalues,
which also have a huge impact on computational time of
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TABLE III

IMPACT OF THE ACCURACY OF EIGENVALUES ON THE ACCURACY OF
THE STRESS FOR 1000 T-JUNCTIONS AT = 1 x 107 s

Absolute error | max[osoy — 0COMSOL| | max|osov—ocomsor|

of eigenvalues € (GPa) max|ocomsoL |
1x10-10 0.2081 4.82%
1x 10~ 11 0.0294 0.68%
1x 10~ 12 0.0275 0.64%
1x10-13 0.0279 0.65%

o SuperlU v
30| |4 Fast Gaussian Elimination 12001 |—a— SuperLU + Bisection
1100t | —4— Fast GE + Bisection

00 300 70606 30000 40000~ 50000 60000 200 400 600 800 1000 1200 1400 1600 1800
Dimension of matrix Number of T-junctions

(a) (b)

Fig. 13.  (a) Comparison between SuperLU and fast GE. (b) Impact of
SuperLU and Fast GE on the SOV with bisection method.

the WW algorithm to determine the eigenvalues. For the
Nt T-junctions interconnect tree structure, the overall com-
plexity is calculated by
M max

Neotal ~ 2NG - Nr - [mgz ( ; ﬂ .
With the increasing number of T-junctions N7, the required
absolute error € decreases. As a result, based on formula (49),
the computational time to determine the eigenvalues dramati-
cally increases.

(49)

C. Computational Efficiency Study

In order to validate the efficiency of fast GE, a sequential
version of the SuperLU solver [31], [32] is used as the compar-
ison for triangulation of K matrix. It should be noted that LU
factorization routines must be configured with a diagonal pivot
so that the obtained upper triangular matrix U is equal to K 2.
To better collect the measurement data, we perform GE 100
times because the time consumption for a single calculation
is too small to be measured.

Fig. 13(a) shows the time costs of SuperLU solver and
fast GE with varying dimensions of matrix K. As we can
see, the computational time of both methods increases almost
linearly with the size of the matrix, which means they
are both scalable for the large interconnect trees. However,
the proposed fast GE still has better computational efficiency
compared to the general SuperLU sparse solver. We further
study the impact of these GEs on the whole SOV method, and
the results are shown in Fig. 13(b). As we can see that the fast
GE-based SOV is about twice faster than SuperLU-based SOV.

With the improved eigenvalue searching algorithm, we can
obtain better speedup as shown in the following. We demon-
strate this by comparing the performance of our proposed
ASOV method and the existing SOV method with the increas-
ing number of T-junctions, Ny. The time point of the

M@ s
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Fig. 14. Comparison of stress for (a) 20, (b) 500, (c) 1000, and
(d) 2000 T-junctions computed by ASOV and SOV methods.

TABLE IV
RUNTIME COMPARISON OF THE ASOV AND SOV METHODS

’ Nt ‘ (SSSS; ‘ € ‘ A(Sse(c);/ ‘ [Aq] ‘ Speed up ‘
20 [ 0.0233 10-10 0.0094 10—2 2.5
100 | 0.4142 1010 0.1361 10—2 3.0
500 | 24.079 10— 11 6.9650 | 8 x 103 3.5
1000 | 182.78 10— 12 57.885 10-3 32
2000 | 2464.0 | 5 x 10~ 13 | 530.85 10~1 4.6
5000 | 23136 10—13 70682 | 2.5 x 10~° 33

hydrostatic stress evolution is set to # = 1x 10° s. For each test
case, 2Nt eigenvalues are used to estimate the transient stress.
The results are given in Table IV. We note that the stop criteria
of ASOV and SOV are different, including the absolute error ¢
for the bisection method and determinant |A | for the secant
method. To obtain the hydrostatic stress with the same accu-
racy for fair comparison, the stop criteria of ASOV and SOV
methods may be different where their accuracies will be kept
equal as much as possible. Fig. 14 shows the accuracy com-
parison of ASOV and SOV methods for a interconnect tree for
20, 500, 1000, and 2000 T-junctions. We can observe a good
agreement between the two methods. Afterward, we can com-
pare the efficiency of the two methods. As given in Table IV,
the proposed ASOV method can achieve 3-5X speedup over
the existing SOV method, which is quite significant.

VI. CONCLUSION

In this article, we have proposed a new analytic solution
to compute the stress evolution in the confined multisegment
interconnect wires. The new method, called the ASOV
method, aims to find the analytic solutions of the PDEs of
stress in confined interconnect metals based on the SOV
method. However, it offers several improvements over the
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existing plain SOV-based method. We first provided the
analytic solutions to the eigenvalues for straight line and
star-structured multisegment interconnect wires instead of
computing them numerically as in the existing SOV method.

We
the

then proposed a linear GE algorithm by exploiting
banded structure with a serrated-edge form of the

transcendental matrix, which can lead to better performance
than the general sparse GE process. Finally, we proposed to
use the enhanced determinant-based secant iterative method to
find the eigenvalues of the transcendental matrix. Numerical
results have shown that the resulting algorithm can achieve
3-5X speedup over the existing plain SOV-based solution on
a number of multisegment interconnect benchmarks.
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