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Abstract—Chatter detection has become a prominent subject
of interest due to its effect on cutting tool life, surface finish
and spindle of machine tool. Most of the existing methods in
chatter detection literature are based on signal processing and
signal decomposition. In this study, we use topological features
of data simulating cutting tool vibrations, combined with four
supervised machine learning algorithms to diagnose chatter in the
milling process. Persistence diagrams, a method of representing
topological features, are not easily used in the context of machine
learning, so they must be transformed into a form that is more
amenable. Specifically, we will focus on two different methods
for featurizing persistence diagrams, Carlsson coordinates and
template functions. In this paper, we provide classification results
for simulated data from various cutting configurations, including
upmilling and downmilling, in addition to the same data with
some added noise. Our results show that Carlsson Coordinates
and Template Functions yield accuracies as high as 96% and
95%, respectively. We also provide evidence that these topological
methods are noise robust descriptors for chatter detection.

Index Terms—Milling, chatter detection, topological data anal-
ysis, machine learning

I. INTRODUCTION

Productivity in discrete manufacturing processes, such as

turning and milling, is often constrained due to the occurrence

of harmful, large amplitude oscillations called chatter. Al-

though there is active research on chatter predictive models [1]

as well as methods for chatter diagnosis and mitigation [2]–[5],

in-process chatter detection remains a challenging task. Some

of the factors that complicate chatter identification include:

the complexity of the cutting process which involves several

interacting systems, the presence of nonlinearities and noise,

and the shift in the process parameters during cutting. This

necessitated the search for tools for chatter identification from

sensors instrumented to the cutting center. The output of these

This material is based upon work supported by the National Science
Foundation under Grant Nos. CMMI1759823 and DMS-1759824 with PI
FAK. The work of ST and EM was supported in part by NSF grants DMS-
1800446, CMMI-1800466, and CCF-1907591.

sensors is often a time series, which is an equi-spaced record

of a physical quantity such as acceleration versus time.

The standard approach for chatter recognition from cut-

ting signals has mostly focused on extracting features by

decomposing the time series and combining them with su-

pervised learning algorithms—most commonly Support Vector

Machine (SVM). The two most widely used decompositions

are Wavelet Packet Transform (WPT) [6]–[14] and Ensem-

ble Empirical Mode Decomposition (EEMD) [14]–[18]. Both

WPT and EEMD require manually preprocessing the signal to

identify the most informative parts of the signal which carry

chatter signatures, which is characterized by the part of the

decomposition whose spectrum contain the chatter frequency.

Once the informative decompositions are obtained, they are

used to compute several time and frequency domain features

for chatter classification. Many times the resulting features are

too many and they overfit the model; therefore, the traditional

tools are often equipped with a feature ranking process to

prune the features’ vector [7], [14], [16].

However, one of the main challenges with decomposition-

based methods is that they require a new training set for

every cutting configuration where the latter can simply be

a variation in the mounting of the workpiece of the tool on

the same cutting center. Since changes in the configuration

can change the system’s eigenfrequencies, the corresponding

chatter frequencies will also shift yielding any previously

extracted informative decompositions inaccurate for the new

configuration. This requires a dedicated skilled user to examine

the signal for each configuration, tag chatter and chatter free

cases, and extract the informative decompositions. In other

words, classifiers trained using WPT or EEMD features can

be difficult to generalize to different cutting conditions even

for the same machine [14]. Recently, topological features

were also explored for chatter detection in turning with the

advantage of bypassing the manual feature extraction phase

inherent to WPT and EEMD [19]. The mathematical model
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for turning is often a delay differential equation with con-

stant coefficients. However, despite the promising success that

the TDA tools showed in turning, their viability for other

subtractive manufacturing processes such as milling has not

been tested yet. The mathematical treatment of milling models

is significantly more difficult than turning because they are

often described using (linear) delay differential equations with

time periodic coefficients. Therefore, the interplay between the

delay and the periodicity leads to more complicated behavior.

Further, the transition from chatter-free to chatter in milling

is not so simple, and it can occur for certain perturbations

due to the existence of unsafe zones characterized by unstable

quasi-periodic oscillation which limit the basin of attraction of

the chatter-free stable periodic motion [20]. Chatter can even

manifest as chaotic motion in some cases, further complicating

its identification [21].

