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Abstract—One of the pressing concerns for next-generation
manufacturing is the development of techniques for guarantee-
ing that a control system is cyberattack-resilient in the sense
that even if a cyberattack is successful at breaking information
technology-based defenses (e.g., it succeeds at providing a false
sensor measurement to the controller), closed-loop stability is
still maintained. Our prior work has provided a nonlinear
systems definition for cyberattacks. This work explores how
a nonlinear systems perspective on cyberattack-resilience for
false sensor measurements provided to controllers may allow an
economic model predictive control (EMPC) formulation known
as Lyapunov-based EMPC (LEMPC) to be designed such that if
a cyberattack occurs at a sampling time, the closed-loop state
will not leave a region where a known feedback control law
exists that can stabilize the origin of the closed-loop system if
the cyberattack is detected and non-falsified state measurements
are then provided within that sampling period.

I. INTRODUCTION

Cyberattacks on industrial control systems are becoming a
more significant concern to safe and continuous operation of
chemical processes. Demonstrated with the Stuxnet attack
on Programmable Logic Controllers (PLCs) at the Natanz
uranium enrichment plant in 2010 [1], cyberattacks have the
ability to disrupt, damage, and destroy national infrastructure
and commercial production facilities. If the proper product
and process quantities are not adequately checked (e.g.,
impurities in products which can cause issues with their
end use, as in, for example, the pharmaceutical industry)
via effective quality control, issues could arise both during
manufacturing and use of products. For many chemical-
based processes, quality control is in place, as are many
safeguards for preventing unexpected scenarios from causing
plant accidents. However, attacks could still significantly
impact production levels, which can pose national security
issues for products that are needed to keep industries and
daily life running, such as the chemical and refining in-
dustries, or the pharmaceutical industry. This indicates the
need for developing additional cyberattack-resilient control
designs. An important direction for cyberattack-resilient con-
trol frameworks is integrating control, state estimation, and
attack detection to maintain closed-loop stability [2]. For
example, [3] places bounds on the minimum number of
sensors that could be provided with false measurements
while still allowing reasonable state estimates for a linear
system to be obtained for use in place of feedback to
the control systems. Various attack detection methods have
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also been developed, including a method based on neural
networks [4] and a method based on clustering [5].

These prior works imply that a combined detection, state
estimation, and response strategy may be beneficial for
maintaining closed-loop stability and close-to-normal pro-
duction levels for nonlinear systems operated continuously
under an optimization-based controller known as economic
model predictive control (EMPC) [6], [7], [8] even in the
presence of cyberattacks involving false state measurements
provided to the control systems. A first step in working
toward the development of such an integrated strategy is to
better understand the detection-control interface, and how an
EMPC could be designed to ensure that the closed-loop state
does not exit a region of state-space from which closed-loop
stability can be maintained with non-falsified measurements
within a sampling period after the attack occurs. This work
focuses on this task in the context of a specific EMPC design
known as Lyapunov-based EMPC (LEMPC) [9]. We make
precise connections between handling measurement noise
and disturbances and handling cyberattacks in the context
of the proposed design.

II. PRELIMINARIES

A. Notation

Consider the following notation where the Euclidean norm
of a vector is given by | · |, a class K function is a function
α : [0, a) → [0,∞) where α(0) = 0 and the function strictly
increases, xT signifies the transpose of the vector x, and “/”
represents set subtraction so that x ∈ A/B := {x ∈ Rn :
x ∈ A, x /∈ B}. Ωρ := {x ∈ Rn : V (x) ≤ ρ} denotes the
level set of a positive definite function V .

