
Adaptive Partitioning for Template Functions on
Persistence Diagrams

Sarah Tymochko
Dept. of Computational Mathematics,

Science & Engineering
Michigan State University

East Lansing, MI

tymochko@egr.msu.edu

Elizabeth Munch
Dept. of Computational Mathematics,

Science & Engineering
and Dept. of Mathematics
Michigan State University

East Lansing, MI

muncheli@egr.msu.edu

Firas A. Khasawneh
Dept. of Mechanical Engineering

Michigan State University
East Lansing, Michigan

khasawn3@egr.msu.edu

Abstract—As the field of Topological Data Analysis continues
to show success in theory and in applications, there has been
increasing interest in using tools from this field with methods for
machine learning. Using persistent homology, specifically persis-
tence diagrams, as inputs to machine learning techniques requires
some mathematical creativity. The space of persistence diagrams
does not have the desirable properties for machine learning, thus
methods such as kernel methods and vectorization methods have
been developed. One such featurization of persistence diagrams
by Perea, Munch and Khasawneh in [1] uses continuous, com-
pactly supported functions, referred to as “template functions,”
which results in a stable vector representation of the persistence
diagram. In this paper, we provide a method of adaptively
partitioning persistence diagrams to improve these featurizations
based on localized information in the diagrams. Additionally, we
provide a framework to adaptively select parameters required for
the template functions in order to best utilize the partitioning
method. We present results for application to example data
sets comparing classification results between template function
featurizations with and without partitioning, in addition to other
methods from the literature.

Index Terms—Topological data analysis, machine learning

I. INTRODUCTION

The field of Topological Data Analysis (TDA) uses methods

from algebraic topology to study the underlying shape of data.

Specifically, persistent homology is one tool that studies the

homology of a changing space, resulting in a representation

called a persistence diagram. As persistent homology has

shown success in many application fields, there has been

significant interest in applying statistical and machine learning

techniques to persistence diagrams directly. However, the

space of persistence diagrams lacks many of the desirable

properties for machine learning tasks. Specifically, the space

of persistence diagrams is not a Banach space, and it does not

have unique geodesics and thus has non-unique means.

Numerous methods have been developed to map persis-

tence diagrams into a space more amenable for machine

learning. These methods include featurization methods, such

The work of ST and EM was supported in part by NSF grants DMS-
1800446, CMMI-1800466, and CCF-1907591. FAK acknowledges the sup-
port of the National Science Foundation under grants CMMI-1759823 and
DMS1759824.

as persistence images [2] and persistence landscapes [3],

along with many kernel functions [4]–[11]. We will focus on

one particular featurization using “template functions” [1]. A

template function is any function on R
2 that is continuous

and compactly supported. By evaluating a set of these tem-

plate functions on a persistence diagram, we create a feature

vector representation. In this paper, we present a method of

adaptively partitioning persistence diagrams in order to use

the template function featurization on more localized regions

of the persistence diagrams. With this, we develop a method

of adaptively modifying parameter choices for the functions

to better fit the partitions. This new adaptive method uses

fewer features from the original template function featurization

method. In Sec. II-B, we present the original method for

template functions and will describe our modifications of the

method in Sec. III. In Sec. IV, we will present the results of

our method on some example data sets compared to the results

from [1].

II. BACKGROUND

Persistent homology is a method from TDA that studies how

the homology changes as the space changes. In this work we

will briefly describe homology and how persistent homology

can be applied to point cloud data. While persistent homology

can also be applied to data in the form of images or 3d voxel

images, we will only use point cloud data in this paper. We

refer the interested reader to [12]–[14].

A. Homology and persistent homology

Homology is a standard tool in algebraic topology to study

topological structure in different dimensions. In particular,

given a space, X , homology computes a group for dimensions

k = 0, 1, 2, . . ., denoted Hk(X) that represent information

about the structure in each dimension. In particular, dimension

0 studies connected components, dimension 1 studies loops,

dimension 2 studies voids, and higher dimensions study the

higher dimensional analogues.

We will first introduce a few other concepts in order

to define homology, specifically simplicial homology, more

formally. A simplicial complex, K, is a space built from

1227

2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA)

978-1-7281-4550-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICMLA.2019.00202

Authorized licensed use limited to: Michigan State University. Downloaded on September 30,2020 at 01:10:01 UTC from IEEE Xplore. Restrictions apply.

simplicies, where an n-simplex is the convex hull of n + 1
affinely independent points. The face of an n-simplex, σ, is

defined to be the convex hull of a nonempty subset of the

vertices of σ. The simplical complex must satisfy the following

requirements: (1) the intersection of any two simplices in K
is also a simplex in K and (2) faces of a simplex in K are

also simplices in K.

For a given simplicial complex K, let Kp be the set of all

p-simplices, p = 0, 1, 2, Then a p-chain, c, is defined to

be a formal sum of p-simplices in K,

c =
∑

σi∈Kp

aiσi,

where coefficients ai ∈ Z2. Note that other fields can be used

for coefficients, but we will focus on the simplified case of Z2

as that is typically what is used for persistent homology. Since

we can add and scale chains by a constant, the collection of p-

chains, Cp(K), called the chain group, forms a vector space.