In this paper, we combine features obtained with TDA with

supervised machine learning algorithms to diagnose chatter in

milling. The data used in this study is obtained from simulating

the oscillations of a single degree of freedom milling tool with

four straight cutting teeth [22]. We consider both upmilling and

downmilling processes. The classification robustness of the

described approach to noise is demonstrated by adding noise

with several signal-to-noise ratio to the data. The time series

are then embedded into point clouds using Takens embedding

theorem [23] where the embedding parameters are obtained

using a permutation entropy based method [24]. Features are

then extracted from the 1D and 2D persistence diagrams of the

point cloud using two different featurizations of the persistence

diagram: Carlsson coordinates [25] and template functions

[26]. In addition to studying using TDA for chatter versus

chatter-free classification, we further investigate the ability

of the approach to identify the bifurcation associated with

chatter, specifically: chatter-Hopf, chatter-period doubling, and

chatter-free. We employ the four most common traditional

classification algorithms: Support Vector Machine (SVM),

Logistic Regression (LR), Random Forest (RF) and Gradient

Boosting (GB). The tagging of the simulated time series is

obtained from the stability diagram which was computed using

the spectral element method [27]. The stability diagram marks

the chatter and chatter-free regions in the process parameter

space, i.e., the spindle speed and the depth of cut [28].

Our results show that for the investigated process featuriza-

tion via template functions outperforms its Carlsson coordi-

nates counterpart in most of the cases. A comparison of the

success of 1D versus 2D features in identifying chatter shows

that the combination both 1D and 2D persistence provides

the best average accuracy for both feature extraction methods

while only using 2D features deteriorates the classification

accuracy.

This paper is organized as follows. Section II explains

the milling process model and the data labeling. Section III

provides background information on TDA. Section IV explains

how the features are extracted from the persistence diagrams,

while Section V compares and discusses the classification

results.

II. MODELING

We consider a milling operation with straight edge cutters

as shown in Fig. 1. A single degree of freedom model in the x
direction for the tool oscillations is used as shown in Fig. 1a,

and both upmilling and downmilling processes are considered

in the analysis. The equation of motion that describes the tool

oscillations is

ẍ+ 2ζωnẋ+ ω2
nx =

1

m
F (t), (1)

where m, wn, ζ and F (t) represent the modal mass, natural

frequency, damping ratio and the cutting force in the x direc-

tion, respectively. τ is the time delay given by τ = 2π/NΩ
where ω is the spindle’s rotational speed in rad/s, while N is

the number of cutting edges or teeth. The expression for the

cutting force is given by [28], [29]

F =

z∑
n=1

[
− bKtgn(t)(cos θn(t) + tan γ sin θn(t)) sin θn(t)

]
[
(f + x(t)− x(t− τ))

]
,

(2)

where θn is the angle between the vertical line and the leading

tooth of the cutting tool as shown in Fig. 1. The constant Kt

is the linearized cutting coefficient in the tangential direction

and tan γ = Kn/Kt where Kn(t) is the cutting coefficient

in the normal direction. The screening function gn(t) is either

0 or 1 depending on whether the nth tooth is engaged in the

cut or not, respectively, and f represents the feed per tooth

of the cutting tool. The expression for angular position of the

nth tooth θn(t) is given by [28]

θn(t) = (2πΩ/60)t+ 2π(n− 1)/z, (3)

where z is the total number of cutting teeth while Ω is the

rotational speed given in revolutions per minute (rpm).

Fig. 1. Milling process illustrations. a) Upmilling b) Downmilling

One of the important cutting parameters is the radial im-

mersion ratio (RI) which is defined as the ratio of the radial

depth of cut to the diameter of the cutting tool. Smaller radial

immersions indicate shallower cuts and thus more intermittent

contact between the tool and the workpiece, while higher
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radial immersions indicate deeper cuts with a more continuous

contact. In our simulations for both downmilling and upmilling

we set RI = 0.25.

Inserting Eq. (2) into Eq. (1) results in

ẍ(t) + 2ζωn(t)ẋ(t) + w2
nx(t) =

− bh(t)

m
[x(t)− x(t− τ)]− bf0(t)

m
, (4)

where b is the nominal depth of cut and h(t) is the τ -periodic

function

h(t) =

z∑
n=1

Ktgn(t)
[
cos θn(t)+

tan γ sin θn(t)
]
sin θn(t), (5)

and f0(t) = h(t) f . The term f0(t) does not affect the stability

analysis, so we drop it in the subsequent equations; however

we keep it in the simulation.

