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Abstract—Chatter detection has become a prominent subject
of interest due to its effect on cutting tool life, surface finish
and spindle of machine tool. Most of the existing methods in
chatter detection literature are based on signal processing and
signal decomposition. In this study, we use topological features
of data simulating cutting tool vibrations, combined with four
supervised machine learning algorithms to diagnose chatter in the
milling process. Persistence diagrams, a method of representing
topological features, are not easily used in the context of machine
learning, so they must be transformed into a form that is more
amenable. Specifically, we will focus on two different methods
for featurizing persistence diagrams, Carlsson coordinates and
template functions. In this paper, we provide classification results
for simulated data from various cutting configurations, including
upmilling and downmilling, in addition to the same data with
some added noise. Our results show that Carlsson Coordinates
and Template Functions yield accuracies as high as 96% and
95%, respectively. We also provide evidence that these topological
methods are noise robust descriptors for chatter detection.

Index Terms—Milling, chatter detection, topological data anal-
ysis, machine learning

[. INTRODUCTION

Productivity in discrete manufacturing processes, such as
turning and milling, is often constrained due to the occurrence
of harmful, large amplitude oscillations called chatter. Al-
though there is active research on chatter predictive models [1]
as well as methods for chatter diagnosis and mitigation [2]-[5],
in-process chatter detection remains a challenging task. Some
of the factors that complicate chatter identification include:
the complexity of the cutting process which involves several
interacting systems, the presence of nonlinearities and noise,
and the shift in the process parameters during cutting. This
necessitated the search for tools for chatter identification from
sensors instrumented to the cutting center. The output of these
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sensors is often a time series, which is an equi-spaced record
of a physical quantity such as acceleration versus time.

The standard approach for chatter recognition from cut-
ting signals has mostly focused on extracting features by
decomposing the time series and combining them with su-
pervised learning algorithms—most commonly Support Vector
Machine (SVM). The two most widely used decompositions
are Wavelet Packet Transform (WPT) [6]-[14] and Ensem-
ble Empirical Mode Decomposition (EEMD) [14]-[18]. Both
WPT and EEMD require manually preprocessing the signal to
identify the most informative parts of the signal which carry
chatter signatures, which is characterized by the part of the
decomposition whose spectrum contain the chatter frequency.
Once the informative decompositions are obtained, they are
used to compute several time and frequency domain features
for chatter classification. Many times the resulting features are
too many and they overfit the model; therefore, the traditional
tools are often equipped with a feature ranking process to
prune the features’ vector [7], [14], [16].

However, one of the main challenges with decomposition-
based methods is that they require a new training set for
every cutting configuration where the latter can simply be
a variation in the mounting of the workpiece of the tool on
the same cutting center. Since changes in the configuration
can change the system’s eigenfrequencies, the corresponding
chatter frequencies will also shift yielding any previously
extracted informative decompositions inaccurate for the new
configuration. This requires a dedicated skilled user to examine
the signal for each configuration, tag chatter and chatter free
cases, and extract the informative decompositions. In other
words, classifiers trained using WPT or EEMD features can
be difficult to generalize to different cutting conditions even
for the same machine [14]. Recently, topological features
were also explored for chatter detection in turning with the
advantage of bypassing the manual feature extraction phase
inherent to WPT and EEMD [19]. The mathematical model
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for turning is often a delay differential equation with con-
stant coefficients. However, despite the promising success that
the TDA tools showed in turning, their viability for other
subtractive manufacturing processes such as milling has not
been tested yet. The mathematical treatment of milling models
is significantly more difficult than turning because they are
often described using (linear) delay differential equations with
time periodic coefficients. Therefore, the interplay between the
delay and the periodicity leads to more complicated behavior.
Further, the transition from chatter-free to chatter in milling
is not so simple, and it can occur for certain perturbations
due to the existence of unsafe zones characterized by unstable
quasi-periodic oscillation which limit the basin of attraction of
the chatter-free stable periodic motion [20]. Chatter can even
manifest as chaotic motion in some cases, further complicating
its identification [21].