The boundary map between chain groups is defined as the

linear transformation

∂p : Cp → Cp−1

which maps a p-simplex to the sum of its (p−1)-dimensional

faces. The chain complex is sequence of chain groups con-

nected by the corresponding boundary maps,

· · · ∂p+2−−−→ Cp+1
∂p+1−−−→ Cp

∂p−→ Cp−1
∂p−1−−−→ · · · .

Within a chain group, we define two different kinds of p-

chains that are needed to define the homology groups, cycles

and boundaries. A p-cycle is a p-chain, c, with ∂p(c) = 0,

meaning it has empty boundary. The set of p-cycles is the

kernel of the boundary map, ker(∂p). A p-boundary is a p-

chain that is the boundary of a p + 1-chain, i.e. cp = ∂cp+1

with cp+1 ∈ Cp+1. The set of p-boundaries is the image of

the boundary map, im(∂p). Note that the p+1-boundaries are

a subgroup of the p-cycles. Now, the p-th homology group is

formally defined as

Hp(K) = ker(∂p)/im(∂p+1).

Further, the p-th Betti number is defined to be the rank of the

p-th homology group and is denoted βp.

Persistent homology is a tool for studying the homology

of a parameterized space. We will define the Vietoris-Rips

complex, which is one method of creating a simplicial complex

based on a point cloud. Given a point cloud, X , and a distance,

r, the Vietoris-Rips complex is a simplicial complex where for

every finite set of n points with maximum pairwise distance

at most r, the n− 1 simplex formed by those points is added.

From the Vietoris-Rips complex, for every radius, ri, we get

a simplicial complex, Xri . These complexes have the property

that if ri < rj then Xri ⊆ Xrj . Thus, for any increasing set of

radii, 0 < r0 < r1 < r2 < · · · < rn, we get a nested sequence

of simplicial complexes,

Xr0 ⊆ Xr1 ⊆ Xr2 ⊆ · · · ⊆ Xrn (1)

Fig. 1. Example tent function, g(3,2),1, drawn in the birth-death plane (left)
and birth-lifetime plane (right) with d = 5, δ = 1 and ε = 0. This plot is
similar to [1, Fig. 4].

called a filtration. Computing k dimensional homology of each

space in the filtration, the inclusions in (1) induce linear maps

between the homology groups,

Hk(Xr0)→ Hk(Xr1)→ · · · → Hk(Xrn).

By studying these maps, we study how the homology of the

space changes through the filtration. In particular, we care

about when features appear and disappear in this sequence.

We say a k-dimensional feature, γ is “born” at radius ri if

γ ∈ Hk(xri) but γ �∈ Hk(xri−1
). A feature “dies” at radius rj

if it merges with an older feature going from Xrj−1 to Xrj .

A persistence diagram is a way of representing the births

and deaths of homology classes. The persistence diagram is a

scatter plot where a class that is born at ri and dies at rj is

represented as the point (ri, rj). This is typically called the

birth-death plane. Since in a standard Vietoris-Rips filtration,

a feature is always born before it dies, all persistence points

are above the diagonal through the birth-death plane. Another

popular modification of a persistence diagram is to plot a class

that is born at ri and dies at rj as the point (ri, rj − ri)
where the quantity rj−ri represents how long a feature lived,

or its “lifetime.” This is called the birth-lifetime plane. For

simplicity of definitions to follow, we will be working in the

birth-lifetime plane for the rest of the paper.

B. Featurization Using Template Functions

As proposed in [1], we will consider featurizations of

persistence diagrams based on two types of template functions,

tent functions and interpolating polynomials. We will briefly

describe the method of featurization.

A template function is defined as any function on R
2 that

that is continuous, and has compact support contained within

the upper half plane, W := R×R>0
1. A template function f :

W→ R can be turned into a function on persistence diagrams

as follows. Given a diagram D, the function is evaluated on

each point in the diagram, and then summed, giving

νf (D) =
∑

x∈D
f(x).

1Recall that we use birth-lifetime coordinates throughout the paper; other-
wise, template functions could be equivalently defined to have support above
the diagonal.

1228

Authorized licensed use limited to: Michigan State University. Downloaded on September 30,2020 at 01:10:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Examples of interpolating polynomials for the meshes A = B =
{1, 2, 3}. The plot drawn at (i, j) shows the polynomial, pi,j , where pi,j = 1
and 0 on all other mesh points. This plot is from [1, Fig. 5].

A collection of template functions, T , is called a template
system if the resulting functions on persistence diagrams,

FT = {νf : f ∈ T } separate points. That is, for every pair

of diagrams, D and D′, there exists a function f ∈ T such

that νf (D) �= νf (D
′). As a true template system is infinite,

vectorization is done by returning (νf1(D), · · · , νfk(D)) for

functions in some subset of the template system. This is

well justified since any function on persistence diagrams

can be approximated by some finite subset of a template

system; see [1, Thm. 29]. In this paper, we will use two

examples of template systems as given in [1]: tent functions

and interpolating polynomials.

Tent functions are an example of template functions that

are meant to probe small regions of the persistence diagram.

Again, recall everything is defined in the birth-lifetime plane.

Given a point a = (a, b), and a radius δ ∈ R>0 with 0 < δ <
b, the tent function is defined to be

ga,δ(x, y) =

∣∣∣∣1−
1

δ
max{|x− a|, |y − b|}

∣∣∣∣
+

,

where | · |+ denotes the positive value of the function, and

0 otherwise. This function is supported on the compact box

[a− δ, a+ δ]× [b− δ, b+ δ], evaluates to 1 at a, and decreases

linearly to 0 on the boundary of the box. Note that since the

box must be compactly supported on persistence diagrams,

the bottom edge of the box cannot lie on the x-axis. Given a

persistence diagram D = {x = (bi, li)}, the tent function is

the sum of the evaluation of this function on all points in the

diagram,

Ga,δ(D) =
∑

x∈D
ga,δ(x).

