
 1 

Molecular Vibrational Frequencies with Multiple Quantum 

Protons within the Nuclear-Electronic Orbital Framework 

Tanner Culpitt†, Yang Yang†, Patrick E. Schneider, Fabijan Pavošević, and Sharon Hammes-

Schiffer 

 

Department of Chemistry, Yale University 

225 Prospect Street, New Haven, Connecticut 06520 USA 

 

Abstract 

The nuclear-electronic orbital (NEO) approach treats all electrons and specified nuclei, typically 

protons, on the same quantum mechanical level.  Proton vibrational excitations can be calculated 

using multicomponent time-dependent density functional theory (NEO-TDDFT) for fixed 

classical nuclei.  Recently the NEO-DFT(V) approach was developed to enable the calculation of 

molecular vibrational frequencies for modes composed of both classical and quantum nuclei.  This 

approach uses input from NEO-TDDFT to construct an extended NEO Hessian that depends on 

the expectation values of the quantum protons as well as the classical nuclear coordinates.  Herein 

strategies are devised for extending these approaches to molecules with multiple quantum protons 

in a self-contained, effective, and computationally practical manner.  The NEO-TDDFT method 

is shown to describe vibrational excitations corresponding to collective nuclear motions, such as 

linear combinations of proton vibrational excitations. The NEO-DFT(V) approach is shown to 

incorporate the most significant anharmonic effects in the molecular vibrations, particularly for 

the hydrogen stretching modes.  These theoretical strategies pave the way for a wide range of 

multicomponent quantum chemistry applications. 
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1 Introduction 

To enable the quantum mechanical treatment of more than one type of particle, a variety 

of multicomponent wave function theory1-9 and density functional theory  (DFT)10-19 approaches 

have been developed. The nuclear-electronic orbital (NEO)3, 5-7, 9, 14-15, 17-21  method is a 

multicomponent quantum chemistry method in which select nuclei, typically protons, are treated 

quantum mechanically at the same level as the electrons, while at least two other nuclei are treated 

classically to avoid difficulties with translations and rotations. The Born-Oppenheimer 

approximation between the electrons and quantum nuclei is avoided in this context, allowing for 

the simultaneous description of electronic and nuclear quantum effects. Within the NEO 

framework, NEO-DFT and NEO wave function methods have been demonstrated to accurately 

describe ground state properties such as proton densities9, 17-19 and proton affinities.9, 18-19 

Expanding upon electronic time-dependent density functional theory (TDDFT)22-27 and equation-

of-motion coupled cluster (EOM-CC) theory,28-31 advances have also been made in calculating 

vibrational and positronic excitation energies with NEO-TDDFT20 and NEO-EOM-CCSD,32 

respectively. 

 Although the NEO approach does not invoke the Born-Oppenheimer separation between 

the quantum protons and the electrons, it does invoke the Born-Oppenheimer separation between 

the quantum protons and all classical nuclei. This separation leads to challenges in calculating 

vibrational frequencies that can be compared to spectroscopic data because the NEO potential 

energy surface depends on only the coordinates of the classical nuclei, and the quantum protons 

are assumed to respond instantaneously to the motion of the classical nuclei. As a result, 

diagonalization of the NEO Hessian matrix produces vibrational modes that depend on only the 

classical nuclear coordinates without proper coupling to the quantum proton motions. Proton 
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vibrational excitations can be calculated using NEO-TDDFT,20 but these calculations are 

performed for fixed classical nuclei, resulting in proton vibrational excitations that are decoupled 

from the classical nuclei. Recently, the NEO-DFT(V) method was developed to overcome these 

difficulties and compute full molecular vibrational frequencies.21  

 The NEO-DFT(V) method is capable of calculating vibrational frequencies composed of 

both the classical and quantum nuclei via diagonalization of an extended NEO Hessian matrix that 

depends on second derivatives of the NEO energy with respect to the expectation values of the 

quantum nuclei as well as the coordinates of the classical nuclei. This extended NEO Hessian is 

constructed with input from NEO-TDDFT, which provides information about the proton 

vibrational excitations. The effects of zero-point energy and delocalization of the quantum nuclei 

are included in the geometry optimization, and anharmonic effects are incorporated into the 

molecular vibrational frequencies dominated by the quantum nuclei. The NEO-DFT(V) method 

was tested on a set of five molecules and found to produce results comparable to both experimental 

data and anharmonic calculations.21 For all of these test systems, however, only a single proton 

was treated quantum mechanically. In this paper, we extend the NEO-TDDFT method to 

molecules with multiple quantum protons, discuss the theoretical challenges associated with 

performing NEO-DFT(V) calculations with multiple quantum protons, and provide a 

generalization of the NEO-DFT(V) approach for any number of quantum nuclei. 

