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Abstract: To meet energy-reduction goals, cities are challenged with assessing building energy performance and prioritizing efficiency
upgrades across existing buildings. Although current top-down building energy benchmarking approaches are useful for identifying overall
efficient and poor performers across a portfolio of buildings at a city scale, they are limited in their ability to provide actionable insights
regarding efficiency opportunities. Concurrently, advances in smart metering data analytics combined with new data streams available via
smart metering infrastructure present the opportunity to incorporate previously undetectable temporal fluctuations into top-down building
benchmarking analyses. This paper leveraged smart meter electricity data to develop daily building energy benchmarks segmented by
strategic periods to quantify their variation from conventional, annual energy benchmarking strategies and investigate how such metrics
can lead to near real-time energy management. The periods considered include occupied periods during the school year, unoccupied periods
during the school year, occupied periods during the summer, unoccupied periods during the summer, and peak summer demand periods.
Results showed that temporally segmented building energy benchmarks are distinct from a building’s overall benchmark. This demonstrates
that a building’s overall benchmark masks periods in which a building is over- or underperforming during the day, week, or month; thus,
temporally segmented energy benchmarks can provide a more specific and accurate measure for building efficiency. We discussed how these
findings establish the foundation for digital twin–enabled urban energy management platforms by enabling identification of building retrofit
strategies and near-real-time efficiency in the context of the performance of an entire building portfolio. Temporally segmented energy
benchmarking measures generated from smart meter data streams are a critical step for integrating smart meter analytics with building energy
benchmarking techniques, and for conducting smarter energy management across a large geographic scale of buildings. DOI: 10.1061/
(ASCE)ME.1943-5479.0000741. © 2019 American Society of Civil Engineers.
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Introduction

In cities, prominent challenges such as urbanization and rising
greenhouse gas emissions have sparked efforts to make cities smar-
ter (Pierce and Andersson 2017). Because buildings account for
the majority of energy consumption in cities, and because of their
high potential for energy conservation through retrofits or opera-
tional improvements (IPCC 2007), they have become a key focus
for smart city initiatives (Baxter et al. 2011). At the intersection
of smart cities and building energy efficiency lies the opportunity
for real-time intelligent planning and urban energy management
(Hastak and Koo 2016). Smart city digital twins, a recent endeavor
to create a digital replica of city infrastructure linked to real-time

city data, are envisioned to improve city monitoring, control, and
decision making through enhanced visualization and interaction
with city data (Mohammadi and Taylor 2017). Smart city digital
twins are intended to capture and incorporate urban complexi-
ties across time and space through streamed data; given the increas-
ing availability of building performance data at urban scales
(BuildSmart DC 2017), they can be a promising platform for build-
ing portfolio performance assessment and urban energy manage-
ment (i.e., digital twin–enabled energy management).

Concurrently, policies aimed at transitioning cities to more sus-
tainable, energy-efficient urban areas are increasing. As of March
2019, over 90 cities, ten counties, and two states in the US have
committed to consuming energy entirely from renewable energy
sources by no later than 2050 (Sierra Club 2019). Other policies
such as building benchmarking ordinance requirements are requir-
ing public release of whole-building energy consumption and pro-
duction data for individual buildings at community and city scales
(e.g., Building Rating 2019; BuildSmart DC 2017). Harnessing the
potential of such data, made available through large investments
in smart infrastructure, is critical to fulfill greenhouse gas emission
reduction commitments (Zuo et al. 2013) and to strive toward dig-
ital twin–enabled smart city energy management.

Traditional ways of accomplishing building portfolio assess-
ments across large scales include building energy benchmarking,
which typically is conducted on an annual basis (Borgstein et al.
2016). However, such metrics do little to inform specific efficiency
opportunities to target or support real-time management of energy
efficiency. The availability of smart meter data across a community
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of buildings can enable the construction of benchmarks developed
at finer temporal scales and across specific time segments, which
we define as temporally segmented building energy benchmarks.
Because many buildings require different levels of energy con-
sumption based on the time of day or week, temporally segmented
building energy benchmarks have potential to provide a more ac-
curate measure for building efficiency across a group of buildings
(Francisco et al. 2018; Roth and Jain 2018). This paper leveraged
smart meter data for a community of buildings to benchmark
energy consumption in different periods and determined that a
digital-twin-enabled energy management platform that constitutes
temporally segmented building energy benchmarks can help detect
previously undiscoverable insights and identify more specific time-
driven strategies for near real-time urban energy management.

Background

Energy Performance Assessments in Existing
Buildings

Energy performance assessments commonly are used to assess the
energy performance of existing buildings, and can be divided into
two categories: building energy classification and energy diagnosis
(Wang et al. 2012). Building energy classification is applied across
a group of buildings and adopts methodologies that standardize
each building’s annual energy consumption based on its character-
istics, enabling comparison of building energy efficiency levels be-
tween buildings with different characteristics (e.g., floor area and
space use) (Pérez-Lombard et al. 2009). One of the most commonly
used standardization processes within energy classification is build-
ing energy benchmarking, which is a top-down approach apply-
ing statistics or machine learning algorithms (Buck and Young
2007; Kavousian and Rajagopal 2014; Zhang et al. 2015) that clas-
sify whole-building energy efficiency levels on an annual basis
(Borgstein et al. 2016; Kinney and Piette 2002). Such macrolevel
metrics are generally easily understood and aim to connect building
owners, policymakers, and the public with the information neces-
sary to identify poorly performing buildings and motivate stake-
holders to implement energy efficiency improvements (Wang et al.
2012). In general, these approaches require little data on building
technology (Zhao et al. 2017) or the physical characteristics of a
building (Li et al. 2014; Hong et al. 2012), which is advantageous
in large-scale studies across a community or city in which
the availability of such data in most existing buildings is limited.
Although benchmarking techniques help identify overall building
performance, their findings are not specific enough to guide opera-
tional or physical improvement recommendations for a building
(Borgstein et al. 2016). To identify the root causes of building in-
efficiencies, energy diagnosis methodologies often are required
(Borgstein et al. 2016).

