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Abstract

In multicomponent quantum chemistry, more than one type of particle is treated quantum
mechanically with either density functional theory or wave function based methods. In particular,
the nuclear-electronic orbital (NEO) approach treats specified nuclei, typically hydrogen nuclei,
on the same level as the electrons. This approach enables the incorporation of nuclear quantum
effects, such as nuclear delocalization, anharmonicity, zero-point energy, and tunneling, as well as
non-Born-Oppenheimer effects directly into quantum chemistry calculations. Such effects impact
optimized geometries, molecular vibrational frequencies, reaction paths, isotope effects, and
dynamical simulations. Multicomponent density functional theory (NEO-DFT) and time-
dependent DFT (NEO-TDDFT) achieve an optimal balance between computational efficiency and
accuracy for computing ground and excited state properties, respectively. Multicomponent wave
function based methods, such as the coupled cluster singles and doubles (NEO-CCSD) method for
ground states and the equation-of-motion counterpart (NEO-EOM-CCSD) for excited states, attain
similar accuracy without requiring any parameterization and can be systematically improved but
are more computationally expensive. Variants of the orbital-optimized perturbation theory (NEO-
OOMP2) method achieve nearly the accuracy of NEO-CCSD for ground states with significantly
lower computational cost. Additional approaches for computing excited electronic, vibrational,
and vibronic states include the delta self-consistent field (NEO-ASCF), complete active space SCF
(NEO-CASSCF), and non-orthogonal configuration interaction methods. Multireference methods
are particularly important for describing hydrogen tunneling processes. Other types of
multicomponent systems, such as those containing electrons and positrons, have also been studied
within the NEO framework. The NEO approach allows the incorporation of nuclear quantum
effects and non-Born-Oppenheimer effects for specified nuclei into quantum chemistry
calculations in an accessible and computationally efficient manner.


mailto:sharon.hammes-schiffer@yale.edu

TABLE OF CONTENTS

1. Introduction 4
2. Foundations of the Nuclear-Electronic Orbital (NEO) Method 8
2.1. NEO Hamiltonian and Hartree-Fock Theory 8
2.2 Explicitly Correlated Wave Functions for Quantum Protons and Positrons 14

3. Multicomponent Density Functional Theory (DFT) and Time-Dependent Density Functional

Theory (TDDFT) 16
3.1. NEO-DFT 16
3.2. NEO-TDDFT for Excited States 28
3.3. Stability Analysis 35

4. Molecular Properties within the NEO Framework 35
4.1. Computing Molecular Vibrational Frequencies 35
4.2. Diagonal Born-Oppenheimer Corrections 43

5. NEO Wave Function Methods 45

5.1. Theoretical Formalism for Configuration Interaction (CI)
and Coupled Cluster (CC) Approaches 45
5.2. Orbital-Optimized Coupled Cluster with Doubles (NEO-OOCCD) and Second-Order

Perturbation Theory (NEO-OOMP2) Methods 51
5.3. Benchmarking and Applications of NEO-CI, NEO-CC, and NEO-OOMP2 Methods 53

5.4. Equation-of-Motion Coupled Cluster with Singles and Doubles

(NEO-EOM-CCSD) for Excited States 58

6. Delta Self-Consistent Field (NEO-ASCF) and Multireference Methods 62
6.1. NEO-ASCF 62
6.2. Nonorthogonal Configuration Interaction (NEO-NOCI) for Tunneling Splittings 66

2



6.3 Complete Active Space Self-Consistent Field (NEO-CASSCF)
and Orbital-Optimized Configuration Interaction with Singles (NEO-OOCIS)

7. Other Approaches for Describing Nuclear Quantum Effects
and Non-Born-Oppenheimer Effects

8. Efficiency and Accessibility of NEO Approaches

9. Remaining Challenges and Future Directions

Acknowledgments

Biographical Information

Abbreviations

References

69

71

73

75

79

79

80

82



1. Introduction

Nuclear quantum effects play important roles in many aspects of chemistry, including zero-
point energy, vibrationally excited states, hydrogen bonding interactions, proton transfer reactions,
and hydrogen tunneling.!* In addition, nonadiabatic effects between electrons and protons are
known to be significant in proton-coupled electron transfer reactions,>® which are essential for a
wide range of chemical and biological processes.”” In most quantum chemistry calculations, the
Born-Oppenheimer separation is invoked between the electrons and the nuclei, and the electrons
are assumed to respond instantaneously to the motions of the nuclei. In conventional Born-
Oppenheimer methods, the nuclei move on the ground state potential energy surface, which is
generated by solving the electronic time-independent Schrodinger equation to obtain the energy at
each nuclear configuration. In many cases, the nuclei are assumed to move classically on this
potential energy surface, but the nuclei can also be propagated quantum mechanically on this
potential energy surface using wave packet or path integral methods.

In the nuclear-electronic orbital (NEO) method,'® specified nuclei are treated quantum
mechanically on the same level as the electrons using molecular orbital techniques. In this case,
the Born-Oppenheimer separation is invoked between the subsystem composed of the electrons
and quantum nuclei and the subsystem composed of the other nuclei, which are referred to as
“classical” for simplicity. Henceforth, we will not use quotation marks for the “classical” nuclei,
with the understanding that they could also be treated quantum mechanically. The classical nuclei
move on the potential energy surface obtained by solving the mixed nuclear-electronic time-
independent Schrodinger equation. The NEO approach includes the nuclear delocalization and
zero-point energy associated with the quantum nuclei during geometry optimizations, reaction

paths, and dynamics. This approach also avoids the Born-Oppenheimer separation between the



electrons and quantum nuclei. In addition, the NEO approach is useful for computing
hydrogen/deuterium geometric and kinetic isotope effects. Both density functional theory (DFT)!!-
2l and wave function based methods!® 222> have been developed within the NEO framework.
Figure 1 depicts the protonic orbitals for the ethane molecule computed with the NEO-DFT

method.

Figure 1. Protonic orbitals (red mesh) in ethane (C:He) calculated with the NEO-DFT method.
Reprinted with permission from Ref. 2. Copyright 2019 American Chemical Society.

A variety of related multicomponent molecular orbital methods have been investigated. A
fundamental non-Born-Oppenheimer molecular orbital theory was proposed by Thomas in 1969.%’
Significantly later, the nuclear orbital molecular orbital (NOMO)?*3* and multicomponent
molecular orbital (MCMO)*>* methods were developed by Tachikawa, Nakai, and coworkers
independently and in parallel with the NEO method.!® In many of these implementations, all
nuclei, as well as all electrons, are treated quantum mechanically, requiring the removal of

translations and rotations.**6

More recently, the NEO method was incorporated into the
LOWDIN code as the any particle molecular orbital (APMO) method by Reyes.*”* The two
component quantum theory of atoms in molecules (TC-QTAIM) method? is also related to these
other approaches. In addition to treating nuclei quantum mechanically, multicomponent molecular

orbital methods have also been used to study systems containing positrons and muons.?* 31-6?



A number of challenges arise with these types of multicomponent orbital methods. The
multicomponent Hartree-Fock and second-order perturbation theory method produce nonphysical,
over-localized proton densities®'**? and thus are not reliable for computing molecular properties.
Until recently, multicomponent configuration interaction and coupled cluster calculations have

been limited to small systems,? 36: 45 63-64

no larger than diatomics, and have not been shown to
provide accurate predictions of molecular properties depending on the proton densities. In an
alternative approach, Adamowicz and coworkers have used explicitly correlated wave function
methods to treat all electrons and all nuclei (or positrons) quantum mechanically on the same
level.5”> These methods have been shown to be highly accurate for small molecular systems but
are computationally expensive and therefore currently not easily applied to larger systems.
Various aspects of multicomponent DFT have also been explored over the past several
decades. The Hohenberg-Kohn theorems’® and the Kohn-Sham formalism’” have been extended
to multicomponent systems composed of two or more different types of particles.* 7880 Additional
multicomponent DFT work has been conducted in the context of electron-positron systems.3!-?
Until recently, the multicomponent DFT methods have been limited by the lack of accurate

14-15, /3132, 38, 44 In terms of excited states, the

electron-proton correlation functionals.!?
multicomponent TDDFT formalism was developed by van Leeuwen and Gross to treat all
electrons and nuclei quantum mechanically,®**** but such a fully quantum mechanical approach
has not been applied to molecular systems.