 The manuscript is organized as follows. In Section 2, we review the theory of NEO-

DFT(V) and NEO-TDDFT and then explain how properties calculated using NEO-TDDFT can be 

used to enable practical NEO-DFT(V) calculations with more than one quantum proton. In Section 

3, we calculate the vibrational frequencies for a set of four molecules, each with two quantum 
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protons, using NEO-DFT(V). We compare the results to experimental data as well as anharmonic 

computational results. Section 4 contains concluding remarks. 

 

2 Theory 

2.1 Extended NEO Hessian 

 For a system with Nc classical nuclei and Nq quantum nuclei, the NEO potential energy 

surface (PES) depends on only the coordinates of the classical nuclei.3 Because the NEO approach 

invokes the Born-Oppenheimer separation between the quantum and classical nuclei, the quantum 

nuclear densities are optimized variationally for a given configuration of the classical nuclei. As a 

consequence, diagonalization of the 3Nc × 3Nc NEO Hessian matrix provides the harmonic 

vibrational excitation energies associated with only the classical nuclei. Additionally, these 

vibrational modes are not properly coupled to the quantum nuclei because the quantum nuclei are 

assumed to respond instantaneously to any perturbation of the classical nuclei. The strategy of the 

NEO-DFT(V) method is to compute and diagonalize an extended 3(Nc + Nq) × 3(Nc + Nq) Hessian 

matrix that includes the proper coupling among all nuclei and produces full molecular vibrational 

excitation energies that can be compared to spectroscopic data.  

The NEO energy can be expressed as  

 
   
E = E(r

c
,r

q
(r

c
))  , (1) 

where rc is a 3Nc-dimensional vector denoting the combined coordinates of the classical nuclei, 

and  rq is a  3Nq-dimensional vector denoting the combined expectation values of the quantum 

nuclei. Specifically, 
  
r

q
 is a concatenation of 

   
r

q
i

 for each quantum nucleus, and 
   
r

q
i

 is defined as 

the expectation value of the ith quantum nucleus according to 
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r

q
i

= rr
q

i

(r)drò  , (2) 

where 
   
r

q
i

(r) is the density of the ith quantum nucleus. This approach assumes that each quantum 

nucleus is spatially localized, rendering them effectively distinguishable. Consequently, each 

quantum nucleus corresponds to an occupied nuclear orbital that is localized in space, and 
   
r

q
i

(r) 

for a given nucleus is the square of this nuclear orbital. Such an assumption is valid for most 

molecular systems of interest. From the definition of the NEO energy, which is calculated by 

variationally optimizing the densities of the electrons and quantum nuclei, the condition  

 

   

¶E

¶r
q

= 0   (3) 

is satisfied for any geometry of the classical nuclei. Specifically, this condition must be satisfied 

under the constraint that the nuclear determinant used to construct the nuclear density 
  
r

q
(r) 

minimizes the total NEO energy in Eq. (1) (see the Supporting Information of Ref. 21 for details).  

As mentioned above, the NEO-DFT(V) method requires the calculation and 

diagonalization of an extended Hessian that couples the classical and quantum nuclei. This 

extended Hessian is defined in terms of the 3Nc coordinates of the classical nuclei and the 3Nq 

expectation values (i.e., average positions) of the quantum nuclei. Mathematically, the extended 

Hessian matrix is defined as21  
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where 
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. Diagonalization of the mass-weighted 

form of 
  
H

NEO

ext
 provides the full molecular vibrational excitation energies. The remainder of this 

subsection will outline how each of these submatrices can be calculated. 

As a first step toward evaluating these three submatrices, we express the NEO Hessian 

matrix 
  
H

NEO
 in terms of them. As discussed above, the 3Nc × 3Nc NEO Hessian matrix 

  
H

NEO
 

depends on only the classical nuclear coordinates, assuming that the quantum nuclei respond 

instantaneously to perturbations of the classical nuclei. In practice, this Hessian matrix can be 

computed analytically or numerically while invoking this Born-Oppenheimer separation between 

the classical and quantum nuclei.21 An alternative mathematically rigorous expression for the NEO 

Hessian matrix 
  
H

NEO
 can be obtained by taking the second derivative of the NEO energy in Eq. 

(1) with respect to the classical nuclei: 

 

q c

2 22 2 2 2
q q q

2 2 2 2

c c c q c q c q c

d d dd
2

d d d d
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r r r
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. (5) 

This expression can be simplified after some straightforward mathematical manipulations. 