In contrast to building energy benchmarking, energy diagnosis
methodologies use bottom-up approaches to help identify where
energy inefficiencies exist in a building. Common methodolo-
gies for diagnosis include energy simulations and engineering
calculations (Borgstein et al. 2016; Burman et al. 2014). Most com-
mercially available energy modeling software requires building
geometries, physical properties, thermal zones, and operational in-
puts to simulate building energy consumption (Burman et al. 2014).
Additionally, engineering calculation methodologies, often accom-
plished through energy audits, use building system specifications
and operational schedules to predict energy consumption and effi-
ciency levels of separate building systems (Burman et al. 2014).
Diagnosis methodologies provide results that are easily translated

into specific steps to improve building energy performance, and
thus overcome shortcomings of the energy benchmarking method-
ologies mentioned above. However, they are limited for the follow-
ing reasons. First, although research has made substantial progress
in the reconciliation of estimated energy consumption from bottom-
up methodologies and measured consumption, their accuracy is not
yet consistently reliable, and the reconciliation process is time-
intensive, computationally expensive, and requires building science
expertise (Wang et al. 2012). Second, bottom-up approaches rely
on extensive and accurate data collection of building systems on
site or through detailed review of building plans (Borgstein et al.
2016). Because municipalities often are constrained by budgets
and manage diverse buildings, the extensive time and experience
required to comprehensively assess citywide building performance
using bottom-up methodologies is not practical.

Given the advantages and disadvantages of energy benchmark-
ing and diagnosis approaches, community- or city-level building
energy assessments could be improved by providing more action-
able and system-specific efficiency indicators (i.e., the results of
energy diagnosis) while still applying methodologies that do not
require extensive data collection, time, or expertise (i.e., the meth-
odologies of energy benchmarking). One promising research ave-
nue aiming to develop more actionable results while leveraging
the scalability of benchmarking methods is applying smart meter
data to examine building energy benchmarks segmented by time.
As real-time energy management tools become integral to energy
efficiency decision making (Ramachandra et al. 2018; Kitchin et al.
2015), energy benchmarks segmented by time have immense po-
tential to further the efficacy of digital twin–enabled energy man-
agement platforms if they can provide more insights, value, and
frequent feedback compared to their annual counterparts.

Temporal Dimension of Building Energy Performance

Although building characteristic data (e.g., wall insulation levels,
HVAC equipment types, number of appliances) are challenging to
collect at scale, energy data recording electricity use at granular
levels (meter readings less than once per hour) is becoming increas-
ingly accessible through advanced smart metering infrastructure
(EIA 2018). The availability of smart meter data has spurred a va-
riety of research assessing how these data, combined with statistical
or machine learning algorithms, can support a wide range of appli-
cations including energy load analysis, forecasting, and manage-
ment (Wang et al. 2018). Broadly defined as smart meter data
analytics, such research enables near real-time analyses of energy
use (Wang et al. 2018), which previously was not feasible using
traditional energy meters. Previous literature has used smart meter
data extensively across various applications to further real-time
analytics. For example, these data were used to detect anomalous
consumers in real-time using decision trees and support vector
machine (SVM) classifiers (Jindal et al. 2016), to understand en-
ergy behaviors of commercial building occupants using a k-nearest
neighbors classifier (Rafsanjani et al. 2018), and to optimize real-
time energy pricing using innovative clustering techniques (Joseph
and Erakkath Abdu 2018). In general, smart meter data analytics
applications have focused on consumer segmentation, prediction,
and demand response applications. Few studies have examined the
potential of smart meter data analytics applied to building bench-
marking and performance applications, particularly for real-time
use across larger scales of buildings.

A few recent studies have integrated smart meter data into
building benchmark analyses (Francisco et al. 2018; Grolinger
et al. 2018; Roth and Jain 2018). The general approach involves
leveraging the granularity offered by smart meter data to segment
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building efficiency levels by different periods to help enlighten
more-specific areas for efficiency improvement, which can be
applied across a large scale of buildings. This approach stands
in contrast to traditional building energy benchmarks, which are
calculated on an annual basis and offer little insight into how to
improve building performance. Grolinger et al. (2018) calculated
building energy benchmarks during periods in which events oc-
curred in two sports arenas to identify the most and least efficient
events. The purpose of these benchmarks was to help identify
efficiency opportunities and where to prioritize efficiency efforts
across the two sports arenas. In a comparable analysis, Roth and
Jain (2018) expanded the scope of buildings included to assess
500 K-12 school buildings. They benchmarked energy use seg-
mented by operational and nonoperational periods and suggested
potential targeted areas for efficiency opportunities based on vi-
sual analysis of these metrics. The results of both of these studies
suggested that differences exist between temporally segmented
building energy benchmarks, and the likely potential for these
to enlighten efficiency opportunities across a group of buildings.
However, these analyses were based on the assumption that tem-
porally segmented benchmarks differ systematically from their
annual counterparts, whereas the magnitude, distribution, and stat-
istical significance of the differences between temporally seg-
mented and annual benchmarks have yet to be examined, which
may compromise the validity of such an approach.