After dropping f0(t), the equations of motion can be written

in state space form according to

dξ(t)

dt
= A(t)ξ(t) + B(t)ξ(t− τ), (6)

where A and B are T -periodic with T = τ . Then, using the

spectral element method [27], the state space is discretized

and we obtain the dynamic map

ξn+1 = Uξn, (7)

where U is the finite dimensional monodromy operator. The

eignenvalues of U approximate the eigenvalues of the infinite

dimensional monodromy operator of the equation of motion.

If the modulus of the largest eigenvalue is smaller than 1, then

the corresponding spindle speed and depth of cut pair leads

to a chatter-free process; otherwise, chatter occurs. Therefore,

the stability of the milling model and the bifurcation asso-

ciated with the loss of stability (chatter) can be obtained by

examining these eigenvalues, see Fig. 2.

In this study, we generated 10000 time series corresponding

to a 100 × 100 grid in the plane of the spindle speeds and

depths of cut. Each time series is tagged using the largest

eigenvalue of the monodromy matrix corresponding to the

same grid point.

III. TOPOLOGICAL DATA ANALYSIS

Topological Data Analysis (TDA) extracts information from

the data by quantifying its shape and structure. One of the

main tools of TDA is persistent homology. Specifically, in this

paper we study the time series by embedding them using delay

reconstruction and then applying 1-D persistent homology

to obtain an information-rich summary of the shape of the

resulting ambient space. Features are then extracted from the

persistence diagrams and used for machine learning. This

section briefly describes the main concepts of 1-D persistent

homology, but we defer a more thorough treatment to refer-

ences in the literature such as [30]–[34].

Fig. 2. Stability criteria used in this study based on the eigenvalues of the
monodromy matrix U.

A. Simplicial complexes

An abstract k-simplex σ is a subset of k+1 vertices, σ ⊂ V ,

whose dimension is given by dim(σ) = k. Some examples

include the 0-simplex which is a point, the 1-simplex which

is an edge, the 2-simplex which is a triangle, and so on. A

simplicial complex K is a set of simplices σ ∈ K that satisfies

specific inclusion relations. Specifically, if σ ∈ K, then all the

lower dimensional component simplices σ′ ⊂ σ, called the

faces of σ, are also in K; i.e. σ′ ∈ K. For example, if a 2-

simplex (triangle) is in a simplicial complex K, then so are

the corresponding 1-simplices (edges of the triangle) as well

as all the 0-simplices (vertices of the triangle).

B. Homology

Assume that a simplicial complex K is fixed, then the cor-

responding homology groups, denoted Hn(K), can be utilized

to quantify the holes of the structure in different dimensions.

For instance, the rank of the 0 dimensional homology group

H0(K) is the number of connected components (dimension

0). The rank of the 1 dimensional homology group H1(K) is

the number of loops (dimension 1), while the rank of H2(K)
is the number of voids (dimension 2), and so on.

We will first explicitly construct the homology groups.

Given a simplicial complex K, the n-simplices of K can

be used as a generating set of the Z2-vector space Cn(K)
called the nth chain group. In this representation, an element

of Cn(K) can be written as a finite formal linear combination∑
σ∈K(n) ασσ, where ασ ∈ Z2. Such an element is called an

n-chain, and addition of elements is accomplished by adding

their coefficients.

We are now ready to define boundary operators. Given a

simplicial complex K, the boundary map ∂n : Cn(K) →
Cn−1(K) is defined on the generators by

∂n([v0, . . . , vn]) =

n∑
i=0

[v0, . . . , v̂i, . . . , vn],
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where v̂i denotes the absence of element vi from the set, and

is then extended linearly to be defined on all n-chains. This

linear transformation maps any n-simplex to the sum of its

codimension 1 faces.

By combining boundary operators, we obtain the chain

complex

. . .
∂n+1−−−→ Δn(K)

∂n−→ . . .
∂1−→ Δ1(K)

∂0−→ 0,

with the fundamental property that the composition of any two

subsequent boundary operators is zero, i.e., ∂n◦∂n+1 = 0. An

n-chain α ∈ Δn(K) is a cycle if ∂n(α) = 0; it is a boundary

if there is an n + 1-chain β such that ∂n+1(β) = α. Define

the kernel of the boundary map ∂n using Zn(K) = {c ∈
Δn(K) : ∂nc = 0}, and the image of ∂n+1 Bn(K) = {c ∈
Δn(K) : c = δn+1c

′, c′ ∈ Δn+1(K)}. Consequently, we have

Bk(K) ⊆ Zk(K). Therefore, we define the nth homology

group of K as the quotient group Hn(K) = Zn(K)/Bn(K).
In this paper, we only need 1- and 2-dimensional persistent

homology. In the case of 1-dimensional homology, there is one

homology class in H1(K) for each hole in the complex. For

2-dimensional homology, there is only one homology class in

H2(K) for each 2-dimensional void in the complex.