Differentiating Eq. (3) with respect to the classical nuclei gives 

 

c

2 2
q

2

c q c q

d
0

d

E E  
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r

r r r r
,  (6) 

and solving for 
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q
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c
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Using Eqs. (3) and (7) allows us to simplify Eq. (5) as 

 

q c

1
2 2 2 2 2

2 2 2

c c c q q q c

d

d

E E E E E


     
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.  (8)  

Eq. (8) can be expressed in terms of the submatrices defined above as21 

 T 1

NEO 0 1 2 1

 H H H H H  . (9) 

Given this mathematical expression for 
  
H

NEO
, the three submatrices in Eq. (4) can be 

computed in a straightforward manner. The 
  
H

0
 submatrix is the force constant matrix for the 

classical nuclei with the expectation values of the quantum nuclei fixed, and it is obtained in 

practice through a rearrangement of Eq. (9): 

 
  
H

0
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1
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2
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1
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Here the R matrix is defined as 

 

  

R =
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q
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 , (11) 

where 
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q

i
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c

=
d
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c
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q

i
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q
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(r)
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c

dr  . (12) 

This R matrix can be calculated analytically or numerically from the gradient of the expectation 

value of each quantum nucleus with respect to each classical nucleus. From Eq. (6), it is clear that 

the 
  
H

1
 submatrix can be expressed as21 

 1 2 H H R  . (13) 

Eqs. (4), (10), and (13) indicate that if the 
  
H

2
 matrix is known, then the target 

  
H

NEO

ext
 can be 

constructed and diagonalized.  However, 
  
H

2
 is challenging to compute directly using only 
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information from the nuclear density because it contains second derivatives of the NEO energy 

with respect to specific components of the combined expectation values rq that must vary while 

other components of rq remain fixed.21 It is therefore desirable to formulate an alternative scheme 

for constructing 
  
H

2
.  

As defined above, 
  
H

2
 is the Hessian matrix corresponding to the second derivatives of the 

energy with respect to the expectation values of the quantum nuclei with the classical nuclei fixed. 

Within the harmonic oscillator approximation, its associated generalized eigenvalue equation is 

 
  
H

2
U = MUΩ ,  (14) 

with the orthonormalization condition 

 † U MU I  (15) 

where Ω  is the diagonal matrix of eigenvalues 2 , M is the diagonal mass matrix corresponding 

to the quantum nuclei, and U is composed of the eigenvectors, which are denoted normal modes 

in this context. Typically the Hessian matrix is known and is diagonalized to obtain the normal 

modes and vibrational frequencies. However, our problem is the reverse in that 
  
H

2
needs to be 

calculated from approximate normal modes and frequencies. For this purpose, Eq. (14) can be 

rearranged to be 

 

c

2
1

2 2

q

†E 
 

     r

U MH MUΩU MUΩ
r

 . (16) 

Thus, 
  
H

2
can be constructed if we know the associated eigenvalues 2  and eigenvectors 

U. In our strategy, the quantum proton vibrational frequencies w  used to construct Ω  are 

approximated by the anharmonic frequencies calculated by NEO-TDDFT. As a result, this 

approach partially incorporates the anharmonic effects that naturally arise in NEO-TDDFT 
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calculations of vibrational excitations. For single proton systems, the U matrix was previously 

constructed from the normal modes associated with the quantum proton as obtained from a 

conventional electronic Hessian matrix with all nuclei except the proton fixed.21 While effective, 

this procedure is not self-contained and adds computational expense. An alternative construction 

of the U matrix based on the transition dipole moments obtained from NEO-TDDFT is introduced 

in the next subsection.  

 

2.2 NEO-TDDFT and the U Matrix Construction 

 The NEO-DFT method was developed previously for a system composed of electrons and 

quantum nuclei in a field of fixed classical nuclei. To simplify the discussion, we only consider 

quantum protons, although the theory is easily extended to other types of quantum nuclei or 

particles such as positrons. Within the Kohn-Sham formalism, the reference state is defined as the 

product of electron and proton Slater determinants composed of electronic and protonic orbitals, 

respectively. The total energy depends on the electron and proton densities, 
 r

e   and 
 r

p , 

respectively: 

 
  
E[re ,r p]= E

ext
[re ,r p]+ E

ref
[re ,r p]+ E

exc
[re]+ E

pxc
[r p]+ E

epc
[re ,r p]  (17) 

Here E denotes the interaction of the electron and proton densities with the external potential due 

to the fixed classical nuclei, and Eref includes the kinetic energies of the electrons and quantum 

protons and the classical Coulomb interactions for the reference state. In addition, Eexc, Epxc, and 

Eepc denote the electron-electron exchange-correlation functional, the proton-proton exchange-

correlation functional, and the electron-proton correlation functional. Application of the 

variational principle to this total energy functional leads to Kohn-Sham equations for the electrons 

and quantum protons that are solved iteratively. Our group has developed electron-proton 
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correlation functionals,19, 33 which can be used in conjunction with existing electronic exchange-

correlation functionals. Because proton-proton exchange and correlation are negligible for 

molecular systems associated with localized proton densities, the proton-proton exchange-

correlation functional is chosen to be the diagonal Hartree-Fock exchange terms to eliminate self-

interaction energy.  

