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ABSTRACT

Damage detection and localization remain challenging
research areas in structural health monitoring. Guided wave-
based methods that utilize signal processing tools (e.g., matched
field processing and delay-and-sum localization) have enjoyed
success in damage detection. To locate damage, such techniques
rely on a model of wave propagation through materials.
Measured data is then compared with these models to determine
the origin of a wave. As a result, the analytical model and actual
data may have a mismatch due to environmental variations or a
lack of knowledge about the material. Deep neural networks are
a class of machine learning algorithms that learn a non-linear
functional mapping. The paper presents a deep neural network-
based approach to damage localization. We use simulated data
to assess the performance of localization frameworks under
varying levels of noise and other uncertainty in our ultrasonic

signals.
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NOMENCLATURE

SHM Structural Health Monitoring

MFP Matched Field Processing

ML Machine Learning

ANN Artificial Neural Network

RF Random Forest

DNN Deep Neural Network

1. INTRODUCTION

Damage detection and localization is a central theme in the
non-destructive evaluation and monitoring methods to assess the
fidelity of structures. To remotely detect and locate damage,
guided waves-based systems have been implemented for a
number of structures. Data obtained from such systems is highly
dispersive and complex owing to the interaction of waves with
the complex propagation media.
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Damage localization in a complex medium can be seen as a
source localization problem. Multiple methods have been
proposed in signal processing literature for the same. These
include array processing and beamforming methodologies [1]. In
guided waves literature, these concepts are often realized as
delay-and-sum algorithms [2]. A generalization of delay-and-
sum, known as matched field processing (MFP), is also
extensively used in radar and underwater acoustics [1].

MEFP is a model-based framework. It compares a known
model with experimental data to find the location of maximum
correlation between model and data. The localization
performance of MFP is limited by the ability of the analytical
model to capture the variability due to environmental conditions
and the complexity due to the dispersive nature of waves.

Damage localization can also be set up as a problem of
learning a non-linear mapping from wave data to a target location
in the propagation media. This is similar to multilateration
approaches based on time of arrival measurements [3].

Neural networks, a class of machine learning technique, has
seen a recent resurgence in popularity. Recently, neural network-
based methods have been able to improve underwater acoustics
source localization [4].

We briefly discuss the theory behind MFP and its challenges
in Section 2. In Section 3, we introduce neural networks followed
by our proposed deep neural network-based framework for
damage localization that is robust under noisy and uncertain
conditions. In Section 4, we outline our experiments and results.
In Section 5, we conclude our work.

2. MATCHED FIELD PROCESSING

A matched field processor compares a mathematical model
for wave propagation against experimental data at every target
location in the grid. The target point giving maximum correlation
with the data is the predicted location of the source or damage.
The ability to build a model makes the MFP approach flexible.
As guided waves are dispersive, the ability of MFP to deal with
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broadband signals makes the approach more suitable for SHM
applications than traditional delay-and-sum localization [5].

Consider a grid of dimensions L x W populated with sensors
and damage at some location. The damage is considered as a
scatterer. Sensors placed on the grid act as transmitters or
receivers. Consider we have M sensor pairs. The experimental
data is a Q x M matrix across Q frequencies and M
measurements. We denote the data as X(w,, 7») for frequency ‘q’
and measurement from sensor pair m. Let Z(w, , r») be our
analytical model. A signal b, is calculated for every point ‘p’ in
our grid such that
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where (.)" represents the complex conjugate. The estimated
location from the processor is given by the maxima of Eq. 1 over
all of the points.

MFP is likely to suffer from model mismatch due to
environmental variations. Researchers have proposed methods to
create data-driven models from baseline guided wave data using
sparse signal processing methods [6]. MFP performance is
further limited by the robustness of each matched field processor
to environmental variations and uncertainties. This leads us to
explore novel localization techniques that can achieve greater
robustness to experimental variations.
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3. MACHINE LEARNING

A central theme of machine learning algorithms is to learn a
mapping from input to output using functional transformations.
ML algorithms have been successfully applied to a variety of
problems ranging from image recognition [7] to underwater
acoustic source localization [4].

