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Abstract

The nuclear-electronic orbital (NEO) approach treats all electrons and specified nuclei, typically
protons, on the same quantum mechanical level. Proton vibrational excitations can be calculated
using multicomponent time-dependent density functional theory (NEO-TDDFT) for fixed
classical nuclei. Recently the NEO-DFT(V) approach was developed to enable the calculation of
molecular vibrational frequencies for modes composed of both classical and quantum nuclei. This
approach uses input from NEO-TDDFT to construct an extended NEO Hessian that depends on
the expectation values of the quantum protons as well as the classical nuclear coordinates. Herein
strategies are devised for extending these approaches to molecules with multiple quantum protons
in a self-contained, effective, and computationally practical manner. The NEO-TDDFT method
is shown to describe vibrational excitations corresponding to collective nuclear motions, such as
linear combinations of proton vibrational excitations. The NEO-DFT(V) approach is shown to
incorporate the most significant anharmonic effects in the molecular vibrations, particularly for
the hydrogen stretching modes. These theoretical strategies pave the way for a wide range of

multicomponent quantum chemistry applications.
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1 Introduction

To enable the quantum mechanical treatment of more than one type of particle, a variety
of multicomponent wave function theory'” and density functional theory (DFT)!%!® approaches

)3, 5-7, 9, 14-15, 17-21 method iS a

have been developed. The nuclear-electronic orbital (NEO
multicomponent quantum chemistry method in which select nuclei, typically protons, are treated
quantum mechanically at the same level as the electrons, while at least two other nuclei are treated
classically to avoid difficulties with translations and rotations. The Born-Oppenheimer
approximation between the electrons and quantum nuclei is avoided in this context, allowing for

the simultaneous description of electronic and nuclear quantum effects. Within the NEO

framework, NEO-DFT and NEO wave function methods have been demonstrated to accurately

9, 17-19 9, 18-19

describe ground state properties such as proton densities and proton affinities.
Expanding upon electronic time-dependent density functional theory (TDDFT)?*?7 and equation-
of-motion coupled cluster (EOM-CC) theory,?®3! advances have also been made in calculating
vibrational and positronic excitation energies with NEO-TDDFT?* and NEO-EOM-CCSD,?*
respectively.

Although the NEO approach does not invoke the Born-Oppenheimer separation between
the quantum protons and the electrons, it does invoke the Born-Oppenheimer separation between
the quantum protons and all classical nuclei. This separation leads to challenges in calculating
vibrational frequencies that can be compared to spectroscopic data because the NEO potential
energy surface depends on only the coordinates of the classical nuclei, and the quantum protons
are assumed to respond instantaneously to the motion of the classical nuclei. As a result,

diagonalization of the NEO Hessian matrix produces vibrational modes that depend on only the

classical nuclear coordinates without proper coupling to the quantum proton motions. Proton



vibrational excitations can be calculated using NEO-TDDFT,?® but these calculations are
performed for fixed classical nuclei, resulting in proton vibrational excitations that are decoupled
from the classical nuclei. Recently, the NEO-DFT(V) method was developed to overcome these
difficulties and compute full molecular vibrational frequencies.?!

The NEO-DFT(V) method is capable of calculating vibrational frequencies composed of
both the classical and quantum nuclei via diagonalization of an extended NEO Hessian matrix that
depends on second derivatives of the NEO energy with respect to the expectation values of the
quantum nuclei as well as the coordinates of the classical nuclei. This extended NEO Hessian is
constructed with input from NEO-TDDFT, which provides information about the proton
vibrational excitations. The effects of zero-point energy and delocalization of the quantum nuclei
are included in the geometry optimization, and anharmonic effects are incorporated into the
molecular vibrational frequencies dominated by the quantum nuclei. The NEO-DFT(V) method
was tested on a set of five molecules and found to produce results comparable to both experimental
data and anharmonic calculations.?! For all of these test systems, however, only a single proton
was treated quantum mechanically. In this paper, we extend the NEO-TDDFT method to
molecules with multiple quantum protons, discuss the theoretical challenges associated with
performing NEO-DFT(V) calculations with multiple quantum protons, and provide a
generalization of the NEO-DFT(V) approach for any number of quantum nuclei.