B. Class of Systems

The class of systems considered is the following:

ẋ(t) = f(x(t), u(t), w(t)) (1)

y(t) = x(t) + v(t) (2)

where x ∈ Rn represents the vector of bounded process
states, u ∈ U ⊂ Rm represents the vector of bounded
manipulated inputs, and w ∈ W ⊂ Rl represents a vector of
bounded disturbances (i.e., W := {w ∈ Rl : |w| ≤ θ}).
y ∈ Rn is an output measurement vector introduced to
reflect that bounded measurement noise (with noise vector
v ∈ Rn; i.e., v ∈ V := {v ∈ Rn : |v| ≤ ϕ}) is considered.
f is a locally Lipschitz nonlinear vector function with
f(0, 0, 0) = 0. We consider that there exists a sufficiently
smooth positive definite Lyapunov function V : Rn → R+,



class K functions αj(·), j = 1, . . . , 4, and a controller h1(x)
that can asymptotically stabilize the origin of the nominal
(w(t) ≡ 0) closed-loop system of Eq. 1 such that:

α1(|x|) ≤ V (x) ≤ α2(|x|) (3)

∂V (x)

∂x
f(x, h1(x), 0) ≤ −α3(|x|) (4)∣∣∣∣∂V (x)

∂x

∣∣∣∣≤ α4(|x|) (5)

h1(x) ∈ U (6)

∀ x ∈ D ⊂ Rn, where D is an open neighborhood of the
origin. The level set Ωρ ⊂ D ∩ X of V is the “stability
region.” It is assumed that h1(x) satisfies:

|h1,i(x)− h1,i(x̂)| ≤ Lh|x− x̂| (7)

for all x, x̂ ∈ Ωρ, with Lh > 0, where h1,i represents the
i-th component of h1. Also, we consider that:

|f(x, u, w)| ≤ M (8)

|f(x1, u1, w)− f(x1, u2, w)| ≤ Lu|u1 − u2| (9)

|f(x1, u1, w)− f(x2, u1, 0)| ≤ Lx|x1 − x2|+ Lw|w| (10)∣∣∣∣∂V (x1)

∂x
f(x1, u1, w)−

∂V (x2)

∂x
f(x2, u1, 0)

∣∣∣∣ ≤ L′
x|x1 − x2|

+ L′
w|w|

(11)
for all x1, x2 ∈ Ωρ, u, u1, u2 ∈ U , and w ∈ W , where M ,
Lu, Lx, Lw, L′

x, and L′
w are positive constants.

C. Lyapunov-based Economic Model Predictive Control

LEMPC [9] is defined by:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ )) dτ (12a)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (12b)
x̃(tk) = x(tk) (12c)
x̃(t) ∈ X, ∀ t ∈ [tk, tk+N ) (12d)
u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (12e)
V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ),

if x(tk) ∈ Ωρe
(12f)

∂V (x(tk))

∂x
f(x(tk), u(tk), 0)

≤ ∂V (x(tk))

∂x
f(x(tk), h1(x(tk)), 0)

if x(tk) ∈ Ωρ/Ωρe
(12g)

where the notation u(t) ∈ S(∆) signifies that u(t) is a
piecewise-constant input vector with N pieces (N is the
prediction horizon), each held for a sampling period of length
∆. The stage cost Le in Eq. 12 may reflect the process
economics, and its time integral is evaluated throughout
the prediction horizon with predictions x̃ of the process
state obtained from Eq. 12b (which represents the model
of Eq. 1, but with w(t) ≡ 0, which is termed the “nominal”

model). Eq. 12b is initialized from the measured state x(tk)
at tk via Eq. 12c. Eqs. 12d-12e represent state and input
constraints. LEMPC is applied in a receding horizon fashion,
and the optimal solution at tk is denoted by u∗(ti|tk), where
i = k, . . . , k +N − 1. Ωρe

⊂ Ωρ is a level set of V which
renders Ωρ forward invariant under the LEMPC of Eq. 12.

III. LEMPC FOR CYBERATTACK MITIGATION

An attack on an LEMPC could involve a false state
measurement being provided; this can be considered a form
of measurement noise. However, it does not necessarily meet
the bound assumed on v above; in other words, a process
may exhibit both measurement noise and disturbances (as
considered in Eqs. 1-2 above), in the presence of which the
controller may be designed to still stabilize the origin, but
may not be designed to handle cyberattacks. This section
makes precise connections between false sensor measure-
ment cyberattacks and measurement noise theoretically, be-
ginning with an LEMPC scheme (using constraints called
“input rate of change” constraints from [11]) to be considered
for stabilizing the closed-loop system of Eq. 1 in both the
measurement noise and false sensor measurement cases. We
will analyze the conditions under which it is stabilizing in
the presence of measurement noise, and then discuss how
the measurement noise analysis might be extended to the
cyberattack case, and also differentiated from it.

