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ABSTRACT

Detecting and locating damage information from waves re-
flected off damage is a common practice in non-destructive
structural health monitoring systems. Yet, the transmitted ul-
trasonic guided waves are affected by the physical and ma-
terial properties of the structure and are often complicated to
model mathematically. This calls for data-driven approaches
to model the behaviour of waves, where patterns in wave data
due to damage can be learned and distinguished from non-
damage data. Recent works have used a popular dictionary
learning algorithm, K-SVD, to learn an overcomplete dictio-
nary for waves propagating in a metal plate. However, the do-
main knowledge is not utilized. This may lead to fruitless re-
sults in the case where there are strong patterns in the data that
are not of interest to the domain. In this work, instead of treat-
ing the K-SVD algorithm as a black box, we create a novel
modification by enforcing domain knowledge. In particular,
we look at how regularizing the K-SVD algorithm with the
one-dimensional wave equation affects the dictionary learned
in the simple case of vibrating string. By adding additional
non-wave patterns (noise) to the data, we demonstrate that
the “wave-informed K-SVD” does not learn patterns which
do not obey the wave equation hence learning patterns from
data and not the noise.

Index Terms— Dictionary learning, K-SVD, regulariza-
tion, wave equation, theory-guided data science

1. INTRODUCTION

Strong sensitivity of ultrasonic guided waves to defects in
structures and their ability to interrogate across large dis-
tances make ultrasonic guided waves a great tool for re-
searchers in structural health monitoring (SHM) [1]. Most
SHM systems rely on the theoretical solution of elastic
waves propagation in a solid medium. One example of
such waves are Lamb waves [2]. SHM systems are gen-
erally applied to regular and simple geometries and adapting
to more complex geometries has always remained a problem.

Irregular and complex geometries pose problems of ultra-
sonic guided wave reflections that are often very difficult to
model. Therefore, traditional localization and characteriza-
tion techniques[3, 4, 5, 6] that depend on efficient numerical
models do not perform well in these circumstances. To ad-
dress this, a well-followed paradigm is to use numerical tech-
niques to simulate guided waves and create a “predictive”
model mimicking the experimental setup of a guided wave
system. This numerically simulated data can then be com-
pared with the data obtained from experiments to identify any
damage features. This is the standard strategy for matched
field processing localization methods, which are also widely
used in underwater acoustics [7] and RADAR [8]. Various
numerical techniques have been proposed to simulate the
experimental data. However, the mismatch between a “pre-
dictive” model and experimental data is a large gap to fill
in, which consequently makes the model “unpredicitve” and
therefore useless for damage prediction.

In recent work, the emergence of data-driven models
find a role to play in filling this vacuum of experimental
uncertainty. Popular among the prior works is the sparse
wavenumber analysis (SWA) [9] which creates a predictive
model by combining experimental data with the analytic so-
lutions for Lamb waves in various types of media (isotropic
and anisotropic waves [10], for example). SWA also relies on
an analytic model, thus predicting reflections from complex
geometries cannot be reliable. In other work, a completely
data-driven approach of creating a dictionary (a set of signals
whose linear combinations can recreate the guided waves)
based on numerical simulations is studied for a planar metal-
lic plate [11]. This is accomplished with dictionary learning
algorithms [12]. This dictionary is then used with exper-
imental data to create a predictive model that extrapolates
wave behaviour within a structure. It has also been observed
that the dictionary can in the right circumstances match the
theoretical dictionary that theory predicts.

Given the developments to date, we have two extrema: at
one end, there is a complete theoretical dictionary with no role
of data in determining the dictionary, and on the other end a
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dictionary is learned from data with no role of theory. In this
work, we take a step to gain understanding of the stages where
a dictionary can be developed with utilization of both theory
and data. We take a step in unwrapping the popular dictio-
nary algorithm, K-SVD [13], and integrate specific domain
knowledge, in this case, the wave equation, to create a dic-
tionary that is restricted to the particular domain. We do this
by adding a wave equation based regularizer. Ref. [14] has
an interesting survey of methods to combine domain knowl-
edge with data for theory-guided data science. Ref. [15] also
discusses methods for introducing prior knowledge in dictio-
nary learning algorithms. We do this for the simple case of
a fixed string. In doing so, we contrast the results obtained
using K-SVD algorithm with the modified algorithm, which
we call the wave-informed K-SVD. We train dictionaries us-
ing both the algorithms: K-SVD and wave-informed K-SVD
on wave data corrupted by white Gaussian noise. We observe
that wave-informed K-SVD does not learn noisy atoms, while
simple K-SVD learns atoms corrupted by noise.