The full template system consists of all tent functions ga,δ
which have compact support contained in W. However, in

practice, we work with the subset of these tent functions

{G(δi,δj+ε),δ|0 ≤ i ≤ d, 1 ≤ j ≤ d} (2)

by choosing the grid size, d, and a vertical shift, ε, to ensure

g is compactly supported inside W. This gives a d × (d +

Fig. 3. The top left image is an example of a set of persistence diagrams
from the manifold experiment explained in IV-B showing both the 0 and 1
dimensional diagrams in the birth-lifetime plane. The top right image is an
example showing clustering on both 0 and 1 dimensional diagrams together,
which we call “combined partitioning,” and creating 5 partitions. The bottom
left and bottom right are examples showing 0 and 1 dimensional diagrams
respectively, and clustering each dimension separately, which we call “split
partitioning,” creating 3 partitions per dimension. In all except the top left
image, the black stars represent centers of clusters from k-means clustering
while the black boxes represent the partitions.

1) feature vector. An example of a tent function is shown in

Fig. 1. In this figure, the grid represents the mesh on which

tent functions can be centered. We show a single tent function,

centered at (3, 2) with δ = 1 and ε = 0.

The second template system we work with are interpolating

polynomials. Unlike the localized tent functions, interpolating

polynomials have support that fills out the space, however

to satisfy the properties of template functions, they will be

transformed to have compact support. Given a mesh A =
{ai}mi=0 ⊂ R, the Lagrange polynomial 	Aj (x) corresponding

to aj is

	Aj (x) =
∏

i�=j

x− ai
aj − ai

.

This has the property that 	Aj (ak) is 1 if j = k, and 0
otherwise. Then fixing meshes A ⊂ R, B ⊂ R>0, and

coordinates i′ and j′, the template function is

f(x, y) = h(x, y) · |	Ai′ (x)	Bj′(y)|

where h is a hill function forcing the resulting polynomial

to have compact support inside a designated box. In practice,

the box for h is a bounding box containing the mesh A × B
where both meshes A and B are chosen to have d elements;

if this box further encloses all points in all diagrams, then its

existence is implicit and need not be coded at all. Examples

of these interpolating polynomials are shown in Fig. 2.

III. METHODS

The main contribution of this paper is to provide an adaptive

method for choosing a subset of a template system based on K-

means clustering [15]. The method consists of two steps: first,

1229

Authorized licensed use limited to: Michigan State University. Downloaded on September 30,2020 at 01:10:01 UTC from IEEE Xplore. Restrictions apply.

cluster the points in all diagrams to find regions of interest, and

second, construct localized template function systems based on

these clusters. We will ensure that the collection of these local

template function systems covers all points in the diagrams.

To get the clusters, persistence diagrams in the training set

are combined and input into the standard K-means clustering

algorithm for a selected number of clusters k. Clustering can

be done in multiple ways. For applications using several di-

mensions of diagrams, i.e. 0 and 1 dimensional diagrams, there

are two possible options. The first is combining all diagrams

in the training set regardless of dimension; the second is to

combine only training persistence diagrams of like dimensions,

and get a different set of clusters for each diagram dimension.

Figure 3 shows an example of a persistence diagram with

both 0- and 1-dimensional persistence in the birth-lifetime

plane along with examples showing the two different methods

for generating clusters when using both 0 and 1 dimensional

diagrams. For simplicity, we will label results using the first

option as “combined partitioning” while we will label results

using the second option as “split partitioning.”

Then, for each cluster, a covering box, which we call a

partition, is selected based on the bounding box of the points

assigned to that particular cluster. This results in one cover ele-

ment per cluster; however, notice that the partitions themselves

can overlap each other, and so points from the diagrams could

land in the support of more than one partition. For this reason,

the clusters themselves are not particularly interesting, they are

just used to select general regions where persistence points are

located. This method gives us a collection of partitions, each

of which is a rectangular region in the birth-lifetime plane. We

then utilize a collection of template functions contained within

each of these partitions in the same way we would have done

in the original method when given only one bounding box.

We start by describing this process for the tent functions as

defined in Sec. II-B, which have parameters d, δ, and ε. We

develop a method of adaptively selecting d and δ based on each

partition, allowing for a more localized featurization. In our

modified version of the method, d does not need to be the same

in the x and y direction, thus we will write dx, dy to specify

the d parameter in each. Given a particular partition, P =
[xmin, xmax] × [ymin, ymax], we first choose an initial value

of parameter d. From this, δ is calculated to be max{δx, δy}
where δx = xmax−xmin

d and δy is defined similarly. If δx > δy ,

then dx = d and dy = �ymax−ymin

δ 	. Similarly, if δx < δy then

dx = �xmax−xmin

δ 	 and dy = d. Figure 4 shows an example of

this adaptive parameter selection process. Note that by virtue

of this notation, the support of the tent functions placed on the

boundary of the partition extends outside the box. This results

in a grid of size (dx+1)×(dy+1) which reduces the number

of features used per cover element yet ensures that based on

the selected d value that δ is selected appropriately to cover

all points.