A. LEMPC Formulation

We consider the LEMPC formulation from [11], but
accounting for measurement noise, as follows:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ )) dτ (13a)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (13b)
x̃(tk) = x(tk) (13c)
x̃(t) ∈ X, ∀ t ∈ [tk, tk+N ) (13d)
u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (13e)
|ui(tk)− h1,i(x̃(tk))| ≤ ϵr, i = 1, . . . ,m

(13f)
|ui(tj)− h1,i(x̃(tj))| ≤ ϵr, i = 1, . . . ,m,

j = k + 1, . . . , k +N − 1 (13g)
V (x̃(t)) ≤ ρ′e, ∀ t ∈ [tk, tk+N ),

if x(tk) ∈ Ωρ′
e

(13h)
∂V (x(tk))

∂x
f(x(tk), u(tk), 0)

≤ ∂V (x(tk))

∂x
f(x(tk), h1(x(tk)), 0)

if x(tk) ∈ Ωρ/Ωρ′
e

(13i)

Compared to the level sets in Eq. 12, ρe is replaced by ρ′e,
where ρ′e < ρe, ρ′ < ρ, and Ωρ′

e
⊂ Ωρ′ . These regions

are selected to guarantee closed-loop stability even in the
presence of measurement noise, where that noise may be
bounded by ϕ like v, or has the potential to be larger than
ϕ in a cyberattack. The conditions on ρ′e and ρ′ which allow



closed-loop stability to be guaranteed with this design in both
cases are presented in the subsequent section.

B. Stability and Feasibility Analysis: Measurement Noise
Case

To make precise connections between the cyberattack and
measurement noise cases for the LEMPC of Eq. 13, we
begin by providing the conditions under which closed-loop
stability is maintained for this LEMPC in the presence
of measurement noise. To develop these conditions, we
introduce the following definition.

Definition 1: Consider the state trajectories from t ∈
[t0, t1) that are the solutions of the systems

ẋa = f(xa(t), u
∗(x0), w(t)) (14)

ẋb = f(xb(t), u
∗(x0 + δ), w(t)) (15)

where xa(t0) = xb(t0) = x0, and u∗(x0) is the optimal
input for t ∈ [t0, t1) computed from the LEMPC of Eq. 13
with when a fully accurate state measurement x̃a(t0) = x0

is provided to the LEMPC, while u∗(x0 + δ) is the optimal
input for t ∈ [t0, t1) when the LEMPC receives a noisy
measurement x̃b(t0) = x0 + δ (|δ| ≤ ϕ). Thus, xa(t), t ∈
[t0, t1), represents the behavior of the process of Eq. 1 under
the input computed in the case of perfect state measurement
sampling from t0 to t1, and xb(t), t ∈ [t0, t1), represents
the behavior of the process from t0 to t1 under the input
computed when measurement noise is present at t0.
Because the input rate of change constraints are used, the m
components u∗

i (x0) and u∗
i (x0+δ), i = 1, . . . ,m, of u∗(x0)

and u∗(x0 + δ) satisfy:

|u∗
i (x0)− h1,i(x̃a(t0))| ≤ ϵr (16)

|u∗
i (x0 + δ)− h1,i(x̃b(t0))| ≤ ϵr (17)

Furthermore, the input rate of change constraints result in
the proposition below, which bounds |xa − xb|.