C. Persistent homology

Homology is extremely useful for studying the structure

of a simplicial complex. However, it is limited to a static

complex, but we are often interested in studying the structure

of a changing simplicial complex. For example, assume we

have a point cloud P ⊂ R
m, which in our case likely results

from embedding a time series into R
m, e.g., using delay

reconstruction. For each point p ∈ P , let B(p, r) be the ball

centered at p and of radius r. For each choice of the radius

r we can build a different simplicial complex with vertex set

equal to the points. The intersection of any two radius r balls

adds an edge between the associated vertices, the intersection

of three balls adds a triangle, and higher dimensional analogs

are added similarly. For a specific choice of r, the resulting

simplicial complex of the union of all the balls
⋃

p∈P B(p, r),

called the Čech complex, gives a simplicial complex with

the same topological properties as the union of balls, but it’s

construction is computationally prohibitive.

Luckily, the Čech complex is well-approximated by the

Vietoris-Rips complex which is

VR(r) = {σ ⊆ P | d(u, v) ≤ r ∀u, v ∈ σ}.

Notice that for any r ≤ s, VR(r) ⊆ VR(s). If we let

{r1 < r2 < . . . < r�} be the set of the sorted distances

between points, then the Rips filtration corresponding to the

set of points P is the ordered sequence of subcomplexes

∅ ⊆ K1 ⊆ K2 ⊆ · · · ⊆ K�

where Ki = VR(ri) for the sake of notation. This filtration

enables the investigation of the structure of the points under

multiple values for r rather than a user-defined choice of

proximity parameter.

The main idea behind persistent homology is to watch how

the homology changes over the course of this given filtration.

Fix a homology dimension n, then any given filtration

K1 ⊆ K2 ⊆ · · · ⊆ KN

induces a sequence of linear maps on the homology

Hn(K1)→ Hn(K2)→ · · · → Hn(KN ).

We say that a class [α] ∈ Hn(Ki) is born at i if it is not in

the image of the map Hn(Ki−1)→ Hn(Ki). The same class

dies at j if [α] 
= 0 in Hn(Kj−1) but [α] = 0 in Hn(Kj).
This information can be used to construct a persistence

diagram X as follows. A class that is born at i and dies at

j is represented by a point in R
2 at (i, j). The collection

of the points in the persistence diagram, therefore, gives a

summary of the topological features that persist over the

defined filtration. We denote the number of the off-diagonal

points in the persistence diagram by |X|. See Fig. 3 for an

example of point cloud data, one step in the Rips filtration,

and the resulting persistence diagram for n = 1.

Fig. 3. The Rips complex.

IV. FEATURE EXTRACTION METHODS

We convert each embedded time series into a persistence

diagram, and then convert the persistence diagram to a feature

vector using one of the two methods described below.

A. Carlsson Coordinates
Carlsson coordinates are one method of featurizing persis-

tence diagrams based on ideas from commutative algebra [25].

The idea is to utilize polynomial functions which are applied

to the points in the persistence diagram but are oblivious to the

order of the points in the diagram. In this paper we use five

functions following [25], [35]. Given a persistence diagram,

D = {(bi, di)ni=1}, where bi and di are corresponding birth

and death values, and dmax represents maximum persistence,

the Carlsson coordinates of D are calculated using the func-

tions
f1(D) =

∑
bi(di − bi),

f2(D) =
∑

(dmax − di)(di − bi),
f3(D) =

∑
b2i (di − bi)

4,
f4(D) =

∑
(dmax − di)

2(di − bi)
4,

f5(D) = max{(di − bi)}.

(8)

In this study, we use these five features for 1D and 2D

persistence diagrams separately, in addition to generating fea-

ture matrices by concatenating features for both dimensions.