The NEO-TDDFT approach was developed to compute electronic and proton vibrational 

excitations simultaneously in a computationally practical manner.  The NEO-TDDFT equations 

have been derived previously,20 and only the relevant working equations are presented here. The 

electronic and protonic excitation energies are calculated by solving  
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Within the adiabatic approximation, the matrix elements in Eq. (18) are,  
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C
ia,JB

= - ia | BJ( )+
d 2E

epc

d P
JB

pdP
ai

e
 . (23) 

Here, P denotes the density matrix, e  denotes the orbital energies, and the superscripts e and p 

denote electrons and protons, respectively. The lower case indices i and j denote occupied 

electronic orbitals, while the indices a and b denote virtual electronic orbitals. The upper case 

indices are defined analogously for protonic orbitals. The solution of Eq. (18) produces the 

excitation energies w . 

In the current formulation of linear response NEO-TDDFT, only single excitations can be 

captured, and in principle these excitations could be of electronic, protonic, or mixed electron-

proton vibronic character.20 However, for electronically adiabatic systems, typically the excitations 

are either electronically or protonically dominated and thus can be described as pure electronic or 

vibrational excitations to a reasonable approximation. The character of the excitation can be 

evaluated by examination of the corresponding eigenvector: electronic excitations are dominated 

by e
X , and protonic excitations are dominated by p

X . The eigenvectors are subject to the 

orthonormalization condition20 

 
   

X
m

e X
n

e - Y
m

e Y
n

e + X
m

p X
n

p - Y
m

p Y
n

p = ±d
mn

 . (24) 

In addition to calculating proton vibrational excitation energies, various other quantities can be 

calculated using information from NEO-TDDFT, such as transition densities, transition dipole 

moments, and oscillator strengths.20, 34 

 In the context of NEO-DFT(V), a quantity that is of particular interest is the transition 

dipole moment, which is defined for a general NEO excited state  
 
Y

k
 as 

 
p p e e

0
ˆ

k IA IA ia ia

IA ia

r X I r A Y A r I X i r a Y a r i    
        
      , (25) 
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where r̂  = x̂ , ŷ , or ẑ  for g  = 1, 2, or 3, respectively, and X and Y are obtained from solving 

Eq. (18). For notational simplicity, the dependence of the elements of X and Y on k in Eq. (25) is 

omitted. As mentioned above, the excitations for electronically adiabatic systems can typically be 

characterized as purely electronic or vibrational. For the molecular vibrational analysis, 
 
Y

k
 in 

Eq. (25) corresponds to the kth proton vibrational excited state, and the terms in the second 

summation vanish. The resulting transition dipole moment is a vector that reflects the polarization 

of the protonic transition. The kth transition dipole moment vector can be viewed as the “normal 

mode” associated with the kth proton vibrational excitation energy k . These vectors are used to 

construct a rotation matrix U that in turn can be used in Eq. (16) for computing the submatrix 
  
H

2

. This approach provides the rotation matrix U in an effective, self-contained, and generalizable 

manner. 

 As a simple conceptual example, consider the construction of the 
  
H

2
 matrix for HCN, 

which has a single quantum proton. To generate 
  
H

2
, we use NEO-TDDFT to calculate the 3Np 

proton vibrational excitation energies 
 
w

1
, 
 
w

2
, and 

 
w

3
 that comprise Ω :  

 . (26) 

 We then use Eq. (25) to calculate the transition dipole moment vectors associated with each 

excitation. The transition densities and transition dipole moment vectors associated with the three 

proton vibrational excitations for HCN are shown in Figure 1.  
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Figure 1. Protonic transition densities and associated transition dipole moment vectors (primed 

axes) for the three excitations with energies 
 
w

1
(left), 

 
w

2
(center), and 

 
w

3
(right). The lab frame 

coordinate system is depicted as the unprimed coordinate system at the far right of the figure. Each 

transition dipole moment vector is defined along a primed coordinate axis which is, in general, 

different than the lab frame.  