This review summarizes the various NEO methods and their capabilities in describing
ground and excited state properties of chemical systems. The other related multicomponent

molecular orbital and DFT methods will be mentioned throughout this review to provide historical

context and points of comparison as warranted. In addition to these approaches, alternative types



of theoretical methods for describing nuclear quantum effects and nonadiabatic effects, such as
path integral,%-1% wavepacket,'**!% multiconfigurational time-dependent Hartree (MCTDH),!%

112116 methods, are also available. Given the vast literature available

"' and quantum Monte Carlo
for each of these methods, only brief summaries will be provided, with references to the relevant
papers and reviews. A detailed discussion of each of these many methods is beyond the scope of
this review, which by design is focused predominantly on the NEO approach.

The structure of this review is as follows. First the NEO Hamiltonian and the simplest
form of the nuclear-electronic wave function, which is based on Hartree-Fock (HF) theory,!® will

61-62. 17-119 1ead to significant

be presented. Explicitly correlated wave function methods
improvements over the NEO-HF method, which is not even qualitatively reasonable, but are
significantly more computationally expensive. After this introductory material, the NEO-DFT!!-
18.20 and multicomponent time-dependent DFT (TDDFT)!® 2! approaches for computing ground
and excited state properties, respectively, will be discussed. The next section will illustrate the

calculation of molecular vibrational frequencies!?*-!2!

and diagonal Born-Oppenheimer
corrections®® within the NEO framework. Subsequently, the NEO-coupled cluster’* % and
equation-of-motion®* wave function based approaches, which also provide ground and excited
state properties, will be presented. These approaches will be shown to be capable of providing
accurate densities, energies, optimized geometries, and vibrational frequencies for chemical
systems. In addition, an overview of other NEO approaches for computing excited states and

122123 including multireference methods,!® will be provided for

hydrogen tunneling splittings,
completeness.

Following this presentation of the underlying theories and capabilities, the NEO approach

will be placed in the context of other types of theoretical methods for describing nuclear quantum



effects and nonadiabatic effects, including path integral and wavepacket methods. In contrast to
some of these alternative options, the NEO approach is designed to serve as a computationally
practical method for incorporating nuclear quantum effects and non-Born-Oppenheimer effects for
only specified nuclei. As for any computational method, the NEO methods will not be suitable for
all applications, but they are particularly applicable to the wide range of important systems
involving hydrogen bonding and hydrogen transfer. They are also easily applied to positronic
systems, in which the positrons and electrons are treated quantum mechanically on the same level.

The remaining challenges and future directions will be discussed at the end of this review.

2. Foundations of the Nuclear-Electronic Orbital (NEO) Method
2.1. NEO Hamiltonian and Hartree-Fock Theory

In the NEO approach, the system is divided into N. electrons, N, quantum nuclei, and N
classical nuclei.!® Typically, at least two nuclei are treated classically to avoid complications with
translations and rotations. For simplicity, here the quantum nuclei are assumed to be protons or
deuterons, but the extension to other nuclei or to other quantum particles such as positrons is
straightforward. The NEO Hamiltonian includes the standard electronic terms (i.e., the kinetic
energy of the electrons, the attractive Coulomb interaction between the electrons and the classical
nuclei, and the repulsive electron-electron Coulomb interaction), the analogous terms for the
quantum nuclei, and the attractive Coulomb interaction between the electrons and the quantum

nuclei. This Hamiltonian is expressed in atomic units as
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where r’ is the coordinate of electron i, r/ is the coordinate of proton 7, rj is the coordinate of

the Ath classical nucleus, and m, is the mass of a proton. The main goal of the NEO method is to
solve the following mixed nuclear-electronic time-independent Schrédinger equation for fixed

classical nuclei:

Hypo W (X7, X731%) = By () (X, x5 1) (2)
where x° and x” are the collective spatial and spin coordinates of the electrons and quantum
protons, respectively, and r° is the collective spatial coordinate for the classical nuclei. The

solution of the mixed nuclear-electronic time-dependent Schrodinger equation is another challenge
that will be discussed later in this review.
The simplest NEO wave function is the NEO Hartree-Fock (NEO-HF) wave function,!'”

which is expressed as

W o (X7, X°7) = D (x)DP(x”) 3)
Here ®°(x°) and ®P(x") are Slater determinants composed of electronic and nuclear spin
orbitals, respectively. In practice, the electronic and nuclear spatial orbitals are expanded in
Gaussian basis sets. The NEO-HF energy is computed as the expectation value of H, given in

Eq. (1) with respect to the NEO-HF wave function given in Eq. (3) and can be expressed as

N, NP 1 N, N, 1 Nn Np Np N,
Enwoue =20+ 20 52 2 U5 =KD +5 2 0 U —Kp) =2 27 ©)
i i J i



where /° (4°) denotes the electronic (protonic) contributions to the energy from the core
Hamiltonian (i.e., the kinetic energy and interaction with the external potential), J¢(J*) and K° (

KP) are the electronic (protonic) Coulomb and exchange energies, respectively, and —J is the

electron-proton Coulomb energy. These terms are defined according to standard quantum
chemistry definitions, and the subscript indices denote the electronic and protonic spin orbitals.!?*
Note that the repulsion term between classical nuclei is omitted from Eq. (4) for simplicity.
Because the nuclear-nuclear exchange terms are negligible in molecular systems, and the lowest
energy state corresponds to one nucleus per orbital, neglecting the effects of nuclear spin within
the NEO framework is a well-justified approximation.

The NEO-HF energy is optimized variationally by varying the coefficients of the basis
functions in the electronic and nuclear spatial orbitals, leading to Hartree-Fock-Roothaan
equations for the electrons and quantum protons:

F°C* =S°C°

F°CP = SPCPeP )
Here F°, C°, S%, and ¢° are the electronic Fock matrix, orbital coefficient matrix, overlap matrix,
and orbital energy matrix, respectively.'® 12* The protonic matrices are defined analogously.
These equations are solved iteratively until self-consistency to produce the ground state mixed
nuclear-electronic wave function, which can be used to calculate the total NEO-HF energy in Eq.
.

Over the past decade, even-tempered nuclear basis sets'®!72! have been developed for the
quantum nuclei in terms of the traditional s, p, d, and higher angular momentum Gaussian basis

125

functions used for electrons.'~> Most of the calculations presented in this review were performed

with the 8s8p8d8f even-tempered nuclear basis set with exponents spanning the range from 2x/5

10



to 32. These Gaussian basis sets allow the usage of the efficient integral codes developed for
electronic structure packages. Alternatively, more compact nuclear basis sets with exponents fit
to relevant data sets can be used to optimize efficiency and accuracy. Moreover, current
applications assume that the electronic and nuclear basis functions associated with a given
hydrogen atom are centered at the same position,'° although this restriction could be removed. In
general, the basis function centers for all quantum nuclei should be optimized variationally within
the NEO framework. Typically, this optimization of the basis function centers occurs as part of
the self-consistent field procedure (i.e., as an outer loop when solving Eq. (5)). Alternative schemes
are also possible, such as placing the basis function centers at the positions corresponding to the
expectation values of the quantum protons.

Although the NEO-HF method is straightforward to implement, it does not provide even
qualitatively reasonable proton densities and energies because of the inadequate treatment of
electron-proton correlation, which is fundamentally different from electron-electron
correlation.!”- ! Electron-proton correlation is particularly important because the electron-proton
Coulomb interaction is attractive rather than repulsive. In contrast, proton-proton correlation is
negligible in molecular systems because the protons are predominantly localized.'?® Because of
the critical importance of electron-proton correlation, the proton densities are highly over-
localized, and other properties, such as vibrationally averaged geometries, energies, and
frequencies are unreliable with the NEO-HF method. For this reason, methods that are effective
in electronic structure are not always effective within the NEO framework.

Because the NEO-HF method does not produce accurate proton densities, the NEO-HF

wave function is not a suitable reference for perturbative methods. In particular, the NEO-MP2

11



method,?> which is based on second-order perturbation theory, does not lead to noticeable

improvements in the proton densities. The NEO-MP2 energy has the form

E

NEO-MP2 —

E

NEO-HF

+EPP(2) +Eee(2) +Eep(2) (6)

where E™? E*? and E® correspond to the second-order energy corrections for proton-

proton, electron-electron, and electron-proton correlation, respectively.?? These correlation
energies are defined in more detail in Section 5. Several other methods?*3% 3% 45 48 that are
equivalent or nearly equivalent to NEO-HF and NEO-MP2 suffer from the same
problems. Unfortunately, these methods do not yield accurate proton densities, rendering them
unreliable for computing molecular properties. In particular, geometric isotope effects, which rely
on a delicate balance between the hydrogen stretch and bend frequencies, cannot be reliably

predicted with the NEO-HF or NEO-MP2 approaches.7-38: 47-48. 127130

The proton-proton exchange and correlation energies are negligible in molecular systems
because the protons are well-localized.*” 1?® To illustrate this property, the electronic and protonic
Coulomb and exchange contributions to the NEO-HF energy, as well as the MP2 electron-electron,
proton-proton, and electron-proton correlation energy corrections,?? have been calculated for a
series of representative molecules. This series consists of acetylene, ethylene, and ethane, which
include two, four, and six quantum protons, respectively. These molecules are considered to be
representative because of the different spatial arrangements of the quantum protons in each system
and the proximity of the quantum protons for ethylene and ethane (Figure 1). As shown in Table
1, the protonic exchange contributions to the energy, as well as the proton-proton MP2 energy
corrections, are negligible for all three molecules. These results indicate that proton-proton
exchange and correlation energies are many orders of magnitude smaller than electron-electron

exchange and correlation and electron-proton correlation energies. Note that the NEO-MP2

12



method does not provide accurate proton densities, which would impact the quantitative proton-

proton correlation contribution.