With research only beginning to examine the development and
utility of temporally segmented energy benchmarking, this paper
contributes to this work by investigating the research question of
whether temporally segmented building energy benchmarks differ
from their nontemporally segmented counterparts. Furthermore,
if this is the case, how can temporally segmented building energy
benchmarks be used to improve energy management across a
portfolio of buildings? To evaluate these questions, we used smart
meter electricity data across a community of buildings to develop
daily benchmarks that are segmented by strategic periods and
statistically evaluated their deviations from a control group, their
nontemporally segmented counterparts. Following this analysis,
we discuss in detail the practical implications of these findings,
particularly through a smart city digital twin lens. We explain
how these results establish new capacities for digital twin–enabled
energy management through several examples that show the poten-
tial of temporally segmented energy benchmarks to better inform
energy-efficiency decision making by enabling (1) identification
and prioritization of specific retrofit strategies, and (2) near-real-
time building energy management. Both implications propel the
development of digital twin–enabled energy management systems,
which require informative metrics to be successful in supporting
building operators or portfolio owners with energy decisions.

Methods

The Georgia Institute of Technology (GT) university campus was
selected as a test bed to quantify building energy-efficiency scores’

temporal variation within a community. University campuses have
diverse and dynamic operations, consisting of a combination of
offices, laboratories, recreation, health, food, retail, and classroom
facilities that are comparable to the operations of a small town or
community (Klein-Banai and Theis 2011). The data scope of this
analysis covered building-level electricity consumption for 38
buildings on the GT campus. Although the buildings in this sample
have diverse functions, they all have heating and cooling provided
by a district water loop. Buildings with individual electric cooling
or heating systems were eliminated from the sample to avoid bias in
efficiency scores due to unequal end uses. Average power was re-
corded in 15-min increments, and the experimental data set ranged
from September 26, 2015, to September 25, 2016. The following
subsections describe the methods used to segment building energy
consumption by period, compute daily energy benchmarks for each
building, and conduct a series of hypotheses tests.

Data Segmentation by Period

To establish building energy benchmarks for each building across
each period, electricity use for each building first was segmented by
the following periods: occupied periods during the school year (A),
unoccupied periods during the school year (B), occupied periods
during the summer (C), unoccupied periods during the summer (D),
peak summer periods (E), and the total period (Total). Although
additional periods could be selected and assessed, the periods listed
were selected based on their alignment with operational shifts that
buildings commonly undergo, and are supported by the literature
in having a high potential to enlighten efficiency opportunities. For
example, studies have found that substantial energy waste occurs in
buildings during unoccupied periods due to misaligned operational
schedules (Gul and Patidar 2015; Masoso and Grobler 2010).
Knowing this, it likely is helpful to differentiate between efficiency
levels during occupied and unoccupied states in targeting efficiency
opportunities. Building operations also can shift seasonally. One
study found that annual energy-efficiency scores for university
buildings were skewed due to significant operational shifts during
the summer months, and recommended separating summer months
from annual efficiency scores to uncover actual efficiency levels
(Tu 2015). Furthermore, energy consumption during summer peak
demand periods is a pressing concern for facility managers due to
utility peak demand charges (Neufeld 1987). Specific retrofit
opportunities exist to reduce energy demand during summer peak
periods, such as improving air conditioner efficiency (Yarbrough
et al. 2015).

Table 1 outlines the times and days included in each period
specified previously, which encompasses a 1-year period in total.
The start of the 1-year period was selected strategically to minimize
the number of data gaps in the data set. In determining occupancy
states, measured occupancy levels were not available for every
building in the sample, and building occupancy states were as-
sumed to be occupied between 8 a.m. and 8 p.m. each weekday.
These hours reflect when building entrances on campus typically
are open/unlocked (∼8 a:m:) and when they start to require key

Table 1. Segmented period details

Period Days Times Total number of days

Occupied during school year (A) 9/26/15–5/7/16, 8/21/16–9/25/16 8 a.m.–8 p.m. (M–F) 174
Unoccupied during school year (B) 9/26/15–5/7/16, 8/21/16–9/25/16 8 p.m.–8 a.m. (M–F) 174
Occupied during summer (C) 5/8/16–8/20/16 8 a.m.–8 p.m. (M–F) 75
Unoccupied during summer (D) 5/8/16–8/20/16 8 p.m.–8 a.m. (M–F) 75
Peak summer (E) 9/26/15–9/30/15, 6/01/16–9/25/16 2 p.m.–7 p.m. (M–F) 86
Total 9/26/15–9/25/16 12 a.m.–11:59 p.m. 365
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access (∼8 p:m:). Hours after 8 p.m. and before 8 a.m. were
assumed to have low to no occupancy, and are referred to as the
unoccupied state in this paper. Weekends were excluded from
the analysis because occupancy states during weekends are less
consistent, and therefore estimates would be less reliable. Addition-
ally, the 2-week period encompassing the winter break (between
December 19, 2015, and January 3, 2016) was removed from the
analysis due to unknown occupancy states. The seasonal shifts
were divided between the school year and summer, as defined by
the GTacademic calendar for the 2015–2016 school year. The sum-
mer peak demand time range was based on when Georgia Power,
the power supplier of the campus, charged customers peak billing
demand rates during the summer.