In this paper, we combine features obtained with TDA with
supervised machine learning algorithms to diagnose chatter in
milling. The data used in this study is obtained from simulating
the oscillations of a single degree of freedom milling tool with
four straight cutting teeth [22]. We consider both upmilling and
downmilling processes. The classification robustness of the
described approach to noise is demonstrated by adding noise
with several signal-to-noise ratio to the data. The time series
are then embedded into point clouds using Takens embedding
theorem [23] where the embedding parameters are obtained
using a permutation entropy based method [24]. Features are
then extracted from the 1D and 2D persistence diagrams of the
point cloud using two different featurizations of the persistence
diagram: Carlsson coordinates [25] and template functions
[26]. In addition to studying using TDA for chatter versus
chatter-free classification, we further investigate the ability
of the approach to identify the bifurcation associated with
chatter, specifically: chatter-Hopf, chatter-period doubling, and
chatter-free. We employ the four most common traditional
classification algorithms: Support Vector Machine (SVM),
Logistic Regression (LR), Random Forest (RF) and Gradient
Boosting (GB). The tagging of the simulated time series is
obtained from the stability diagram which was computed using
the spectral element method [27]. The stability diagram marks
the chatter and chatter-free regions in the process parameter
space, i.e., the spindle speed and the depth of cut [28].

Our results show that for the investigated process featuriza-
tion via template functions outperforms its Carlsson coordi-
nates counterpart in most of the cases. A comparison of the
success of 1D versus 2D features in identifying chatter shows
that the combination both 1D and 2D persistence provides
the best average accuracy for both feature extraction methods
while only using 2D features deteriorates the classification
accuracy.

This paper is organized as follows. Section II explains
the milling process model and the data labeling. Section III
provides background information on TDA. Section IV explains
how the features are extracted from the persistence diagrams,
while Section V compares and discusses the classification
results.
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II. MODELING

We consider a milling operation with straight edge cutters
as shown in Fig. 1. A single degree of freedom model in the x
direction for the tool oscillations is used as shown in Fig. 1a,
and both upmilling and downmilling processes are considered
in the analysis. The equation of motion that describes the tool
oscillations is

1
&+ 2wt +wie = —F(t), )
m

where m, w,,, ¢ and F(t) represent the modal mass, natural
frequency, damping ratio and the cutting force in the z direc-
tion, respectively. 7 is the time delay given by 7 = 27/NQ
where w is the spindle’s rotational speed in rad/s, while N is
the number of cutting edges or teeth. The expression for the
cutting force is given by [28], [29]

F = Z [ = bKgn(t)(cos b, (t) + tanysin 6,,(t)) sin 6, (¢)]

) [(f +2(t) - a(t — )],
2)

where 6, is the angle between the vertical line and the leading
tooth of the cutting tool as shown in Fig. 1. The constant K
is the linearized cutting coefficient in the tangential direction
and tany = K, /K; where K,(t) is the cutting coefficient
in the normal direction. The screening function g,,(¢) is either
0 or 1 depending on whether the nth tooth is engaged in the
cut or not, respectively, and f represents the feed per tooth
of the cutting tool. The expression for angular position of the
nth tooth 6,,(¢) is given by [28]

0, (t) = (272/60)t + 27(n — 1)/ 2, 3)

where z is the total number of cutting teeth while (2 is the
rotational speed given in revolutions per minute (rpm).

L
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(a) upmilling
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cutting edge

0

X
workpiece feed
(b) downmilling
Fig. 1. Milling process illustrations. a) Upmilling b) Downmilling

One of the important cutting parameters is the radial im-
mersion ratio (RI) which is defined as the ratio of the radial
depth of cut to the diameter of the cutting tool. Smaller radial
immersions indicate shallower cuts and thus more intermittent
contact between the tool and the workpiece, while higher
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radial immersions indicate deeper cuts with a more continuous
contact. In our simulations for both downmilling and upmilling
we set R = 0.25.

Inserting Eq. (2) into Eq. (1) results in

E(t) + 2Cwn ()2 (t) + wia(t) =
ORUE) oty — (e — )

where b is the nominal depth of cut and h(t) is the 7-periodic

_bfo(t)
m m
function

G

h(t) = Kign(t) [ cos bn(t)+

n=1

tanysin6,,(¢)] sin6,,(¢), (5)

and fo(t) = h(t) f. The term fo(t) does not affect the stability
analysis, so we drop it in the subsequent equations; however
we keep it in the simulation.