Table 1. Electronic and Protonic Coulomb and Exchange Energies, as well as MP2 Correlation
Energy Corrections, for Acetylene, Ethylene, and Ethane.“

Je JP JeP K KP Ee€(2) EPP(2) Eep(Z)
CHz | 54.675 0.158 10.892 4.530 6.20E-10 -0.265 -1.37E-09 | -0.0067
CoH4 | 63.785 1.333 24.371 5.166 <1.0E-10 -0.288 -1.11E-07 | -0.0136
C2Hs | 73.050 | 3.530 39.345 5.751 1.57E-08 -0.318 -4.03E-07 | -0.0204

N N, N,

1 1~ :
“J==[] Ji. K* :ED K. JP=[][1J7 and J® and K" are defined analogously, as given in Eq. 4. The

itlj irlj i1
MP?2 correlation energy corrections given in Eq. 6 are defined in Ref. ?2. All energies are given in Hartree.

For predominantly electronically adiabatic systems, the standard grid-based approach
provides accurate proton densities and energies. In the standard grid-based approach for a single
quantum proton with all other nuclei fixed, the hydrogen is positioned at points comprising a three-
dimensional grid, and the energy at each point is computed by solving the time-independent
electronic Schrodinger equation at the appropriate level of theory. Subsequently, the proton
vibrational wave functions and energies are determined by solving the three-dimensional time-
independent Schrédinger equation for the proton moving on this potential energy surface using the
Fourier grid Hamiltonian (FGH) method."*!"'3 This type of grid-based calculation serves as a
numerically accurate reference for testing the NEO methods for predominantly electronically
adiabatic systems, where the electrons respond nearly instantaneously to the motion of the proton.
The NEO-HF approach is much less accurate than this grid-based approach because the electronic
and nuclear wave functions are determined within a mean field treatment for NEO-HF, in contrast
to the grid-based approach, where the electrons respond fully to the proton position at each grid

point.
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2.2. Explicitly Correlated Wave Functions for Quantum Protons and Positrons

Explicitly correlated methods using a wave function ansatz that includes Gaussian-type
geminal functions'** within the SCF procedure provide a much more accurate description of
electron-proton correlation. The following explicitly correlated wave function ansatz has been

investigated within the NEO framework!!7-!18

N Np Ng - r l‘,
\PNEOXCHF(X ,X7) =D (x°)DP(x") +Z b.e 7 j| (7)

i=l I=1 k=l

Here the Ngem Gaussian-type geminal functions depend on the electron-proton distance, as well as
the parameters by and yx, which are determined for small model systems and remain constant during

the variational procedure.®!6% 117-119 In the NEO explicitly correlated Hartree-Fock (NEO-XCHF)

approach,''”'"® the NEO-XCHF energy is computed as the expectation value of H,_ given in Eq.

(1) with respect to the NEO-XCHF wave function given in Eq. (7). This energy is optimized
variationally with respect to the coefficients of the basis functions in the electronic and nuclear
orbitals within the Slater determinants, leading to two sets of equations corresponding to the
electrons and quantum protons that must be solved iteratively to self-consistency. In the reduced
XCHF approach, denoted NEO-RXCHF > ¢! only specified electronic orbitals are explicitly
correlated to the nuclear orbitals to enhance the computational efficiency. Moreover, for the
systems studied, the NEO-RXCHF method was found to be more accurate than the NEO-XCHF
method, which correlates all electronic orbitals to the nuclear orbitals in the same manner using
the same geminal parameters. By explicitly correlating only the relevant electronic orbitals to the
nuclear orbitals, the RXCHF method ensures that the geminal parameters and explicitly correlated
wave function are optimized to produce an accurate description of the key short-ranged electron-

nucleus interactions.
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Although the NEO-RXCHF approach is more accurate than the NEO-XCHF approach, the
proton densities are still over-localized, particularly for the off-axis, bending modes.5!?
Moreover, the NEO-XCHF and RXCHF approaches require the calculation of up to six-particle
integrals for systems with multiple quantum protons and therefore are computationally prohibitive
for large molecular systems. The accuracy of these approaches may be enhanced by allowing the
electronic atomic basis functions or the geminal parameters to depend on the proton coordinate,
thereby leading to more complex and expensive integrals that may not be analytically computable.
Another option is to use a product rather than a sum of Gaussian-type geminals, which would lead
to higher-dimensional integrals that would also be computationally expensive (i.e., the dimension
of the integrals would be equivalent to the number of quantum particles). Other explicitly
correlated methods have been applied to multicomponent systems in which all nuclei as well as all
electrons are treated quantum mechanically.®-"> !¢ In some cases, these methods produce accurate
results for small systems, but typically they are not computationally tractable for larger molecular
systems.

The NEO-XCHF approach was more successful in applications to positronic molecular
systems because the electron and positron masses are identical, avoiding the substantial mass
disparity inherent to treating electrons and protons on equal footing. In these applications, the
electrons and positron are treated quantum mechanically on the same level, but the nuclei are fixed.
Applications to positronium hydride (PsH), positron-lithium (eLi), lithium positride (LiPs), and
positron-lithium hydride (¢"LiH) illustrated that the NEO-XCHF approach provides accurate
average contact densities, electron-positron contact densities, two-photon annihilation rates, and

53-54, 56

electronic and positronic single-particle densities. Moreover, this approach predicts

reasonably accurate binding energies of a positron to lithium, beryllium, sodium, and magnesium,

15



as well as the electron-positron annihilation rates for these systems.> Several highly accurate but
computationally expensive methods, such as the stochastic variational method, have been applied

67, 70, 72, 134-140

successfully to positronic systems. However, these approaches are not easily

extended to larger systems due to the computational expense.

3. Multicomponent Density Functional Theory (DFT) and Time-Dependent Density

Functional Theory (TDDFT)

3.1. NEO-DFT

Multicomponent DFT,!1: 13, 46, 78-80, 141

which refers to DFT with more than one type of
quantum particle, has been found to achieve an especially effective balance between accuracy and
computational tractability. Here the two types of particles are assumed to be electrons and protons,
but the extension to other types of particles is straightforward. The Hohenberg-Kohn theorems’®
have been derived for multicomponent systems.”® In this formulation, the total energy is a
functional of the one-particle densities associated with the different types of quantum particles
(i.e., the one-particle electron and proton densities). The Kohn-Sham formalism’’ has also been
developed for multicomponent systems,'" 1% 4% 7 treating the reference system as the product of

electronic and nuclear Slater determinants composed of Kohn-Sham orbitals. In this case, the total

energy is expressed as

E[pe)pp] = Eext[pe’pp]+Eref[pe’pp]+Eexc[pe]+prc[pp]+Eepc[p69pp] (8)
Here E_[ p°,p"] is the interaction of the two densities with the external potential created by the

classical nuclei, £ _[p°,p"] includes the noninteracting kinetic energies of the electrons and
quantum protons, as well as the electron-electron, electron-proton, and proton-proton classical

16



Coulomb energies, and the last three terms correspond to the electron-electron exchange-
correlation functional, the proton-proton exchange-correlation functional, and the electron-proton

correlation functional.

Application of the variational principle leads to two sets of Kohn-Sham equations for the

electrons and quantum protons:'?