2. NOTATION

In this paper, boldfaced letters Y represent a matrix and the
representation Yi represents the i-th columns and ŶT

j rep-
resents the j-th row of the matrix Y. A matrix in the t-th
iteration in a sequence of matrices updating through an algo-
rithm is denoted as D(t). ‖Y‖F denotes the Frobenius norm
of the matrix Y. Similarly ‖x‖p of a vector x represents the
number of the p-th norm of x.

3. DICTIONARY LEARNING: A BRIEF OVERVIEW

The role of dictionary learning in machine learning and sig-
nal processing can be seen to be similar to that of the role
of Fourier analysis. Decomposing a function into a scaled
sum of basic functions helps in obtaining insights not visible
from the function itself. Incidentally, one such example is the
Fourier transform.

Dictionary learning differs from ordinary Fourier analysis
in the sense that the basis vectors are not fixed (as they are in
the case of discrete Fourier transform), and are learned from
the data. Another added feature is sparse representations. In
dictionary learning, the bases are learned in a way that the lin-
ear combination utilizes the least number of bases for the rep-
resentation of each signal. This added flexibility comes from
the fact that the dictionary matrix need not be a square matrix
and is also not orthogonal. We can generalize to the idea of
dictionary learning from the discrete Fourier transform.

Let columns of the matrix Y contain a particular signals
of interest. Let W be the DFT matrix compatible in size with
Y. Also let,

X = WY (1)

Thus, Y = W−1X, since the DFT matrix is invertible. In
the dictionary learning perspective, the matrix W−1 can be

considered a dictionary and the matrix X as the corresponding
coefficient matrix.

When a dictionary is learned from data, through a dictio-
nary learning algorithm, to satisfy the sparsity conditions, the
dictionary is often overcomplete, thus non-square. In sum-
mary, a general dictionary learning algorithm decomposes a
data matrix Y into a product of matrices D and X (mathe-
matically, Y = DX), where D is the named as the dictionary
matrix and X, with a desired level of sparsity, is called the
coefficient matrix.

4. THE K-SVD ALGORITHM

In general, dictionary learning is the process of learning an
overcomplete dictionary to represent a signal as sparsely as
possible. The elements of the dictionary are called atoms and
they need not be orthogonal. The signal on which the dic-
tionary is trained can be represented as sparse combination
of the atoms in the dictionary. The most common applica-
tion of dictionary learning is in compressed sensing or signal
recovery. Various algorithms have been developed to solve
dictionary learning. Below, we have the dictionary learning
algorithm setup as an optimization problem:

min
X,D

‖Y −DX‖2F subject to ‖Xi‖0 ≤ s (2)

One such algorithm is K-SVD [13]. In various applications
(e.g. [16], [17]), better results have been obtained from this
algorithm as compared to any other static dictionary. The K-
SVD algorithm comprises of two steps:

1. The sparse coding step

2. Dictionary update step

These two steps are performed consecutively for each itera-
tion, either until convergence or up to a specified number of
iterations. We follow the later in this work. In this paper, we
use Orthogonal Matching Pursuit (OMP) in the sparse coding
step as it is usually used when the sparsity is known before-
hand and incidentally assuming sparsity serves our purpose.
We refer the reader to [18] and [19] for OMP. Below, we re-
view the dictionary update step in detail. Note that we rigor-
ously review K-SVD to provide the necessary background to
understand our derivation of wave informed K-SVD.

4.1. Dictionary update step

In this part of the algorithm, we estimate a new D based on
the computed X and the data Y. We consider updating the
kth column of the dictionary matrix D with all other columns
undisturbed, and we iteratively do this for each k. We write
the objective function so that the kth column of D is updated
keeping the rest of the columns constant, we refer the reader

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 00:33:02 UTC from IEEE Xplore.  Restrictions apply. 



to [13] for more details

‖Y −DX‖2F = ‖Y −
K∑
j=1

DjX̂
T
j ‖2F (3)

‖Y −DX‖2F = ‖
⎛
⎝Y −

∑
j �=k

DjX̂
T
j

⎞
⎠−DkX̂

T
k ‖2F (4)

Now letting
(
Y −∑

j �=k DjX̂
T
j

)
= Ek, we have:

‖Y −DX‖2F = ‖Ek −DkX̂
T
k ‖2F (5)

Since the columns of X are sparse, we expect the vector X̂k

to have zeros and the product DkX̂
T
k will have zero columns.