Next, the energy data for each period were aggregated from
15-min interval data to daily energy use values, referred to in this
paper as the temporally segmented data, in order to perform energy
benchmarking on a daily basis. To aggregate energy data to the
daily level, for each day the average of the 15-min interval energy
data was calculated. This procedure was followed for Periods A, B,
C, D, and Total. Because peak period charges are based on the
maximum kilowatt use in a 30-min period, the data during the peak
summer period (E) were averaged using a 30-min running average,
and the maximum value for the day was selected. The total period
energy data represented the average electricity use across all 24 h
of each day, and served as the control. After following energy
benchmarking procedures, detailed subsequently, energy efficiency
scores for each building across each period were generated. Tem-
porally segmented and total period building energy daily efficiency
scores were compared for each building, meaning that 38 compar-
isons were conducted for each period. The hypotheses tested were
as follows:
• Hypothesis A (1–38): A building’s daily efficiency scores

during the total period and its daily efficiency scores during
occupied periods in the school year are not the same.

• Hypothesis B (1–38): A building’s daily efficiency scores dur-
ing the total period and its efficiency scores during unoccupied
periods in the school year are not the same.

• Hypothesis C (1–38): A building’s daily efficiency scores dur-
ing the total period and its efficiency scores during occupied
periods in the summer are not the same.

• Hypothesis D (1–38): A building’s daily efficiency scores dur-
ing the total period and its efficiency scores during unoccupied
periods in the summer are not the same.

• Hypothesis E (1–38): A building’s daily efficiency scores during
the total period and its efficiency scores during summer peak
demand periods are not the same.

Efficiency Score Development

The purpose of building benchmarking is to generate building ef-
ficiency scores that enable more-accurate comparisons of energy
efficiency between buildings. Early benchmarking methods created
simple ratio metrics, such as energy use per area or energy use
per occupant, which normalized energy use based on a single
building characteristic (Pérez-Lombard et al. 2009). Subsequently,
more-complex approaches such as statistical or machine learning
methods were introduced, which attempted to normalize energy
use based on more than one building characteristic. Using such ap-
proaches, an efficiency score is generated by adjusting a building’s
energy use to account for multiple building characteristics simul-
taneously. This study adopted the regression-based methodology
developed by Chung et al. (2006). Such an approach is similar
to methodologies commonly used by industry benchmarking ap-
plications such as the Energy Star score (Borgstein et al. 2016;

Shrestha and Prajakta 2013). The following paragraphs detail the
steps taken to apply this methodology to generate building effi-
ciency scores for each day within each period.

First, the dependent and independent variables for the bench-
mark model were defined. The independent variables represented
explanatory variables of energy consumption, which were used
to normalize energy use across different buildings (Chung et al.
2006). These variables encompassed building characteristics that
were outside the control of the building operators or occupants, to
normalize building energy use based on the building features that
are unlikely or infeasible to change. For example, different building
space types (e.g., lab and office spaces) have different energy re-
quirements for operation (Park et al. 2016). Normalizing building
energy use by the area of different space types can enable more-
accurate comparison of the energy use of buildings with different
functions. Other inflexible building characteristics (i.e., characteris-
tics that cannot be easily changed by management or occupants)
were collected from a publicly accessible database from the univer-
sity’s Capital Planning and Space Management group. All explana-
tory variables and the dependent variable used in the model are
outlined in Table 2. Space type areas were converted to building
use ratios (BURs), ranging between 0 and 1, by dividing the area
of the space type by the total building floor area (Park et al. 2016).
In addition, the dependent variable for each period was divided by
building floor area to generate energy use intensities (EUIs), which
are the primary unit for energy benchmarking analyses because
building floor area is highly correlated with energy use (Sharp
1995). Similar to the approaches of previous benchmarking studies
(Buck and Young 2007; Chung 2012; Park et al. 2016), floor area
also was included as an independent variable. Figures with the
distributions of the explanatory variables are provided in the
Supplemental Data (Fig. S1).

Next, temporally segmented daily EUIs for each building were
normalized by the identified explanatory factors using a multivari-
ate linear-regression approach, similar to that used by Chung et al.
(2006). The first step of the normalization process was to create
a model to quantify the relationship between the building explan-
atory factors and the EUIs. A regression model was created for
each day within each period. For example, 174 models were created
for Period A (Table 1). Several transformations were made to the
independent and dependent factors. To account for skewed dis-
tribution characteristics, EUI and floor area model inputs were

Table 2. Explanatory and dependent variable descriptions

Variable Feature

Independent variables Floor area (ft2)
Building age (years)
Years since renovation (years)
Number of floors (floors)
Percent renovated (%)
BUR: laboratory (%)
BUR: office (%)
BUR: mechanical (%)
BUR: general (%)
BUR: circulation (%)
BUR: service (%)
BUR: supply (%)
BUR: classroom (%)
BUR: study (%)
BUR: special (%)

Dependent variable Daily average EUI (Total period,
A–E periods) (kWh=ft2=day)

Note: BUR = building use ratio.
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log-transformed. The explanatory variables in Table 2 were re-
scaled to have a mean of 0 and standard deviation of 1 in order to
aid the interpretation of the regression coefficient results. The re-
scaled explanatory variables served as regression model inputs
(x1; : : : ; xp). For each day within each period, the regression model
took the following form:

EUI ¼ aþ b1x�1þ · · · þbkx�k þ ε ð1Þ

where a = intercept; ε = error term; x�1; : : : ; x
�
k = significant

explanatory variables (where k ≤ p); and b1; : : : ; bk = model co-
efficients. Forward selection was applied to identify the significant
explanatory values included in the model, with the Akaike infor-
mation criterion providing the basis for variable selection. Based on
the regression model results for a particular day, the daily EUI for a
building can be normalized as follows:

EUInorm ¼ EUI0 − EUIþ a ð2Þ

where EUI0 = measured EUI of the building for that day; EUI =
predicted EUI based on the model coefficients from Eq. (1); a =
model intercept in Eq. (1); and EUInorm = building’s normalized
EUI. Eq. (2) is equivalent to calculating the residual for a building
(EUI0 − EUI) and adding this to the model intercept. The model
intercept a represents the EUI for the average building in the data
set, because the explanatory variables are rescaled with a mean of 0.
To illustrate the normalized EUI calculation, if the expected EUI for
a building (EUI) is less than the actual EUI (EUI0), this difference is
added to the average EUI across the buildings (a), leading to a
higher normalized EUI (EUInorm). A regression model was created
for each day within each period, and thus the explanatory variables,
coefficients, and intercept values in Eqs. (1) and (2) changed from
day to day across periods.