[_%Vz + Vi (re )j yi =&y
9)

1
£—2—V2+VStr(rp)Jw}’ =&y
mp

where the effective potentials contain terms based on the functional derivatives of terms in Eq. (8)

with respect to either the electron or the proton density. Here y; (rf) and w7} (rlp) are the electron

and proton Kohn-Sham spatial orbitals, respectively, that form the single-particle densities

N./2

e

()= 2 S ) and 7 (17)-

i=1 1=1

2
v, (l'lp )‘ . Analogous to the NEO-HF method discussed

above, the electronic and nuclear spatial orbitals are expressed as linear combinations of electronic
and nuclear basis functions, respectively, and the two sets of Kohn-Sham equations are solved
iteratively to self-consistency.!? These Kohn-Sham equations are written for a restricted closed-
shell electron system with each spatial electronic orbital doubly occupied and a high-spin proton
system with each spatial protonic orbital singly occupied. These equations are easily extended to

open-shell electron systems.

The implementation of NEO-DFT requires an electron-electron exchange-correlation
functional, a proton-proton exchange-correlation functional, and an electron-proton correlation

functional. Within the NEO framework, the electron-electron exchange-correlation functional is

17



defined identically to the conventional electronic functionals.!* Thus, any electronic functional
can be used within the NEO framework.!> ' As discussed in Section 2.1, the proton-proton
exchange and correlation energies are negligible in molecular systems because of the spatial
localization of the protons. As a result, the proton-proton exchange-correlation functional is simply
equated to the diagonal Hartree-Fock exchange terms to eliminate self-interaction error, although
in practice all proton-proton exchange terms may be included. The major challenge within this
field has been the development of electron-proton correlation functionals. Previous attempts that

31,38

treated this term as a correction to the energy after the SCF procedure were not able to produce

even qualitatively accurate proton densities and therefore were unreliable. Electron-proton
correlation functionals based on the explicitly correlated nuclear-electronic wave function!? 413
given in Eq. (7) were included during the SCF procedure and led to improved proton densities for
the on-axis, hydrogen stretching modes. However, these functionals did not provide sufficiently

142

accurate proton densities for the off-axis, hydrogen bending modes'!”: and were

computationally expensive.

Recently, a series of electron-proton correlation functionals based on a multicomponent

16-18.20 of the Colle-Salvetti formalism'** were developed and shown to produce accurate

extension
proton densities, energies, and optimized geometries in a computationally efficient manner. These
functionals have been denoted epc17,'!7 epc18,'® and epc19?° based on the year in which each
one was developed. Previously, this formalism produced the well-known Lee-Yang-Parr (LYP)
electron-electron correlation functional,'** but several essential differences were required for its

application to electron-proton correlation. The multicomponent Colle-Salvetti formulation started

with the following multicomponent electron-proton wave function ansatz:'°

18



\P(xe,xp) =P, (Xe)\yga (xp) 11 [1—(p(rf,r,p )J (10)

ieNe,IeNP

where the correlation factor is

o(r:.rp ) =exp[ -p (R)7* |[1-&(R)(1-7) ] (11)

Here R:l‘,p , r=rf—r?|, and S (R) is the inverse correlation length associated with electron-

proton correlation. The subscript FCI for the wave functions given on the right-hand side of Eq.
(10) denotes full configuration interaction for a given type of particle, including all exchange and
correlation effects between particles of this type but only including a mean-field Coulomb

interaction with the other type of particle.

An important aspect of these electron-proton correlation functionals is that the inverse

correlation length depends on both the electron and proton densities. The analogous LYP

144

electronic correlation functionals'™* assumed that the inverse correlation length was the inverse

. 13
Wigner-Seitz radius for the electron: /3 (R)OC[,O (R)] . For the epcl7'%!" and epc19?°
functionals, the inverse correlation length was defined as the geometric mean of the inverse

e 1/6 1/6 . .
Wigner-Seitz radii for the electron and the proton: (R) oc [ Yo, (R)] [ yoi (R)} . Following this

assumption, & (R) was expressed in terms of [ (R) , followed by a Taylor series expansion of the

correlation energy, truncation of this expansion, and several other approximations described

elsewhere.'®

The epcl7 functionals retained only terms depending on the electron-proton pair density
and therefore are considered to be a local density approximation (LDA) type of functional. These

functionals have the following form:'¢
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p(r)p°(r)

a=b[p*(r)] "[p°(1)] " +ep (1) (1)

The three parameters a, b, and ¢ were determined by fitting to the proton densities and energies of

Eqe[ pr.p" ]=~[dr (12)

HCN and FHF-. The epc17-1 functional'® focused on reproducing accurate proton densities but
does not provide accurate energies. The epcl7-2 functional'” was parameterized to reproduce
reasonably accurate proton densities and energies, although the proton densities are not as accurate

as those obtained with the epc17-1 functional.
Previous multicomponent functionals based on the Colle-Salvetti formulation assumed that

e 73 ) )
p (R)oc[p (R)] , identical to the form used to develop the analogous LYP electronic

functionals.?!-3%3%42 This assumption is not physically reasonable for multicomponent functionals
because the correlation length between two different types of particles should depend on both
densities. Moreover, typically these previous functionals were not included in the SCF procedure
but rather were added as corrections to the energies.’!*3® 1In this case, the proton densities are the
same as the NEO-HF proton densities and are much too localized. If the proton densities are
nonphysical, other properties such as vibrationally optimized geometries, molecular vibrational

frequencies, and vibronic couplings are not reliable.

In contrast, the epcl7 functional is included in the SCF procedure and leads to dramatic
improvement in the proton densities.!® This improvement is illustrated by NEO calculations for
FHF~, where the proton and all electrons are treated quantum mechanically with fixed heavy nuclei
(Figure 2 and Figure 3). The grid-based reference proton density (black solid curve in Figure 3)
was obtained by the FGH method described above using DFT to compute the energies on the three-

dimensional grid."*> The NEO-DFT/no-epc method (red dashed curve) includes electronic

20



exchange-correlation with the B3LYP functional*+!46 but does not include any electron-proton
correlation, and the NEO-DFT/epc17-2 method (blue dotted curve) includes electron-proton
correlation as well as electronic exchange-correlation. The NEO-HF proton densities are nearly
identical to the NEO-DFT/no-epc proton densities and therefore are not included in Figure 3. All
of these proton densities are normalized in three-dimensional space. This figure illustrates that the
proton density computed without electron-proton correlation is highly over-localized and that the
inclusion of electron-proton correlation significantly delocalizes the proton density, leading to
much better agreement with the grid-based reference. Similar behavior was observed for the HCN
molecule. These differences are quantified by the root-mean-square deviation (RMSD) of the
proton density provided by each NEO method relative to the proton density obtained with the grid-
based reference method. The average of the RMSDs for the proton densities associated with the

HCN and FHF molecules are provided in Table 2.

F—F distance

Figure 2. Protonic orbital (red mesh) in the FHF~ molecule calculated with the grid-based method.
The fluorine atoms are shown in green, and the F—F distance is indicated.
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Figure 3. On-axis (top) and off-axis (bottom) proton density for the FHF~ molecule calculated with
the grid-based reference (solid black curve), NEO-DFT/no-epc (dashed red curve), NEO-
DFT/epc17-2 (dotted blue curve), and NEO-DFT/epc19 (dashed-dotted green curve) methods. The
quantum proton basis functions are positioned at the origin, and the fluorine atoms are positioned
at + 2.1746 a.u. On-axis refers to the slice of the proton density along the axis connecting the
heavy nuclei, while off-axis refers to the slice perpendicular to this axis, crossing through the
midpoint between the two heavy nuclei. The B3LYP electronic functional, def2-QZVP electronic
basis set, and 8s8p8d nuclear basis set were used to compute these densities. Data obtained from
Ref. 0.

Table 2. Mean Unsigned Error (MUE) of Calculated Proton Affinities with Respect to Experimentally
Determined Values, RMSD of Proton Density Calculated with NEO Method versus FGH Reference, and
Equilibrium F-F Distance for FHF ¢

Proton affinit Proton densit Equilibrium F—F
Method MUE' RMSD® ™ fistance
NEO-DFT/no-epc 0.78 0.775 2.3308
NEO-DFT/epc17-2 0.06 0.261 2.3206
NEO-DFT/epc19 0.06 0.170 2.3302
FGH® N. A. N. A. 2.3185
DFT 0.05 N. A. 2.2978

“The calculations reported in this table used the B3LYP electronic functional, the def2-QZVP electronic basis
set, and the 10s10p10d nuclear basis set, with the exception of the proton density RMSD calculations, which
used the 8s8p8d nuclear basis set.