While generating the features matrices, we use all possible

combinations of features, a total of
5∑

i=1

(
5
i

)
.
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B. Template Functions

Originally proposed in [26], template functions are another

method of featurizing persistence diagrams. We will briefly

introduce this method and an example template function sys-

tem known as interpolating polynomials. For a more detailed

background see [26].

For simplicity, in this section we will define everything in

terms of persistence diagrams in birth-lifetime coordinates;

that is, a point (b, d) in birth-death coordinates is instead

represented as (b, d − b) where d − b represents how long

a feature lived. Now rather than having all points in the

persistence diagram on or above the diagonal, we have all

points in the upper half plane, W := R× R>0.

A template function is any continuous function on R
2 that

has compact support contained in the upper half plane, W 1.

Given a persistence diagram D, a template function can be

turned into a function f : W→ R by evaluating the function

on each point in the diagram and then summing over all values.

That is,

vf (D) =
∑
x∈D

f(x).

A template system is a collection of template functions, T
such that the functions defined on persistence diagrams FT =
{vf : f ∈ T } separate points in the diagram. In other words,

given two diagrams D1, D2, there is a function f ∈ T such

that vf (D1) 
= vf (D2). While a true template system contains

an infinite number of functions, in [26, Thm. 29] it is proven

that any function on persistence diagrams can be approximated

by some finite subset of a template system, so selecting this

finite subset gives a vectorization of the persistence diagram

(vf1(D), . . . , vfk(D)). In this paper, we will use one example

of a template system, interpolating polynomials, as introduced

in [26].

Given a mesh A = {ai}mi=0 ⊂ R, the Lagrange polynomial

corresponding to aj , 
Aj (x), is defined as


Aj (x) =
∏
i�=j

x− ai
aj − ai

.

This function satisfies


Aj (ak) =

{
1 j = k

0 otherwise.

Fixing two meshes, A ⊂ R and B ⊂ R>0 and coordinates i, j,

the template function is defined as

f(x, y) = β(x, y) · |
Ai (x)
Bj (y)|

where β is a bump function to force the resulting polynomial

to have compact support within a designated area. In practice,

we choose the mesh A× B to ensure this region encloses all

points in the diagram, then the region for compact support is

implicit and so β need not be specified.

1If we were working in birth-death coordinates, the function would be
required to have support above the diagonal.

V. RESULTS AND DISCUSSIONS

In this section, we provide classification accuracies for each

featurization method for noisy and non-noisy time series of

upmilling and downmilling processes with 4 teeth (N = 4).

Ranges of rotational speed and depth of cut parameters for the

simulations are chosen with respect to the stability diagrams

given for both processes in [28]. The 1- and 2-dimensional

persistence diagrams were used with the methods described

in Section IV. Feature matrices were computed for 1D and

2D persistence diagrams individually, and the features were

concatenated when using both dimensions. 0D persistence has

been omitted in this study due to its poor performance on

noisy data sets as evidenced by a reduction in the classification

accuracy by 10% in some cases. Data sets are randomly split,

using 67% for training and 33% for testing. The split-train-

test is performed 10 times, and the mean accuracies with the

corresponding standard deviations are reported in this section.

This data can be used for both a two class and three class

classification problem. The first is classifying either chatter-

free or chatter, while the second further divides chatter into

two types: Hopf-unstable and period2-unstable. Classification

for both two and three class problems is done using four dif-

ferent algorithms: support vector machines, logistic regression,

random forests and gradient boosting. Default parameters have

been used for all classification algorithms except random forest

classification (n estimator = 100 and max depth = 2).

These two types of chatter are based on Hopf and period

doubling bifurcation behaviors as described in Fig. 2.

Two class classification results for downmilling and up-

milling simulations with N = 4 are provided in Tables I

and II, respectively. For each data set, the highest accuracy is

highlighted in blue. For instance, 95.5% accuracy is obtained

as the best classification accuracy for non-noisy data sets when

gradient boosting classifiers are trained with combined 1D and

2D persistence features based on Template Functions method

in Table I. In most of the cases for downmilling and upmilling,

it is seen that the highest accuracies are obtained when 1D and

2D persistence diagrams features are combined.

Some of the time series embeddings especially in the

chatter-free regime, do not have any 2 dimensional topological

features, thus giving an empty H2 diagram. If a specific

cutting configuration has a lot of time series with empty H2,

feature matrices for these time series have a lot of zeros

when either featurization method is used. Because of the lack

of 2 dimensional information for many of the time series,

classifications using only H2 have lower accuracies than only

using H1 as is shown in Tables I and II.