Additional precautions are taken to ensure that the support

of the tent functions did not cross the x-axis (or the diagonal

in the birth-death plane). Fix ε > 0, a parameter chosen by

the user, then if after this parameter selection ymin − δ < 0,

Fig. 4. Example of steps in adaptive parameter selection for a given partition,
shown as the black rectangle. In this example, we are using tent functions
with d = 2. The leftmost image, we calculate δx and δy and choose δ to
be the larger value. In the middle image, we select dy = 2, calculate dx as
explained in Sec. III which yields dx = 1, and apply a (dx +1)× (dy +1)
grid (shown as the red points) where tent functions will be centered. In the
rightmost image, for the tent centers that lie along the bottom of the partition
(shown as a hollow blue square and solid green square), we check that the
supports (shown as dashed and dotted boxes colored corresponding to their
center) remain above the x-axis. Since they do, no further action is needed.
An example of when the supports do cross the x-axis is shown in Fig. 5.

Fig. 5. Example of steps in adaptive parameter selection for a given partition,
shown as the black rectangle, where the partition is close to the x-axis. In
this example, we are using tent functions with d = 2. The leftmost image,
we apply the same process as in Fig. 4 but the tent supports cross the x-axis.
In the middle image, we shift up the grid where tent centers are placed so
the tent support is at least a small ε > 0 above the x-axis. In the rightmost
image, since the top two tent centers are more than δ/2 outside the paritition,
we remove them, decreasing dy by 1.

then the grid of tent centers is shifted up to ensure the support

of all tent functions is at least ε above the x-axis. If in this

shift, there are tent centers that are greater than δ/2 above the

partition boundary, then they are removed and dy is reduced

by 1. Figure 5 shows a visual example of this special case.

When using the interpolating polynomials, the same process

as above is used to select dx and dy . We do not need a value of

δ because the mesh is defined by a non-uniform Chebyshev

mesh rather than using a regular grid like is done with the

tent functions. Note that for the tent functions, we allow dx
and dy to be zero, resulting in a grid consisting of a single,

row or column of tent centers, however for the interpolating

polynomials we require at least a 2× 2 grid.

IV. EXPERIMENTS

A. Code

The python package teaspoon2 contains code for clas-

sification using tent functions and interpolating polynomials.

Classification was done using RidgeClassifierCV and

LogisticRegression from the sklearn package [16].

2https://github.com/lizliz/teaspoon

1230

Authorized licensed use limited to: Michigan State University. Downloaded on September 30,2020 at 01:10:01 UTC from IEEE Xplore. Restrictions apply.

B. Manifold Experiment

Replicating an experiment from [1], [2], we generated

collections of point clouds drawn from different manifolds.

Each point cloud consists of 200 points drawn from the

following manifolds:

• Annulus: points drawn uniformly from an annulus with

inner radius 1 and outer radius 2.

• Torus: points drawn uniformly from a torus created from

a rotating circle of radius 1 in the xz-plane centered at

(2, 0) around the z-axis.

• Sphere: points drawn from a sphere in R
3 of radius 1.

Uniform noise in [−0.05, 0.05] was added to the radius.

• Cube: points drawn uniformly from [0, 1]2 ⊂ R
2.

• 3 Clusters: points drawn from one of three different

normal distributions with means (0, 0), (0, 2), (2, 0), each

with standard deviation of 0.05.

• 3 Clusters of 3 Clusters: points drawn from normal

distributions centered at (0,0), (0,1.5), (1.5,0), (0,4), (1,3),

(1,5), (3,4), (3,5.5), (4.5,5) each with standard deviation

0.05.

These point clouds can be generated using the func-

tion MakeData.PointCloud.testSetManifolds in

teaspoon.

For our method we tested a variety of parameters and

options. For all experiments, we reserve 33% of the data

for testing while the remaining was used for training. All

the classification results are averaged over 10 runs of the

experiment to control for outliers.

For comparison, Table I shows the results from [1] using

0- and 1-dimensional diagrams with ridge regression for

classification along with our accuracies using our partitioning

method where partitions are selected based on both diagram

dimensions simultaneously, referred to throughout the paper as

“combined partitioning.” For the results from [1], the authors

used tent parameters of d = 10, ε to be half the minimum

TABLE I
RESULTS OF CLASSIFICATION OF MANIFOLD DATA AS EXPLAINED IN SEC.

IV-B USING TEMPLATE FUNCTIONS WITH AND WITHOUT PARTITIONIN

FOR DIFFERENT NUMBERS OF EXAMPLES DRAWN FROM EACH TYPE OF

MANIFOLD. RIDGE REGRESSION IS USED FOR CLASSIFICATION IN BOTH

METHODS. SCORES HIGHLIGHTED IN BLUE GIVE THE BEST AVERAGE

SCORE BETWEEN THE TWO METHODS.