After normalizing each building’s EUI, the EUInorm values were
rescaled between 0 and 1 for each day. These represented the effi-
ciency scores, where 0 was the least efficient and 1 was the most
efficient. The result was a distribution of daily efficiency scores for
each building within each period.

To compare the efficiency score distributions and test the hy-
potheses, the Wilcoxon signed-rank test was used, which is a non-
parametric test that accepts ordinal data, such as energy efficiency
scores. The Wilcoxon signed-rank test is a paired test, and thus a
building’s efficiency score during the total period was compared
with the temporally segmented period for the same day. Because
the total period had more days than the temporally segmented peri-
ods, efficiency scores were included in the statistical analysis only
if they both were computed on the same day. Each hypothesis was
tested for each building, introducing the multiple comparison prob-
lem, which increases the probability of committing a Type I error
(Bretz et al. 2010). Therefore, adjusted p-values were computed to
control for familywise errors using the Holm procedure. The Holm
procedure is a more powerful modification of the Bonferroni cor-
rection, and was used because the Bonferroni often is regarded as
too conservative when a large number of tests are conducted (Holm
1979). Confidence intervals of 95% or greater indicated statistically
distinct efficiency score medians. Efficiency score development
and statistical analysis were calculated using R version 3.5.1.

Results

The regression model coefficients for each day were used to nor-
malize building daily EUI and to generate energy efficiency scores.
To test Hypothesis A1, the distribution of daily efficiency scores for

Building 1 during occupied hours in the school year was compared
with the distribution of daily efficiency scores for the same building
during the total period using the Wilcoxon signed-rank test (i.e., a
paired difference test). This was repeated for all 38 buildings in
Hypothesis A. Next, this process was repeated for the remaining
temporally segmented periods. Adjusted p-values, to account for
the multiple comparison problem, are displayed in Table 3. At the
95% confidence interval, there was enough evidence to reject the
null hypothesis for 34 buildings in Hypothesis A, 32 buildings
in Hypothesis B, 31 buildings in Hypothesis C, 30 buildings in
Hypothesis D, and 32 buildings in Hypothesis E. Column Total
significant cases in Table 3 lists the total number of times the null
hypotheses were rejected for each building. Almost 75% of the
buildings (n ¼ 28) had a statistically distinct distribution of effi-
ciency scores in four or more of the examined periods compared
with the total period. All of the buildings had a statistically signifi-
cant difference for at least one period. The p-values equivalent to 1
were the result of applying the Holm procedure, which adjusted the
p-values to be more conservative (in terms of Type I errors) in order
to account for the multiple hypothesis problem.

Fig. 1 summarizes the magnitude of absolute differences be-
tween total and temporally segmented efficiency scores for all
statistically significant buildings. Among the significant buildings,
the mean absolute difference between the total and temporally seg-
mented efficiency scores during Period A was 0.079, whereas the
maximum absolute difference was 0.483. This implies that across
the buildings with statistically significant efficiency scores differ-
ences, daily efficiency scores during occupied periods in the school
year differed by an average of 7.9% from the total efficiency score,
and by as much as 48.3%. These magnitudes changed by period
(Fig. 1). These differences are in comparison with the total period,
which is representative of the average efficiency score between all
periods. Thus, computing the differences between efficiency scores
of two temporally segmented periods many times resulted in even
larger differences.

Discussion

This study developed building energy benchmarking scores seg-
mented by strategic periods and statistically assessed how they vary
from conventional, total benchmarking scores. Daily scores that
vary systematically from total scores can enable more real-time
and more-informative predictions to guide operational decision
making. Leveraging individual building smart meter data across a
portfolio of buildings enabled the development of daily, temporally
segmented benchmarking scores, and the results of the statistical
analysis showed that temporally segmented building energy bench-
marks were significantly distinct from their total counterparts for
the vast majority of buildings in the sample (between 30 and 34 of
the 38 buildings in the portfolio). Previous studies pointed out that
conventional building energy benchmarks are limited in their abil-
ity to help target areas for efficiency improvement (Borgstein et al.
2016). Although recent work has leveraged smart meter data to
explore the potential of temporally segmented energy benchmarks
in gaining more-specific efficiency insights (Francisco et al. 2018;
Grolinger et al. 2018; Roth and Jain 2018), the deviations between
this novel technique and their conventional counterparts had not
previously been statistically assessed. This study contributes to
emerging work examining the temporal dimensions of energy
benchmarking (Francisco et al. 2018; Grolinger et al. 2018; Roth
and Jain 2018) by assessing the statistical significance and magni-
tude of differences between temporally segmented and conven-
tional benchmarks for a community of buildings. In addition, this
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work furthers smart meter analytics research by documenting how
this area can be integrated with and applied to building energy
benchmarking methods. This is a critical step to understand devia-
tions in building performance throughout the day and year relative
to a community of buildings, which importantly has several prac-
tical implications for urban energy management.

