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Abstract—Considering temperature gradient or thermomigra-
tion (TM) impacts on electromigration (EM) due to Joule heating
was less studied in the past. In this paper, we propose a new
semi-analytical stress transient analysis method to consider both
EM and TM effects for general multi-segment interconnects.
The new method is based on the separation of variables (SOV)
approach to find the analytic solution of coupled EM-TM partial
differential equation (PDE). The algorithm consists of several
steps. We first develop analytic solutions to compute steady-
state temperature distribution of multi-segment wires. Based on
this, we derive closed-form solutions for steady-state hydrostatic
stress distribution in the context of thermal gradients due to
Joule heating for multi-segment interconnect wires. With the
steady-state stress distribution, the coupled EM-TM PDE can
be homogenized and solved by the SOV method. To deal with
temperature/position-dependent diffusivity of metal migration
process due to non-uniform temperature distribution, we utilize a
piecewise linear technique to approximate the position-dependent
diffusivity. Numerical results on multi-segment interconnects
show that the proposed method has negligible error loss com-
pared to commercial finite element analysis software COMSOL
but is about an order of magnitude faster than COMSOL
with 10x less memory footprint. The numerical results further
show that temperature gradient due to Joule heating indeed has
significant impacts on the EM failure process.

Index Terms—Analytical thermal model, electromigration
(EM), Joule heating, separation of variables (SOV) method,
temperature gradient effects.

I. INTRODUCTION

DUE to the increasing current densities and decreasing
dimensions of the interconnects, electromigration (EM)

induced aging and failure effects remain the top reliability
concerns for modern VLSI chips in 7-nm technology and
below. Therefore, it is important to develop more accurate and
less conservative EM sign-off and validation [1]. However, it is
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well accepted that existing Black and Blech-based EM models
are subject to growing criticism due to over conservativeness
and they only work for a single wire segment [2], [3].

To mitigate the existing problem in EM models, a number
of physics-based EM models and assessment techniques have
been proposed [1], [4]–[16]. Those EM models primarily
focus on solving the partial differential equation (PDE) (called
Korhonen’s equation) of hydrostatic stress evolution in the
confined multi-segment wires subject to blocking material
boundary conditions.

Fig. 1. The effect of the heat of transport Q and temperature gradient |dT/dx|
on the ratio of TM flux to EM flux.

However, most of those EM models do not consider the
temperature gradient impacts on the metal migration process.
Instead, most of those approaches just assume constant wire
temperature. However, recent study [16] shows that the tem-
perature gradient effects can be quite significant (almost in
the same magnitude as the current induced migration) due
to the Joule heating effects. This situation will become even
worse as technology advances to smaller features and 3D
stacked integration, in which higher power density, larger Joule
heating, and larger thermal resistances due to stacking will lead
to even higher temperature and temperature gradients across
chip [17]. To better illustrate importance of thermomigration
(TM) effect, we show the ratio of TM flux over EM flux
defined below under different conditions

∣∣∣∣
JTM

JEM

∣∣∣∣ =
Q/T · |∂T

∂x
|

eZρj
, (1)

where Q is the specific heat of transport, T is the temperature,
e is the elementary charge, Z is the effective charge number,
ρ is the electrical resistivity, j is the current density, and JTM
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and JEM are TM flux and EM flux, respectively. Fig. 1 shows
the TM over EM ratio in (1) with different Q values and
temperature gradients, where Q is ranged from 0.09 eV to
0.9 eV for different techniques [18]. As both Q values and
temperature gradients (larger current densities) increase, the
TM effect becomes more significant and can be even larger
than the EM effect.

In this work, we propose a new semi-analytical solution to
compute the transient hydrostatic stress evolution considering
both EM and TM for the general multi-segment interconnect
trees. Our new contributions are as followings:

• First, an accurate analytical thermal model is employed
to capture the non-uniform temperature distribution of
the interconnects due to Joule heating for a single wire.
On top of this, we develop a closed-form expression for
temperature distribution of multi-segment wires. With this
result, we derive a more general and accurate analytical
formula for steady-state stress distribution based on the
computed non-uniform temperature distribution.
• Second, with the steady-state stress distribution, the
coupled EM-TM PDE can be easily homogenized and
solved by the separation of variables (SOV) method, in
which Bessel function was derived as the eigenfunctions
in the new SOV method, which is different from that
in [19], [20]. To deal with temperature/position-dependent
diffusivity of metal migration process due to non-uniform
temperature distribution, we use a piecewise linear tech-
nique to approximate the position-dependent diffusivity,
which is more suitable for the non-uniform diffusivity in
contrast to stepwise uniform approximation [21].
• Third, compared with constant temperature, the effects
of non-uniform temperature distribution on EM void
nucleation phase for large multi-segment interconnect
trees are studied, which shows that temperature gradient
due to Joule heating indeed has significant impacts on
the EM failure process. Numerical results on multi-
segment interconnects show that the proposed method
has negligible error loss compared to commercial finite
element software COMSOL but is about an order of
magnitude faster than COMSOL with 10x less memory
footprint.

The rest of the article is organized as follows: Section II
reviews the physics-based EM model considering TM effects.
Section III gives a coupled EM-TM PDE describing hydro-
static stress. Section IV presents the analytical thermal model
describing the temperature distribution of the interconnects
and develops an approach to extract effective thermal length.
Section V presents an accurate and analytical solution for
steady-state EM-TM stress assessment. Section VI proposes a
novel and efficient semi-analytical EM-TM method to estimate
the hydrostatic stress evolution under non-uniform temper-
ature distribution. Section VII shows numerical results for
the proposed method and comparison against the commercial
software COMSOL. Section VIII concludes this article.