The manuscript is organized as follows. In Section 2, we review the theory of NEO-
DFT(V) and NEO-TDDFT and then explain how properties calculated using NEO-TDDFT can be
used to enable practical NEO-DFT(V) calculations with more than one quantum proton. In Section

3, we calculate the vibrational frequencies for a set of four molecules, each with two quantum



protons, using NEO-DFT(V). We compare the results to experimental data as well as anharmonic

computational results. Section 4 contains concluding remarks.

2 Theory

2.1 Extended NEO Hessian

For a system with N classical nuclei and Nyq quantum nuclei, the NEO potential energy
surface (PES) depends on only the coordinates of the classical nuclei.’ Because the NEO approach
invokes the Born-Oppenheimer separation between the quantum and classical nuclei, the quantum
nuclear densities are optimized variationally for a given configuration of the classical nuclei. As a
consequence, diagonalization of the 3N. X 3N. NEO Hessian matrix provides the harmonic
vibrational excitation energies associated with only the classical nuclei. Additionally, these
vibrational modes are not properly coupled to the quantum nuclei because the quantum nuclei are
assumed to respond instantaneously to any perturbation of the classical nuclei. The strategy of the
NEO-DFT(V) method is to compute and diagonalize an extended 3(N: + Nq) x 3(Nc + Ng) Hessian
matrix that includes the proper coupling among all nuclei and produces full molecular vibrational
excitation energies that can be compared to spectroscopic data.

The NEO energy can be expressed as
E:E(rc,rq(rc)) , (1)
where r¢ is a 3Nc.-dimensional vector denoting the combined coordinates of the classical nuclei,
and rqis a 3Ng-dimensional vector denoting the combined expectation values of the quantum

nuclei. Specifically, r, is a concatenation of r, for each quantum nucleus, and r is defined as

the expectation value of the i quantum nucleus according to



r = @pqi(r)dr , (2)
where pqv(r) is the density of the i quantum nucleus. This approach assumes that each quantum

nucleus is spatially localized, rendering them effectively distinguishable. Consequently, each

quantum nucleus corresponds to an occupied nuclear orbital that is localized in space, and pq_(r)

for a given nucleus is the square of this nuclear orbital. Such an assumption is valid for most
molecular systems of interest. From the definition of the NEO energy, which is calculated by

variationally optimizing the densities of the electrons and quantum nuclei, the condition
—=0 3)

is satisfied for any geometry of the classical nuclei. Specifically, this condition must be satisfied

under the constraint that the nuclear determinant used to construct the nuclear density P, (r)

minimizes the total NEO energy in Eq. (1) (see the Supporting Information of Ref. 2! for details).

As mentioned above, the NEO-DFT(V) method requires the calculation and
diagonalization of an extended Hessian that couples the classical and quantum nuclei. This
extended Hessian is defined in terms of the 3N. coordinates of the classical nuclei and the 3Ny
expectation values (i.e., average positions) of the quantum nuclei. Mathematically, the extended

Hessian matrix is defined as?®!
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form of H:‘éo provides the full molecular vibrational excitation energies. The remainder of this

subsection will outline how each of these submatrices can be calculated.

As a first step toward evaluating these three submatrices, we express the NEO Hessian
matrix H in terms of them. As discussed above, the 3N, x 3N. NEO Hessian matrix H,
depends on only the classical nuclear coordinates, assuming that the quantum nuclei respond
instantaneously to perturbations of the classical nuclei. In practice, this Hessian matrix can be
computed analytically or numerically while invoking this Born-Oppenheimer separation between

the classical and quantum nuclei.?! An alternative mathematically rigorous expression for the NEO
Hessian matrix H __ can be obtained by taking the second derivative of the NEO energy in Eq.

(1) with respect to the classical nuclei:

2 2 2r g 2 dr Y 42
dr, or; ) oror dr, { or; ) (dr, or, dr;
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This expression can be simplified after some straightforward mathematical manipulations.

Differentiating Eq. (3) with respect to the classical nuclei gives

‘E dr, [ O°E
0 +— 0 ~1 =0, (6)
oror, dr,| or,
: dr,
and solving for — yields
dr,
o, E (FE)
—=- P . (7)
dr, oror, | oy )



Using Egs. (3) and (7) allows us to simplify Eq. (5) as

-1
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Eq. (8) can be expressed in terms of the submatrices defined above as?!
Hy =H, _HlTH;lHl : ©)

Given this mathematical expression for H the three submatrices in Eq. (4) can be

NEO’

computed in a straightforward manner. The H submatrix is the force constant matrix for the

classical nuclei with the expectation values of the quantum nuclei fixed, and it is obtained in

practice through a rearrangement of Eq. (9):
Tyy-1 T
H=H,,+HH H=H_ +RHR. (10)