The results of daily and temporally segmented benchmarks
detect performance variations across time and have the potential
to support with targeting, prioritizing, and managing individual
building efficiency opportunities across a large geographic scale
of buildings. Digital twin–enabled energy management platforms
are envisioned to stream energy data sources (e.g., smart meter
data) and are conceptually a promising platform to support cities
with building portfolio performance assessments and urban en-
ergy management (Mohammadi and Taylor 2017). The construc-
tion of dynamic and real-time metrics that transform smart meter
data into useful information is an integral element for digital twin-
energy management to be successful. A smart city digital twin
energy management platform built around temporally segmented
building energy benchmarks (Fig. 2) offers the potential for man-
agers to identify and prioritize specific retrofit strategies and

Table 3. Adjusted p-values for Hypotheses A, B, C, D, and E

Building A B C D E Total significant cases

1 <0.001a <0.001a <0.001a <0.001a <0.001a 5
2 <0.001a <0.001a <0.001a <0.001a <0.001a 5
3 <0.001a <0.001a <0.001a <0.001a 0.002b 5
4 <0.001a <0.001a <0.001a <0.001a <0.001a 5
5 <0.001a <0.001a <0.001a <0.001a <0.001a 5
6 <0.001a 0.005b 0.048c <0.001a <0.001a 5
7 <0.001a <0.001a <0.001a <0.001a <0.001a 5
8 <0.001a <0.001a <0.001a <0.001a <0.001a 5
9 0.021c <0.001a <0.001a <0.001a 0.03c 5
10 <0.001a <0.001a <0.001a <0.001a <0.001a 5
11 <0.001a <0.001a <0.001a <0.001a <0.001a 5
12 <0.001a <0.001a <0.001a <0.001a <0.001a 5
13 <0.001a 0.034c <0.001a <0.001a <0.001a 5
14 <0.001a <0.001a <0.001a <0.001a <0.001a 5
15 <0.001a <0.001a <0.001a 0.004b <0.001a 5
16 <0.001a <0.001a 0.006b <0.001a 0.026c 5
17 <0.001a <0.001a <0.001a <0.001a <0.001a 5
18 <0.001a <0.001a <0.001a <0.001a <0.001a 5
19 <0.001a <0.001a <0.001a <0.001a <0.001a 5
20 <0.001a <0.001a <0.001a <0.001a <0.001a 5
21 <0.001a <0.001a <0.001a <0.001a <0.001a 5
22 0.005b 0.005b <0.001a <0.001a 0.728 4
23 1 <0.001a <0.001a 0.001b <0.001a 4
24 <0.001a 0.005b <0.001a 1 <0.001a 4
25 <0.001a <0.001a <0.001a 0.085 <0.001a 4
26 <0.001a 1 <0.001a <0.001a <0.001a 4
27 1 <0.001a <0.001a <0.001a 0.002b 4
28 <0.001a <0.001a 0.959 <0.001a <0.001a 4
29 0.001b 0.309 0.959 0.001b <0.001a 3
30 <0.001a 0.473 0.003b <0.001a 0.728 3
31 <0.001a 0.003b 0.009b 1 0.728 3
32 <0.001a <0.001a 0.312 1 0.011c 3
33 0.006b <0.001a 0.959 <0.001a 1 3
34 <0.001a 0.004b 0.006b 1 0.292 3
35 <0.001a 0.075 <0.001a 1 <0.001a 3
36 0.687 <0.001a 0.445 <0.001a 1 2
37 <0.001a 0.063 0.443 1 <0.001a 2
38 0.773 1 0.765 0.264 0.03c 1
Total significant cases 34 32 31 30 32
ap < 0.001.
bp < 0.01.
cp < 0.05.

Fig. 1. Absolute difference between total period efficiency scores
and segmented period efficiency scores for statistically significant
buildings.
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detect near-real-time deviations in building efficiency in the context
of the performance of the entire building portfolio. The following
two sections provide specific examples of how temporally seg-
mented building energy benchmarks facilitate both energy effi-
ciency prioritization and near-real-time decision making.

Prioritization of Specific Retrofit Strategies across
Buildings

Temporal fluctuations in efficiency scores can enlighten how to
prioritize building efficiency improvements. Fig. 3 illustrates the
difference between total and summer peak daily efficiency scores
across the temporal state summer peak demand for four buildings.
For building 18 the total daily efficiency scores were consistently
higher (i.e., more efficient) than the peak summer efficiency scores,
as indicated by the “+” signs in the graph. This distinction is nec-
essary when prioritizing efficiency improvements, because specific

measures are appropriate for reducing energy use during summer
peak periods, such as increasing air conditioner efficiency or
peak-load shifting (Koomey and Brown 2002). If a building man-
ager considered only the total efficiency score for Building 18, this
building would appear to be more efficient than its actual perfor-
mance during summer peak demand hours. Specifically, the total
efficiency scores masked the peak efficiency scores with differen-
ces up to 34.1%. This building’s efficiency score rank during
summer peak demand periods can help building managers decide
whether to invest in peak demand reduction improvements with this
building.