II. REVIEW OF RELEVANT WORK

Metal atoms migrate in the presence of thermal gradients.
This effect is called Soret Effect or thermomigration (TM) [22].
The TM effects have been studied in the past and should
be seriously considered in current and future interconnects

of ICs [23]–[26]. It has been experimentally observed that
temperature gradient |dT/dx| can easily exceed 0.1K/µm [16],
[23], [24], [26], [27]. Li et al. show that temperature changes
rapidly in the short and advanced interconnects using both
measurement method and finite element based ANSYS simu-
lation [28]. Temperature contour map obtained by scanning
Joule expansion microscopy shows that Joule heating with
current density 3.13×1010A/m2 leads to temperature rise 30K
on an interconnect of length 9µm [29]. The large temperature
gradients can cause significant TM, which can be in the same
magnitude as EM [16], [24], [26]. Also, experimental data
shows that thermal gradient has significant impacts on the EM-
induced time to failure (TTF) for power electronics [25]. This
work shows that thermal gradient of 0.19K/µm can lead to
50% TTF reduction even with low oven temperature. In [24],
the experiments and simulation show that when the direction
of temperature gradient (25K/200µm) changes from positive to
negative, the mean time to failure (MTTF) improves by 213%.
When the directions of temperature gradient and current are
same, temperature gradient reduces MTTF by 57%. If they
are in the opposite directions, temperature gradient improves
MTTF by 33%. The effect of TM and EM on microelectronics
solder joints is also studied with experiments and simulation
in [30]. This paper shows that with 2.4 × 1010A/m2 current
density, 376K hot temperature and 366K cold temperature in
the experiments, the test vehicle fails after 693h. It can be seen
that crack in the solder joints which are stressed by TM+EM
forces is the worst among the TM, TM-EM and TM+EM
cases. As a result, TM effect has to be seriously considered
due to significant Joule heating in modern ICs.

However, many existing EM methods only consider the tran-
sient/temporal thermal effects when solving the Korhonen’s
equation or derive analytic models to estimate transient EM
stress under time-varying temperature [8], [10], [11], [31],
[32]. Those works do not consider the spatial temperature or
thermal gradient impacts on the multi-segments. After that,
some research efforts are carried out recently to investigate EM
considering the TM effects [16], [18], [33]–[36]. A coupled
EM-TM equation based on Korhonen’s equation is proposed
and well accepted to estimate hydrostatic stress evolution due
to EM, TM and stressmigration (SM).

To efficiently and accurately solve the Korhonen’s equation,
a number of numerical and analytic solutions are proposed
recently, such as finite difference based methods [12], [37],
[38], finite element based methods for post-voiding phase
analysis [15], [39] and efficient analytical or semi-analytic
solutions [6], [16], [19], [20], [40], [41]. Among them, SOV
method [19], [20] is a promising semi-analytic method for
general multi-segment interconnect trees.

However, applying SOV method for the coupled EM-
TM equation becomes challenging as one has the loca-
tion/temperature dependence of diffusivity of metal migration
due to the presence of spatial thermal gradients. Recently
Abbasinasab et al. propose analytical solutions for both tran-
sient and steady states of the EM-TM model [16], [18],
[36]. However, their steady-state solution has more restricted
assumption in which the temperature of surrounding dielectrics
needs to be the average temperature of two end nodes in a
segment. Furthermore, the analytical transient method only
works for constant diffusivity of EM. For multi-branch in-
terconnects structure, this method has to re-compute the coef-
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ficients to satisfy the boundary conditions for all junctions in
each time point, which requires very expensive computational
cost. Therefore, more efficient and accurate transient coupled
EM-TM analysis techniques considering spatial temperature-
dependent diffusivity are highly desirable.

III. ELECTROMIGRATION MODEL CONSIDERING THERMAL

GRADIENT EFFECTS

EM is a diffusion phenomenon of the migration of metal
atoms due to several driving forces. The momentum exchange
from conducting electrons to metal atoms creates metal atoms
tension at the cathode end and a corresponding metal com-
pression at the anode ends of the metal wire. The temperature
gradient is another important driving force to move atoms from
hot to cool places. The lasting migration process increases the
hydrostatic stress, which is a prime cause of forming void
at cathode and hillock at anode of the interconnects. As the
stress reaches the critical value, voids can be created. To make
matters worse, the void causes open circuit and the hillock
leads to short circuit in the interconnects, which is called EM-
induced failure and a major reliability problem in 3D ICs.

The total atomic flux is the sum of the three fluxes due to
EM, SM, and TM, expressed as [16], [18], [33]–[36]

J = JEM + JSM + JTM

= −Dv

(
Ω

kBT
Cv

∂σ

∂x
− Cv

eZρj

kBT
− Q

kBT 2
Cv

∂T

∂x

)
(2)

where Dv is the vacancy diffusivity, Cv is the vacancy
concentration, kB is Boltzmann’s constant, Ω is the atomic
volume, and σ is the hydrostatic stress.

Then, Korhonen’s equations considering temperature gradi-
ents can be rewritten as [33]

∂σ

∂t
=

∂

∂x

[
κ(x)

(
∂σ

∂x
− eZρj

Ω
− Q

ΩT

∂T

∂x

)]
(3)

where κ(x) = Da(T (x))BΩ/(kBT (x)) is a position-
dependent diffusivity due to non-uniform temperature, and
Da = D0 exp(−Ea/(kBT )) is atomic diffusion coefficient.
D0 is a constant and Ea is the EM activation energy. (3) can
be viewed as coupled EM and TM equation for hydrostatic
stress and its detail derivation is described in Appendix A.

Fig. 2. 3D view of a general multi-segment Interconnects

Real on-chip power grid networks consist of many sin-
gle branches, which are connected with each other by the
junction, as shown in Fig. 2. Several researches show the
hydrostatic stress can’t be computed in the individual branch
because each branch is not independent [1], [6], [19], [41].

To consider these connected effects, for a general inter-
connect wires with n nodes, including p interior junction
nodes xr ∈ {xr1, xr2, ..., xrp} and q block terminals xb ∈
{xb1, xb2, ..., xbq}, as shown in Fig. 2(blue nodes for xr and
red nodes for xb), the hydro-static stress distribution σ(x, t)
along the wire is described by the following coupled EM-TM
equation.

∂σij

∂t
=

∂

∂x

[
κij(x)

(
∂σij

∂x
− Sij −Mij

)]
, t > 0

BC : σij1(xi, t) = σij2(xi, t), t > 0

BC :
∑

ij

κij(xr)

(
∂σij

∂x

∣∣∣∣
x=xr

− Sij −Mij

)
· nr = 0, t > 0

BC : κij(xb)

(
∂σij

∂x

∣∣∣∣
x=xb

− Sij −Mij

)
= 0, t > 0

IC : σij(x, 0) = σij,T

(4)
where ij denotes a branch connected to nodes i and j, nr

represents the unit inward normal direction of the interior junc-
tion node r on branch ij, which is +1 for right direction and
−1 for left direction of branch with assumption of xi < xj .
Sij = eZρj/Ω is EM flux and Mij = Q/(ΩT ) · ∂T/∂x for
TM flux for branch ij. σij,T is the initial thermal-induced
residual stress for segment or branch ij. Fig. 3(left) shows a
cross interconnect tree, which is a two dimensions structure.
To calculate the hydrostatic stress efficiently and conveniently
in our work, we reduced 2D problem (x-y) to 1D problem
(x) which is described by (4). By performing such 2D to 1D
mapping, we will end up with the same value of x but at
different wire segments, as shown in Fig. 3 (right). The value
of x only represents the relative position in each segment.