Tents
Num No Partitioning Partitioning
Dgms Train Test Train Test

10 99.8%± 0.9 96.5%± 3.2 100%± 0.0 99.5%± 1.5
25 99.9%± 0.3 99.0%± 1.0 99.9%± 0.3 99.6%± 0.8
50 99.9%± 0.2 99.9%± 0.3 100%± 0.0 100%± 0.0
100 99.8%± 0.1 99.7%± 0.4 99.9%± 0.1 99.8%± 0.2
200 99.5%± 0.1 99.5%± 0.3 99.6%± 0.1 99.2%± 0.3

Polynomials
Num No Partitioning Partitioning
Dgms Train Test Train Test

10 99.8%± 0.9 95.0%± 3.9 100%± 0.0 97.5%± 2.5
25 99.7%± 0.5 97.6%± 1.5 99.7%± 0.5 99.4%± 0.9
50 100%± 0.0 99.2%± 0.9 100%± 0.1 99.5%± 0.5
100 99.6%± 0.2 99.3%± 0.5 99.7%± 0.2 99.6%± 0.5
200 99.2%± 0.2 98.9%± 0.5 99.5%± 0.2 99.4%± 0.3

Fig. 6. Results of classification of manifold data as explained in Sec. IV-B
using template functions with and without partitioning. For partitioning
methods, classification is done using logistic regression. Note that in all
plots, the results without partitioning represent the accuracy using 0- and
1-dimensional diagrams. Thus the same accuracy is shown in each plot in a
column.

Fig. 7. Average number of features used for the manifold experiment using
template functions with and without partitioning. These correspond to the
classification accuracies shown in Fig. 6.

lifetime over all training set diagrams, and δ to be chosen to

ensure the bounding box covered the training diagrams. For

our results, we used 3 clusters resulting in 3 partitions and for

both template functions we set a starting value of d = 3 and set

ε to be machine precision, while the additional parameters are

selected as described in Sec. III. Note that in all cases except

one, our partitioning method has a higher testing accuracy.

Figure 6 shows the results of using our partitioning method

on only 0- or 1-dimensional diagrams, on both dimensions

using combined partitioning, and on both dimensions using

split partitioning. Here we still used 3 clusters resulting in 3

1231

Authorized licensed use limited to: Michigan State University. Downloaded on September 30,2020 at 01:10:01 UTC from IEEE Xplore. Restrictions apply.

partitions, while starting with a value of d = 3 and for both

template functions. For these experiments we used logistic

regression for classification. It is important to note that in [1],

only accuracies using both dimensions were reported so the

accuracies for no partitioning in all plots are from using both

dimensions of diagrams with classification done using ridge

regression. This means that those results are the same across

all plots for a given template function.

Using both 0- and 1-dimensional diagrams with either

split or combined parititoning, using both tent functions and

interpolating polynomials we get above 99% accuracy for all

except a couple cases. Using only 0-dimensional or only 1-

dimensional diagrams, we still get very good accuracy, but

interestingly using 0-dimensional diagrams, the accuracies

seem slightly better. Using only 0-dimensional diagrams, we

almost always outperform the template functions without par-

titioning using both 0- and 1-dimensional diagrams. However,

using tent functions with 1-dimensional diagrams, our method

underperforms. Additionally, Fig. 7 shows the average number

of features used for these experiments. The number of features

used is dependent on which diagrams are being used. For

example, using only 0-dimensional diagrams, we need very

few features as all points in the diagrams fall on the y-axis

for this experiment. Using both 0- and 1-dimensional diagrams

will require more features as we need to cover more of the

diagram. However in all cases, we are using significantly less

features and still achieving comparable or higher accuracies.

C. Shape Data

As in [1], we compared our results to the kernel method

developed in [5] on the synthetic SHREC 2014 data set

[17]. This data set consists of 3D meshes of fifteen humans

(five males, five females and five children) in 20 different

poses. In [5], the authors define a function on each mesh

using the heat kernel signature for 10 different parameters

and compute 0- and 1-dimensional diagrams. Using the 300

pairs of persistence diagrams for each 10 parameter values, we

predict which of the 15 humans is represented in each mesh.

Figure 8 show the results of these experiments using our

partitioning method with tent and interpolating polynomial

functions as well as the results reported in [1] (labeled as

“No Partitioning”) and [5] (labeled as “MSK”). For clarity,

tables showing these results are also located in the appendix in

Tables II. For all experiments with partitioning, we use d = 5
and 5 clusters for partitioning. For the experiments without

partitioning, the authors use d = 20 for both types of template

functions. All accuracies with and without partitioning are

averaged over 10 runs.

For three of the ten parameter values, using tent func-

tions, our method achieves the highest accuracy. Additionally,

the confidence intervals intersect the highest accuracy for

three additional parameters using tent functions. Comparing

tent functions with and without partitioning, it is clear that

partitioning drastically improves most of the accuracies. For

example, using 0- or 1-dimensional diagrams, the top left and

middle left plot in Fig. 8, the green line representing our

Fig. 8. Results of classification of shape data as explained in Sec. IV-C using
template functions with and without partitioning. In both columns, MSK gives
the original results from [5]. Ridge regression is used for classification.

Fig. 9. Average number of features used for shape data experiment using our
partitioning method. These correspond to the classification accuracies shown
in Fig. 8.

testing accuracy is almost always higher than the orange line

representing the testing accuracy without partitioning.

Using interpolating polynomials, our method does not sur-

pass the kernel method or the template functions without

partitioning to achieve the highest accuracy, however the

confidence intervals intersect the highest accuracy for seven

of the ten parameters. Comparing our results to featurization

using interpolating polynomial functions without partitioning,

our results are fairly comperable; for some parameter values

we achieve slightly higher accuracies, while for others we

achieve slightly lower accuracies. Without partitioning, the

interpolating polynomials are not localized and may be picking

1232

Authorized licensed use limited to: Michigan State University. Downloaded on September 30,2020 at 01:10:01 UTC from IEEE Xplore. Restrictions apply.

up more global structure in the diagrams that is missed

using partitioning, which could explain this lack of drastic

improvement.