Proposition 1: Consider the systems in Definition 1. The
following bound holds for xa(t), xb(t) ∈ Ωρ:

|xa(t)− xb(t)| ≤ fu(t) (18)

for t ∈ [0, t1), where

fu(τ) :=
Lu(2ϵr + Lh|δ|)

√
m

Lx
(eLxτ − 1) (19)

Proof 1: The proof consists of two parts where |u∗(x0)−
u∗(x0 + δ)| is shown to be bounded and Eq. 18 is derived.
Part 1. From Eq. 16 and Eq. 7, for all i = 1, . . . ,m:

|u∗
i (x0)− u∗

i (x0 + δ)|
= |u∗

i (x0) + h1,i(x̃a(t0))− h1,i(x̃a(t0)) + h1,i(x̃b(t0))

− h1,i(x̃b(t0))− u∗
i (x0 + δ)|

≤ 2ϵr + Lh|x̃a(t0)− x̃b(t0)|
≤ 2ϵr + Lh|δ|

(20)

Part 2. Consider state trajectories xa and xb given by
Eqs. 14-15 under u∗(x0) and u∗(x0 + δ) from t0 to t1:

xa(t) = xa(t0) +

∫ t

t0

f(xa(s), u
∗(x0), w)ds (21)

xb(t) = xb(t0) +

∫ t

t0

f(xb(s), u
∗(x0 + δ), w)ds (22)

Subtracting Eq. 22 from Eq. 21, adding and subtracting
f(xa(s), u

∗(x0 + δ), w(s)) on the right-hand side, taking
the absolute value of both sides, and utilizing the triangle
inequality gives:

|xa(t)− xb(t)|

≤
∫ t

0

[|f(xa(s), u
∗(x0), w(s))

− f(xa(s), u
∗(x0 + δ), w(s))|

+ |f(xa(s), u
∗(x0 + δ), w(s))

−f(xb(s), u
∗(x0 + δ), w(s))|] ds

(23)

for all t ∈ [0, t1). Using Eqs. 9-10 and 23:

|xa(t)− xb(t)| ≤
∫ t

0

[Lu|u∗(x0)− u∗(x0 + δ)|

+Lx|xa(s)− xb(s)|] ds

≤ Lu(2ϵr + Lh|δ|)
√
mt+ Lx

∫ t

0

|xa(s)− xb(s)|ds

(24)

for all t ∈ [0, t1). Finally, using the Gronwall-Bellman
inequality [12], Eqs. 18-19 are obtained.

We now present two propositions.
Proposition 2: [13], [9], [14] Consider the systems

ẋy(t) = f(xy(t), ū(t), w(t)) (25)

ẋz(t) = f(xz(t), ū(t), 0) (26)

with initial states |xy(t0)− xz(t0)| ≤ |δ|, where xy(t0) and
xz(t0) are in Ωρ. There exists a K function fW (·) such that

|xy(t)− xz(t)| ≤ fW (|δ|, t− t0) (27)

for all xy(t), xz(t) ∈ Ωρ, u ∈ U , and w(t) ∈ W with:

fW (s, τ) =

(
s+

Lwθ

Lx

)
eLxτ − Lwθ

Lx
(28)

Proof 2: This proof closely follows that for Proposition 1.
Starting from the representations of xy and xz in the integral
form similar to Eqs. 21-22, subtracting one of the resulting
equations from the other, adding and subtracting f(xy, ū, 0)
to the right-hand side, taking the absolute value of each side,
applying the triangle inequality, and using Eq. 10 and |w| ≤
θ, with |xy(t0)− xz(t0)| ≤ |δ|, we obtain:

|xy − xz| ≤ |δ|+ Lwθt+

∫ t

0

Lx|xy − xz| (29)

Using the Gronwall-Bellman inequality gives Eq. 28.
Proposition 3: [13], [9] Consider the Lyapunov function

V (·) of the system of Eq. 1. There exists a quadratic function
fV (·) such that:

V (x) ≤ V (x̂) + fV (|x− x̂|) (30)



for all x, x̂ ∈ Ωρ with

fV (s) = α4(α
−1
1 (ρ))s+Mvs

2 (31)

where Mv is a positive constant.
The theorem below provides the conditions under which
closed-loop stability is guaranteed for the LEMPC of Eq. 13
in the presence of sufficiently small bounded measurement
noise and disturbances. Compared to [14], which also devel-
ops an LEMPC that can handle bounded measurement noise
and disturbances, the theorem holds with input rate of change
constraints and does not consider a state estimator due to the
assumption that full state measurements are available (though
noisy) and therefore is stated explicitly for clarity.