Fig. 3. The 2D problem to 1D problem mapping in the proposed analytic
solution.

Fig. 4. Algorithmic flow of the proposed combined EM and TM analysis

Based on the physical EM-TM model, we can carry out
a combined EM and TM analysis for general multi-segment
interconnects, as shown in Fig. 4. At the beginning, the
dissipated power calculated by Joule heating due to high
current density is treated as heat source in thermal analysis.
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Then, we develop an analytical temperature solution of the
interconnects, as described in Section IV. With temperature
distribution, steady-state solution of coupled EM-TM equation
can be obtained, as shown in Section V. After that, considering
non-uniform diffusivity κ(T ), we use steady-state solution to
homogenize the EM-TM equation (4). To solve homogeneous
EM-TM equation, an efficient separation of variables (SOV)
method is proposed to do transient analysis. Finally, we can
obtain the original transient response of hydrostatic stress by
inverse transformation, as shown in Section VI.

IV. THERMAL ANALYSIS OF INTERCONNECTS DUE TO

JOULE HEATING

To consider the non-uniform temperature effects, we have
to capture the temperature profiles of the interconnects due
to Joule heating. Generally, heat conduction equation with
boundary conditions is utilized to model heat transfer and
obtain temperature [42]. Many numerical methods, such as
finite element method and finite difference method, have been
proposed to solve the heat conduction equation. Numerical
methods require expensive computation cost for very large
scale integrated (VLSI) circuits. Because of uniform structure
along the interconnects, we can reduce 3D structure to 1D
problem and develop an analytical solution for heat conduc-
tion on the interconnects [16], [43]. However, this method
only works for a single wire, not for general multi-segment
interconnects. In addition, the expression for effective thermal
length Γ is not accurate enough. Based on that, we develop
a novel analytical approach to characterize thermal behavior
of general multi-segment interconnects, which is efficient and
accurate.

Specifically, the dissipated power density due to Joule
heating is calculated by

P =
I2R

V
=

(jA)2ρL
A

LA
= j2ρ (5)

where I is the current, R is the resistance, V is the volume,
A is the cross sectional area and L is the length of the
interconnects.

Fig. 5. Cross view of a interconnect

For interconnect wires, we can consider this problem as
1D problem. Then the governing heat equation along the Cu
interconnects can be described by

κCu

∂2T (x)

∂x2
− heff(T − T0) + j2ρ = 0 (6)

where κCu is thermal conductivity of Cu interconnects, and
heff is the coefficient of convective heat transfer from Cu
interconnect to surrounding substrate, T0 is temperature on
the bottom side of Si substrate. The item heff(T −T0) in (6) is

introduced to represent heat which flows from interconnects to
surrounding dielectric, as shown in Fig. 5. With this item, we
can reduce complex 3D thermal analysis of the interconnects
to 1D problem.

With the boundary conditions T (−L
2 ) = T1 and T (L2 ) =

T2, the solution of (6) is obtained by [18], [43]

T (x) = [T − (T0 + Tm)]sech(
L

2Γ
)cosh(

x

Γ
)

+ Tncsch(
L

2Γ
)sinh(

x

Γ
) + (T0 + Tm)

(7)

where

T =
T1 + T2

2
, Tn =

T2 − T1

2
, Tm =

j2ρΓ2

κCu

, (8)

where Γ can be viewed as effective thermal length, which can
be expressed as [43]

Γ =

√
κCu

heff

≈
√

κCutCutILD

κILD

(9)

where κILD is the thermal conductivity of dielectric, tILD and
tCu are the thickness of dielectric and copper, respectively.
Approximated equation (9) illustrates Γ is determined by
the dimensions and thermal conductivity of interconnect and
surrounding dielectrics, as shown in Fig. 5. However, expres-
sion (9) only gives an approximated value, which may lead
to inaccurate temperature results. To get accurate estimation
of Γ, we propose to use finite element based COMSOL to
extract the effective thermal length of the solution (7). Note
for a given technology node, in general we can assume Γ is
the same as first order approiximation across the whole chip
as the cross section of interconnects in a chip does not change
signfiicantly. If necessary, we can compute the Γ for each
specific layer as well.

First, finite element analysis based on COMSOL is per-
formed to calculate temperature Ti ∈ T(i = 1, · · · , N)
at corresponding position xi ∈ x(i = 1, · · · , N) along
the Cu interconnects. T and x are vectors, which represent
temperature and position, respectively.

Second, we can tune the value of Γ and fit the reference
results T and x by using expression (7). To estimate Γ
accurately, the destination is to minimize error ǫ defined below

ǫ =
1

N

N∑

i=1

(Ti − T (xi,Γ))
2

=
[T− T (x,Γ)]T [T− T (x,Γ)]

N

(10)

Instead of tuning the value of Γ manually, the accurate Γ is
searched automatically by the Newton’s iteration

Γn+1 = Γn +
[T− T (x,Γn)]

T [T− T (x,Γn)]

2[T− T (x,Γn)]T
∂T (x,Γ)

∂Γ |Γ=Γn

(11)

with the initial value from (9). Notice Γ can also be obtained
by directly measurement or by computing the accurate coef-
ficient of the effective convective heat transfer, heff, as shown
in (9).

For general multi-segment wires, we assume that each wire
segment ij has a direction defined for the sign of its heat
flux qij(x) at interior junction nodes xr ∈ {xr1, xr2, ..., xrp}.
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Then we observe that heat flux conservation is satisfied at
location xr, which is described by

∑

ij

qij(xr) = 0. (12)

We note that this heat flux conservation ignores the heat loss
to the surrounding dielectrics at xr, which we assume is very
small in general.