® The MUEs for the proton affinities are in units of eV. The 23 molecules studied are NH,, CHNH,,

CH,CH,NH,, CH,CH CHNH_, (CH,)NH, (CH,) N, CN", HS-, NOO", HCOO", CH,CO0", CH,CH,CO0",
CH,CH,CH,COO", CH,CH,CH CH,COO", CH,COCOO", CH FCOO", CHF COO", CF,COO", CH,CICOO"
, CH,CICH,COO", CH.,O", CHCOO", C.HNH,. Data from Ref. 17,
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¢The RMSD was computed as the square root of the average of the squares of the differences between the
NEO-DFT and FGH proton density at each grid point of the three-dimensional grid. For FHF, the F atoms
are located at £1.1507 A, and the cubic grid ranges from —0.5610 A to 0.5984 A along and perpendicular to
the F-F axis. For HCN, the carbon and nitrogen atoms are positioned at 0.0 A and —1.1463 A, respectively,
and the cubic grid ranges from 0.3245 A to 1.8652 A along the C-N axis and from —0.7455 A to 0.7952 A
perpendicular to this axis. The reported RMSD value is the average RMSD obtained for the HCN and FHF~
systems given in atomic units. Data from Ref. 2,

4The equilibrium F—F distances are in units of A. Data from Ref. 2.

¢The FGH grid method serves as a benchmark reference for the calculated equilibrium F—F distances.

In addition to the proton densities, the NEO-DFT method in conjunction with the epcl7
functional provides accurate proton affinities.!” The proton affinities were computed for a set of

23 diverse molecules, including amines, aromatics, inorganics, and carboxylates. The proton
affinity of a molecule A was determined from the difference between E, , which is the energy of
A computed with conventional DFT, and E . which is the energy of AH" computed with NEO-

DFT with only the additional proton treated quantum mechanically (Figure 4). The constant 5/2
RT, where T =298 K, is added to this energy difference to account for the conversion from energy
to enthalpy and the change in translational energy upon protonation of A. Thus, the proton affinity

is calculated from the following expression:'’

5
PA(A)= £, —E, .+ RT (13)

The geometries of both A and AH" were optimized variationally for these calculations, and the
differences in the vibrational energies associated with the nuclei other than the quantum proton for
these two molecules were assumed to be negligible. This assumption was tested and shown to be
reasonable within the desired level of accuracy.??> The mean unsigned error (MUE) compared to
experiment was 0.78 eV for NEO-DFT/no-epc and 0.06 eV for NEO-DFT/epcl7-2, indicating a
significant improvement upon inclusion of electron-proton correlation. Note that the epcl7-2

functional was parameterized to reproduce qualitatively reasonable proton densities and energies
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for HCN and FHF~.!” Without further parameterization, this functional produced accurate proton
affinities for the other 22 molecules in this set. Although conventional electronic DFT with
harmonic zero-point energy calculations produces a similar MUE of 0.05 eV,'” this conventional
approach does not include anharmonic effects, which are important in other contexts discussed
below. In related work, the APMO method was combined with second-order propagator theory to
compute accurate proton affinities,* '47-15! but this approach does not provide accurate proton

densities and therefore is not easily used to compute other molecular properties.

e

+H

d

&

Figure 4. Schematic representation of the calculation of the proton affinity for methylamine within
the NEO framework, where the protonic orbital is depicted as red mesh, and the carbon, nitrogen,
and hydrogen atoms are depicted as gray, blue, and white spheres, respectively. Reprinted with
permission from Ref. !7. Copyright 2017 American Chemical Society.

Another advantage of the NEO approach over conventional electronic DFT is that proton
delocalization, anharmonicity, and zero-point energy are included in geometry optimizations. To
illustrate this effect, the equilibrium F—F distance in FHF~ was determined by minimizing the
NEO-DFT energy. The inclusion of nuclear quantum effects of the proton increases the
equilibrium F—F distance by ~0.02 A compared to the equilibrium distance obtained with
conventional electronic DFT.!” The NEO-DFT/no-epc method over-estimates this distance, and
the NEO-DFT/epc17-2 method produces a distance within 0.01 A of the grid-based reference

value.
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As discussed above, the derivation of the epcl7 functional was based on the assumption
that the inverse correlation length is proportional to the geometric mean of the inverse Wigner-
Seitz radii of the electron and the proton. To test the sensitivity of this approach to the form of the
inverse correlation length, the epc18 functionals'® were developed with the assumption that the

inverse correlation length was the arithmetic mean of the inverse Wigner-Seitz radii of the electron
1/3 1/3 . . .
and the proton: ,B(R) oc [ pe(R)J + [ yod (R)] 1% After suitable parameterization, the epcl8-1

and epc18-2 functionals are of similar accuracy as the analogous epc17-1 and epc17-2 functionals
for the proton densities and proton affinities.!® Thus, the specific form of the inverse correlation
length is not critical, as long as it depends on both the electron and proton densities. Because the
epcl7 functionals are more straightforward to implement, the epcl7-2 functional has been used
most extensively. Both the epcl7 and epcl8 functionals are based on the local density

approximation (LDA) in the sense that they depend on only the local electron and proton densities.

The more recently developed epc19 functional depends on the electron and proton density
gradients, as well as the densities, and is a type of generalized gradient approximation (GGA)
functional.?® This functional was obtained by following the formalism described above for the
epcl7 functional and retaining two additional terms that depend on the electron and proton density
gradients. The epc19 functional has the following form:

p°(r) " (r)
a=[ ][] " v ep® (r) P (r)

(e ()]”{mozm () )vpp<>} { . }
vy O O E O R O N [

Eepc [pe,pp,Vpe,Vpp] =-[dr

(14)

This functional includes two additional parameters, d and k, compared to the epcl7 functional,

leading to a total of five parameters, and it depends on the mass of the quantum nucleus m, . The
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epcl9 functional was shown to provide more accurate proton densities and similarly accurate

energies compared to the epc17-2 functional.?°

The improved proton density for FHF~ is depicted
in Figure 3 (green dashed-dotted curve). The MUE for the proton affinities of the set of 23
molecules discussed above is identical for the epc17-2 and epc19 functionals.?’ The equilibrium
F—F distance for FHF~ obtained with the epc19 functional deviates slightly more from the grid-

based reference value compared to the distance obtained with the epcl17-2 functional, but the

differences between these distances are very small.?

Furthermore, although the epc19 functional was parameterized for hydrogen, it was also
shown to provide accurate densities and energies for deuterium without further parameterization.
The NEO-DFT method in conjunction with either the epc17-2 or epc19 functional can be used to
compute geometric isotope effects. For example, the decrease in the equilibrium F—F distance
upon deuteration of FHF- was determined to be 0.0055 A, 0.0021 A, and 0.0008 A when computed
with the grid-based reference method, the NEO-DFT/epc17-2 method, and the NEO-DFT/epc19
method, respectively.?’ Given that the proton densities computed with NEO-DFT/epcl9 are
significantly more accurate than those computed with NEO-DFT/epc17-2 (Figure 3 and Table 2),
the slightly more accurate geometric isotope effect obtained with NEO-DFT/epc17-2 appears to
be fortuitous. Moreover, the differences in these equilibrium F—F distance are quite small and
arise from a subtle balance between the stretch and bend modes for hydrogen and deuterium. More
extensive parameterization of the epcl9 functional for hydrogen and/or deuterium could lead to
further improvements. A number of fundamental mathematical properties of the exact universal
multicomponent functional have been derived.'* Although the epc17, epc18, and epc19 functionals
were formulated from a wave function ansatz that satisfies some of the limiting conditions of the

exact functional, the approximate parameterized form was designed to describe physical properties
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of molecular systems. The analysis of the properties of these functionals and the development of
functional forms that satisfy the conditions for the exact universal functional are potential future

directions.

Electron-electron and electron-proton correlation have been found to be predominantly
uncoupled within the NEO framework,'> allowing the independent development of electronic
exchange-correlation functionals and electron-proton correlation functionals. The epcl7, epcl8,

and epcl9 functionals!6!8 20

were parameterized and tested in conjunction with the B3LYP
electronic exchange-correlation functional.'*+1% To test the transferability of these electron-proton
correlation functionals, the proton affinities were computed with a series of seven other electronic
exchange-correlation functionals in conjunction with the epc17-2 and epc18-2 functionals (Figure
5).1* For both of these electron-proton correlation functionals, the MUE for the computed proton
affinities for the set of 23 diverse molecules relative to the experimental values is similar for all
electronic functionals studied.!® An exception is the SVWN electronic functional,!*?!3 which
resulted in a larger MUE because of inherent limitations in the accuracy of this functional. Thus,

these electron-proton correlation functionals are transferable and can be used in conjunction with

any reasonable electronic exchange-correlation functional.
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Figure 5. The MUEs for the calculated proton affinities for the set of 23 molecules given in Table
2 relative to the experimental values. The proton affinities were calculated with the NEO-DFT/no-
epc (red), NEO-DFT/epc17-2 (green), and NEO-DFT/epc18-2 (blue) methods using eight different
electronic exchange-correlation functionals. Reprinted with permission from Ref. '8, Copyright
2018 American Institute of Physics.