Theorem 1: Consider the system of Eq. 1 in closed-loop
under the LEMPC design of Eq. 13 based on a controller
h1(x) that satisfies the assumptions of Eqs. 3-6 and 7. Let
ϵw > 0, ∆ > 0, ρ > ρ′ > ρ′e > ρmin > ρs > 0, where
ρsamp > ρ′e is defined as the smallest level set of V that
guarantees that if V (xb(tk)) ∈ Ωρ/Ωρsamp , V (x̃b(tk)) ∈
Ωρ/Ωρe′ , and ρ > ρsamp2 > ρsamp satisfy:

ρ′e ≤ ρ′ − fV (fW (0,∆)) (32)

−α3(α
−1
2 (ρs)) + L′

xM∆+ L′
wθ ≤ −ϵw/∆ (33)

ρ′ + fV (fu(∆)) ≤ ρsamp2 (34)

−α3(α
−1
2 (ρ′e)) + L′

xM∆+ L′
x|δ|+ L′

wθ ≤ −ϵ′w/∆ (35)

ρmin = max{V (xb(t+∆)) : xb(t) ∈ Ωρs
} (36)

ρsamp2 ≥ max{V (xb(t+∆)) : xb(t) ∈ Ωρsamp
/Ωρ′

e
} (37)

ρ ≥ max{V (x̃b(tk)) : V (x(tk)) ∈ Ωρsamp2} (38)

If x(t0) ∈ Ωρsamp2 and N ≥ 1, then the state x(t) ∈ Ωρsamp2

for all t ≥ 0, and the state measurement at each sampling
time is in Ωρ, for |δ| = ϕ.

Proof 3: h1(x) implemented in sample-and-hold is a fea-
sible solution to Eq. 13 from [11] when x̃b(0) ∈ Ωρ and
Eq. 33 holds. To prove the stability result, we consider four
cases: Case 1) the actual process state at t0 (xa(t0) = xb(t0))
is x0 ∈ Ωρ′

e
and the state measurement at t0 (i.e., x̃b(0))

is x0 + δ ∈ Ωρ′
e
; Case 2) the actual process state at t0 is

x0 ∈ Ωρsamp2/Ωρ′
e
and x̃b(0) = x0 + δ ∈ Ωρ/Ωρ′

e
; Case

3) the actual process state at t0 is x0 ∈ Ωρsamp
/Ωρ′

e
but

x̃b(0) = x0 + δ ∈ Ωρ′
e
; and Case 4) the actual process state

at t0 is x0 ∈ Ωρ′
e
but x̃b(0) = x0 + δ ∈ Ωρ/Ωρ′

e
.

Case 1. If the LEMPC receives the state measurement
x0 ∈ Ωρ′

e
, [11] shows that under the condition in Eq. 32,

V (xa(t1)) ≤ ρ′. From Eq. 13h, V (x̃b(t1)) ≤ ρ′e. From
Propositions 1 and 3, and Eq. 19:

V (xb(t1)) ≤ V (xa(t1)) + fV (|xa(t1)− xb(t1)|)
≤ ρ′ + fV (fu(∆))

(39)

if V (xb(t1)) ∈ Ωρsamp2 , which follows if Eq. 34 holds.
Case 2. If the LEMPC receives the state measurement

x0 ∈ Ωρsamp2/Ωρ′
e
, [11] shows that with Eq. 33, V (xa(t)) ≤

V (x0), ∀ t ∈ [0, t1). To determine whether V (xb(t)) ≤
V (x0), ∀ t ∈ [0, t1), we note that from Eq. 13i and Eq. 4:

∂V (x̃b(t0))

∂x
f(x̃b(t0), u

∗(x0 + δ), 0) ≤ −α3(|x̃b(t0)|)
(40)

The time-derivative of V along the closed-loop state trajec-
tories of xb from 0 to t1 satisfies:

V̇ (xb(τ)) =
∂V (xb(τ))

∂x
f(xb(τ), u

∗(x0 + δ), w(τ))

≤ −α3(|x̃b(t0)|) +
∣∣∣∣∂V (xb(τ))

∂x
f(xb(τ), u

∗(x0 + δ), w(τ))

−∂V (x̃b(t0))