At the block terminals xb ∈ {xb1, xb2, ..., xbq}, heat flux
flows from the terminal to its surrounding dielectrics due to
convective boundary condition, which is modeled by

−qij(xb) · nb = hb(Tij(xb)− T0) (13)

where hb is the convective coefficient. The heat flux and
temperature are related by Fourier’s law, which is expressed
as

q = −κCu∇T (14)

Therefore, substituting (14) to boundary conditions (12)
and (13), we have

BC :
∑

ij

∂Tij(x)

∂x

∣∣∣∣
x=xr

· nr = 0

BC :
∂Tij(x)

∂x

∣∣∣∣
x=xb

· nb = Γ−2
b (Tij(xb)− T0)

(15)

where terminal thermal length is given by

Γb =

√
κCu

hb

(16)

Finally, based on boundary conditions (15), temperature
expression (7) and its derivative, we can form the linear
equations

A · β = B (17)

where A is an (p+ q)× (p+ q) matrix, B is an (p+ q)× 1
vector and the vector to be determined is represented by

β = [Tij(x1), Tij(x2), · · · , Tij(xn)]
T (18)

The elements of matrix A are connected with a tree structure,
which can be solved linearly and efficiently. Once the temper-
ature of n nodes is obtained, temperature distribution along
the interconnects can be determined by (7).

We notice that at terminal nodes (vias typically), the related
elements of β are known already, which are called βd. To
solve this problem, we reorder and decompose equation (17),
which is expressed as

[
A11 A12

A21 A22

]
·
[
βu

βd

]
=

[
B1

B2

]
(19)

where βu denotes unknown elements of β and βd represents
Dirichlet boundary elements of β. Therefore, the unknown
temperature can be calculated by

βu = A−1
11 (B1 −A12 · βd) (20)

We remark that we only need to consider the steady-state
temperature distributions in the multi-segment wires in our
problem. The reason is that transient behavior of the tem-
perature is not important as temperature changing rates (time
constant) is in the range of mili-second for VLSI systems [42],

while the time constant of EM is in the range of days or
months.

We note that we also need to consider the temperature
changing from active devices, which basically are computed by
the traditional full-chip thermal analysis or coupled electrical-
thermal analysis with proper power modeling for the devices
at different levels [42] and many works have been proposed
in the past [44]. We can treat the full-chip thermal analysis
results as the ambient temperature inputs to the proposed EM
analysis, as shown in (6). If the full-chip thermal analysis al-
ready includes the Joule-heating analysis, then we can directly
use the computed temperature profile for both steady-state
hydrostatic stress analysis and transient stress analysis with
location dependent EM diffusivity, which will be discussed in
following sections.

V. STEADY-STATE ANALYTIC SOLUTION CONSIDERING

BOTH THERMOMIGRATION AND RESIDUAL

THERMO-MECHANICAL STRESS

In this section, we derive the steady-state solution of the
coupled EM-TM equation in (4) considering the non-zero
residual initial stress mainly from thermo-mechanical effects.
Also, the steady analysis of the EM-TM model will be used to
transfer the coupled EM-TM equation into homogeneous one
in transient analysis as we show later.

Specifically, let σ0 is the non-zero initial residual stress of
the wire, which may come from thermo-mechanical effects
during the back end of line (BEOL) process. When the stress
distribution comes to steady state, the atom flux no longer
changes with time, and the constant atom flux in the wire
becomes zero, which leads to

Ja = κ(x)

(
∂σ(x,∞)

∂x
− eZρj

Ω
− Q

ΩT

∂T

∂x

)
= 0 (21)

By integration of (21), we obtain the steady-state stress solu-
tion as

σ(x,∞) =
eZρj

Ω
x+

Q

Ω
ln(T (x)) + C (22)

where C is the constant to be determined.

We notice that instead of finding σ(x,∞) for all pos-
sible x, we just need to find the σ(x,∞) at the junction
nodes xr ∈ {xr1, xr2, ..., xrp} and block terminals xb ∈
{xb1, xb2, ..., xbq}. The total number of nodes is p + q with
p + q − 1 wire segments. Then, we need p + q equations to
solve for the p+ q unknowns.

The difference of the hydrostatic stress at two ends of a
wire segment can be written as

σ(xi)− σ(xj) =
eZρj

Ω
Lij +

Q

Ω

[
ln(T (xi))− ln(T (xj))

]

(23)

As a result, we have p+ q−1 equations already. Now we still
need one more equation. By integration of (22), we have
∫ xj

xi

σ(x)dx =
σ(xi) + σ(xj)

2
Lij +

Q

Ω

[
ln

(
T0 + Tm√

TiTj

)
Lij

+
(Ti + Tj − 2(T0 + Tm))Γ

(T0 + Tm)
tanh(

Lij

2Γ
)

]

(24)
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For general multi-segment interconnect trees, with the atom
conservation

∫
σ(x)dx =

∫
σ0(x)dx, we obtain the last

equation:

∑

ij

[
σi + σj

2
Lij +

Q

Ω

(
ln

(
T0 + Tm,ij√

TiTj

)
Lij

+
(Ti + Tj − 2(T0 + Tm,ij))Γ

(T0 + Tm,ij)
tanh(

Lij

2Γ
)

)]
=

∫
σ0(x)dx

(25)

With the p+q equations, we can obtain the steady-state stress
σ(x,∞) at all the nodes that we are interested in.

VI. TRANSIENT STRESS SOLUTION

In this section, we develop a semi-analytic transient solution
for the coupled EM-TM equation (4) using the SOV method.
The SOV method has been applied to solve the Korhonen’s
equations without considering the thermal effects [19], [20].
However, it is difficult to use the SOV method to solve the EM-
TM PDE due to the position-dependent diffusivity of copper
wires.

(a)

(b)

Fig. 6. (a) A piecewise linear approximation and (b) step-wise constant
approximation of diffusion coefficient κ(x).

As we can see from Fig. 6, piecewise linear and step-
wise constant approximations are used to approximate the
non-uniform diffusivity. It is evident that piecewise linear
approximation shown in Fig. 6(a) requires less segments while
maintaining high accuracy in contrast to stepwise constant ap-
proximation [45] shown in Fig. 6(b). Therefore, it is essential
to develop piecewise linear approximation based SOV method
to solve the transient EM-TM partial differential equation.