Figure 9 shows the average number of features used for

these experiments. It is clear that we are using far less

than the 420 and 441 features used in [1] with tent and

polynomial functions respectively, yet we still achieve good

accuracies, particularly using tent functions. For example, for

the parameters where tent functions with partitioning achieve

the highest accuracy, we use less than 150 features.

V. DISCUSSION

In this paper, we have presented a method of adaptively

partitioning persistence diagrams for featurization using tem-

plate functions. This allows for significant flexibility in the

featurization for the user. Our methods are applicable to

tent function and interpolating polynomial template systems,

but additionally to any functions fitting into the template

framework from [1]. We also provide two different methods

of featurizing using several dimensions of diagrams, either

partitioning all dimensions together, or separately.

For further modification of this method, the k-means cluster-

ing algorithm could be changed to any clustering technique as

chosen by the user. K-means clustering, and other clustering

algorithms can also take weights into account, allowing a

user to weight certain points in the diagram more heavily

than others. A standard example is weighting points based

on the lifetime, as features with longer lifetimes are typically

interpreted as the most significant, while features with shorter

lifetimes are often considered noise.

We have shown that our method works well on standard

examples in comparison to [1] and other featurization methods

available. In particular, our method improves on the results

of template functions without partitioning for the manifold

experiment, achieving above 99% accuracy in almost all cases.

For the SHREC data set, our method improves drastically

upon results without partitioning when used with tent functions

however is not quite as successful using interpolating polyno-

mials. In [1] the authors point out the instinct to emphasize

localization for these persistence diagram featurizations. For

tent functions, which are defined already to be very localized,

our method allows for even closer analysis of regions with

high density of points, ignoring more sparse regions. However,

the interpolating polynomials are more global, where each

function in the template system has support over the entire

region of points in the diagram when not using partitions. In

[1], this seems to be to their advantage as the interpolating

polynomials significantly outperform tent functions on the

SHREC data set. The fact that these functions worked so well

in [1] is surprising, but it may indicate that trying to localize

these functions by restricting their support to the selected

partitions may cause global information to be overlooked.

In general, partitioning the diagrams allows for a more

localized featurization of the diagrams, as is desirable in many

applications. Our method allows for a new adaptation of an

existing featurization method which gives the user significant

freedom to test parameters, existing examples of template

functions, and any other functions that fit the template system

criteria.

REFERENCES

[1] J. A. Perea, E. Munch, and F. A. Khasawneh, “Approximating con-
tinuous functions on persistence diagrams using template functions,”
arXiv:1902.07190, 2019.

[2] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman,
S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier, “Persistence
images: A stable vector representation of persistent homology,” Journal
of Machine Learning Research, vol. 18, no. 8, pp. 1–35, 2017. [Online].
Available: http://jmlr.org/papers/v18/16-337.html

[3] P. Bubenik, “Statistical topological data analysis using persistence land-
scapes,” Journal of Machine Learning Research, vol. 16, pp. 77–102,
2015. [Online]. Available: http://jmlr.org/papers/v16/bubenik15a.html

[4] G. Kusano, K. Fukumizu, and Y. Hiraoka, “Kernel method for persis-
tence diagrams via kernel embedding and weight factor,” The Journal
of Machine Learning Research, vol. 18, no. 1, pp. 6947–6987, 2017.

[5] J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A stable multi-scale
kernel for topological machine learning,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, jun 2015.

[6] R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer,
“Statistical topological data analysis - a kernel perspective,”
in Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2, ser. NIPS’15. Cambridge,
MA, USA: MIT Press, 2015, pp. 3070–3078. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2969442.2969582

[7] G. Kusano, K. Fukumizu, and Y. Hiraoka, “Persistence weighted
gaussian kernel for topological data analysis,” in Proceedings of the
33rd International Conference on International Conference on Machine
Learning - Volume 48, ser. ICML’16. JMLR.org, 2016, pp. 2004–2013.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3045390.3045602

[8] M. Carrière, M. Cuturi, and S. Oudot, “Sliced wasserstein kernel for
persistence diagrams.”

[9] R. Anirudh, V. Venkataraman, K. N. Ramamurthy, and P. Turaga, “A
riemannian framework for statistical analysis of topological persistence
diagrams,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). IEEE, jun 2016.

[10] T. Le and M. Yamada, “Persistence fisher kernel: A riemannian manifold
kernel for persistence diagrams,” in NeurIPS, 2018.

[11] X. Zhu, A. Vartanian, M. Bansal, D. Nguyen, and L. Brandl, “Stochastic
multiresolution persistent homology kernel,” in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
ser. IJCAI’16. AAAI Press, 2016, pp. 2449–2455. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3060832.3060964

[12] H. Edelsbrunner and J. Harer, Computational Topology: An Introduction.
American Mathematical Society, 2010.