When comparing persistence diagram featurizations, the

template function method has the best results for all data

sets, with the exception of two: the noisy data set with SNR

value of 20 dB for downmilling and the one without noise

for upmilling. However, for those two data sets, template

functions’ results are very close to those provided by Carlsson

coordinates. When comparing classification algorithms, SVM

yields the highest accuracies for five of the eight data sets,
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TABLE I
2 CLASS CLASSIFICATION RESULTS FOR NOISY (SNR:20,25,30 DB) AND NON-NOISY DATA SETS WHICH BELONG TO DOWNMILLING PROCESS WITH

N = 4 (N: TEETH NUMBER, CC: CARLSSON COORDINATES, TF: TEMPLATE FUNCTIONS, SVM: SUPPORT VECTOR MACHINE, LR: LOGISTIC

REGRESSION, H1 : 1D PERSISTENCE, H2 : 2D PERSISTENCE).

Down Milling Without Noise SNR: 20 dB

N = 4 CC TF CC TF
Classifier H1 H2 H1-H2 H1 H2 H1-H2 H1 H2 H1-H2 H1 H2 H1-H2

SVM 94.3% 85.1% 94.6% 92.9% 94.4% 93.7% 94.2% 92.5% 94.6% 94.3% 94.8% 94.7%
LR 92.4% 84.3% 92.8% 93.9% 91.6% 94.5% 78.5% 78.3% 91.1% 93.8% 93.5% 94.5%
RF 93.6% 90.9% 93.8% 95.0% 94.1% 95.7% 92.4% 92.3% 93.0% 94.3% 94.4% 94.6%
GB 95.0% 93.5% 95.2% 94.7% 94.2% 95.5% 94.2% 93.7% 94.9% 94.7% 94.4% 94.7%
Down Milling SNR: 25 dB SNR: 30 dB

N = 4 CC TF CC TF
Classifier H1 H2 H1-H2 H1 H2 H1-H2 H1 H2 H1-H2 H1 H2 H1-H2

SVM 80.8% 77.2% 83.1% 89.4% 83.2% 90.8% 81.0% 77.4% 82.8% 89.2% 83.4% 90.9%
LR 76.0% 72.2% 75.4% 83.7% 77.5% 85.7% 76.2% 72.3% 75.1% 83.8% 77.2% 85.6%
RF 76.9% 75.0% 77.5% 88.9% 82.4% 89.6% 76.6% 75.1% 77.1% 88.7% 82.2% 89.9%
GB 88.3% 79.1% 89.5% 89.0% 82.7% 90.2% 88.5% 79.0% 89.5% 88.7% 83.0% 90.5%

Fig. 4. Success and failure of two class classifications performed with Template Function feature matrices and Gradient Boosting algorithm for test set of
data set without noise and with SNR value of 25 dB. a)Classification with 1D persistence features for non-noisy data set, b)Classification with 2D persistence
features for non-noisy data set, c)Classification with 1D-2D persistence combined features for non-noisy data set, d)Classification with 1D persistence features
for noisy data set with SNR:25 dB, e)Classification with 2D persistence features for noisy data set with SNR:25 dB, f)Classification with 1D-2D persistence
combined features for noisy data set with SNR:25 dB.

while gradient boosting yields the highest accuracies for the

remaining three data sets.

To compare the results of different levels of noise and

different dimensions of persistence diagrams, classification

results are plotted on the 100× 100 grid of stability diagram

for milling process. Figure 4 presents the stability diagrams

belongs to teeth number N = 4 of down milling process

for noisy data with SNR value of 25 dB and non-noisy

data sets. Figures on the first and second column belong to

the classifications performed with only H1 and H2 features,

respectively, while the ones in the third column represent the

results of combinations of H1 and H2 features. Red crosses

on the stability diagrams denote the case that the prediction

of the classifier does not match with the true label of the

corresponding time series while blue dots shows matching

between predictions and true labels. From the figures, it is

clear that the number of misclassifications increase slightly

when the noise is introduced into the simulation data. This

is also reflected in Table I in the decrease in accuracies for

different levels of noise, especially the noisy data sets with
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TABLE II
2 CLASS CLASSIFICATION RESULTS FOR NOISY (SNR:20,25,30 DB) AND NON-NOISY DATA SETS WHICH BELONG TO UPMILLING PROCESS WITH N = 4
(N: TEETH NUMBER, CC: CARLSSON COORDINATES, TF: TEMPLATE FUNCTIONS, SVM: SUPPORT VECTOR MACHINE, LR: LOGISTIC REGRESSION,

H1 : 1D PERSISTENCE, H2 : 2D PERSISTENCE).