After dropping fy(t), the equations of motion can be written
in state space form according to

dg(t)

dt

where A and B are T-periodic with T" = 7. Then, using the
spectral element method [27], the state space is discretized
and we obtain the dynamic map

€n+1 = Uénv (7)

where U is the finite dimensional monodromy operator. The
eignenvalues of U approximate the eigenvalues of the infinite
dimensional monodromy operator of the equation of motion.
If the modulus of the largest eigenvalue is smaller than 1, then
the corresponding spindle speed and depth of cut pair leads
to a chatter-free process; otherwise, chatter occurs. Therefore,
the stability of the milling model and the bifurcation asso-
ciated with the loss of stability (chatter) can be obtained by
examining these eigenvalues, see Fig. 2.

In this study, we generated 10000 time series corresponding
to a 100 x 100 grid in the plane of the spindle speeds and
depths of cut. Each time series is tagged using the largest
eigenvalue of the monodromy matrix corresponding to the
same grid point.

A(tE() +B()&(t — 1), (6)

III. TOPOLOGICAL DATA ANALYSIS

Topological Data Analysis (TDA) extracts information from
the data by quantifying its shape and structure. One of the
main tools of TDA is persistent homology. Specifically, in this
paper we study the time series by embedding them using delay
reconstruction and then applying 1-D persistent homology
to obtain an information-rich summary of the shape of the
resulting ambient space. Features are then extracted from the
persistence diagrams and used for machine learning. This
section briefly describes the main concepts of 1-D persistent
homology, but we defer a more thorough treatment to refer-
ences in the literature such as [30]-[34].
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Fig. 2. Stability criteria used in this study based on the eigenvalues of the
monodromy matrix U.

A. Simplicial complexes

An abstract k-simplex o is a subset of k+1 vertices, 0 C V,
whose dimension is given by dim(o) = k. Some examples
include the O-simplex which is a point, the 1-simplex which
is an edge, the 2-simplex which is a triangle, and so on. A
simplicial complex K is a set of simplices o € K that satisfies
specific inclusion relations. Specifically, if o € K, then all the
lower dimensional component simplices ¢/ C o, called the
faces of o, are also in K; i.e. ¢’ € K. For example, if a 2-
simplex (triangle) is in a simplicial complex K, then so are
the corresponding 1-simplices (edges of the triangle) as well
as all the O-simplices (vertices of the triangle).

B. Homology

Assume that a simplicial complex K is fixed, then the cor-
responding homology groups, denoted H,,(K), can be utilized
to quantify the holes of the structure in different dimensions.
For instance, the rank of the 0 dimensional homology group
Hy(K) is the number of connected components (dimension
0). The rank of the 1 dimensional homology group H;(K) is
the number of loops (dimension 1), while the rank of Hy(K)
is the number of voids (dimension 2), and so on.

We will first explicitly construct the homology groups.
Given a simplicial complex K, the n-simplices of K can
be used as a generating set of the Zs-vector space C,,(K)
called the nth chain group. In this representation, an element
of C,,(K) can be written as a finite formal linear combination
Zaemn) a,0, where o, € Zo. Such an element is called an
n-chain, and addition of elements is accomplished by adding
their coefficients.

We are now ready to define boundary operators. Given a
simplicial complex K, the boundary map 9, : C,(K) —
Cp—1(K) is defined on the generators by

7vn]7

On([vo, .-, vn]) = > 00, iy
=0
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where 0; denotes the absence of element v; from the set, and
is then extended linearly to be defined on all n-chains. This
linear transformation maps any n-simplex to the sum of its
codimension 1 faces.

By combining boundary operators, we obtain the chain
complex

ALK 22 A (K) 20,

with the fundamental property that the composition of any two
subsequent boundary operators is zero, i.e., 9, 00,+1 = 0. An
n-chain o € A, (K) is a cycle if 9, («) = 0; it is a boundary
if there is an n + 1-chain S such that 9,,41(8) = «. Define
the kernel of the boundary map 0, using Z,(K) = {c €
An(K) : Opc = 0}, and the image of J,,11 Bn(K) = {c €
A (K):ec=0p41c,c € Apt1(K)}. Consequently, we have
Bi(K) C Zi(K). Therefore, we define the nth homology
group of K as the quotient group H,,(K) = Z,(K)/B,(K).
In this paper, we only need 1- and 2-dimensional persistent
homology. In the case of 1-dimensional homology, there is one
homology class in Hy(K') for each hole in the complex. For
2-dimensional homology, there is only one homology class in
Hy(K) for each 2-dimensional void in the complex.