We form a new matrix Ẽk from the matrix Ek by removing
columns of Ek whose corresponding columns in DkX̂

T
k are

zero. We do this to ensure the sparse structure of matrix X
obtained from orthogonal matching is not lost. Similarly we
also remove the zeros in X̂k and call the new vector X̃k, this
ensures that Ẽk and DkX̃

T
k have the same dimensions, and

that the subtraction is possible. We again refer the reader to
[13] for more details. Note that the dictionary update needs to
be solved for many iterations. Consider the the t-th iteration.
Thus, we write the objective as:

[
D

(t+1)
k , X̃

(t+1)
k

]
= arg min

d,u
‖Ẽ(t)

k − duT ‖2F (6)

such that ‖d‖2 = 1. Constraining the norm of each dictio-
nary column reduces the search space without loss of gen-
erality because an appropriate scaling can be introduced in
the corresponding coefficient. Also note that we update the
coefficient row vector in the same step as a by-product of dic-
tionary update.

Since constrained optimization problems are easily solved
in the dual domain (with Lagrange multipliers), we pose the
minimization objective in the dual form. We introduce a La-
grange Multiplier ν for the constraint ‖d‖2 = 1 and form the
Lagrangian

L(d,u, ν) = ‖Ẽ(t)
k − duT ‖2F + ν

(‖d‖22 − 1
)

(7)

Now the expression above can be reduced to other forms to
completely describe the solution of the optimization problem.
After using properties of trace of a matrix on the first term in
the RHS of (7) and the constraint ‖d‖2 = 1, we obtain

‖Ẽ(t)
k − duT ‖2F = ‖Ẽ(t)

k ‖2F − 2dT Ẽ
(t)
k u+ uTu (8)

We use (8) in (7) and set ∂
∂uL(d,u, ν) = 0. By incorporating

the constraint, ‖d‖2 = 1, we get

∂L(d,u, ν)

∂u
= −2Ẽ

(t)
k

Td+ 2u = 0 ⇒ u = Ẽ
(t)
k

Td (9)

Re-substituting u = Ẽ
(t)
k

Td into (15) we get the following
minimization problem:

arg min
d,‖d‖2=1

‖Ẽ(t)
k − ddT Ẽ

(t)
k ‖2F (10)

We now use some algebra and the constraint to get,
‖Ẽ(t)

k − ddT Ẽ
(t)
k ‖2F = tr

(
Ẽ

(t)
k

T Ẽ
(t)
k

)
− dT Ẽ

(t)
k Ẽ(t)Td

and thus pose the optimization problem to be,

arg max
d,‖d‖2=1

dT Ẽ
(t)
k Ẽ

(t)
k

Td (11)

The solution to which is readily found in optimization litera-
ture (e.g., [20]) as the eigenvector corresponding to the largest
eigenvalue of Ẽ(t)

k Ẽ
(t)
k

T . This is equivalent to finding the top
singular vector of the matrix Ẽ

(t)
k . Combining this result with

(9), get an expression for X̃
(t+1)
k . Thus, D(t+1)

k is the top
singular vector of Ẽ(t)

k and X̃
(t+1)
k = Ẽ

(t+1)
k

TD
(t+1)
k . This

minimization problem can be equivalently seen as the rank-1
approximation of Ẽ(t)

k (which uses singular value decompo-
sition for the approximation) or equivalently, in each iteration
Ẽ

(t)
k but we derived it because this will come handy in en-

forcing the physics constraint. The exact steps are described
in Algorithm 1.