On the other hand, different trends in summer peak demand
efficiency scores were found in Buildings 20, 6, and 8. Building
20 had summer peak demand efficiency scores that often were more
efficient than the total efficiency score. This indicates that this
building is more efficient during summer peak demand periods
compared with the total period, and likely should have lower
prioritization for resources allocated to reduce peak demand. Alter-
natively, Building 8 transitioned from predominantly positive
scores to predominantly negative scores, whereas Building 6 had
more-mixed variations. These trends show that energy performance
during peak periods relative to total periods changed sharply from
day to day or week to week. In buildings in which these changes
were more extreme (e.g., indicated by darker shades), operational
measures such as reviewing the building management system
or other automated controls should be investigated to determine
if the programmed operations still reflect the actual building
conditions.

Near-Real-Time Energy Management across Buildings

The previous example considered deviations between the total
and temporally segmented efficiency scores to compare efficiency
opportunities between buildings. Fig. 4 presents the raw efficiency

Fig. 2. Digital twin–enabled energy management platform.

Fig. 3. Difference in daily efficiency scores for summer peak periods.
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scores across periods to show how building performance changed
over time within buildings. This can help generate insights with
several uses, including identifying buildings with sudden changes
in performance and buildings with consistently low levels of per-
formance, and helping to demonstrate how temporally segmented
benchmarks can support more real-time energy management.
Buildings with sudden changes in performance may simply require
a review and update to operational controls, whereas buildings
with continuously low performance may require investment in
more-capital-intensive upgrades. Fig. 4 shows lines for only three
segmented periods because the occupied and unoccupied lines
contain both the school year and summer periods.

Fig. 4 shows the 30-day moving average of the raw effi-
ciency scores for two buildings across the year. For Building 14,
the occupied and unoccupied efficiency scores were similar to the
total score for the first 2 months. In late December, the building’s
efficiency score during occupied periods improved, whereas the
efficiency score during unoccupied periods decreased. This gap re-
mained throughout the remainder of the year. This relatively quick
change in efficiency scores can indicate that an operational shift
has occurred in the building, causing it to perform worse during
unoccupied hours. Previous studies highlighted how misalignment
of building automation systems (Gul and Patidar 2015) and poor
occupant behaviors (Masoso and Grobler 2010) can reduce build-
ing efficiency during unoccupied hours. Efficiency scores during
unoccupied periods can highlight which buildings to prioritize
efforts to review automation schedules and implement behavior
change campaigns.

On the other hand, Building 4 performed consistently very well
during unoccupied periods, with efficiency scores above 0.90. The
building’s occupied efficiency scores were about 10% lower than
the unoccupied scores for the first half of the year, and this differ-
ence increased in the last 2 months of the year. The summer peak
demand scores followed the same trends as the occupied periods
during the summer, which was expected because their specified
times during the day were very similar. For this building, this could
indicate that improvements aimed at decreasing energy use during
occupied hours, particularly summer peaks, may be most appropri-
ate. In contrast to unoccupied-period efficiency measures, types
of efficiency measures to address occupied consumption include
more-capital-intensive efforts, such as retrofitting light fixtures
and air conditioners and installing demand-controlled ventilation
(Koomey and Brown 2002).

External Validation

The distribution of the regression models’ fit was computed by
period. The means of the adjusted R-squared values for each
segmented period ranged between 0.72 and 0.80. These values
are consistent with the fit of regression models in other regression
benchmarking studies (Buck and Young 2007; Chung et al. 2006;
Xuchao et al. 2010). Fig. S2 provides density plots showing the
distribution of the models’ fit for each period.

The regression coefficients for each daily EUI model resulted in
a distribution of coefficients for each explanatory variable. Statisti-
cally significant explanatory variables (p-values < 0.05) indicate
key drivers of energy consumption across the group of buildings.
Table 4 lists the frequency with each explanatory variable was sig-
nificant. Of the 15 explanatory variables, 14 variables significantly
impacted the daily EUI for at least 1 day. Although all the variables
were included in energy benchmark calculations, the following ex-
ternal validation discussion focuses on the first seven variables in
Table 4, which were frequently significant (significant for >75%

of the models) for at least three of the periods. The other variables
were less frequently significant in the models; building age was
significant for 22%–57% of the models, depending on the period,
and the remaining seven variables were consistently insignificant
(significant for <25% of the models) across all periods.

The majority of the directions of the significant coefficients
aligned with previous studies and expectations. Fig. S3 shows den-
sity plots visualizing the regression coefficient distributions for all
explanatory variables. Buildings with a higher percentage of area
dedicated to laboratory or mechanical room space had higher EUIs.
Such spaces have energy-intensive equipment, such as lab ventila-
tion hoods in laboratories or IT equipment in mechanical rooms.
Higher percentages of office space also were associated with higher
EUIs, which aligns with findings from previous studies (Park et al.
2016). Circulation space (e.g., hallways and lobbies) was associ-
ated with lower EUIs, which makes sense because these spaces typ-
ically have less-consistent occupancy loads and more open space
without energy-intensive equipment. In addition, buildings that had
not been renovated recently had higher EUIs, which can be attrib-
uted to having older, less-efficient equipment such as lighting, plug
loads, and mechanical systems.

For some coefficients, the relationship was not consistently
supported by the literature. Floor area was positively associated
with EUI, which aligns with some studies (Park et al. 2016) and

Fig. 4. 30-day moving average of raw efficiency scores for (a) Building 14; and (b) Building 4.
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contradicts others (Chung et al. 2006). Other coefficients have yet
to be examined in the context of energy benchmarking. Interest-
ingly, service space (e.g., bathroom and janitorial areas) was pos-
itively associated with EUI. To our knowledge, previous energy
benchmarking studies have not documented this variable’s associ-
ation with energy use. Possible drivers of energy consumption in
service spaces include hot water energy use, ventilation loads, and
cleaning equipment.