3.2. NEO-TDDEFT for Excited States

The NEO-TDDFT method builds upon the conventional electronic formulation of
TDDFT.!>*163 The formalism for multicomponent TDDFT with all particles treated quantum
mechanically was developed by van Leeuwen and Gross.®** Subsequently, the NEO-TDDFT
method!® 2! was developed to compute excited electronic and proton vibrational states within the
NEO framework, where only specified nuclei are treated quantum mechanically. In this approach,
the linear response of the NEO Kohn-Sham system to perturbative external nuclear and electronic

fields is computed. The working equation for NEO-TDDFT is!®- 2!

A° B° C C)\X° I 0 0 0)X
B° A° C C | Y 0 -I 0 01 Y
—w (15)
C" C" A" B X 0 0 I 0] X
C" C" B APJlYP 0 0 0 -I)lyr

where
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B = (ab|i)+

(16)

C

ia,JB =

Here, the lower case indices i and j denote occupied electronic orbitals, while the indices a and b
denote virtual electronic orbitals. The upper case indices are defined analogously for protonic
orbitals. The density matrix is denoted by P, and the orbital energies are denoted by & . Because
the derivation of Eq. (15) is based on the adiabatic approximation, in which the kernel is assumed
to be frequency-independent, this formulation can only capture single excitations. In principle,
the character of these excitations may be pure electron, pure proton, or mixed electron-proton, as
long as the excitation can be described as a linear combination of products of electron and proton

determinants with only one singly-excited determinant in each term.

The solution of Eq. (15) provides the electronic and proton vibrational excitation energies
® 1in a single calculation at a similar cost to electronic TDDFT. The eigenvectors X¢ and Y*®
contain the transition amplitudes for electronic excitations and de-excitations, respectively, and
the protonic eigenvectors are defined analogously. These eigenvectors are subject to the

orthonormalization condition

Ye)+ (X2 X7) (Y2

n m

Y!)=25 a7

(xe|xe)-(ve ”
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For predominantly adiabatic systems, the electronic and proton vibrational excitations are distinct,
and each excitation is dominated by either X° and Y® or XP and Y? (Figure 6).!%-2! In this case, the
electronic excitation energies are very similar to those computed with conventional electronic
TDDFT with the same electronic functional, with variations of only ~0.01 eV for the lower excited
electronic states of the systems studied.!” However, significantly larger variations are observed for
some of the higher excited electronic states in these systems, illustrating nonadiabatic vibronic
mixing between the electronic and protonic excitations. Moreover, this vibronic mixing is expected

to become more significant for predominantly nonadiabatic systems and processes.

Electron
Excitations

-

A

suope}nXy
uojoid

Figure 6. Schematic depiction of the electron and proton excitations that can be obtained from a
single NEO-TDDFT calculation. The separation between the electronic and proton vibrational
excitations depicted in this figure is typical of predominantly adiabatic systems. For systems with
significant nonadiabatic effects between the electrons and proton(s), the single excitations would
represent electron—proton vibronic excitations that are not separable. Reprinted with permission
from Ref. '. Copyright 2018 American Chemical Society.
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The proton vibrational excitation energies computed with NEO-TDDFT have been
compared to those computed with the grid-based reference method (i.e., the FGH method)
described above. The NEO-TDDFT proton vibrational excitation energies have been found to be
mostly within 20 cm ™! of the grid-based reference values for the systems studied, with occasional
differences of ~100 cm™ (Table 3).2! Note that this level of quantitative accuracy requires large
protonic and electronic basis sets for the quantum proton. Furthermore, the NEO-TDDFT proton
vibrational excitation energies are not as accurate for the vibrational states higher than those
corresponding to the fundamental modes, most likely due to limitations of the electron-proton

correlation functional or the linear response treatment with the NEO framework.

Table 3: Proton Vibrational Excitation Energies (in cm™) Calculated with the FGH Reference
Method and the NEO-TDDFT Method®

NEO-TDDFT
Vibrational Mode Grid
epcl7-2 no-epc
CH bend 642 670 662
HCN
CH stretch 3122 3110 3098
FH bend 1245 1272 1249
FHF~
FH stretch 1659 1754 1823
NH asymmetric bend 466 610 621
HNF,* NH symmetric bend 1275 1262 1260
NH stretch 2962 2986 2923

“The heavy nuclei were fixed for these calculations. The 8s8p8d8f nuclear basis set and the cc-pV6Z electronic basis
set were used for the hydrogen nucleus. The cc-pVTZ electronic basis set was used for the heavy nuclei with the
exception that the cc-pVDZ electronic basis set was used for the two fluorine atoms in HNF," The electronic and
nuclear basis functions for the quantum proton were centered at the XH bond distance obtained from a conventional
electronic DFT geometry optimization, where X = C, F, or N. The B3LYP electronic functional was used. Data from
Ref. 2,

Despite violating the sum rules, the Tamm-Dancoff approximation has been shown to

produce excitation energies similar to those obtained from the corresponding full linear response
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treatment in conventional electronic structure theory.!®- 22736 The Tamm-Dancoff approximation

within the NEO framework, denoted the NEO-TDDFT-TDA method, is represented by'”

EN
T =w (18)
CcC A" X XP

where the definitions of the A°, AP, and C blocks are given in Eq. (16). In contrast to the
electronic excitation energies, the proton vibrational excitation energies obtained with the NEO-

TDDFT-TDA method were found to exhibit errors of thousands of wavenumbers, indicating the

importance of the B¢ and BP blocks, as well as the C block, in NEO-TDDFT." Interestingly,
these NEO-TDDFT proton vibrational excitation energies are not very sensitive to the electron-
proton correlation functional (i.e., the results are similar for NEO-DFT/no-epc and NEO-
DFT/epcl7-2, as shown in Table 3), suggesting that the NEO-TDDFT formulation is able to
incorporate electron-proton correlation in an alternative manner through the de-excitations. This

observation also highlights the importance of the B® and C blocks for the accuracy of NEO-
TDDFT because the B blocks are zero in the case of NEO-DFT/no-epc for a single proton.

In addition to excitation energies, the formalism for computing transition densities and
transition dipole moments within the NEO framework has been developed.!” 2! For a given
protonically dominated excitation, the transition densities for NEO-TDDFT are calculated

according to

P (1) = 2w, (0)y, (1) X5, 4y (r)w, (r) Y, | (19)
14
where the indices / and 4 denote protonic occupied and virtual orbitals, respectively. The terms

X‘; ,, and YZ are elements of the NEO-TDDFT eigenvectors calculated according to Eq. (15).
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Protonic transition densities can be used to characterize and visualize NEO-TDDFT excitations,
as illustrated in Figure 7 for FHF~. Another quantity that is useful for the characterization of NEO-
TDDFT excitations is the transition dipole moment vector, which indicates the polarization of the

transition. For a given NEO excited state |\P k>, the transition dipole moment vector is defined

according to

o= S o ) S e

ia

r l>:| (20)

where fy =%,),orz for y =1, 2, or 3, respectively, and the X and Y vector elements are

obtained from solving Eq. (15). The transition dipole moment vectors are of particular importance
when calculating full molecular vibrational frequencies with the NEO-DFT(V) approach, as will

be discussed in Section 4.1.

Figure 7. Transition densities for degenerate bend mode (top) and stretch mode (bottom) for FHF-,
as computed with NEO-TDDFT in conjunction with the B3LYP electronic functional and the

epc17-2 electron-proton correlation functional. Reprinted with permission from Ref. ?!. Copyright
2019 American Institute of Physics.

The NEO-TDDFT method has also been used to compute proton vibrational excitation
energies for molecules with multiple quantum protons.'?! In this case, the collective protonic
excitations correspond to linear combinations of single excitations associated with different
protons (Figure 8). These collective protonic excitation energies are in good agreement with those

obtained from normal mode calculations with fixed heavy nuclei, but they have the distinct
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advantage of incorporating the anharmonic effects associated with the quantum nuclei. As
discussed in Section 4.1, the accuracy of these computed protonic excitations has been validated
by calculations of full molecular vibrational frequencies. Because the derivation of the NEO-
TDDFT equations given in Eq. (15) is based on the adiabatic approximation, in which the kernel

is assumed to be frequency-independent, this formulation can only capture single excitations.

3135 ¢cm™! 3136 cm™!