Algorithm 1 K-SVD, Input: Y ∈ Rm×n,K ∈ N

1: Intialize D(0), iter (no. of iterations)
2: Set t = 0
3: repeat
4: Sparse Code Stage:
5: i = 1, 2, ..., N ; min

Xi

{||Yi − D(t)Xi||2F } subject to

||Xi||0 ≤ s
6: Dictionary Update Stage:
7: k = 1,2,...,K; E(t)

k = Y −∑
j �=k D

(t)
j X̂(t)T

j

8: Let S contain indices of columns that are non-zero.
Now Ẽ

(t)
k is formed from E

(t)
k by selecting columns indi-

cated by S.
9: Singular Value Decomposition Ẽ

(t)
k = UΔV

10: Choose column D
(t)
k to be first column of U

11: Update: X̃(t)
k = Ẽ

(t)
k

TD
(t)
k

12: X̂
(t)
k is constructed from X̃

(t)
k by placing the elements

of the latter at the indices indicated by S, zeros otherwise.
13: t ← t+ 1
14: until t == iter

5. ENFORCING THE WAVE EQUATION INTO THE
K-SVD ALGORITHM

In this work, we assume that data is obtained from a one di-
mensional medium, such as string. Thus, the one-dimensional
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wave equation is the physics model that is enforced into
the algorithm. The one dimensional wave equation and its
Fourier transform in time (if it exists) are given by,

∂2f(x, t)

∂x2
=

1

v2
∂2f(x, t)

∂t2
⇐⇒ ∂2F (x, ω)

∂x2
=

−ω2

v2
F (x, ω)

(12)

where v is the velocity of the wave.
We then discretize everything above and write (12) as a

discrete-space matrix form, where L is the second difference
matrix

L =

⎡
⎢⎢⎢⎣
−2 1 0 0 0 · · · 0
1 −2 1 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · −2

⎤
⎥⎥⎥⎦ (13)

Thus, for each ω, we can concisely write,

Lf = gf (14)

for a suitable constant g. To enforce structure into the atoms
of the dictionary, we impose that each atom of the dictionary
approximately satisfies the wave (14), thus we now have an
objective function with an added regularization term to the
main dictionary learning objective. We choose regularization
constants γi associated with each dictionary atom. Thus the
modified objective function now turns out to be,

min
X,D

{||Y −DX||2F +
∑K

j=1 γj‖LDj − gjDj‖22}
subject to ||Xi||0 ≤ s
Note that the sparse coding step does not change while imple-
menting the algorithm. The only change is in the dictionary
update step. We can also write the k-th dictionary atom up-
date step in the t-th iteration as,

[
D

(t+1)
k , X̂

(t+1)
k , g

(t+1)
k

]

= arg min
d,u,gk

‖E(t)
k − duT ‖2F + γk‖Ld− g

(t)
k d‖22 (15)

such that ‖D(t+1)
k ‖2 = 1. We first derive an update rule for

each g
(t)
k . For this we differentiate the function to be mini-

mized in (15) with respect to the scalar g(t)k at d = D
(t)
k and

u = X̂
(t)
k and set it equal to zero to find the updated value

g
(t+1)
k . For ease of differentiation, we choose λ to represent
g
(t)
k , i.e., λ = g

(t)
k . Thus, we have,

∂

∂λ

(
‖E(t)

k − duT ‖2F + γk‖Ld− λd‖22
) ∣∣∣

λ=g
(t+1)
k

= 0

(16)

Differentiating at g(t+1)
k , we obtain,

g
(t+1)
k = D

(t)
k

TLD
(t)
k (17)

We next try to optimize for u and d, differentiating the La-
grangian formed by the objective function defined in (15) with
respect to u and setting it to zero gives the same solution as
obtained from (9). Now re-substituting this back in the objec-
tive and after dropping out terms that do not depend on our
varying quantity, D(t)

k , and rearranging we get the objective
to be

argmin
Dk,‖Dk‖2=1

DT
kBDk ≡ arg max

Dk,‖Dk‖2=1

−DT
kBDk (18)

where,

B = γk

(
L− g

(t+1)
k I

)(
L− g

(t+1)
k I

)T

− Ê(t)Ê(t)T

Now this implies that the K-SVD algorithm gets modified in
the SVD step where we now have to take the top eigenvector
of the matrix Ẽ

(t)
k Ẽ

(t)
k

T − γk (L− gkI) (L− gkI)
T instead

of Ẽ(t)
k Ẽ(t)T (which is the same as the top left singular vector

of Ẽ(t)). We now summarize this in Algorithm 2.