 

In Figure 1, the three orthogonal transition dipole moment vectors 
 
w

k
  associated with 

the three protonic excitations are represented along axes in a primed coordinate system that may 

be viewed as the “normal mode” coordinate system for the quantum proton. In most cases, the 

primed coordinate system will not be coincident with the unprimed coordinate system associated 

with the lab frame, as observed in Fig. 1. The vectors 
 
w

k
 can be represented in the lab frame 

coordinates using Eq. (25) according to  

 
 
w

k
= u

x

k x +u
y

k y +u
z

k z   (27) 

where 

 

  

u
g

k =
Y

0
r̂
g
Y

k

m
p

Y
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g
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k

2

g =1

3

å

 . (28) 



 14 

Here 
  
m

p
 is the mass of the proton and r̂  = x̂ , ŷ , or ẑ  for g  = 1, 2, or 3. Each 

 
w

k
 vector 

forms a column of the transformation matrix U 

 

1 2 3

1 2 3

1 2 3

x x x

y y y

z z z

u u u

u u u

u u u

 
 

  
 
 

U . (29)  

This matrix corresponds to a transformation or rotation from the normal mode coordinate system 

to the lab frame coordinate system. Note that this U matrix satisfies the orthonormalization 

condition in Eq. (15). 

At this point, we have generated the U and Ω  matrices for the case of a single quantum 

proton and are now equipped to calculate 
  
H

2
 according to Eq. (16). In the special case where the 

“normal mode” coordinate system is coincident with the lab frame coordinate system, the matrix 

given in Eq. (29) becomes the   M
-1/2  matrix, and the 

  
H

2
matrix given in Eq. (16) has the simple 

diagonal representation 

 . (30) 

However, this situation is not typical, particularly for non-linear molecules with multiple protons. 

Building on the single proton case, the U matrix can be constructed for a system with 

multiple quantum protons. A system of Np quantum protons will have Np occupied protonic orbitals 

that are assumed to be spatially localized. A NEO-TDDFT calculation will yield 3Np protonic 

excitation energies of interest, where each excitation energy w  will be associated with collective 

protonic motions. For a given collective mode, we calculate Np individual transition dipole moment 

vectors, where each vector is associated with a singly occupied protonic orbital. In the single 
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proton case, each column of the U matrix was constructed according to Eqs. (27) and (28). In the 

multiproton case, a given excitation is now associated with Np individual transition dipole moment 

vectors, which may be conceptualized as  

   (31) 

For a system composed of Np quantum protons, the general 3Np × 3Np U matrix used in 

NEO-DFT(V) is constructed according to  

   (32) 

where  

 

  

u
g

kQ =
Y

0
r̂
g

Q Y
k

m
Q

Y
0

r̂
g

Q Y
k

2

g =1

3

å
Q

N
p

å

 . (33) 

In Eq. (33), k is the index specifying a proton vibrational excited state, Q is the index specifying a 

quantum proton, and 
 
m

Q
 is the mass of the Qth quantum proton.  For notational clarity in Eq. (32)

, 
 
u
g

kQ = u
x

kQ , 
 
u

y

kQ , 
 
u

z

kQ
 for g = 1, 2, and 3, respectively. The operator 

  
r̂
g

Q  appearing in Eq. (33) acts 
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on only the Qth quantum proton, which occupies the Qth nuclear orbital in the ground state, and 

the corresponding matrix element is defined as 

 
p p

0
ˆQ

k QA QA

A

r X Q r A Y A r Q  
    
   . (34) 

The resulting U matrix is composed of column vectors, each associated with a specific 

proton vibrational excited state k. These column vectors are themselves composed of Np 

concatenated sets of x, y, z transition dipole moment vector components, where each set is 

associated with an occupied protonic orbital Q. Note that in the case of a single type of quantum 

nucleus, the mass 
 
m

Q
 in the expression for 

 
u
g

kQ  can be factored out in the denominator because it 

is the same for all quantum nuclei. However, the expression for 
 
u
g

kQ  in Eq. (33) is general and is 

valid for the case of multiple types of quantum nuclei with different masses. This procedure can 

be used to construct the U matrix, which in conjunction with the associated Ω  matrix can be used 

to compute the 
  
H

2
 matrix given in Eq. (16). The 

  
H

2
 matrix can be used to compute the 0H  and 

1H  matrices for the construction of 
  
H

NEO

ext
 . The eigenvalues and eigenvectors of this extended 

Hessian provide the molecular vibrational frequencies and normal modes coupling the classical 

and quantum nuclei.  

 

2.3 Overview of NEO-DFT(V) for Multiple Protons 

The overall NEO-DFT(V) procedure described above is well-defined and systematic. 