Figure 8. Proton vibrational modes and excitation energies calculated with NEO-TDDFT in
conjunction with the B3LYP electronic functional and the epcl7-2 electron-proton correlation
functional for HCCH with the carbon nuclei fixed at a separation of 1.207 A. The red mesh depicts
the ground state quantum proton density, and the red arrows indicate the direction of the transition
dipole moment vector associated with each quantum proton. Mode (A) is a doubly degenerate CH
symmetric bend, mode (B) is a doubly degenerate asymmetric CH bend, mode (C) is an
asymmetric CH stretch, and mode (D) is a symmetric CH stretch. Reprinted with permission from
Ref."?!. Copyright 2019 American Chemical Society.
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3.3. Stability Analysis

The goal of a NEO-DFT calculation is to use the SCF procedure to find a solution that is
the global minimum associated with the molecular orbital coefficients.'®* A converged SCF
solution identifies a stationary point, which may not correspond to the global minimum with
respect to the molecular orbital coefficients. To determine whether the solution is a minimum or a
saddle point, a stability analysis is required. While the gradient is always zero for an SCF solution,
the orbital Hessian must be positive semi-definite for the solution to be a minimum rather than a
saddle point. The stability matrix (i.e., the orbital Hessian) for NEO-DFT is identical to the
working matrix in NEO-TDDFT given in Eq. (15) but has a different metric.'” '®* When the orbital
Hessian has a negative eigenvalue, the underlying SCF solution corresponds to a saddle point,
which is considered an instability. Electron-proton systems could potentially exhibit electronic,
protonic, and electron-proton vibronic instabilities. Analysis of the internal and external stabilities
with different constraints on the spin and spatial orbitals enables the characterization of SCF
solutions.'®* This type of stability analysis is also useful when searching for lower-energy

solutions.

4. Molecular Properties within the NEO Framework
4.1. Computing Molecular Vibrational Frequencies

The calculation of molecular vibrational frequencies for comparison to experimental
spectra is a challenge within the NEO framework because the Born-Oppenheimer separation is
invoked between the subsystem containing the electrons and quantum protons and the subsystem

containing the classical nuclei. In this case, the quantum protons are assumed to respond
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instantaneously to the motion of the classical nuclei, and the NEO potential energy surface depends
on only the classical nuclei. For each classical nuclear configuration (i.e., for each point on the
NEO potential energy surface), typically the quantum nuclear basis function centers are optimized

variationally for a finite basis set. The NEO Hessian matrix, H is composed of the second

derivatives of the NEO energy with respect to the classical nuclear coordinates. '

In practice,
this Hessian can be computed via a matrix folding procedure that rigorously accounts for the effect
of the variational optimization of the basis function centers associated with the quantum nuclei.'?°
Diagonalization of the mass-weighted NEO Hessian produces vibrational modes with
contributions from only the classical nuclei. However, clearly the quantum and classical nuclear
motions are coupled in the molecular vibrational frequencies measured experimentally. Thus, the

challenge is to compute vibrational frequencies corresponding to modes composed of both

quantum and classical nuclei.

The NEO-DFT(V) procedure'?*!2! addresses this challenge by coupling the NEO-DFT
Hessian for the classical nuclei with the vibrational excitations produced by NEO-TDDFT for the

quantum nuclei. This procedure requires the generation of an extended Hessian that depends on
the classical nuclear coordinates, represented by the collective coordinate r°, and the expectation
values of the quantum protons, represented by the collective coordinate r?. Here r? is a
concatenation of the expectation value I = [Tp;(r)dr for each quantum nucleus, where p!(r)
is the density of the i quantum nucleus. This approach is based on the assumption that each
quantum nucleus occupies a distinct nuclear orbital that is spatially localized, and o7 (r) is the

square of this nuclear orbital. Such an assumption of effective distinguishability among the

quantum nuclei is valid for most molecular systems of interest. The potential energy surface
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associated with the extended coordinate space, which depends on the coordinates of the classical
nuclei and the expectation values of the quantum nuclei, can be generated by introducing Lagrange
multipliers to impose constraints on the expectation values.!*® The stationary points in this
extended coordinate space are identical to those in the original NEO coordinate space. The NEO-
DFT(V) procedure does not use this extended potential energy surface but rather uses information

from NEO-TDDFT to incorporate anharmonic effects associated with the quantum protons.

The extended NEO Hessian matrix is written as

Hext _( HO H;r \ (21)
NEO L Hl H2 J
OE PE (2E)
where H = (7] , H = e and H, = k@ qu . The H, submatrix is composed of
r' ), r

second derivatives of the NEO energy with respect to the classical nuclei with the expectation
values of the quantum nuclei fixed. After mathematical manipulations of various partial

derivatives, this submatrix can be rigorously expressed as

Tyy-!1 T
H=H,,+tHH H=H_, +RHR. (22)
The NEO Hessian matrix H_ can be obtained analytically or numerically, assuming the Born-

Oppenheimer separation between the classical and quantum nuclei. The R matrix 1s defined as

dr?
R= , 23
e (23)
where the derivative for each quantum nucleus is given as
dr! d dpl(r
L=—¥pi(r)dr= @p’—(c)dr (24)

dr®  dr
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and can be calculated numerically or analytically from the gradient of the expectation value of

each quantum nucleus with respect to each classical nucleus. The H, submatrix can also be

expressed in a mathematically rigorous manner as
H =-H,R . (25)

Egs. (21) — (25) indicate that if the H, submatrix is known, then the target Hi’;éo can be

constructed. The direct calculation of H , is challenging, however, because its elements are second
derivatives of the NEO energy with respect to specific components of the expectation values of

the quantum nuclei with other components fixed.

To address this challenge, the harmonic vibrational excitation energies contained in the

submatrix H., are approximated by those obtained from a NEO-TDDFT calculation according to

(&E)
H = ok =MUQU"' (26)
o)

Here M is the diagonal mass matrix corresponding to the quantum nuclei,  is the diagonal matrix

with elements @’ corresponding to the NEO-TDDFT proton vibrational frequencies for fixed
classical nuclei, and U is a matrix that transforms the diagonal frequency matrix to the coordinate
system of the classical nuclei. Note that this approach incorporates anharmonic effects inherent to

NEO-TDDFT calculations of vibrational excitations. The expressions for the matrix elements of

H, and H, are mathematically rigorous, and the main approximation in the construction of the
extended NEO Hessian lies in the generation of H, from quantities computed with NEO-TDDFT.

To provide more details, the U matrix is constructed from the transition dipole moment
vectors obtained from a NEO-TDDFT calculation according to
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k <lP° fVQ \Pk>
u? = . (28)
Np 3 0 2
im0 w,)
0 7=l

In Egs. (27) and (28), N, is the number of quantum protons, k& denotes a proton vibrational excited

and qu =u'?, u', qu for y=1, 2, and 3,

state, O denotes a quantum proton with mass m i

Q’
respectively. The operator ny in Eq. (28) acts on only the Oth quantum proton occupying the Oth

nuclear orbital in the ground state and is associated with the matrix element

,aQ

v ) =2 e (el 4)+ 13,4k o). @)

¥,

¥, ) is the kth

k

Here 797 =x,p,orz fory=1,2,0r3, lPO> is the protonic ground state,
proton vibrational excited state, 4 denotes virtual protonic orbitals, and X 5 ,and Y Qp ', are protonic

excitation and de-excitation amplitudes, respectively. For a single type of quantum nucleus (as in

the purely protonic case presented here), the mass m o in the denominator of the expression for
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qu can be factored out. However, Eq. (28) is a general expression for qu and is valid for systems

with quantum nuclei of different masses.

The diagonalization of the extended NEO Hessian provides coupled vibrational
frequencies that depend on both the classical and quantum nuclear coordinates.'?*12! An example
for HCN is depicted in Figure 9. For HCN, the NEO Hessian provides only a single vibrational
mode corresponding to the CN stretch, where the electrons and proton respond instantaneously to
this motion. NEO-TDDFT provides the three fundamental vibrational excitations associated with
the quantum proton, namely two degenerate bend modes and one stretch mode. The CN mode
from the NEO Hessian and the three proton vibrational modes from NEO-TDDFT are combined
to produce four molecular vibrational frequencies that couple the CN mode with the proton
vibrational modes. The resulting molecular vibrational frequencies are in excellent agreement
with experimental values and with values obtained from conventional DFT calculations that

include anharmonic effects perturbatively'®’ (Table 4).