In this work, we employ a piecewise linear approximation
to model temperature gradients across a wire. Specifically, as
shown in Fig. 6(a), the diffusivity can be approximated by

κ(x) =





k1x+ b1 x0 ≤ x < x1

k2x+ b2 x1 ≤ x < x2

· · ·
knx+ bn xn−1 ≤ x < xn

(26)

Then, we can homogenize both the governing equation and
boundary conditions with following transformation

σ̂(x, t) = σ(x,∞)− σ(x, t) (27)

After that, the EM-TM PDE (4) can be transformed into
homogeneous initial-boundary value problem (IBVP), which
is described by

∂σ̂ij

∂t
=

∂

∂x

[
κij(x)

∂σ̂ij

∂x

]
, t > 0 (28a)

BC : σ̂ij1(xi, t) = σ̂ij2(xi, t), t > 0 (28b)

BC :
∑

ij

κij(xr)
∂σ̂ij

∂x

∣∣∣∣
x=xr

· nr = 0, t > 0 (28c)

BC : κij(xb)
∂σ̂ij

∂x

∣∣∣∣
x=xb

= 0, t > 0 (28d)

IC : σ̂ij(x, 0) = σ(x,∞)− σij,T (28e)

Applying separation of variables method σ̂ij(x, t) =
φij(x)θ(t), the governing equation (28a) becomes

θ′(t)

θ(t)
=

∂
∂x

[
κij(x)

∂φij(x)
∂x

]

φij(x)
= −λ2 (29)

where λ is the eigenvalue, and φij(x) and θ(t) are temporal
and spatial eigenfunctions, respectively. In general, there are
a number of eigenvalues λm(m = 1, 2, 3, · · · ) to satisfy the
boundary conditions. For each eigenvalue, the solution of
temporal function is

θm(t) = Cm · e−λ2

mt (30)

where Cm is a coefficient. The corresponding spatial distribu-
tion equation is given by

∂

∂x

[
κij(x)

∂φij(x)

∂x

]
+ λ2

mφij(x) = 0 (31)

Replacing the position-dependent diffusivity with a linear
function (26), (31) is simplified into

(x+
bij
kij

)
∂2φij(x)

∂x2
+

∂φij(x)

∂x
+

λ2
m

kij
φij(x) = 0 (32)

which can be transformed to Bessel equation, and detail
derivation is described in Appendix B [46]. The analytical
solution of (32) is given by

φij,m(x) = Aij,mJ0(ωij,m(x)) +Bij,mY0(ωij,m(x)) (33)
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


∂φij,m(x)
∂x

∣∣∣∣
x=xi

−∂φij,m(x)
∂x

∣∣∣∣
x=xj


 =

[
−γij,m(xi)J1(ωij,m(xi)) −γij,m(xi)Y1(ωij,m(xi))
γij,m(xj)J1(ωij,m(xj)) γij,m(xj)Y1(ωij,m(xj))

]
·
[
Aij,m

Bij,m

]
(36)

[
φij,m(xi)
φij,m(xj)

]
=

[
J0(ωij,m(xi)) Y0(ωij,m(xi))
J0(ωij,m(xj)) Y0(ωij,m(xj))

]
·
[
Aij,m

Bij,m

]
(37)

J1(ωij,m(x))Y0(ωij,m(x))− J0(ωij,m(x))Y1(ωij,m(x)) =
2

πωij,m(x)
(39)

D11 = γij,m(xi)
J0(ωij,m(xj))Y1(ωij,m(xi))− J1(ωij,m(xi))Y0(ωij,m(xj))

J0(ωij,m(xi))Y0(ωij,m(xj))− J0(ωij,m(xj))Y0(ωij,m(xi))

D12 = γij,m(xi)
2/(πωij,m(xi))

J0(ωij,m(xi))Y0(ωij,m(xj))− J0(ωij,m(xi))Y0(ωij,m(xi))

D21 = γij,m(xj)
2/(πωij,m(xj))

J0(ωij,m(xi))Y0(ωij,m(xj))− J0(ωij,m(xj))Y0(ωij,m(xi))

D22 = γij,m(xj)
J0(ωij,m(xi))Y1(ωij,m(xj))− J1(ωij,m(xj))Y0(ωij,m(xi))

J0(ωij,m(xi))Y0(ωij,m(xj))− J0(ωij,m(xj))Y0(ωij,m(xi))

(41)

where Aij,m and Bij,m are the coefficients to be determined,
J0(ωij,m(x)) and Y0(ωij,m(x)) are the zero-order Bessel func-
tions of the first and second kinds, respectively, and ωij,m(x)
is represented by

ωij,m(x) =
2λm√
kij

√
x+

bij
kij

(34)

Based on the temporal function (30) and spatial function (33),
the general solution for (28) is an infinity series, which is
given by

σ̂ij(x, t) =
∞∑

m=1

θm(t) · φij,m(x) (35)

Once the general solution is obtained, we need to determine
eigenvalues λm and eigenfunctions (33). In general multi-
segment interconnect trees, branch ij with node i and j is the
fundamental element, and connects with each other through the
junction nodes. Therefore, boundary information at xi and xj

is critical to determine the coefficients and eigenvalues in (33).
Accordingly, the general solutions (33) and their derivatives at
xi and xj are respectively formulated in (36) and (37), where
γij,m(x) is written as

γij,m(x) =
λm

√
kij

√
x+

bij
kij

(38)

In [46], Bessel functions also have the formula (39). Based
on (36), (37) and (39), the inward normal component of atom
flux on both ends of brach ij can be calculated by




∂φij,m(x)
∂x

∣∣∣∣
x=xi

· ni

∂φij,m(x)
∂x

∣∣∣∣
x=xj

· nj


 =

[
D11 D12

D21 D22

]
·
[
φij,m(xi)
φij,m(xj)

]
(40)

where the elements D11, D12, D21, and D22 are described
in (41).