Here the R matrix is defined as

R= drq (11)
B dr, ’
where
dr, ¢ dp, (r)
_4_ = dr = L dr . 12
ar dr @Pqi(r) r=[T1 i r (12)

This R matrix can be calculated analytically or numerically from the gradient of the expectation

value of each quantum nucleus with respect to each classical nucleus. From Eq. (6), it is clear that

the H, submatrix can be expressed as*'
H, - -H,R . (13)

Egs. (4), (10), and (13) indicate that if the H, matrix is known, then the target Hi’]‘éo can be

constructed and diagonalized. However, H, is challenging to compute directly using only



information from the nuclear density because it contains second derivatives of the NEO energy
with respect to specific components of the combined expectation values rq that must vary while

other components of rq remain fixed.?! It is therefore desirable to formulate an alternative scheme

for constructing H.,.

As defined above, H is the Hessian matrix corresponding to the second derivatives of the
energy with respect to the expectation values of the quantum nuclei with the classical nuclei fixed.
Within the harmonic oscillator approximation, its associated generalized eigenvalue equation is

H,U=MUQ, (14)

with the orthonormalization condition
U'MU =1 (15)
where Q is the diagonal matrix of eigenvalues @, M is the diagonal mass matrix corresponding

to the quantum nuclei, and U is composed of the eigenvectors, which are denoted normal modes

in this context. Typically the Hessian matrix is known and is diagonalized to obtain the normal
modes and vibrational frequencies. However, our problem is the reverse in that H needs to be

calculated from approximate normal modes and frequencies. For this purpose, Eq. (14) can be

rearranged to be

2
rq

O°E 4 ;
H,=|— | =MUQU'=MUQUM . (16)

Thus, H,can be constructed if we know the associated eigenvalues o’ and eigenvectors

U. In our strategy, the quantum proton vibrational frequencies @ used to construct £ are
approximated by the anharmonic frequencies calculated by NEO-TDDFT. As a result, this

approach partially incorporates the anharmonic effects that naturally arise in NEO-TDDFT



calculations of vibrational excitations. For single proton systems, the U matrix was previously
constructed from the normal modes associated with the quantum proton as obtained from a
conventional electronic Hessian matrix with all nuclei except the proton fixed.?! While effective,
this procedure is not self-contained and adds computational expense. An alternative construction
of the U matrix based on the transition dipole moments obtained from NEO-TDDFT is introduced

in the next subsection.

2.2 NEO-TDDFT and the U Matrix Construction

The NEO-DFT method was developed previously for a system composed of electrons and
quantum nuclei in a field of fixed classical nuclei. To simplify the discussion, we only consider
quantum protons, although the theory is easily extended to other types of quantum nuclei or
particles such as positrons. Within the Kohn-Sham formalism, the reference state is defined as the

product of electron and proton Slater determinants composed of electronic and protonic orbitals,
respectively. The total energy depends on the electron and proton densities, p° and p’,
respectively:

Elp*.p° 1= E [p°.P° 1+ E [p°.p° 1+ E [P ]+ E  [P"]1+ E [P°.p"] (17)
Here E denotes the interaction of the electron and proton densities with the external potential due
to the fixed classical nuclei, and Erer includes the kinetic energies of the electrons and quantum
protons and the classical Coulomb interactions for the reference state. In addition, Eexc, Epxc, and
Eepc denote the electron-electron exchange-correlation functional, the proton-proton exchange-
correlation functional, and the electron-proton correlation functional. Application of the
variational principle to this total energy functional leads to Kohn-Sham equations for the electrons

and quantum protons that are solved iteratively. Our group has developed electron-proton



correlation functionals,

19, 33

which can be used in conjunction with existing electronic exchange-

correlation functionals. Because proton-proton exchange and correlation are negligible for

molecular systems associated with localized proton densities, the proton-proton exchange-

correlation functional is chosen to be the diagonal Hartree-Fock exchange terms to eliminate self-

interaction energy.