C. Persistent homology

Homology is extremely useful for studying the structure
of a simplicial complex. However, it is limited to a static
complex, but we are often interested in studying the structure
of a changing simplicial complex. For example, assume we
have a point cloud P C R™, which in our case likely results
from embedding a time series into R™, e.g., using delay
reconstruction. For each point p € P, let B(p,r) be the ball
centered at p and of radius r. For each choice of the radius
r we can build a different simplicial complex with vertex set
equal to the points. The intersection of any two radius r balls
adds an edge between the associated vertices, the intersection
of three balls adds a triangle, and higher dimensional analogs
are added similarly. For a specific choice of r, the resulting
simplicial complex of the union of all the balls |, p B(p,7),
called the Cech complex, gives a simplicial complex with
the same topological properties as the union of balls, but it’s
construction is computationally prohibitive.

Luckily, the Cech complex is well-approximated by the
Vietoris-Rips complex which is

VR(r) ={o C P | d(u,v) < rVu,v € o}.

Notice that for any r < s, VR(r) C VR(s). If we let
{r1 < ro < ... < ry} be the set of the sorted distances
between points, then the Rips filtration corresponding to the
set of points P is the ordered sequence of subcomplexes

WCKiCKyC---CKy

where K; = VR(r;) for the sake of notation. This filtration
enables the investigation of the structure of the points under
multiple values for r rather than a user-defined choice of
proximity parameter.

The main idea behind persistent homology is to watch how
the homology changes over the course of this given filtration.
Fix a homology dimension n, then any given filtration

KiCKyC---CKyn
induces a sequence of linear maps on the homology
H,(K,) — H,(K3) = - — H,(Kx).

We say that a class [o] € H,,(K;) is born at ¢ if it is not in
the image of the map H,, (K 1) = H,(K;). The same class
dies at j if [a] # 0 in H,(K;_1) but [o] =0 in H,(Kj).

This information can be used to construct a persistence
diagram X as follows. A class that is born at ¢ and dies at
j is represented by a point in R? at (,5). The collection
of the points in the persistence diagram, therefore, gives a
summary of the topological features that persist over the
defined filtration. We denote the number of the off-diagonal
points in the persistence diagram by |X|. See Fig. 3 for an
example of point cloud data, one step in the Rips filtration,
and the resulting persistence diagram for n = 1.

death time

o 4
birth time

The Rips Complex Persistence Diagram

Point Cloud

Fig. 3. The Rips complex.

IV. FEATURE EXTRACTION METHODS

We convert each embedded time series into a persistence
diagram, and then convert the persistence diagram to a feature
vector using one of the two methods described below.

A. Carlsson Coordinates

Carlsson coordinates are one method of featurizing persis-
tence diagrams based on ideas from commutative algebra [25].
The idea is to utilize polynomial functions which are applied
to the points in the persistence diagram but are oblivious to the
order of the points in the diagram. In this paper we use five
functions following [25], [35]. Given a persistence diagram,
D = {(b;,d;)_,}, where b; and d; are corresponding birth
and death values, and dp,,x represents maximum persistence,
the Carlsson coordinates of D are calculated using the func-

tions
fi(D) =3 bi(di — bi),
fZ(D) :Z( max — )(dz )
fs(D) =07 (di —by)*, ®)
f4(D) :Z( max 1) (d _b)
f5(D) = mac{(ds — bi)}.

In this study, we use these five features for 1D and 2D
persistence diagrams separately, in addition to generating fea-
ture matrices by concatenating features for both dimensions.
While generating the features matrices, we use all possible

5
combinations of features, a total of > (f)
i=1
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B. Template Functions

Originally proposed in [26], template functions are another
method of featurizing persistence diagrams. We will briefly
introduce this method and an example template function sys-
tem known as interpolating polynomials. For a more detailed
background see [26].

For simplicity, in this section we will define everything in
terms of persistence diagrams in birth-lifetime coordinates;
that is, a point (b,d) in birth-death coordinates is instead
represented as (b,d — b) where d — b represents how long
a feature lived. Now rather than having all points in the
persistence diagram on or above the diagonal, we have all
points in the upper half plane, W := R x R+.

A template function is any continuous function on R? that
has compact support contained in the upper half plane, W '.
Given a persistence diagram D, a template function can be
turned into a function f: W — R by evaluating the function
on each point in the diagram and then summing over all values.