[13] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.
[14] E. Munch, “A user’s guide to topological data analysis,” Journal of

Learning Analytics, vol. 4, no. 2, pp. 47–61, jul 2017.
[15] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means

clustering algorithm,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[17] D. Pickup, X. Sun, P. L. Rosin, R. R. Martin, Z. Cheng, Z. Lian,
M. Aono, A. B. Hamza, A. Bronstein, M. Bronstein et al., “Shape
retrieval of non-rigid 3d human models,” International Journal of
Computer Vision, vol. 120, no. 2, pp. 169–193, 2016.

APPENDIX

This appendix gives tables with the accuracies for classi-

fication of the shape data using template functions with and

without partitioning. This data is represented graphically in

Fig. 8.

1233

Authorized licensed use limited to: Michigan State University. Downloaded on September 30,2020 at 01:10:01 UTC from IEEE Xplore. Restrictions apply.

TABLE II
RESULTS OF CLASSIFICATION OF SHAPE DATA AS EXPLAINED IN SEC. IV-C USING TENT FUNCTIONS AND POLYNOMIAL FUNCTIONS, WITH AND

WITHOUT PARTITIONING. RIDGE REGRESSION IS USED FOR CLASSIFICATION. THE MSK COLUMN GIVES THE ORIGINAL RESULTS FROM [5]. SCORES

HIGHLIGHTED IN BLUE GIVE THE BEST AVERAGE SCORE ACROSS ALL TESTING COLUMNS; SCORES HIGHLIGHTED IN ORANGE HAVE OVERLAPPING

INTERVALS OF STANDARD DEVIATION WITH THE BEST SCORE.

Tents - Partitioning
Dgm0 Dgm1 Dgm0 & Dgm1 Dgm0 & Dgm1

(Combined Partitioning) (Split Partitioning)
Freq MSK Train Test Train Test Train Test Train Test

1 94.7 ± 5.1 97.1 ± 1.8 81.2 ± 4.2 93.9 ± 2.9 70.8 ± 4.4 99.4 ± 0.4 84.7 ± 2.2 100.0 ± 0.0 92.5 ± 2.0
2 99.3 ± 0.9 91.2 ± 0.9 74.8 ± 4.3 97.5 ± 0.8 73.2 ± 4.3 97.7 ± 0.7 79.0 ± 3.6 100.0 ± 0.0 91.8 ± 1.8
3 96.3 ± 2.2 80.4 ± 1.7 57.3 ± 6.7 94.9 ± 3.4 71.3 ± 4.0 97.4 ± 0.8 81.6 ± 2.4 98.8 ± 0.5 86.9 ± 3.3
4 97.3 ± 1.9 62.9 ± 2.5 39.5 ± 5.5 94.8 ± 1.4 83.5 ± 2.6 96.6 ± 1.0 86.8 ± 3.0 98.1 ± 0.8 86.5 ± 3.7
5 96.3 ± 2.5 58.4 ± 2.9 41.5 ± 2.8 96.2 ± 1.7 87.5 ± 1.9 97.6 ± 1.1 91.9 ± 2.3 96.9 ± 1.7 88.3 ± 3.8
6 93.7 ± 3.2 42.3 ± 2.3 35.6 ± 5.0 97.5 ± 0.9 93.1 ± 1.8 97.3 ± 0.9 93.4 ± 2.6 97.3 ± 1.0 91.9 ± 2.5
7 88.0 ± 4.5 48.6 ± 2.6 43.7 ± 3.0 97.4 ± 0.7 92.9 ± 2.0 97.1 ± 0.8 93.3 ± 2.4 97.9 ± 0.9 94.2 ± 2.3
8 88.3 ± 6.0 47.4 ± 3.6 36.6 ± 7.0 95.9 ± 1.0 89.9 ± 2.3 94.6 ± 1.8 92.6 ± 2.0 96.2 ± 0.8 90.4 ± 3.0
9 88.0 ± 5.8 35.9 ± 11.8 25.8 ± 10.8 94.5 ± 1.9 88.9 ± 3.0 95.8 ± 1.0 88.7 ± 1.9 95.6 ± 1.4 88.1 ± 2.5
10 91.0 ± 4.0 11.3 ± 4.8 5.2 ± 3.4 72.4 ± 4.4 67.3 ± 3.6 73.1 ± 3.8 65.8 ± 5.0 73.6 ± 5.4 66.3 ± 5.4

Tents - No Partitioning
Dgm0 Dgm1 Dgm0 & Dgm1

Freq Train Test Train Test Train Test
1 8.3 ± 0.5 3.4 ± 1.1 8.1 ± 0.2 3.7 ± 0.5 8.2 ± 0.3 3.5 ± 0.5
2 8.3 ± 0.3 3.4 ± 0.7 8.2 ± 0.5 3.5 ± 1.1 8.6 ± 0.4 3.0 ± 1.0
3 66.5 ± 2.7 31.8 ± 4.8 50.6 ± 2.1 31.1 ± 4.0 80.5 ± 1.3 44.4 ± 4.3
4 46.2 ± 2.5 27.0 ± 3.8 83.1 ± 1.6 63.5 ± 4.6 89.1 ± 1.5 69.0 ± 4.9
5 28.5 ± 1.4 18.9 ± 4.0 75.2 ± 2.6 58.3 ± 4.6 76.8 ± 2.7 58.4 ± 7.9
6 25.4 ± 1.8 19.0 ± 2.4 96.5 ± 1.1 88.7 ± 2.4 96.8 ± 0.7 89.9 ± 1.7
7 19.4 ± 2.6 10.0 ± 3.4 98.2 ± 0.5 93.6 ± 1.9 98.3 ± 0.6 94.1 ± 2.5
8 10.8 ± 2.6 3.6 ± 2.4 91.9 ± 0.9 88.8 ± 2.7 91.9 ± 1.2 89.7 ± 3.3
9 10.6 ± 2.7 4.3 ± 2.2 63.8 ± 2.7 53.3 ± 5.9 64.9 ± 2.3 53.7 ± 3.8
10 9.2 ± 2.3 3.6 ± 1.7 27.0 ± 3.9 16.2 ± 3.2 27.3 ± 3.4 18.6 ± 5.6