To satisfy the conservation of the atom flux at junction nodes
and block boundaries, substituting (35) and (40) to the BCs
(28c) and (28d), we obtain

K(λm) · φ = 0 (42)

where K is an (p+ q)× (p+ q) matrix, and the vector is

φ = [φij,m(x1), φij,m(x2), · · · , φij,m(xn)]
T (43)

In order to find the solution of the nonlinear transcendental
equation |K(λm)| = 0 which is equivalent to (42), Wittrick-
Williams (WW) algorithm [45], [47] is proposed to calculate
all eigenvalues without missing anyone of them, which is also
an extremely efficient method. The method is described as
follows. We need to determine the number of eigenvalues
between zero and value of µ, which is calculated by

N(µ) = N0n(µ) + s{K∆(µ)} (44)

where K∆(µ) is the triangular form of K(µ) using Gaussian
elimination process, s{·} is a sign-count function which re-
turns the number of negative main diagonal elements of the
matrix K∆(µ), and N0n(µ) is the number of natural eigen-
values on decoupled branches with zero Dirichlet boundary
conditions on both ends. Therefore, to decouple branches and
find N0n(µ), the vector φ is set to 0, and (37) on brach ij
becomes

f0(µ) = J0(ωij,m(xi))Y0(ωij,m(xj))

− J0(ωij,m(xj))Y0(ωij,m(xi)) = 0
(45)

For positive and large x, Jacobi [46] obtained the approximate
formulae for J0(x) and Y0(x), which are respectively written
as

J0(x) ≈
√

2

πx
cos(x− π

4
), Y0(x) ≈

√
2

πx
sin(x− π

4
) (46)

Substituting (46) into (45), we have

sin(ωij,m(xi)− ωij,m(xj)) = 0 (47)
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Therefore, the approximated eigenvalue of (45) is given by

λ̃m =
mπ∣∣∣∣

2√
κij

(
√

xi +
bij
kij

−
√

xj +
bij
kij

)

∣∣∣∣
(48)

where λ̃m denotes approximate value of λm. To correct
errors of approximation (46), the accurate number of natural
eigenvalues on branch ij is determined by

N0,ij(µ) = Ñ0,ij(µ)± 1 (49)

where Ñ0,ij(µ) is the approximated value of N0,ij(µ), which
is written as

Ñ0,ij(µ) =

⌊ |ωij,m(xi)− ωij,m(xj)|
π

⌋
(50)

where ⌊x⌋ is the floor function which outputs the greatest
integer less than or equal to x. In order to obtain the accurate

value of N0,ij(µ), it is necessary to correct Ñ0,ij(µ) with the
error ±1, which is the purpose of equation (49). As shown
in Fig. 7, a number of numerical results have shown that
all approximate eigenvalues represented by (48) are offset to
the left or right with respect to accurate eigenvalues of (45).
Fig. 7(a) and Fig. 7(c) show the approximate eigenvalues are
less than the accurate eigenvalues. On the contrary, Fig. 7(b)
and Fig. 7(d) show the opposite. Red number denotes N0,ij(µ)

and green number represents Ñ0,ij(µ). Based on the relation-
ship between eigenvalues and N0,ij(µ) shown in Fig. 7, there

are four cases to correct errors of Ñ0,ij(µ) and obtain the
accurate N0,ij(µ), which are listed in Table I. The total number
of natural eigenvalues is the sum of N0,ij(µ)

N0n(µ) =
∑

ij

N0,ij(µ) (51)

With the number of eigenvalue (44), we can use bisection
method to separate and approach eigenvalues in an iterative
way. Once the eigenvalues λm are determined, a linear equa-
tions formed by BCs (28b), (28c) and (28d) are solved for
eigenfunctions. For the linear equations, we set some elements
such as A12,m(m = 1, 2, · · · ) to 1 and the coefficients Aij,m

and Bij,m can be obtained.
After that, using orthogonality of eigenfunctions and initial

conditions (28e), the coefficients Cm can be determined by

Cm =

∑
ij 〈φij,m(x) · σ̂ij(x, 0)〉∑
ij 〈φij,m(x) · φij,m(x)〉 (52)

where the inner product is defined by

〈fij(x) · gij(x)〉 =
∫ xj

xi

fij(x)gij(x)dx (53)

Finally, the original transient hydrostatic stress σ(x, t) is
obtained by inverse transformation

σ(x, t) = σ(x,∞)− σ̂(x, t) (54)

VII. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present some numerical results and vali-
date the accuracy of the proposed analytical method with three
typical structures in VLSI interconnects, including a single
wire, straight line and multi-segment interconnects, as shown
in Fig. 8, Fig. 11 and Fig. 14, respectively. All programs are

(a) (b)

(c) (d)

Fig. 7. Four types of relationship between the approximated and accurate

eigenvalues to determine N0,ij(µ) and Ñ0,ij(µ).

TABLE I
DETERMINATION OF NUMBER OF NATURAL EIGENVALUES

Figure Case Subcase Correction

Fig. 7(a)
f0(0) > 0

and f0(λ̃1) > 0

Ñ0,ij(µ) is odd
and f0(µ) > 0

N0,ij(µ) =

Ñ0,ij(µ)− 1

Ñ0,ij(µ) is even
and f0(µ) < 0

Fig. 7(c)
f0(0) < 0

and f0(λ̃1) < 0

Ñ0,ij(µ) is odd
and f0(µ) < 0

Ñ0,ij(µ) is even
and f0(µ) > 0

Fig. 7(b)
f0(0) > 0

and f0(λ̃1) < 0

Ñ0,ij(µ) is odd
and f0(µ) > 0

N0,ij(µ) =

Ñ0,ij(µ) + 1

Ñ0,ij(µ) is even
and f0(µ) < 0

Fig. 7(d)
f0(0) < 0

and f0(λ̃1) > 0

Ñ0,ij(µ) is odd
and f0(µ) < 0

Ñ0,ij(µ) is even
and f0(µ) > 0

implemented in MATLAB and tested on a standard computer
with a 2.7 GHz i5 CPU, 8 GB memory and macOS operating
system.

A. A single wire interconnect case

Fig. 8 shows the 3D geometry of a single wire structure with
barrier and capping layer. The bottom side is set to a constant
temperature T0, two ends of interconnect are set to constant
temperature T1 and T2 and other sides are adiabatic boundary.
Current density is 6.6×1010 A/m2, which becomes heat source
due to Joule heating. The initial stress σ0 is set to be 10 MPa.
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Fig. 8. A single wire structure with thermal boundaries
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Fig. 9. (a) Temperature distribution and (b) steady stress distribution of a
single wire.

The width of the wire is 0.3 µm and thickness is 0.8 µm.
In order to obtain the accurate Γ, COMSOL is employed to
perform thermal simulation. Based on the formula (11), the
value of Γ is extracted by using the results from COMSOL
simulation, which is 9.718×10−6 in this case. As shown from
Fig. 9(a), the temperature profile computed by the proposed
analytical solution (7) agrees very well with the COMSOL
simulation.
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Fig. 10. (a) Transient stress distribution and (b) maximum stress over time
of a single wire.