That is,
vp(D) =" f(x).

zeD

A template system is a collection of template functions, 7T
such that the functions defined on persistence diagrams Fr =
{vf : f € T} separate points in the diagram. In other words,
given two diagrams Di, Do, there is a function f € T such
that v (D) # vy(D2). While a true template system contains
an infinite number of functions, in [26, Thm. 29] it is proven
that any function on persistence diagrams can be approximated
by some finite subset of a template system, so selecting this
finite subset gives a vectorization of the persistence diagram
(vg, (D), ..., v5,(D)). In this paper, we will use one example
of a template system, interpolating polynomials, as introduced
in [26].

Given a mesh A = {a;}[", C R, the Lagrange polynomial
corresponding to a;, 634(3“) is defined as

T — a;
1A () = v
7 (m) H aj — a;
i#£]
This function satisfies
1 7=k

M ar) = {

Fixing two meshes, A C R and B C R+ and coordinates 7, j,
the template function is defined as

where ( is a bump function to force the resulting polynomial
to have compact support within a designated area. In practice,
we choose the mesh A x B to ensure this region encloses all
points in the diagram, then the region for compact support is
implicit and so 3 need not be specified.

0 otherwise.

B
%

'If we were working in birth-death coordinates, the function would be
required to have support above the diagonal.
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V. RESULTS AND DISCUSSIONS

In this section, we provide classification accuracies for each
featurization method for noisy and non-noisy time series of
upmilling and downmilling processes with 4 teeth (N = 4).
Ranges of rotational speed and depth of cut parameters for the
simulations are chosen with respect to the stability diagrams
given for both processes in [28]. The 1- and 2-dimensional
persistence diagrams were used with the methods described
in Section IV. Feature matrices were computed for 1D and
2D persistence diagrams individually, and the features were
concatenated when using both dimensions. 0D persistence has
been omitted in this study due to its poor performance on
noisy data sets as evidenced by a reduction in the classification
accuracy by 10% in some cases. Data sets are randomly split,
using 67% for training and 33% for testing. The split-train-
test is performed 10 times, and the mean accuracies with the
corresponding standard deviations are reported in this section.

This data can be used for both a two class and three class
classification problem. The first is classifying either chatter-
free or chatter, while the second further divides chatter into
two types: Hopf-unstable and period2-unstable. Classification
for both two and three class problems is done using four dif-
ferent algorithms: support vector machines, logistic regression,
random forests and gradient boosting. Default parameters have
been used for all classification algorithms except random forest
classification (n_estimator 100 and max_depth = 2).
These two types of chatter are based on Hopf and period
doubling bifurcation behaviors as described in Fig. 2.

Two class classification results for downmilling and up-
milling simulations with N = 4 are provided in Tables I
and II, respectively. For each data set, the highest accuracy is
highlighted in blue. For instance, 95.5% accuracy is obtained
as the best classification accuracy for non-noisy data sets when
gradient boosting classifiers are trained with combined 1D and
2D persistence features based on Template Functions method
in Table I. In most of the cases for downmilling and upmilling,
it is seen that the highest accuracies are obtained when 1D and
2D persistence diagrams features are combined.

Some of the time series embeddings especially in the
chatter-free regime, do not have any 2 dimensional topological
features, thus giving an empty H, diagram. If a specific
cutting configuration has a lot of time series with empty Ho,
feature matrices for these time series have a lot of zeros
when either featurization method is used. Because of the lack
of 2 dimensional information for many of the time series,
classifications using only Hs have lower accuracies than only
using H; as is shown in Tables I and II.

When comparing persistence diagram featurizations, the
template function method has the best results for all data
sets, with the exception of two: the noisy data set with SNR
value of 20 dB for downmilling and the one without noise
for upmilling. However, for those two data sets, template
functions’ results are very close to those provided by Carlsson
coordinates. When comparing classification algorithms, SVM
yields the highest accuracies for five of the eight data sets,
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TABLE I
2 CLASS CLASSIFICATION RESULTS FOR NOISY (SNR:20,25,30 DB) AND NON-NOISY DATA SETS WHICH BELONG TO DOWNMILLING PROCESS WITH
N = 4 (N: TEETH NUMBER, CC: CARLSSON COORDINATES, TF: TEMPLATE FUNCTIONS, SVM: SUPPORT VECTOR MACHINE, LR: LOGISTIC
REGRESSION, H1: 1D PERSISTENCE, Ha: 2D PERSISTENCE).