The NEO-TDDFT approach was developed to compute electronic and proton vibrational

excitations simultaneously in a computationally practical manner. The NEO-TDDFT equations

have been derived previously,?° and only the relevant working equations are presented here. The

electronic and protonic excitation energies are calculated by solving
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Within the adiabatic approximation, the matrix elements in Eq. (18) are,
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52
C,p=—ia| BJ)+—2 . (23)
OPOF,

Here, P denotes the density matrix, & denotes the orbital energies, and the superscripts e and p
denote electrons and protons, respectively. The lower case indices i and j denote occupied
electronic orbitals, while the indices @ and b denote virtual electronic orbitals. The upper case
indices are defined analogously for protonic orbitals. The solution of Eq. (18) produces the
excitation energies @ .

In the current formulation of linear response NEO-TDDFT, only single excitations can be
captured, and in principle these excitations could be of electronic, protonic, or mixed electron-
proton vibronic character.?’ However, for electronically adiabatic systems, typically the excitations
are either electronically or protonically dominated and thus can be described as pure electronic or
vibrational excitations to a reasonable approximation. The character of the excitation can be
evaluated by examination of the corresponding eigenvector: electronic excitations are dominated

by X°, and protonic excitations are dominated by X" . The eigenvectors are subject to the

orthonormalization condition?”

mn

Xe)- (Ve

(x¢ Yo+ (X |X0) - (VP YP) =45 (24)
In addition to calculating proton vibrational excitation energies, various other quantities can be
calculated using information from NEO-TDDFT, such as transition densities, transition dipole
20, 34

moments, and oscillator strengths.

In the context of NEO-DFT(V), a quantity that is of particular interest is the transition
dipole moment, which is defined for a general NEO excited state |‘P k> as

A
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(¥,
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where 197 =X,y ,orz for y =1,2,or3, respectively, and X and Y are obtained from solving

Eq. (18). For notational simplicity, the dependence of the elements of X and Y on £ in Eq. (25) is

omitted. As mentioned above, the excitations for electronically adiabatic systems can typically be

characterized as purely electronic or vibrational. For the molecular vibrational analysis,

4 k> in
Eq. (25) corresponds to the kth proton vibrational excited state, and the terms in the second

summation vanish. The resulting transition dipole moment is a vector that reflects the polarization

of the protonic transition. The Ath transition dipole moment vector can be viewed as the “normal

mode” associated with the kth proton vibrational excitation energy ,. These vectors are used to

construct a rotation matrix U that in turn can be used in Eq. (16) for computing the submatrix H,

. This approach provides the rotation matrix U in an effective, self-contained, and generalizable

manner.

As a simple conceptual example, consider the construction of the H, matrix for HCN,
which has a single quantum proton. To generate H,, we use NEO-TDDFT to calculate the 3N,

proton vibrational excitation energies @,, @,, and @, that comprise Q:

w

=N

0 O
Q=] 0 w 0 | (26)
0 0 o
We then use Eq. (25) to calculate the transition dipole moment vectors associated with each

excitation. The transition densities and transition dipole moment vectors associated with the three

proton vibrational excitations for HCN are shown in Figure 1.

12



Figure 1. Protonic transition densities and associated transition dipole moment vectors (primed
axes) for the three excitations with energies w, (left), @, (center), and w,(right). The lab frame

coordinate system is depicted as the unprimed coordinate system at the far right of the figure. Each
transition dipole moment vector is defined along a primed coordinate axis which is, in general,
different than the lab frame.

In Figure 1, the three orthogonal transition dipole moment vectors |a) k> associated with

the three protonic excitations are represented along axes in a primed coordinate system that may
be viewed as the “normal mode” coordinate system for the quantum proton. In most cases, the

primed coordinate system will not be coincident with the unprimed coordinate system associated
with the lab frame, as observed in Fig. 1. The vectors |a)k> can be represented in the lab frame

coordinates using Eq. (25) according to

‘a)k>=uf|x>+u;"y>+uf‘z> (27)
where
(]2
u = 3°ry : -~ 28)
\/mpD <‘PO 3 ‘Pk>
y=I

13



Here m, is the mass of the proton and fy =X,y ,orz for y =1,2, or 3. Each ‘a)k> vector

forms a column of the transformation matrix U

1 2 3

ux ux ux

o 2 3
U=lu, u, u, (29)

1 2 3

uZ uZ uZ

This matrix corresponds to a transformation or rotation from the normal mode coordinate system
to the lab frame coordinate system. Note that this U matrix satisfies the orthonormalization
condition in Eq. (15).