Once temperature distribution along the single wire is cap-
tured, we can obtain the steady state hydrostatic stress using
equations (23) and (25). Fig. 9(b) shows the proposed method
has a good agreement with COMSOL. However, due to
using more restricted assumption on boundary conditions, the
analytical solution in [16] leads to less accurate results. In the
Fig. 9(b), the legend ‘CT’ denotes the constant temperature,
which represents the case without considering TM effects. As
we can see in Fig. 9(b), EM steady state stress considering TM
effects is different from that of ‘CT’ case, and the maximum
stress for EM-TM analysis is smaller than that of ‘CT’ case.

Then, we can perform EM-TM transient analysis. Fig. 10(a)
shows that there exists a very good agreement between the pro-
posed method and COMSOL results at different time points.
To investigate the impact of TM on transient simulation, the
maximum hydrostatic stresses over time of the single wire
with and without TM effects are depicted in Fig. 10(b). In
this paper, we set the critical stress to be 500 MPa [48]. As
we can see, If we do not consider TM effects, void will be
formed in cathode. In fact, the wire will never fail.

B. A straight line interconnect case

(a)

(b)

Fig. 11. (a) Structure of a typical power delivery network. We can evaluate
EM stress separately for each power line (red) because diffusion barrier
(Ta/TaN) prevents Cu atoms from diffusing into other metal layers. (b) A
straight line structure extracted from IBMPG1 benchmark [49], which is
drawn from real design. Positive value of current density denotes its direction
is along x positive direction.

TABLE II
PARAMETERS FOR THE STRAIGHT LINE INTERCONNECT WIRE

Brch# j (A/m2) L (µm) Brch# j (A/m2) L (µm)

l1,2 −1.06E10 11 l6,7 −4.46E10 119
l2,3 −5.09E9 119 l7,8 −5.76E10 11
l3,4 −4.72E10 11 l8,9 2.22E10 119
l4,5 −4.43E10 119 l9,10 1.86E10 11
l5,6 −4.41E10 11
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Fig. 12. (a) Temperature distribution and (b) steady stress distribution of a
straight line.

An example of power delivery network (PDN) composed
of two metal levels is described in Fig. 11(a). Power and
ground lines are illustrated by red and blue lines, respectively.
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Typical interconnect metals are covered with diffusion barrier
(Ta/TaN) layer, which demonstrates strong resistance to EM
from one metal layer to another metal layer. Therefore, EM
analysis for each continuously connected interconnect can be
analyzed separately. For a real application, a straight line is
selected from realistic IBMPG1 benchmark [49], as shown in
Fig. 11(b). Its size and current densities obtained by SPICE
circuits simulation for IBMPG1 benchmark are illustrated in
Table II. As we can see, there are global wires (119µm)
and local wires (11µm) in the straight line. For the thermal
simulation, Γ calculated by (11) is 9.624× 10−6.
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Fig. 13. (a) Transient stress distribution and (b) maximum stress over time
of a straight line.

Fig. 12 and Fig. 13(a) show that there exists a very good
agreement between the proposed method and COSMOL re-
sults for temperature distribution, steady stress and transient
stress. It can be observed from Fig. 13(b) that TM effects lead
to decreasing of void nucleation time.

C. A multi-segment interconnect case

(a)

(b)

Fig. 14. (a) 3D schematic of standard cell for inverter circuits. Power line (red)
is a tree structure in standard cell. We use (b) a multi-segment interconnect
structure to describe complex power line tree.

To further demonstrate the efficiency and accuracy of
the proposed semi-analytical transient solution for EM-TM

TABLE III
PARAMETERS FOR THE MULTI-SEGMENT INTERCONNECT WIRE

Brch# j (A/m2) L (µm) Brch# j (A/m2) L (µm)

1 5× 1010 30 9 4× 1010 20

2 1× 1010 20 10 2× 1010 20

3 2× 1010 30 11 2× 1010 30

4 4× 1010 30 12 1× 1010 30

5 2× 1010 30 13 3× 1010 40

6 3× 1010 20 14 1.5× 1010 10

7 2× 1010 30 15 1× 1010 20

8 5× 1010 30 16 2× 1010 20
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Fig. 15. Temperature distribution of a multi-segment interconnect.
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Fig. 16. Steady stress of a multi-segment interconnect.

analysis, we consider power interconnects of standard cell
for designing ICs. Fig. 14(a) shows 3D view of a standard
cell for inverters circuits. As we can see, the power line
(red) is a tree structure and has multi-segments. Therefore,
a more complicated and general multi-segment wire structure
as shown in Fig. 14(b) is employed as a test case. The current
densities and lengths of all the segments are given in Table III,
where Brch is the branch index, j is the current density, and
L is the length of the wire.

We use the proposed analytical method to capture thermal
profile due to Joule heating. Accurate Γ and Γb are extracted
by (11), which are respectively 9.615× 10−6 and 0.0125 for
this case. The effective thermal length Γ of the three cases
are very similar due to their same dimensions and material
in cross view. We set constant temperature at node 2 and 16
with 373K and 393K, respectively. Temperature at all nodes is
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Fig. 17. Transient stress distribution of a multi-segment interconnect at (a)
t = 1× 105 s, (b) t = 1× 106 s, (c) t = 1× 107 s, and (d) t = 1× 108 s.
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Fig. 18. Maximum stress over time of a multi-segment interconnect.

estimated by the thermal solver (20). As we can see that the
analytical solution for temperature distribution is very accurate
compared to the results of COMSOL as shown in Fig. 15.

Fig. 16 and Fig. 17 show that the results from the proposed
method have a good agreement with that of COMSOL in both
steady and transient analysis. As we can see in Fig. 16, ana-
lytical solution of steady state in [16] is again less accurate in
the multi-segment interconnect case. In addition, the maximum
stress of EM-TM analysis is larger than that of ‘CT’.