Given the reasonable definition of the extended Hessian in terms of the classical nuclear 

coordinates and the expectation values of the quantum nuclei, the expressions for the 0H  and 1H  

matrices are mathematically rigorous. The main approximation of this approach lies in the 
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physically motivated construction of the 
  
H

2
 matrix from the NEO-TDDFT proton vibrational 

excitation energies and transition dipole moment vectors. A significant advantage of this procedure 

is that the anharmonicities of the proton vibrational modes are naturally included in the NEO-

TDDFT proton vibrational excitation energies used to construct the 
  
H

2
 matrix. Thus, even though 

the use of a Hessian to produce vibrational frequencies is based on the harmonic oscillator 

approximation, the matrix elements of the extended Hessian incorporate the anharmonic effects 

associated with the quantum protons. As will be shown below, the resulting molecular vibrational 

frequencies reflect this incorporation of anharmonic effects. 

 

3 Results and Discussion 

We used the NEO-DFT(V) method described above to compute the molecular vibrational 

frequencies for a set of four molecules, each containing two protons. All molecular geometries 

were optimized using NEO-DFT with the B3LYP35-36 electronic exchange-correlation functional 

and the epc17-2 electron-proton correlation functional,18 which has been shown to provide 

accurate proton affinities18 and accurate NEO-TDDFT excitations.20, 34 The cc-pVDZ electronic 

basis set37 was used for the heavy atoms, and the cc-pV5Z electronic basis set37-38 was used for the 

quantum protons. An even tempered 6s6p6d6f  nuclear basis set with exponents spanning the range 

from 4 2  to 32 was used for the quantum protons. This combination of nuclear and electronic 

basis sets for the quantum proton has been demonstrated to be effective in calculating accurate 

proton vibrational excitation energies with the NEO-TDDFT/B3LYP/epc17-2 method.34 The 

NEO-DFT(V) and conventional harmonic calculations were performed using a developer version 

of the GAMESS program.39 The anharmonic calculations were performed using Gaussian09.40 



 18 

For the ground state NEO-DFT calculations, the nuclear and electronic basis function 

centers were chosen to be the same for each quantum proton, and the positions of these centers 

were optimized variationally. For the NEO-TDDFT calculations, the variational ground state 

positions of the nuclear/electronic basis function centers may not be optimal for calculating 

accurate proton vibrational excitation energies. The impact of the nuclear/electronic basis function 

center position on proton vibrational excitation energies calculated with NEO-TDDFT has been 

investigated in previous work.34 These previous results indicate that two possible choices for the 

positions of the nuclear/electronic basis function centers yield accurate and comparable results: (1) 

the conventional electronic XH bond distance and angle (where X represents an arbitrary heavy 

atom), and (2) the expectation value of the quantum proton obtained from a ground state NEO-

DFT calculation, where the nuclear/electronic basis function centers are optimized variationally.34 

In the present work, the NEO-TDDFT proton vibrational excitation energies used in Eq. (16) were 

calculated with the nuclear/electronic basis function centers placed at the expectation values of the 

quantum protons. This choice has the benefit of being self-contained and therefore more 

computationally practical, as all information necessary for performing the NEO-TDDFT 

calculation is obtained from the ground state NEO-DFT calculation.  

The procedure for calculating vibrational modes with the NEO-DFT(V) approach is 

summarized as follows. First, a NEO-DFT geometry optimization is performed on the system of 

interest. The matrix 
  
H

NEO
 is then calculated numerically by perturbing the classical nuclear 

coordinates and optimizing the basis function centers for the quantum protons at each perturbed 

geometry. Using the NEO-DFT optimized geometry for the classical nuclei and the expectation 

values of the quantum nuclei for the nuclear/electronic basis function center positions, a NEO-

TDDFT calculation is performed. The U matrix is constructed according to Eqs. (32) and (33), and 
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this matrix is used in conjunction with the proton vibrational excitation energies to obtain the 
  
H

2
 

matrix given by Eq. (16). The 
  
H

2
 matrix is then used together with the R matrix to calculate the 

  
H

0
 and 

  
H

1
 matrices according to Eqs. (10) and (13), respectively. Finally, 

  
H

0
, 
  
H

1
, and 

  
H

2
 are 

used to construct the extended NEO Hessian 
  
H

NEO

ext
 in Eq. (4). Diagonalization of the mass-

weighted form of 
  
H

NEO

ext
 gives the full molecular vibrational modes.   

An important aspect of the NEO-DFT(V) scheme is the use of NEO-TDDFT to compute 

the proton vibrational excitations for fixed classical nuclei. In our previous work,20, 34 the NEO-

TDDFT method was applied to molecular systems with only a single quantum proton. Herein, we 

implement the NEO-TDDFT method for molecular systems with multiple quantum protons. 