At this point, we have generated the U and Q matrices for the case of a single quantum

proton and are now equipped to calculate H, according to Eq. (16). In the special case where the

“normal mode” coordinate system is coincident with the lab frame coordinate system, the matrix

172

given in Eq. (29) becomes the M™"" matrix, and the H matrix given in Eq. (16) has the simple

diagonal representation

mao; 0 0
p
Hy= 0 mo] 0 | (30)
0 0 m @
p

However, this situation is not typical, particularly for non-linear molecules with multiple protons.

Building on the single proton case, the U matrix can be constructed for a system with
multiple quantum protons. A system of N, quantum protons will have N, occupied protonic orbitals
that are assumed to be spatially localized. A NEO-TDDFT calculation will yield 3N, protonic
excitation energies of interest, where each excitation energy @ will be associated with collective
protonic motions. For a given collective mode, we calculate N, individual transition dipole moment

vectors, where each vector is associated with a singly occupied protonic orbital. In the single

14



proton case, each column of the U matrix was constructed according to Egs. (27) and (28). In the

multiproton case, a given excitation is now associated with N, individual transition dipole moment

vectors, which may be conceptualized as

uf] x>+u£"y>+uf]|z>} — proton 1
|wk> u)/:Z x>+u;‘2‘y>+uf2‘z>} — proton 2 31)
qu” x>+uiN’° y>+qu” z>} — proton Np

For a system composed of N, quantum protons, the general 3N, x 3N, U matrix used in

NEO-DFT(V) is constructed according to

11 21 1 -2)1 -D1 1
u u u3 u(k ) u(k ) uk
X X X X X X
11 21 1 -2)1 -D1 1
u u u3 e u(k ) u(k ) uk
y y y y y y
11 21 1 -2)1 k=11 1
u u: u ufk ey uk
z z z z z z
U= : : (32)
IN 2N 3N (k=2)N (k=1)N kN
r P r P P P
ux ux ux uX uX ux
ule usz u3N” . u(k—Z)Np u(k—l)Np ukNp
y y y y y y
ule u2N” u3N” u(k—z)zvp u(k—l)Np ukNp
z z z z z z
where
k <‘P0 o ‘Pk>
w? = : (33)
N, 3 0 2
I my[ <\PO 7 \Pk>
o 7=l

In Eq. (33), £ is the index specifying a proton vibrational excited state, Q is the index specifying a

quantum proton, and m , is the mass of the Oth quantum proton. For notational clarity in Eq. (32)

o

, u;“Q =u'?, u;‘Q, u'? for y=1,2, and 3, respectively. The operator ny appearing in Eq. (33) acts

15



on only the Oth quantum proton, which occupies the Oth nuclear orbital in the ground state, and

the corresponding matrix element is defined as

,;Q

olw,) =;[X5A (o] | 4)+ 73, (4] |0)] - (34)

0

The resulting U matrix is composed of column vectors, each associated with a specific
proton vibrational excited state k. These column vectors are themselves composed of N,
concatenated sets of x, y, z transition dipole moment vector components, where each set is

associated with an occupied protonic orbital 0. Note that in the case of a single type of quantum

nucleus, the mass m , in the expression for qu can be factored out in the denominator because it

0
is the same for all quantum nuclei. However, the expression for qu in Eq. (33) is general and is
valid for the case of multiple types of quantum nuclei with different masses. This procedure can
be used to construct the U matrix, which in conjunction with the associated Q matrix can be used

to compute the H, matrix given in Eq. (16). The H, matrix can be used to compute the H, and

ext

H, matrices for the construction of HY_ |

. The eigenvalues and eigenvectors of this extended

Hessian provide the molecular vibrational frequencies and normal modes coupling the classical

and quantum nuclei.

2.3 Overview of NEO-DFT(V) for Multiple Protons

The overall NEO-DFT(V) procedure described above is well-defined and systematic.

Given the reasonable definition of the extended Hessian in terms of the classical nuclear
coordinates and the expectation values of the quantum nuclei, the expressions for the H, and H,

matrices are mathematically rigorous. The main approximation of this approach lies in the

16



physically motivated construction of the H, matrix from the NEO-TDDFT proton vibrational

excitation energies and transition dipole moment vectors. A significant advantage of this procedure

is that the anharmonicities of the proton vibrational modes are naturally included in the NEO-
TDDFT proton vibrational excitation energies used to construct the H, matrix. Thus, even though

the use of a Hessian to produce vibrational frequencies is based on the harmonic oscillator
approximation, the matrix elements of the extended Hessian incorporate the anharmonic effects
associated with the quantum protons. As will be shown below, the resulting molecular vibrational

frequencies reflect this incorporation of anharmonic effects.