3.1 Deep neural network-based framework
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FIGURE 1: NEURAL NETWORK WITH ONE HIDDEN LAYER

Artificial neural networks consist of hidden layer(s) with
nodes. The interconnections between subsequent hidden layers
have unique, trainable parameters known as weights. Every node
sums up the incoming signals and applies an activation function
to get the output. This signal is passed on to subsequent hidden

layers and ultimately to the output layer. At the output layer, a
suitable loss function is optimized to make the predicted output
go as close as possible to the actual output. The optimization
process updates the trainable parameters (weights) of the neural
network. An illustration of ANN is shown in Fig 1.

Deep neural networks are neural networks with multiple
hidden layers. DNN’s can learn complex non-linear functions
due to multiple hidden layers. DNN’s also provide the advantage
of directly feeding input data to the model with the need for less
feature engineering (input transformation). This sets apart
DNN’s from other ML techniques [8].

To train our network, we simulate a O (time samples) x M
(sensor pair measurements) matrix of the wave data. We refer to
this matrix as one “sample” in our dataset. We flatten the sample
(Q x M matrix) into a 1D vector to be fed as input to the DNN.
Our DNN framework has 2 hidden layers. The 1% hidden layer
has n; = 500 nodes and second hidden layer has n, = 60 nodes.
At the output, we have 2 nodes, one each for the horizontal and
vertical grid location. Loss function at the output is the mean
squared error between the DNN prediction and the target output.
We then test our network with additional simulation data with
previously untrained parameters and compare the results.

4. VALIDATION SIMULATION

We assume an L x W grid. We simulate damage as a point
non-uniformity at a random location which leads to the scattering
of waves. The simulated waves are measured at various locations
by randomly placed point sensors. Each sensor can act as a
transmitter or receiver. We do not incorporate reflection at
structure boundaries in this initial research. With this
assumption, we generate simulated data using the general
solution to the wave equation. Later, we add white Gaussian
noise to our signal to simulate noisy conditions.
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FIGURE 2: DAMAGE LOCALIZATION SIMULATION SETUP

An illustrative simulation setup is shown in Fig 2.
Simulation data is generated for Q = 500 frequencies in the range
of 0 to 1000 KHz. We simulate m = 15 sensors at random
locations thereby giving M = 210 sensor pair measurements.
While the optimum placement of sensor arrays is a widely
studied research problem [9], the focus of our research is to
demonstrate the usability of DNN in the context of damage
localization. Hence, we use a random placement of sensors.
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We perform ¢ = 2000 Monte Carlo simulations for wave
data, thereby giving t = 2000 samples to separately train and test
our DNN. Recall that each sample is Q X M matrix. In every
simulation, a random location is chosen for damage. The
measurement of simulated wave data at sensor locations is the
input to the DNN framework and the random damage location is
the output from DNN. The hyperparameters of the DNN as
discussed in Section 3.1, are critical to the performance of the
DNN [10]. We experiment with multiple parameter values to
find an optimal structure. To assess the DNN, we use a
localization error performance metric defined by

T
1
error = TZI target location — predicted location| 2
t=1

where T is the total number of samples in the dataset.

We add noise of varying levels to test the robustness of
different localization frameworks. Signal to noise ratio is
defined by

SIGNAL) 3)

SNRdB = 1Olog10 (m

where SIGNAL is signal power and NOISE is noise power.

For completeness, we compare our DNN framework with
another supervised ML technique known as random forests. RF
is a statistical supervised ML technique that provides
competitive performance on a variety of supervised learning
problems [11]. RF consists of multiple predictors, each of which
learns rules to map input to output from training data.
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FIGURE 3: ERROR AT VARYING NOISE LEVELS

Fig 3 shows the performance of three methods: matched
field processing, deep neural networks, and random forest. We
observe that our DNN based framework performs better than the
other two methods for high noise levels (low SNR) while MFP
is better at low noise levels (high SNR).

5. CONCLUSION

We proposed a deep neural network based-framework for
damage localization in structures. Using simulated data, we
compared our framework with the traditional matched field

processing technique. The performance of MFP was observed to
be slightly better than DNN for high signal-to-noise ratios but
DNN significantly outperformed MFP when the signal-to-noise
ratio was low. The results show a huge promise from DNN’s for
damage characterization in SHM.
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