As shown in Fig. 18, the accuracy of our proposed EM-
TM method is demonstrated by COMSOL. If we do not
consider TM effects, void nucleation time is overestimated.
Therefore, based on above mentioned three cases, TM effects

or temperature gradient impacts are significant for accurate

prediction of hydrostatic stress evolution. The TM impacts
on EM stress evolution actually depend on the temperature
gradient direction and current flow direction of the specific
wire segment. The direction of TM driving force is from high
temperature to low temperature, and the direction of EM driv-
ing force is opposed to that of the current. When the cathode
node has lower temperature than the anode node, the TM

driving force can attenuate EM driving force as in the single
wire case. When the cathode node has higher temperature than
the anode node, the TM driving force can enhance EM driving
force as shown in the Brch 3 of the multi-segment interconnect
case. Therefore, steady state ∆σ2,4 with TM effect is greater
than that without TM effect, as shown in Fig. 16. Experiments
in [24], [30] also demonstrated the collective effects of EM and
TM. However, the interaction between TM and EM for multi-
segment interconnect is complex as both two situations exist.
Overestimated void nucleation time is the result impacted by
the superposition of each branch effect. Another important
factor impact void nucleation time is non-uniform diffusivity
κ(T ) [31], which affects time to steady state but does not
change the steady results, as shown in Fig. 19. Compared with
TM effects, the impact of temperature-dependent diffusivity on
void nucleation time is limited.
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Fig. 19. Maximum stress over time of a single wire for different EM models.

Furthermore, to validate the efficiency of the proposed
method, time step is set to ∆t = 1×106 s and total simulation
time lasts 2× 109 s. Table IV shows that the semi-analytical
method reaches a 9.1× or about one order of magnitude
speedup over COMSOL (with almost same accuracy) and
reduces memory footprint by 10.6× compared with the FEM
analysis.

TABLE IV
COMPARISON OF PROPOSED METHOD AND COMSOL

Proposed COMSOL Ratio

Time (sec) 31 283 9.1
Memory (MB) 58 617 10.6

VIII. CONCLUSION

In this paper, we have proposed a new semi-analytical
transient solution for the electromigration (EM) hydrostatic
stress evolution considering thermomigration (TM) effects
on general multi-segment interconnects. The new method is
based on the SOV approach to find the analytic solution of
coupled EM and TM partial differential equations. We first
develop analytic solutions to compute steady-state temperature
distribution of multi-segment wires. Then, we derive a more
general and accurate analytical formula for steady state EM-
TM stress profile based on the analytical non-uniform tem-
perature profile. Finally, we propose to use piecewise linear
technique to approximate the position-dependent diffusivity of
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metal migration. Numerical results on multi-segment intercon-
nects show that the proposed method has negligible error loss
compared to COMSOL but is about an order of magnitude
faster than COMSOL with 10x less memory footprint. The
numerical results further show that temperature gradient due
to Joule heating indeed has significant impacts on the EM
failure process.

APPENDIX A

There are three types of driving forces leading atomic trans-
port along the interconnect line, such as EM, stressmigration
(SM), thermomigration (TM). EM driving force caused by
the momentum transfers between moving electrons and metal
atoms increases with the increasing current density due to the
applied electrical field. The atomic flux due to EM driving
force is defined by

JEM = DvCv

eZρj

kBT
(55)

A vacancy concentration gradient decreasing from the cathode
to the anode because of the migration of metal atoms forms the
mechanical stress. The atomic flux caused by the mechanical
force is given by

JSM = −Dv

Ω

kBT
Cv

∂σ

∂x
(56)

Temperature gradients caused by Joule heating can generate a
driving force to the mass flow, namely thermomigration. The
atomic flux generated by TM is formulated as

JTM = Dv

Q

kBT 2
Cv

∂T

∂x
(57)

The total atomic flux is expressed as [16], [18], [33]–[36]

J = −Dv

(
Ω

kBT
Cv

∂σ

∂x
− Cv

eZρj

kBT
− Q

kBT 2
Cv

∂T

∂x

)
(58)

The vacancies accumulate or vanish at the divergence of the
atomic flux. The vacancy continuity equation can be written
as [13], [33]

∂Cv

∂t
= −∂Jv

∂x
+G (59)

where G = ∂CL/∂t denotes a generation or annihilation
term [50], CL is the concentration of lattice sites.

Based on Hooke’s law, the relationship of lattice concentra-
tion and hydrostatic stress is described by

dCL

CL

= −dσ

B
(60)

where B is the Young’s Modulus. By substituting (60)
into (59), we have

−∂Jv
∂x

=
∂Cv

∂t
+

CL

B

∂σ

∂t
(61)

where the vacancy concentration is represented by [33]

Cv = Cv0 exp(
Ωσ

kBT
) (62)

and its corresponding derivative with respect to time t is

∂Cv

∂t
= Cv

Ω

kBT

∂σ

∂t (63)

By substituting (63) and (58) into (61), we have
(

BCvΩ

CLkBT
+ 1

)
∂σ

∂t
=

∂

∂x

[
κ

(
∂σ

∂x
− eZρj

Ω
− Q

ΩT

∂T

∂x

)]

(64)

where κ = BDvCvΩ
CLkBT

is diffusivity of the stress. Based on the

value of EM parameters, Korhonen et al found CvΩ
kBT

/CL

B
≪ 1,

which can be neglected, and CL = Cv = 1/Ω [40]. Due to
the above approximation, (64) can be rewritten as [33]

∂σ

∂t
=

∂

∂x

[
κ(x)

(
∂σ

∂x
− eZρj

Ω
− Q

ΩT

∂T

∂x

)]
(65)

APPENDIX B

As a spatial distribution equation, (32) can be transformed
into

(x+
bij
kij

)2
∂2φij(x)

∂x2
+ (x+

bij
kij

)
∂φij(x)

∂x

+
λ2
m

kij
(x+

bij
kij

)φij(x) = 0

(66)

It can be transformed into a general form as

u2 ∂
2y

∂u2
+ (1− 2a)u

∂y

∂u
+ [b2c2u2c+(a2 − c2p2)]y = 0

p ≥ 0, b > 0
(67)

by setting the following transformation relations:




u = x+
bij
kij

a = 0, c = 1/2
b = 2λ√

kij

p = 0

(68)

Then, replacing y(u) with uaz, (67) can be written as

u2 ∂
2z

∂u2
+ u

∂z

∂u
+ (b2c2u2c − c2p2)z = 0 (69)

Furthermore, using t = uc, we obtain the Bessel equation

t2
∂2z

∂t2
+ t

∂z

∂t
+ (b2t2 − p2)z = 0 (70)

Therefore, the analytical solution of (67) is given by [46]

y(u) = ua[AJp(bu
c) +BYp(bu

c)] (71)

where A and B are the two coefficients, Jp(·) and Yp(·) are
the first and second kind Bessel functions, respectively.
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