Interestingly, the NEO-TDDFT method produces collective proton vibrational modes that 

combine motions of multiple quantum nuclei. These collective proton vibrational modes 

correspond to linear combinations of singly excited determinants and thus are described by linear 

response NEO-TDDFT. For example, Figure 2 shows the six NEO-TDDFT proton vibrational 

modes and excitation energies calculated for HCCH with fixed carbon nuclei, where two of the 

modes are doubly degenerate. Arrows indicating the direction of the transition dipole vector 

associated with each quantum proton are shown for each mode. Table 1 provides the full U matrix, 

which contains the values of all components of the transition dipole moment vectors shown in 

Figure 2. As mentioned previously, the NEO Hessian depends on only the classical nuclei, 

assuming the instantaneous response of the quantum nuclei. Thus, the NEO Hessian is one-

dimensional in the case of HCCH, with a CC frequency of 2207 cm-1.  

The NEO-DFT(V) approach mixes the CC frequency from the NEO Hessian with the 

NEO-TDDFT modes shown in Figure 2 to produce the coupled molecular vibrational modes 
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shown in Figure 3. Given the three translational and two rotational modes for this linear molecule, 

this approach provides seven vibrational modes, where two of these modes are doubly degenerate. 

The TDDFT proton vibrational excitation energies for the other three molecules studied, namely 

H2O2, H2CO, and H2NF, are provided in the SI. All of these molecules contain only two classical 

nuclei and therefore correspond to linear geometries in the NEO framework. However, when the 

quantum nuclei do not maintain this linearity (i.e., the molecule is not linear in a conventional 

electronic structure calculation), the NEO-DFT(V) approach produces one rotational mode that is 

associated with a negligible NEO-TDDFT excitation energy. Thus, this approach provides six 

vibrational modes for the other three molecules. 

 

Figure 2. Proton vibrational modes and excitation energies calculated with NEO-TDDFT for HCCH with 

fixed carbon nuclei. The red mesh indicates the quantum proton density.  The molecule is oriented on the 

z-axis with one carbon placed at the origin and a C‒C bond distance of 1.207 Å. The expectation values of 

the quantum protons are −1.086 Å  and 2.293 Å. For each mode, the red arrows indicate the direction of the 

transition dipole moment vector associated with each quantum proton. Mode (A) is a doubly degenerate 

CH symmetric bend, mode (B) is a doubly degenerate asymmetric CH bend, mode (C) is an asymmetric 

CH stretch, and mode (D) is a symmetric CH stretch. 
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Table 1. U Matrix for HCCH Constructed from the Transition Dipole Moments Computed with 

NEO-TDDFTa  

  A A B B C D 

1x -0.707 0.000 0.707 0.000 0.000 0.000 

1y 0.000 0.707 0.000 -0.707 0.000 0.000 

1z 0.000 0.000 0.000 0.000 0.705 -0.710 

2x 0.707 0.000 0.707 0.000 0.000 0.000 

2y 0.000 -0.707 0.000 -0.707 0.000 0.000 

2z 0.000 0.000 0.000 0.000 0.710 0.705 
aEach column corresponds to a concatenation of transition dipole moment vectors associated with a given 

NEO-TDDFT vibrational mode, as defined in Eqs. (32)-(34). The labels A, B, C, and D correspond to the 

modes presented in Figure 1. The left-most column indicates the quantum proton (1 or 2) and the Cartesian 

component (x, y, or z). The slight asymmetry in the z components of protons 1 and 2 for columns C and D 

arises from numerical error and does not impact the NEO-DFT(V) frequencies given in Figure 2.  

 

 

Figure 3. Molecular vibrational modes and excitation energies calculated with NEO-DFT(V) for 

HCCH. The red mesh indicates the quantum proton density. For each mode, the red and gray 

arrows indicate the directions of the motions of the quantum protons and carbon atoms, 

respectively. Mode (A) is a doubly degenerate CH symmetric bend, mode (B) is a doubly 

degenerate asymmetric CH bend, mode (C) is an asymmetric CH stretch, mode (D) is a symmetric 

CH stretch, and mode (E) is a symmetric CC stretch. 
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The NEO-DFT(V) vibrational frequencies for the four molecular systems studied are given 

in Table 2. Experimental data are provided, along with results obtained from a conventional 

Hessian calculation within the harmonic oscillator approximation, as well as results obtained from 

perturbative anharmonic calculations.41 The average mean unsigned error (MUE) relative to 

experiment is also reported. Note that the average MUE is virtually the same for the NEO-DFT(V) 

and the conventional perturbative anharmonic calculations, and both of these methods are more 

accurate than the conventional harmonic calculations. The errors for specific modes vary, with 

NEO-DFT(V) typically overestimating bending modes, as well as low energy modes such as the 