UpMilling Without Noise SNR: 20 dB
N = 4 CC TF CC TF

Classifier H1 H2 H1-H2 H1 H2 H1-H2 H1 H2 H1-H2 H1 H2 H1-H2

SVM 86.0% 78.5% 85.8% 86.1% 80.4% 86.0% 76.8% 80.7% 82.1% 84.6% 84.0% 85.1%
LR 85.3% 77.8% 85.3% 86.2% 81.3% 85.8% 69.4% 80.4% 80.9% 82.7% 81.3% 84.1%
RF 84.9% 80.3% 84.9% 85.9% 81.2% 85.7% 75.5% 80.7% 81.1% 82.8% 81.8% 83.2%
GB 86.1% 80.9% 86.0% 85.6% 81.3% 86.0% 80.6% 82.2% 82.5% 84.1% 83.4% 84.6%
Upmilling SNR: 25 dB SNR: 30 dB
N = 4 CC TF CC TF

Classifier H1 H2 H1-H2 H1 H2 H1-H2 H1 H2 H1-H2 H1 H2 H1-H2

SVM 85.3% 83.4% 84.8% 85.5% 84.4% 85.5% 83.2% 71.6% 83.1% 85.9% 75.0% 86.2%
LR 79.2% 84.0% 84.1% 84.2% 84.5% 84.5% 79.4% 72.3% 79.5% 84.1% 75.3% 85.0%
RF 83.8% 84.1% 84.5% 83.5% 82.6% 83.0% 84.3% 75.0% 84.4% 83.9% 75.3% 83.8%
GB 85.2% 84.3% 84.8% 85.1% 84.5% 84.9% 85.1% 74.6% 85.1% 85.7% 75.7% 85.2%

Fig. 5. Mean accuracies of downmilling process (a,b) and upmilling process (f,g) obtained for two class and three class classification performed with Carlsson
Coordinates and Template Functions for non-noisy and noisy data sets where teeth number is 4. Two class(c) and three class (d) classification results obtained
with Gradient Boosting algorithm is shown on the stability diagram for downmilling simulation data set whose SNR is 25 dB.Two class(e) and three class
(h) classification results obtained with Gradient Boosting algorithm is shown on the stability diagram for upmilling simulation data set whose SNR is 25 dB.

SNR value of 25 and 30 db.

In addition, there is small accuracy difference which is at

most 5% between noisy (SNR:25, 30 dB) and non-noisy data

set for downmilling cases, while this difference is less for

upmilling results presented in Table II This suggests that the

featurization methods used yield promising results even with

noisy data. Persistent homology is known to be very robust

against noise, as noise only adds points close to the diagonal

which have short lifetimes. Thus, these points do not contribute

singificantly to the Carlsson coordinate or template function

methods, making both featurizations robust against noise as

well.

Figure 5 shows a comparison of the results obtained for up

and downmilling with respect to different noise levels. Since
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the deviations of accuracies for both featurization methods are

relatively low, the classification accuracies can be considered

reliable. This trend is noticeable for both up and downmilling

and for all levels of noise. However, the classification results

for upmilling are noticeably lower than those for downmilling.

Additionally, it is clear that H2 features do not perform as well

due to the lack of higher dimensional topological structure, as

was explained earlier. Figure 5 also presents the classification

results on the stability diagrams for upmilling and downmilling

for noisy data set. It is seen that many misclassifications occur

nearby the boundary of the stability diagram, especially for up

milling process. This boundary separates the unstable (above

the boundary curve) and stable (under the boundary curve)

cases so misclassifications on this boundary are likely. It is

also clear that when increasing to the three class problem,

there are an increased number of misclassification. However,

the overall accuracy difference between both implementations,

two and three class classification, does not exceed 5% at their

maximum accuracies.
The findings of this study indicate that topological features

of data are appropriate descriptors for chatter recognition in

milling. One advantage of the described approach is its ability

to provide promising results without the need for manual

preprocessing not only for non-noisy data sets, but also for

time series with noise. Therefore, we believe future work

can include studying the effect of changing the simulation

parameters on classification accuracy as well as experimental

studies.
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