3 Results and Discussion

We used the NEO-DFT(V) method described above to compute the molecular vibrational
frequencies for a set of four molecules, each containing two protons. All molecular geometries
were optimized using NEO-DFT with the B3LYP?%¢ electronic exchange-correlation functional
and the epcl7-2 electron-proton correlation functional,'® which has been shown to provide
accurate proton affinities'® and accurate NEO-TDDFT excitations.* ** The cc-pVDZ electronic
basis set’” was used for the heavy atoms, and the cc-pV5Z electronic basis set>’® was used for the

quantum protons. An even tempered 6s6p6d6f nuclear basis set with exponents spanning the range

from 4+/2 to 32 was used for the quantum protons. This combination of nuclear and electronic
basis sets for the quantum proton has been demonstrated to be effective in calculating accurate
proton vibrational excitation energies with the NEO-TDDFT/B3LYP/epc17-2 method.>* The
NEO-DFT(V) and conventional harmonic calculations were performed using a developer version

of the GAMESS program.* The anharmonic calculations were performed using Gaussian09.*

17



For the ground state NEO-DFT calculations, the nuclear and electronic basis function
centers were chosen to be the same for each quantum proton, and the positions of these centers
were optimized variationally. For the NEO-TDDFT calculations, the variational ground state
positions of the nuclear/electronic basis function centers may not be optimal for calculating
accurate proton vibrational excitation energies. The impact of the nuclear/electronic basis function
center position on proton vibrational excitation energies calculated with NEO-TDDFT has been
investigated in previous work.>* These previous results indicate that two possible choices for the
positions of the nuclear/electronic basis function centers yield accurate and comparable results: (1)
the conventional electronic XH bond distance and angle (where X represents an arbitrary heavy
atom), and (2) the expectation value of the quantum proton obtained from a ground state NEO-
DFT calculation, where the nuclear/electronic basis function centers are optimized variationally.**
In the present work, the NEO-TDDFT proton vibrational excitation energies used in Eq. (16) were
calculated with the nuclear/electronic basis function centers placed at the expectation values of the
quantum protons. This choice has the benefit of being self-contained and therefore more
computationally practical, as all information necessary for performing the NEO-TDDFT
calculation is obtained from the ground state NEO-DFT calculation.

The procedure for calculating vibrational modes with the NEO-DFT(V) approach is

summarized as follows. First, a NEO-DFT geometry optimization is performed on the system of

interest. The matrix H  is then calculated numerically by perturbing the classical nuclear

O

coordinates and optimizing the basis function centers for the quantum protons at each perturbed
geometry. Using the NEO-DFT optimized geometry for the classical nuclei and the expectation
values of the quantum nuclei for the nuclear/electronic basis function center positions, a NEO-

TDDFT calculation is performed. The U matrix is constructed according to Egs. (32) and (33), and

18



this matrix is used in conjunction with the proton vibrational excitation energies to obtain the H,
matrix given by Eq. (16). The H, matrix is then used together with the R matrix to calculate the
H, and H, matrices according to Egs. (10) and (13), respectively. Finally, H , H,, and H, are

used to construct the extended NEO Hessian H;"éo in Eq. (4). Diagonalization of the mass-

ext

weighted form of H

gives the full molecular vibrational modes.

An important aspect of the NEO-DFT(V) scheme is the use of NEO-TDDFT to compute
the proton vibrational excitations for fixed classical nuclei. In our previous work,?% 34 the NEO-
TDDFT method was applied to molecular systems with only a single quantum proton. Herein, we
implement the NEO-TDDFT method for molecular systems with multiple quantum protons.
Interestingly, the NEO-TDDFT method produces collective proton vibrational modes that
combine motions of multiple quantum nuclei. These collective proton vibrational modes
correspond to linear combinations of singly excited determinants and thus are described by linear
response NEO-TDDFT. For example, Figure 2 shows the six NEO-TDDFT proton vibrational
modes and excitation energies calculated for HCCH with fixed carbon nuclei, where two of the
modes are doubly degenerate. Arrows indicating the direction of the transition dipole vector
associated with each quantum proton are shown for each mode. Table 1 provides the full U matrix,
which contains the values of all components of the transition dipole moment vectors shown in
Figure 2. As mentioned previously, the NEO Hessian depends on only the classical nuclei,
assuming the instantaneous response of the quantum nuclei. Thus, the NEO Hessian is one-
dimensional in the case of HCCH, with a CC frequency of 2207 cm™.