Algorithm 2 wave-informed K-SVD, Input: Y ∈
Rm×nK ∈ N

1: Intialize D(0), g(0) = (g
(0)
1 , g

(0)
2 , · · · , g(0)K ) and iter (no.

of iterations)
2: Set t = 0
3: repeat
4: Sparse Code Stage:
5: i = 1,2,...,N ; min

Xi

{||Yi − D(t)Xi||2F } subject to

||Xi||0 ≤ s
6: Dictionary Update Stage:
7: g

(t)
k = D

(t)
k

TLD
(t)
k ; k = 1, 2, ...,K

8: E
(t)
k = Y −∑

j �=k D
(t)
j X̂(t)T

j ; k = 1, 2, ...,K
9: Let S contain indices of columns that are non-zero.

Now Ẽ
(t)
k is formed from E

(t)
k by selecting columns indi-

cated by S.
10: Eigen Value Decomposition of Ẽ

(t)
k Ẽ

(t)
k

T −
γk (L− gkI) (L− gkI)

T
= UΔU−1

11: Choose column D
(t)
k to be first column of U

12: Update X̃
(t)
k = Ẽ

(t)
k

TD
(t)
k

13: X̂
(t)
k is constructed from X̃

(t)
k by placing the elements

of the latter at the indices indicated by S, zeros otherwise.
14: t ← t+ 1
15: until t == iter

6. SIMULATION RESULTS

In this simulation, we have synthesized data of a string, fixed
at both ends, oscillating in a combination of 4 different modes
and a single velocity. We also impose an exponential re-
duction of the wave amplitude with time. Additionally, we
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corrupt the data with white Gaussian noise, n(x, t), which
does not obey the wave equation (12) for real wave parame-
ters. We observe the effect of noise of different SNRs. We
also note that the noise introduced in the data is both time
and space variant. While SNR is defined in the usual way,
10 log(Ps/Pn), where Ps is the signal power and Pn is the
noise power, we calculate the power of signal and noise over
all space and time. A continuous version of this data is rep-
resented in (19). Note that wk is calculated using wk = ck,
where c is the velocity of the wave.

y(x, t) =
4∑

k=1

sin(kx) sin(wkt)e
−4t + n(x, t) (19)
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Fig. 1. Dictionary atoms from K-SVD - Experiment where
the wave data is corrupted by Gaussian noise of SNR -13 dB
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Fig. 2. Dictionary atoms from wave-informed K-SVD - Ex-
periment where the wave data is corrupted by Gaussian noise
of SNR -13 dB

A sampled version of y(x, t) defined in (19) is the matrix Ỹ.
The columns of the data Ỹ represent the string along space
whereas rows represent the string along time. We take the
discrete Fourier transform on each row of Ỹ to form Y. We
now perform K-SVD and wave-informed K-SVD (with num-
ber of dictionary elements K = 4) and a sparsity of s = 1 (for
the coefficient matrix X) on Y. Each dictionary atom has a
different regularization, γk. We chose the γk ∝ 1/g2k with a
proportionality constant of around 105. This proportionality
constant is observed to depend on the power of noise present.

Comparing Figure 3 with Figure 4 and Figure 1 with Fig-
ure 2, it is clear that K-SVD learns noisy atoms from data
whereas the wave-informed K-SVD learns non-noisy versions
from data. This justifies the enforcement of wave physics into
the algorithm as it signifies that wave-informed K-SVD did
not learn noise that does not obey the wave equation (12).
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Fig. 3. Dictionary atoms from K-SVD - Experiment where
the wave data is corrupted by Gaussian noise of SNR -7 dB
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Fig. 4. Dictionary atoms from wave-informed K-SVD - Ex-
periment where the wave data is corrupted by Gaussian noise
of SNR -7 dB

7. CONCLUSIONS

In this paper, we showed how physics can be enforced into
the popular dictionary learning algorithm, K-SVD, and de-
veloped the wave-informed K-SVD algorithm. We can look
at this algorithm as a filter that filters signals based on the
physical domain they are described by. In future work, we
want to reason out the requirement of the large value of reg-
ularization constant used. Also, as a next step we would like
to verify if wave-informed KSVD works better than KSVD
for data undersampled over space. We also want to develop
more theoretical understanding of the result being produced
by the algorithm and see how it compares with the theoretical
solution of the wave equation (a partial differential equation).
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