∂x
f(x̃b(t0), u

∗(x0 + δ), 0)

∣∣∣∣
≤ −α3(|x̃b(t0)|) + L′

x|xb(τ)− xb(t0)− δ|+ L′
wθ

≤ −α3(α
−1
2 (ρ′e)) + L′

xM∆+ L′
x|δ|+ L′

wθ
(41)

since x̃b(t0) ∈ Ωρ/Ωρ′
e
, where the first inequality follows

from adding and subtracting ∂V (x̃b(t0))
∂x f(x̃b(t0), u

∗(x0 +
δ), 0) from the right-hand and using Eq. 40. If Eq. 35 holds,
then V̇ (xb(τ)) ≤ −ϵ′w/∆ for τ ∈ [0, t1), so that V (xb(t)) ≤
V (x0), ∀ t ∈ [0, t1), and therefore xb(t) ∈ Ωρsamp2

.
Case 3. If x0 ∈ Ωρsamp

/Ωρ′
e
, then from Eq. 37,

V (xb(t)) ≤ ρsamp2, ∀ t ∈ [0, t1).
Case 4. When x0 + δ ∈ Ωρ/Ωρ′

e
but x0 ∈ Ωρ′

e
, Eq. 13i is

applied. From the proof for Case 2, this causes V (xb(t)) ≤
V (x0), ∀ t ∈ [0, t1) if Eq. 35 holds and x0 ∈ Ωρ′

e
/Ωρs

, such
that V (xb(t)) ≤ ρ′ < ρsamp2, ∀ t ∈ [0, t1). If x0 ∈ Ωρs

,
then xb(t) ∈ Ωρmin ⊂ Ωρsamp2 , for t ∈ [t0, t1), from Eq. 36.

The above indicates feasibility of the LEMPC at t0 and
closed-loop stability from [0, t1) in the sense that the closed-
loop state is maintained within Ωρsamp2 within that timeframe
if x(t0) ∈ Ωρsamp2 . To demonstrate the result of the theorem
(i.e., that x(t) ∈ Ωρsamp2

for all t ≥ 0 when the conditions of
the theorem are met), we examine the case at t1. At t1, one
of Cases 1-4 holds again, and so the state at t2 will again be
within Ωρsamp2 . Applying the above recursively establishes
that x(t) ∈ Ωρsamp2 for all times, and the state measurement
at every sampling time is in Ωρ from Eq. 38.

C. Stability and Feasibility Analysis: Differences Between
Measurement Noise and False Sensor Measurements

In this section, we elucidate the implications of the sta-
bility results presented above for the case of cyberattacks
on the state measurements. In particular, we now consider
the case that xa and xb (with slight abuse of notation) are
state trajectories resulting from two different inputs u∗(x0)
and u∗(x0 + δ) being applied to the system of Eq. 1 from
xa(t0) = xb(t0) = x0, where now |δ| may be larger
than ϕ (i.e., it reflects offset of the measured state from
the actual state x0 due to a falsified sensor measurement,
which is not related to the sensor noise assumptions of
Section II-B). In this case, Propositions 1-3 continue to hold
for the new definitions of xa and xb, as they were derived
considering an arbitrary |δ| as long as x0 + δ ∈ Ωρ (part of
a cyberattack detection mechanism could include flagging
a state measurement as a false measurement if the state



measurement is not in Ωρ). The question to be addressed is
whether the conditions of Theorem 1 are sufficient to ensure
that the closed-loop state is maintained within Ωρsamp2 for
all times if x(t0) ∈ Ωρsamp2

, as held for the measurement
noise case in Theorem 1. The goal of this discussion is to
utilize a theoretical construct that allows stability guarantees
to be made in the presence of measurement noise, but
would not allow the same guarantees to be made in the
presence of false sensor measurements, to elucidate some
of the differences between false sensor measurements and
measurement noise. In particular, it reveals that false sensor
measurement cyberattacks are not equivalent to measurement
noise, or capable of being always treated in the same fashion.