The NEO-DFT(V) approach mixes the CC frequency from the NEO Hessian with the

NEO-TDDFT modes shown in Figure 2 to produce the coupled molecular vibrational modes
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shown in Figure 3. Given the three translational and two rotational modes for this linear molecule,
this approach provides seven vibrational modes, where two of these modes are doubly degenerate.
The TDDFT proton vibrational excitation energies for the other three molecules studied, namely
H>0,, H>CO, and HoNF, are provided in the SI. All of these molecules contain only two classical
nuclei and therefore correspond to linear geometries in the NEO framework. However, when the
quantum nuclei do not maintain this linearity (i.e., the molecule is not linear in a conventional
electronic structure calculation), the NEO-DFT(V) approach produces one rotational mode that is
associated with a negligible NEO-TDDFT excitation energy. Thus, this approach provides six

vibrational modes for the other three molecules.

3135 cm™! 3136 cm™!

Figure 2. Proton vibrational modes and excitation energies calculated with NEO-TDDFT for HCCH with
fixed carbon nuclei. The red mesh indicates the quantum proton density. The molecule is oriented on the
z-axis with one carbon placed at the origin and a C—C bond distance of 1.207 A. The expectation values of
the quantum protons are —1.086 A and 2.293 A. For each mode, the red arrows indicate the direction of the
transition dipole moment vector associated with each quantum proton. Mode (A) is a doubly degenerate
CH symmetric bend, mode (B) is a doubly degenerate asymmetric CH bend, mode (C) is an asymmetric
CH stretch, and mode (D) is a symmetric CH stretch.
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Table 1. U Matrix for HCCH Constructed from the Transition Dipole Moments Computed with
NEO-TDDFT*

A A B B C D

1x[-0.707{ 0.000 | 0.707 | 0.000 | 0.000 | 0.000
1y | 0.000 | 0.707 | 0.000 |-0.707]0.000 | 0.000
1z | 0.000 | 0.000 | 0.000 | 0.000 | 0.705|-0.710
2x | 0.707 | 0.000 | 0.707 | 0.000 | 0.000 | 0.000
2y | 0.000 |-0.707 | 0.000 |-0.707]0.000 | 0.000
2z 0.000 | 0.000 | 0.000 | 0.000 | 0.710 | 0.705

“Each column corresponds to a concatenation of transition dipole moment vectors associated with a given
NEO-TDDFT vibrational mode, as defined in Egs. (32)-(34). The labels A, B, C, and D correspond to the
modes presented in Figure 1. The left-most column indicates the quantum proton (1 or 2) and the Cartesian
component (x, y, or z). The slight asymmetry in the z components of protons 1 and 2 for columns C and D
arises from numerical error and does not impact the NEO-DFT(V) frequencies given in Figure 2.

2047 cm!

Figure 3. Molecular vibrational modes and excitation energies calculated with NEO-DFT(V) for
HCCH. The red mesh indicates the quantum proton density. For each mode, the red and gray
arrows indicate the directions of the motions of the quantum protons and carbon atoms,
respectively. Mode (A) is a doubly degenerate CH symmetric bend, mode (B) is a doubly
degenerate asymmetric CH bend, mode (C) is an asymmetric CH stretch, mode (D) is a symmetric
CH stretch, and mode (E) is a symmetric CC stretch.
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The NEO-DFT(V) vibrational frequencies for the four molecular systems studied are given
in Table 2. Experimental data are provided, along with results obtained from a conventional
Hessian calculation within the harmonic oscillator approximation, as well as results obtained from
perturbative anharmonic calculations.*! The average mean unsigned error (MUE) relative to
experiment is also reported. Note that the average MUE is virtually the same for the NEO-DFT(V)
and the conventional perturbative anharmonic calculations, and both of these methods are more
accurate than the conventional harmonic calculations. The errors for specific modes vary, with
NEO-DFT(V) typically overestimating bending modes, as well as low energy modes such as the
H>O: torsion, to a greater extent than the perturbative anharmonic calculations. Conversely, the
conventional perturbative anharmonic calculations typically underestimate the hydrogen
stretching modes to a greater extent than do the NEO-DFT(V) calculations, with the largest
deviations observed for the asymmetric CH stretch and the NH stretch in H2CO and H:NF,
respectively. The overall comparability of the NEO-DFT(V) and conventional perturbative
anharmonic methods is reasonable because the anharmonicity associated with the hydrogen nuclei

is partially incorporated into the NEO-DFT(V) procedure through the NEO-TDDFT proton

vibrational excitation energies that are used to construct the H, matrix.
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Table 2: Proton Vibrational Frequencies Calculated with the NEO-DFT(V), Conventional
Harmonic, and Conventional Perturbative Anharmonic Methods, as well as Comparison to
Experimental Data.?