Down Milling Without Noise SNR: 20 dB
N =4 CcC TF CC TF
Classifier 111 ]fé 1{1—}75 l{l }72 f{l—}fé ffl 112 }11-1{2 Ifl 1¥2 }{1'1{2
SVM 94.3% | 85.1% | 94.6% | 929% | 94.4% | 93.7% | 94.2% | 925% | 94.6% | 94.3% | 94.8% | 94.7%
LR 92.4% | 84.3% | 928% | 93.9% | 91.6% | 945% | 785% | 783% | 91.1% | 93.8% | 93.5% | 94.5%
RF 93.6% | 90.9% | 93.8% | 95.0% | 94.1% | 95.7% | 92.4% | 92.3% | 93.0% | 94.3% | 94.4% | 94.6%
GB 95.0% | 93.5% | 95.2% | 94.7% | 94.2% _[94.—2% 93.7% 94.7% | 94.4% | 94.7%
Down Milling SNR: 25 dB SNR: 30 dB
N =4 CcC TF CC TF
Classifier 111 }{2 ]{1—}{2 l{l }72 lfl—ffg ffl 112 }7i-1{2 }{1 112 }11'1{2
SVM 80.8% | 772% | 831% | 89.4% | 83.2% 81.0% | 77.4% | 82.8% | 89.2% | 83.4%
LR 76.0% | 722% | 75.4% | 83.7% | 77.5% | 8.7% | 76.2% | 723% | 75.1% | 83.8% | 77.2% | 85.6%
RF 76.9% | 75.0% | 7T7.5% | 88.9% | 82.4% | 89.6% | 76.6% | 75.1% | 77.1% | 88.7% | 82.2% | 89.9%
GB 88.3% | 79.1% | 89.5% | 89.0% | 82.7% | 90.2% | 88.5% | 79.0% | 89.5% | 88.7% | 83.0% | 90.5%
a) . .1\.10 Noise, H 1—2Class—G]i—4. Teet{l b) B No Noise,Hg—ZClass-GB—4' Teeth C) 5Nf) Noise, H 1—H2-201&SS-GB—/-% .Te.eth
g o Fail.urc i & & = ¥ Fai
4 ne 3
= 3 = 3}
E) £
a2 Q20
1 1t
i A = 3 .x'
6000 2000 4000 6000 2000 400 6000
Q (rev/min) 2 (rev/min)
e)

d) . SNR:25dB, H,-2Class-GB-4 Teeth
[ R er s R K

e

K + Success
4 i\ T 4!
)
g 3 g 3
£ &
2 2 2 21

4000
Q (rev/min)

SNR:25dB, H,-2Class-GB-4

Q (rev/min)

e

Teeth

4000
Q (rev/min)

FRLIY

4000 2000 6000

Fig. 4. Success and failure of two class classifications performed with Template Function feature matrices and Gradient Boosting algorithm for test set of
data set without noise and with SNR value of 25 dB. a)Classification with 1D persistence features for non-noisy data set, b)Classification with 2D persistence
features for non-noisy data set, c)Classification with 1D-2D persistence combined features for non-noisy data set, d)Classification with 1D persistence features
for noisy data set with SNR:25 dB, e)Classification with 2D persistence features for noisy data set with SNR:25 dB, f)Classification with 1D-2D persistence

combined features for noisy data set with SNR:25 dB.

while gradient boosting yields the highest accuracies for the
remaining three data sets.

To compare the results of different levels of noise and
different dimensions of persistence diagrams, classification
results are plotted on the 100 x 100 grid of stability diagram
for milling process. Figure 4 presents the stability diagrams
belongs to teeth number N = 4 of down milling process
for noisy data with SNR value of 25 dB and non-noisy
data sets. Figures on the first and second column belong to
the classifications performed with only H; and Hs features,
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respectively, while the ones in the third column represent the
results of combinations of H; and H, features. Red crosses
on the stability diagrams denote the case that the prediction
of the classifier does not match with the true label of the
corresponding time series while blue dots shows matching
between predictions and true labels. From the figures, it is
clear that the number of misclassifications increase slightly
when the noise is introduced into the simulation data. This
is also reflected in Table I in the decrease in accuracies for
different levels of noise, especially the noisy data sets with
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TABLE 1T
2 CLASS CLASSIFICATION RESULTS FOR NOISY (SNR:20,25,30 DB) AND NON-NOISY DATA SETS WHICH BELONG TO UPMILLING PROCESS WITH N = 4
(N: TEETH NUMBER, CC: CARLSSON COORDINATES, TF: TEMPLATE FUNCTIONS, SVM: SUPPORT VECTOR MACHINE, LR: LOGISTIC REGRESSION,
Hy: 1D PERSISTENCE, H2: 2D PERSISTENCE).