The recursive feasibility and stability properties in Theo-
rem 1 arise from knowledge that at the beginning of every
sampling period, the state measurement is within |δ| of its
true value (Eq. 2). In particular, the proof of Theorem 1
requires that Eqs. 34, 35, and 38 hold; these require that
|δ| be sufficiently small. For the measurement noise case,
the maximum value that |δ| can take is ϕ, which could be
adjusted practically to ensure that it is sufficiently small by
varying, for example, the sensing equipment. Cyberattacks
would not necessarily maintain the state measurement within
a small range of x0; therefore, it can be expected that
in general, Theorem 1 does not provide a framework for
guaranteeing closed-loop stability in the presence of false
sensor measurement cyberattacks.

If it could be guaranteed that at t0, the only cyberattacks
which could occur were those for which the difference δ
between the state measurement and actual state meets the
conditions of Theorem 1, then for the subsequent sampling
period, the closed-loop state would be maintained in Ωρsamp2 .
The conditions of Theorem 1 suggest that a conservative
design of the controller of Eq. 13 may be selected that would
guarantee closed-loop stability for a sampling period after an
attack for a number of different values of δ (i.e., for different
magnitudes of the false state measurement differing from the
actual measurement). To attempt to reduce the conservatism
in this approach, one could consider making state predictions
at every sampling time by simulating the nominal model of
Eq. 1 for a sampling period from the last sensor measure-
ment. Then, the difference between the state measurement
and the prediction could be checked. If an auxiliary detection
mechanism exists that always identifies a cyberattack on
the sensor measurements in one sampling period, then we
can be sure that if no cyberattack was detected before tk,
the state measurement at tk−1 was subject only to bounded
measurement noise (i.e., |x̃b(tk−1) − xb(tk−1)| ≤ ϕ). We
will use this in developing an estimate of xb(tk) via the
nominal model so that we flag sensor measurements for
which |x̃b(tk) − xb(tk)| > |δ| as false. This will ensure
that at tk, if an attack has occurred, it can be flagged as an
attack and a backup policy can be implemented; otherwise,
|x̃b(tk) − xb(tk)| ≤ |δ| so that for the subsequent sampling
period, if the conditions of Theorem 1 hold for that δ, the
closed-loop state is maintained in Ωρsamp2 . Because of the
auxiliary detection mechanism, it is assumed that an attack

will be found by tk+1, permitting mitigating actions.
We make this precise (considering measurements x̃b(tk−1)

and x̃b(tk), and x̂b(t) to denote the predicted state from the
nominal model of Eq. 1 initialized from x̃b(tk−1)): given
that |x̃b(tk−1)− xb(tk−1)| ≤ ϕ, Proposition 2 gives:

|xb(tk)− x̂b(tk)| ≤ fW (ϕ,∆) (42)

Using this, we have that:

|xb(tk)− x̃b(tk)| ≤ |xb(tk)− x̂b(tk) + x̂b(tk)− x̃b(tk)|
≤ fW (ϕ,∆) + |x̂b(tk)− x̃b(tk)|

(43)
If we flag every case where |x̂b(tk) − x̃b(tk)| > ν1, for
ν1 > 0, as a cyberattack, then:

|xb(tk)− x̃b(tk)| ≤ fW (ϕ,∆) + ν1 (44)

if no attack is flagged. Finally, if ν1, ϕ, and ∆ are chosen
such that fW (ϕ,∆) + ν1 ≤ |δ| for some δ for which the
conditions of Theorem 1 hold, this ensures that |xb(tk) −
x̃b(tk)| ≤ |δ| so that closed-loop stability is maintained over
the next sampling period even if there is a cyberattack on
the sensor measurements for which |xb(tk)− x̃b(tk)| ≤ |δ|.

Closed-loop stability for all times after attacks begin to
occur (i.e., if no auxiliary detection method is used) may
not be able to be guaranteed via the above method even
if the condition |x̂(tk) − x̃b(tk)| ≤ ν1 continues to hold
at subsequent sampling periods. This is because the above
method relies on predictions of the state of Eq. 1 from the
prior sampling time. A fundamental difference between a
cyberattack and measurement noise is that the “approximate”
value of the state is never obtained in an attack. An attacker
could ensure, for example, that at every sampling time,
the difference between x̃b(tk) and x̂b(tk) is less than |δ|;
however, if the state measurement used at the last sampling
time was also falsified, there is no guarantee that this method
of making predictions is keeping |xb(tk) − x̃b(tk)| < |δ| at
each sampling time. Part of the motivation for utilizing the
input rate of change constraints in Eq. 13 is that they help
to prevent u∗(x0) and u∗(x0 + δ) from differing from one
another too significantly over a sampling period, which may
be helpful for allowing |δ| to be larger in an attack while
still satisfying, for example, Eq. 34.