H2O2 torsion, to a greater extent than the perturbative anharmonic calculations. Conversely, the 

conventional perturbative anharmonic calculations typically underestimate the hydrogen 

stretching modes to a greater extent than do the NEO-DFT(V) calculations, with the largest 

deviations observed for the asymmetric CH stretch and the NH stretch in H2CO and H2NF, 

respectively. The overall comparability of the NEO-DFT(V) and conventional perturbative 

anharmonic methods is reasonable because the anharmonicity associated with the hydrogen nuclei 

is partially incorporated into the NEO-DFT(V) procedure through the NEO-TDDFT proton 

vibrational excitation energies that are used to construct the 
  
H

2
 matrix.  
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Table 2: Proton Vibrational Frequencies Calculated with the NEO-DFT(V), Conventional 

Harmonic, and Conventional Perturbative Anharmonic Methods, as well as Comparison to 

Experimental Data.a  

 

  
Mode Experiment NEO-DFT(V) 

Conv 

Anharmonic 
Conv Harmonic 

C2H2
b Symmetric CH bend (2) 612 727 700 569 

  Aymmetric CH bend (2) 730 786 753 777 

  CC stretch 1974 2047 2040 2070 

  Asymmetric CH stretch 3289 3263 3294 3388 

  Symmetric CH stretch 3374 3378 3390 3503 

H2O2
c HOOH torsion 254-370 523 248 424 

  OO stretch 865-877 957 921 957 

  Asymmetric OH bend 1265-1274 1314 1249 1332 

  Symmetric OH bend 1393 1425 1397 1435 

  Asymmetric OH stretch 3610-3619 3596 3522 3789 

  Symmetric OH stretch 3609-3618 3599 3528 3792 

H2COd CH2 wag 1167 1190 1167 1239 

  CH2 rock 1249 1254 1233 1278 

  CH2 scissor 1500 1477 1484 1567 

  CO stretch 1746 1812 1808 1824 

  Symmetric CH stretch 2783 2724 2706 2882 

  Asymmetric CH stretch 2843 2772 2651 2935 

H2NFe NF stretch 891 936 910 941 

  NH2 wag 1233 1257 1225 1271 

  NH2 wag 1241 1310 1294 1338 

  NH2 scissor 1564 1556 1550 1638 

  Symmetric NH stretch 3234 3241 3192 3420 

  Asymmetric NH stretch 3346 3336 3266 3506 

     MUEf     47 48 92 

 
aAll frequencies given in cm-1. The average mean unsigned error (MUE) relative to experiment is reported 

for all methods. All calculations were performed with the B3LYP electronic exchange-correlation 

functional, and the NEO-DFT(V) excitation energies were computed with the epc17-2 electron-proton 

correlation functional. The electronic and nuclear basis sets are given in the text. 
bExperimental data from ref.42. 
cExperimental data from ref.43 (HOOH torsion), ref.44 (OO stretch), ref.45 (OH stretches, OH asym. bend),   

ref.46 (OH sym. bend) . 
dExperimental data from ref.42. 
eExperimental data from ref.47. 
fFor H2O2 the average of the reported experimental range was used for the calculation of the MUE.  
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4 Conclusions 

In this paper, we have developed and implemented the formalism for treating multiple 

quantum protons within the NEO-DFT(V) scheme. In this approach, proton vibrational excitation 

energies and transition dipole moment vectors calculated with NEO-TDDFT are used to construct 

an extended NEO Hessian matrix, which is defined in terms of the expectation values of the 

quantum protons as well as the classical nuclear coordinates. Diagonalization of this extended 

Hessian provides the molecular vibrational frequencies associated with coupled motions of both 

classical and quantum nuclei. The underlying assumptions of this molecular vibrational analysis 

are: (1) the harmonic approximation inherent to the Hessian framework; (2) the representation of 

the quantum nuclei by their expectation values; and (3) the use of the NEO-TDDFT proton 

vibrational excitation energies and transition dipole moment vectors to construct the submatrix 

associated with the quantum nuclei, thereby partially including the corresponding anharmonicities.   

The results indicate that NEO-TDDFT is capable of capturing vibrational excitation 

energies associated with collective nuclear motion. Moreover, the NEO-DFT(V) calculations for 

molecules with multiple quantum protons are accurate and comparable to conventional 

perturbative anharmonic calculations. Anharmonicity is included in NEO-DFT(V) calculations 

through the NEO-DFT geometry optimizations and the NEO-TDDFT vibrational excitation 

energies, leading to significantly more accurate hydrogen stretching modes, as well as an overall 

improvement in accuracy compared to conventional harmonic calculations. The NEO-DFT(V) 

approach incorporates anharmonicities associated with the quantum nuclei, and the 

anharmonicities associated with the classical nuclei could be included perturbatively if they are 

expected to be significant. This formalism lays the foundation for a wide range of applications for 

multicomponent quantum chemistry methods. 
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