Polynomials - Partitioning
Dgm0 Dgm1 Dgm0 & Dgm1 Dgm0 & Dgm1

(Combined Partitioning) (Split Partitioning)
Freq MSK Train Test Train Test Train Test Train Test

1 94.7 ± 5.1 96.6 ± 1.0 75.3 ± 5.2 96.5 ± 2.2 80.6 ± 2.1 98.8 ± 1.2 83.8 ± 2.8 100.0 ± 0.0 90.4 ± 2.4
2 99.3 ± 0.9 94.4 ± 0.6 72.4 ± 4.2 99.2 ± 1.2 86.0 ± 4.4 99.9 ± 0.2 92.2 ± 1.9 100.0 ± 0.0 94.8 ± 1.4
3 96.3 ± 2.2 84.8 ± 1.4 57.4 ± 4.2 98.8 ± 0.7 90.6 ± 2.5 98.7 ± 0.9 91.9 ± 2.7 100.0 ± 0.1 92.0 ± 2.7
4 97.3 ± 1.9 73.8 ± 2.8 44.1 ± 5.5 96.2 ± 1.9 86.0 ± 2.8 96.0 ± 1.9 83.1 ± 3.2 97.9 ± 0.9 82.7 ± 4.3
5 96.3 ± 2.5 66.4 ± 4.7 37.4 ± 4.8 95.8 ± 2.0 89.8 ± 3.1 99.3 ± 0.5 91.0 ± 3.1 96.4 ± 1.2 84.8 ± 3.0
6 93.7 ± 3.2 57.9 ± 4.0 37.0 ± 5.8 97.9 ± 0.7 91.8 ± 2.3 97.8 ± 0.8 89.6 ± 2.3 98.6 ± 0.4 90.5 ± 3.2
7 88.0 ± 4.5 61.9 ± 2.2 39.5 ± 5.4 97.2 ± 1.0 90.5 ± 2.3 97.5 ± 0.8 93.9 ± 1.6 98.3 ± 0.5 92.9 ± 1.7
8 88.3 ± 6.0 69.0 ± 2.9 50.8 ± 4.5 98.2 ± 0.7 91.4 ± 2.0 98.1 ± 0.9 91.0 ± 3.2 99.4 ± 0.5 92.6 ± 1.8
9 88.0 ± 5.8 68.7 ± 6.1 52.5 ± 6.1 94.5 ± 1.5 88.1 ± 2.0 95.2 ± 1.3 86.3 ± 2.7 95.7 ± 2.2 88.9 ± 3.5
10 91.0 ± 4.0 61.5 ± 5.1 46.3 ± 4.0 96.2 ± 1.1 88.7 ± 3.0 96.8 ± 1.2 90.1 ± 2.5 97.9 ± 1.0 88.8 ± 2.6

Polynomials - No Partitioning
Dgm0 Dgm1 Dgm0 & Dgm1

Freq Train Test Train Test Train Test
1 94.3 ± 0.5 67.1 ± 4.7 99.1 ± 0.3 85.4 ± 3.0 99.8 ± 0.3 90.4 ± 5.3
2 92.1 ± 1.4 60.8 ± 6.3 99.9 ± 0.3 89.9 ± 1.5 100.0 ± 0.0 95.1 ± 2.4
3 83.4 ± 2.4 45.1 ± 2.9 99.6 ± 0.5 88.9 ± 3.0 99.7 ± 0.5 90.0 ± 2.0
4 74.7 ± 2.0 37.4 ± 4.7 99.1 ± 0.7 85.2 ± 2.5 98.6 ± 0.9 84.8 ± 3.9
5 65.3 ± 2.9 27.8 ± 5.0 99.2 ± 0.7 93.0 ± 2.2 99.7 ± 0.4 93.3 ± 2.2
6 67.2 ± 2.5 36.5 ± 3.6 99.2 ± 0.5 93.4 ± 2.8 98.8 ± 0.5 92.9 ± 1.8
7 71.5 ± 2.8 40.9 ± 4.1 98.3 ± 0.7 96.6 ± 0.7 99.0 ± 0.4 95.6 ± 1.4
8 84.2 ± 3.3 63.0 ± 4.5 99.0 ± 0.5 93.0 ± 1.8 99.6 ± 0.4 94.0 ± 2.2
9 83.5 ± 2.7 62.4 ± 5.0 98.4 ± 1.2 92.9 ± 1.5 98.5 ± 1.3 92.6 ± 2.1

10 79.8 ± 2.7 59.0 ± 4.6 96.9 ± 0.6 92.1 ± 1.7 97.7 ± 1.1 89.5 ± 4.6

1234

Authorized licensed use limited to: Michigan State University. Downloaded on September 30,2020 at 01:10:01 UTC from IEEE Xplore. Restrictions apply.