Mode Experiment |[NEO-DFT(V)| . ™ |Cony Harmonic
Anharmonic
C,H,>  [Symmetric CH bend (2) 612 727 700 569
Aymmetric CH bend (2) 730 786 753 777
CC stretch 1974 2047 2040 2070
Asymmetric CH stretch 3289 3263 3294 3388
Symmetric CH stretch 3374 3378 3390 3503
H>0;¢ |HOOH torsion 254-370 523 248 424
OO stretch 865-877 957 921 957
Asymmetric OH bend 1265-1274 1314 1249 1332
Symmetric OH bend 1393 1425 1397 1435
Asymmetric OH stretch | 3610-3619 3596 3522 3789
Symmetric OH stretch 3609-3618 3599 3528 3792
H,CO? |CH2 wag 1167 1190 1167 1239
CH2 rock 1249 1254 1233 1278
CH2 scissor 1500 1477 1484 1567
CO stretch 1746 1812 1808 1824
Symmetric CH stretch 2783 2724 2706 2882
Asymmetric CH stretch 2843 2772 2651 2935
HoNF¢  NF stretch 891 936 910 941
NH2 wag 1233 1257 1225 1271
NH2 wag 1241 1310 1294 1338
NH2 scissor 1564 1556 1550 1638
Symmetric NH stretch 3234 3241 3192 3420
Asymmetric NH stretch 3346 3336 3266 3506
MUFE/ 47 48 92

“All frequencies given in cm’. The average mean unsigned error (MUE) relative to experiment is reported
for all methods. All calculations were performed with the B3LYP electronic exchange-correlation
functional, and the NEO-DFT(V) excitation energies were computed with the epcl7-2 electron-proton
correlation functional. The electronic and nuclear basis sets are given in the text.
’Experimental data from ref.*.
‘Experimental data from ref.** (HOOH torsion), ref.** (OO stretch), ref.*> (OH stretches, OH asym. bend),
ref.* (OH sym. bend) .

“Experimental data from ref.*.
‘Experimental data from ref.*.
/For H,0, the average of the reported experimental range was used for the calculation of the MUE.
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4 Conclusions

In this paper, we have developed and implemented the formalism for treating multiple
quantum protons within the NEO-DFT(V) scheme. In this approach, proton vibrational excitation
energies and transition dipole moment vectors calculated with NEO-TDDFT are used to construct
an extended NEO Hessian matrix, which is defined in terms of the expectation values of the
quantum protons as well as the classical nuclear coordinates. Diagonalization of this extended
Hessian provides the molecular vibrational frequencies associated with coupled motions of both
classical and quantum nuclei. The underlying assumptions of this molecular vibrational analysis
are: (1) the harmonic approximation inherent to the Hessian framework; (2) the representation of
the quantum nuclei by their expectation values; and (3) the use of the NEO-TDDFT proton
vibrational excitation energies and transition dipole moment vectors to construct the submatrix
associated with the quantum nuclei, thereby partially including the corresponding anharmonicities.

The results indicate that NEO-TDDFT is capable of capturing vibrational excitation
energies associated with collective nuclear motion. Moreover, the NEO-DFT(V) calculations for
molecules with multiple quantum protons are accurate and comparable to conventional
perturbative anharmonic calculations. Anharmonicity is included in NEO-DFT(V) calculations
through the NEO-DFT geometry optimizations and the NEO-TDDFT vibrational excitation
energies, leading to significantly more accurate hydrogen stretching modes, as well as an overall
improvement in accuracy compared to conventional harmonic calculations. The NEO-DFT(V)
approach incorporates anharmonicities associated with the quantum nuclei, and the
anharmonicities associated with the classical nuclei could be included perturbatively if they are
expected to be significant. This formalism lays the foundation for a wide range of applications for

multicomponent quantum chemistry methods.
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