Limitations and Future Directions

Several limitations exist for this study, prompting avenues for
future research. Common across building energy benchmarking
studies, it is challenging to determine how well the benchmarking
indicators agree with the actual efficiency levels of the buildings,
particularly when such benchmarks are developed across large
scales of buildings. In a similar vein, it is difficult to determine if
the efficiency recommendations informed by temporally segmented
benchmarks are the optimal efficiency improvements for the build-
ing. Future research will dig deeper into this by investigating the
effect of real retrofits or operational changes on daily benchmark-
ing results. This analysis will compare the computed daily bench-
mark with an associated operational or capital change to examine
whether the daily benchmark trends follow the expected pattern
based on the particular retrofit install or operational change made.

In addition, regression-based benchmarking techniques, includ-
ing the methodology developed in this study, assume that the re-
gression residuals reflect only building inefficiencies, whereas in
reality they contain statistical noise, measurement error, and unex-
plained factors (Chung 2011). However, other benchmarking meth-
odologies have other inherent limitations, such as large sensitivities
to outliers and loss of physical meaning (Borgstein et al. 2016). The
aim of this study was to apply existing benchmarking techniques
to assess deviations between energy benchmarks during different
periods, and we opted to apply regression-based techniques due
to their high interpretability (i.e., the results have physical mean-
ing as it relates to the building) and common adoption in industry
applications, such as the Energy Star score. Future studies could
apply other benchmarking techniques to assess the consistency of
the results across different methodologies. This is particularly rel-
evant for benchmarking analyses performed at different scales,
such as daily, weekly, or monthly, to assess the robustness and sen-
sitivity of different techniques. Furthermore, building occupancy
states were estimated, because measured data were not available

for all buildings. Thus, estimated occupancy states may not re-
flect the actual occupancy levels in the buildings. Incorporating
data that contain or represent a proxy for actual occupancy within
each building into the benchmarking models will enhance the ac-
curacy of the models.

In its current state, our digital twin–enabled energy management
system (Fig. 2) demonstrates a proof of concept for the platform.
Future work will more deeply integrate smart meter data, tempo-
rally segmented energy benchmarks, and other resource data, such
as gas, heating, cooling, and water consumption. This effort also
will involve user-interface updates and testing with specific user
groups (e.g., facility managers) to assess the utility and future
direction of the platform.

Conclusion

Approaches for assessing building energy performance diverge
in their ability to handle large-scale analyses while still providing
specific, actionable findings. Energy benchmarking methodologies
can be applied across a large number of buildings; however, they
provide narrow insights and are limited in their ability to identify
specific areas for efficiency improvement (Borgstein et al. 2016).
Conversely, energy diagnosis methodologies provide more action-
able energy conservation measures, but they are most appropriate
at a single-building level and require extensive and accurate data
collection (Borgstein et al. 2016). This paper expanded recent top-
down, data-driven approaches to building performance assessments
(Francisco et al. 2018; Grolinger et al. 2018; Roth and Jain 2018)
by creating temporally segmented, daily building energy bench-
marks and evaluating their statistical deviations from conventional
energy benchmarks.

Our findings demonstrate that across all of the buildings in the
sample, temporally segmented energy efficiency scores were stat-
istically distinct from efficiency scores during the total period for
at least one period. For the vast majority of buildings, such scores
were statistically distinct for at least four of the five periods.
This indicates that although a building may rank as efficient overall,
it is not necessarily efficient during certain periods, and that a build-
ing that is not efficient overall may in fact be efficient during certain
periods. Thus, total efficiency scores mask underlying periods of
inefficiencies or efficient performance. In addition, we established
that efficiency scores fluctuate not only between periods, but also
within periods. This understanding is crucial for near-real-time

Table 4. Frequency of regression coefficient statistical significance (%)

Variable Total (n ¼ 365) A (n ¼ 174) B (n ¼ 174) C (n ¼ 75) D (n ¼ 75) E (n ¼ 86)

BUR: service 100 100 100 100 100 100
Floor area 99 98 99 100 100 100
BUR: laboratory 94 98 96 93 91 95
BUR: circulation 91 67 91 72 100 24
BUR: office 88 93 84 95 91 90
BUR: mechanical 85 89 84 97 88 100
Years since renovation 83 62 83 99 87 65
Building age 39 22 39 57 52 33
BUR: classroom 21 9 15 23 24 8
BUR: supply 18 6 16 12 32 10
BUR: general 11 3 4 12 21 9
BUR: study 9 2 2 13 19 5
BUR: special 1 10 1 0 0 14
Number of floors 1 2 1 0 0 0
Percent renovated 0 0 0 0 0 0

Note: n = number of days in period.
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operational decision making and management. Fluctuations in en-
ergy efficiency throughout the year indicate whether a building is
consistently performing well, is consistently underperforming, or if
a sudden change in performance has occurred. This is a crucial dis-
tinction that can support decision makers in developing strategies
for whether to investigate operational procedure modifications or
opportunities for more-capital-intensive investments.

Overall, these results expand the usability and accuracy of tradi-
tional building energy benchmarking approaches. Temporally seg-
mented daily efficiency metrics integrated into digital twin–enabled
energy management platforms can transform approaches to energy
management across a portfolio of buildings. This is of critical
importance as cities are working under limited budgets to make
substantial reductions in building energy consumption and strive
toward smarter operations. Temporally segmented building energy
benchmarks give new insights using building benchmarking tech-
niques to enable more systematic, real-time, and accurate manage-
ment of city-scale building energy consumption and help urban
areas reach low-carbon energy goals.
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