Remark 1: The analysis above helps to show why some
alternative strategies incorporating randomization in the tra-
ditional LEMPC formulation of Eq. 12 as a means for dealing
with the cyberattack may be less attractive than Eq. 13. For
example, consider a set of state measurements available to
a controller at a given time t0. A potential method that
could be utilized to attempt to thwart a cyberattack in which
false sensor measurements could be provided to any sensor
could be to have the controller randomly select which sensors
would provide state measurements to Eq. 12 from a set of
physical sensors, with the remainder of the states for which
no measurements are obtained coming from estimates. The
implementation of such a network and methodology could
make it difficult for the cyberattacker to know if the supplied
false values will affect the process, since it is presumed that



the attacker would not be aware of which sensors would be
providing the state measurement at time tk. However, if the
cyberattacker does manage to select sensors from which the
state measurements are being given as the initial condition in
Eq. 12c, the resulting deviations of the state trajectory from
the trajectory it otherwise would have taken could cause the
process state to exit the stability region.

IV. CHEMICAL PROCESS EXAMPLE

In this section, we demonstrate concepts discussed above
for a process under an EMPC design without Lyapunov-
based stability constraints (the continuous stirred tank reactor
(CSTR) in [6]). Reactant is introduced into the reactor
through an inlet stream with flow rate F , temperature T0,
and initial concentration CA0. A heating jacket provides heat
at rate Q. The following ordinary differential equations, de-
scribe the concentration of reactant A (CA) and temperature
T within the reactor over time:

dCA

dt
=

F

VR
(CA0 − CA)− k0e

−E/RTC2
A

dT

dt
=

F

VR
(T0 − T )− ∆Hk0

ρRCp
e−E/RTC2

A +
Q

ρRCpVR
(45)

where k0, VR, ρR, E, R, and Cp are, respectively, the pre-
exponential constant, volume of fluid in the reactor, fluid
density, reaction activation energy, gas constant, and heat
capacity. The inputs are the inlet reactant concentration
CA0 ∈ [0.5, 7.5] kmol/m3 and heat rate supplied Q ∈
[−50.0, 50.0] MJ/h. The process parameters are presented
in [6]. To control the process, an EMPC is utilized with the
stage cost Le = −k0e

−E
RT (t) (CA(t))

2. The simulations were
initialized from CA(t0) = 2.0 kmol/m3 and T (t0) = 425.0
K and run at one sampling time with a sampling period of
length 0.01 h, with a prediction horizon of N = 10 and
an integration step of 10−3 h used to simulate the process
with the Explicit Euler numerical integration method. The
simulations were performed in MATLAB using fmincon. To
examine the effect of a cyberattack over a sampling period,
false sensor readings of the concentration, CA,False, and
temperature, TFalse, were provided to the EMPC. Values of
(CA,False, TFalse) as follows were tested: (1.8,425), (2,420),
(2,425), (2,430), (3,425), and (4,425), with concentration
in kmol/m3 and temperature in K. The inputs computed,
and therefore also the state trajectories over the subsequent
sampling period, were about the same as when the true
state measurement was provided. To exemplify the discussion
regarding state prediction error over time without feedback,
we also present the results (Fig. 1) for the case that the EMPC
is simulated for 0.1 h with the false state measurement at
each sampling time being 0.2 kmol/m3 and 5 K above the
predicted value (predicted from the false measurement).
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Fig. 1. Trajectories of CA and T for 0.1 h under a cyberattack scenario
with a false measurement offset from a predicted value. “Actual” signifies
the actual state, and “False” signifies the predictions starting from a false
measurement at each tk .
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