UpMilling Without Noise SNR: 20 dB
N =4 CC TF CC TF
Classifier H1 H2 Hl—HQ H1 H2 Hl-H2 H1 H2 H1—H2 H1 H2 Hl—HQ
SVM 86.0% | 78.5% 85.8 % 86.1% | 80.4% 86.0 % 76.8% | 80.7% 82.1% 84.6% | 84.0%
LR 85.3% | 77.8% 85.3% 86.2% | 81.3% 85.8% 69.4% | 80.4% 80.9% 82.7% | 81.3% 84.1%
RF 84.9% | 80.3% 84.9% 85.9% | 81.2% 85.7% 75.5% | 80.7% 81.1% 82.8% | 81.8% 83.2%
GB _ 80.9% 86.0 % 85.6% | 81.3% 86.0 % 80.6% | 82.2% 82.5% 84.1% | 83.4% 84.6 %
Upmilling SNR: 25 dB SNR: 30 dB
N=4 CcC CC TF
Classifier H1 H2 Hl—HQ H1 H2 Hl-HQ H1 H2 Hl—HQ
SVM 85.3% | 83.4% 34.8% 832% | 71.6% 83.1% 85.9% | 75.0%
LR 79.2% | 84.0% 84.1% 79.4% | 72.3% 79.5% 84.1% | 75.3% 85.0 %
RF 83.8% | 84.1% 84.5% 84.3% | 75.0% 84.4% 83.9% | 75.3% 83.8%
GB 85.2% | 84.3% 84.8% 85.1% | 74.6% 85.1% 85.7% | 75.7% 85.2%
a) b) c) d)
100 Down Milling, 2 Class 160 Down Milling, 3 Class Down Milling, SNR:25dB Doxgn Milling, SNR:25dB, 3Class, GB
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Fig. 5. Mean accuracies of downmilling process (a,b) and upmilling process (f,g) obtained for two class and three class classification performed with Carlsson
Coordinates and Template Functions for non-noisy and noisy data sets where teeth number is 4. Two class(c) and three class (d) classification results obtained
with Gradient Boosting algorithm is shown on the stability diagram for downmilling simulation data set whose SNR is 25 dB.Two class(e) and three class
(h) classification results obtained with Gradient Boosting algorithm is shown on the stability diagram for upmilling simulation data set whose SNR is 25 dB.

SNR value of 25 and 30 db.

In addition, there is small accuracy difference which is at
most 5% between noisy (SNR:25, 30 dB) and non-noisy data
set for downmilling cases, while this difference is less for
upmilling results presented in Table II This suggests that the
featurization methods used yield promising results even with
noisy data. Persistent homology is known to be very robust

against noise, as noise only adds points close to the diagonal
which have short lifetimes. Thus, these points do not contribute
singificantly to the Carlsson coordinate or template function
methods, making both featurizations robust against noise as
well.

Figure 5 shows a comparison of the results obtained for up
and downmilling with respect to different noise levels. Since
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the deviations of accuracies for both featurization methods are
relatively low, the classification accuracies can be considered
reliable. This trend is noticeable for both up and downmilling
and for all levels of noise. However, the classification results
for upmilling are noticeably lower than those for downmilling.
Additionally, it is clear that H, features do not perform as well
due to the lack of higher dimensional topological structure, as
was explained earlier. Figure 5 also presents the classification
results on the stability diagrams for upmilling and downmilling
for noisy data set. It is seen that many misclassifications occur
nearby the boundary of the stability diagram, especially for up
milling process. This boundary separates the unstable (above
the boundary curve) and stable (under the boundary curve)
cases so misclassifications on this boundary are likely. It is
also clear that when increasing to the three class problem,
there are an increased number of misclassification. However,
the overall accuracy difference between both implementations,
two and three class classification, does not exceed 5% at their
maximum accuracies.

The findings of this study indicate that topological features
of data are appropriate descriptors for chatter recognition in
milling. One advantage of the described approach is its ability
to provide promising results without the need for manual
preprocessing not only for non-noisy data sets, but also for
time series with noise. Therefore, we believe future work
can include studying the effect of changing the simulation
parameters on classification accuracy as well as experimental
studies.
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