Figure 9. Diagrammatic representation of NEO-DFT(V) procedure for HCN. The quantum proton
is represented by a red mesh, and the classical nitrogen and carbon nuclei are represented by blue
and gray spheres, respectively. The top left panel shows the single vibrational mode obtained from
the NEO Hessian. The bottom left panel shows the protonic NEO-TDDFT excitations for the
doubly degenerate bend and stretch with the classical nuclei fixed. The right panel shows the
coupling of the mode obtained from the NEO Hessian with the NEO-TDDFT vibrational
excitations to obtain the full molecular vibrational frequencies. Reprinted with permission from
Ref. 12°. Copyright 2019 American Chemical Society.
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Focusing on molecules with a single quantum proton, the XH stretch frequencies computed
with NEO-DFT(V) for HCN, HNC, HCFO, HCF;, and FHF~ are in good agreement with
conventional DFT calculations that include anharmonic effects perturbatively.!?* Comparison to
conventional DFT calculations based on the harmonic approximation illustrates that the inclusion
of anharmonic effects lowers the frequency for the terminal hydrogen vibrational stretch modes.
The frequencies obtained from both the NEO-DFT(V) and conventional electronic anharmonic
DFT calculations are in excellent agreement with the experimental frequencies for the terminal
hydrogen vibrational stretch modes.!?° In contrast to the observations for the terminal hydrogen
stretch modes, the inclusion of anharmonic effects increases the stretch frequency for the internal
hydrogen in FHF . In this case, the frequencies obtained from the NEO-DFT(V) and conventional
electronic anharmonic DFT calculations are similar to each other but do not agree well with the
experimental frequency. Coupled cluster singles and doubles with perturbative triples (CCSD(T))
calculations for FHF™ indicate a similar magnitude of increase in the hydrogen stretch frequency
(148 cm™) due to anharmonic effects.!®® However, the CCSD(T) calculations that include
anharmonic effects are in much better agreement with the experimental frequency, suggesting that

the discrepancy for NEO-DFT(V) arises mainly from limitations of DFT.

Table 4. XH Stretch Frequencies (cm™!) Computed with NEO-DFT(V) and Conventional
Electronic Anharmonic and Harmonic DFT.¢

Experiment | NEO-DFT(V) | Conv. Anharmonic | Conv. Harmonic
HCN 3311 3317 3321 3439
HNC 3653 3645 3644 3814
HCFO 2976 2947 2942 3081
HCF, 3035 2988 2999 3119
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FHF 1331 1695 1615 1451
C:H, 3374 3378 3390 3503
sym
C:H, 3289 3263 3294 3388
asym
H0: 1 3609-3618 3599 3528 3792
sym
H202 1 3610-3619 3596 3522 3789
asym

H.CO 2783 2724 2706 2882
sym

HCO 2843 2772 2651 2035
asym
H,NF 3234 3241 3192 3420
sym

HNF 3346 3336 3266 3506
asym

¢ Calculated data from Ref. '?° for the single-proton systems and Ref. '2! for the multiple proton systems. These
calculations were performed with the B3LYP electronic functional and the epcl7-2 electron-proton correlation
functional. The electronic and nuclear basis sets used in these calculations are given in Ref. '?° and '?!. Experimental
data from Ref. 16174,

The NEO-DFT(V) approach has also been applied to molecules with multiple quantum
protons.'?! In this case, the modes associated with the quantum protons are transformed to the
classical nuclear coordinate system using the transition dipole moments computed with NEO-
TDDFT. Table 4 provides the symmetric and asymmetric hydrogen stretch modes for the C2Ha,
H>0,, H>CO, and HoNF molecules. For the NEO calculations, all electrons and all protons were
treated quantum mechanically. For each of these molecules, the NEO Hessian produces a single
vibrational mode associated with the two heavy atoms, and NEO-TDDFT produces six collective
modes composed of both quantum protons (Figure 9). The NEO-DFT(V) approach couples the
classical and quantum nuclear modes to produce seven molecular vibrational modes for linear
molecules and six molecular vibrational modes for non-linear molecules. The resulting vibrational
frequencies are in excellent agreement with frequencies obtained experimentally and with

conventional DFT including anharmonic effects perturbatively (Table 4).'?!
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The NEO-DFT(V) approach relies on three underlying assumptions: (1) the harmonic
approximation underlying the Hessian formalism; (2) the representation of the quantum nuclei by
their expectation values; and (3) the construction of the quantum nuclear submatrix from the proton
vibrational excitation energies and transition dipole moment vectors computed with NEO-TDDFT.
This approach incorporates the anharmonic effects associated with the quantum nuclei through the
NEO-DFT geometry optimizations and the NEO-TDDFT vibrational excitation energies. In
principle, the anharmonic effects associated with the classical nuclei could be included
perturbatively. Note that this molecular vibrational analysis approach is also applicable to wave

function-based NEO methods, which will be discussed in Section 5.

4.2. Diagonal Born-Oppenheimer Corrections

As discussed above, the Born-Oppenheimer separation is invoked between the subsystem
containing the electrons and the quantum protons and the subsystem containing the classical nuclei
in the NEO framework. Thus, the quantum protons, as well as the electrons, are assumed to
respond instantaneously to the classical nuclei. Analogous to conventional electronic structure
calculations,'>17® the multicomponent diagonal Born-Oppenheimer corrections (DBOCs) can be
added to the NEO potential energy surface to incorporate some of the non-Born-Oppenheimer

26

effects between the classical and quantum nuclei.” For a NEO wave function of the form

Y .o = D°DP, the adiabatic NEO potential energy surface including the DBOCs can be expressed

NEO

as

N,

[

Eadiab(rc) NEO< ) ZLMR

The electronic and protonic DBOCs can be expressed as follows:

>+<cpp\v3q>l’>} (30)
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DBOC Z,:2M1< 1 > Z2M1< I I > (31)
N, 1 N, 1

Elioc == —— (D" |V2D") = V, 0" |V,®°

Baoc =25 (@7 1VI@") = 2oV 1V, )

Interestingly, the magnitudes of the electronic and protonic DBOCs are similar for the molecules
that have been studied,?® namely HCN, HNC, HCC-, HCCH, H.CCH,, H;CCH3, FHF-, and HsO,",
in part because the molecules contain substantially more electrons than quantum protons. In
addition, the investigation of model systems indicates that the DBOC is proportional to an intrinsic
energy scale as well as the ratio of the masses of the two types of particles, and this intrinsic energy
scale is smaller for the quantum protons than for the electrons.®

Most importantly, inclusion of the DBOC has negligible impact on the equilibrium
geometries and vibrational frequencies for the molecules that have been studied.?® For these
molecules, the DBOC impacts the bond lengths of the optimized geometries by less than 1073 A.

Moreover, the DBOC impacts the vibrational frequencies by 1 — 2 cm™!

per quantum proton
bonded to the heavy nuclei involved in the vibrational mode. Thus, the Born-Oppenheimer
separation between hydrogen and the other nuclei does not impact the molecular properties at
equilibrium. However, the DBOCs may become more important for regions of the potential
energy surface far from equilibrium or for floppier molecules or clusters. In such cases, the
minimum energy paths and dynamics could be propagated on the full adiabatic NEO potential
energy surface, including the DBOC:s, as given by Eq. (30). Furthermore, the DBOCs can also be
computed for correlated wave function NEO methods, such as NEO-CCSD and configuration
interaction methods, by extending analogous formulations developed for conventional electronic

structure theory.!78-182
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5. NEO Wave Function Methods
5.1. Theoretical Formalism for Configuration Interaction (CI) and Coupled Cluster (CC)

Approaches

Multicomponent wave function methods, in which more than one type of particle is treated
quantum mechanically, offer another route for inclusion of correlation effects between quantum

particles.'” The advantages of wave function methods'¥%>

are that they are parameter-free and
systematically improvable, ultimately leading to the exact solution for a given multicomponent
system. For simplicity, the theoretical formalism in this section will be presented in the context of
electrons and quantum protons, but it can be applied to any multicomponent system, including

those with electrons and positrons.

The NEO Hamiltonian defined in Eq. (1) is expressed in second quantization notation as

R 1 1
_ P9 4GP, p O - =PO RS __ _pP_q0O
1 HNEO—hqap+4gm apq+hQaP+4gRSaPQ g0d,p (32)

The occupied electronic spin orbitals in the NEO-HF reference wave function are denoted by
i,],k,l,..., the unoccupied (virtual) electronic spin orbitals are denoted by a,b,c,d,..., and the
general electronic spin orbitals are denoted by p,q,7,s,.... The protonic spin orbitals are defined

Wt —g"qt a'a ..a a are second-
P\PyPy 9 9 9n Pn Py P

analogously using upper-case indices. In this equation, a
quantized excitation operators written as a string of electronic creation (a;) and annihilation (ap

) operators. The protonic and mixed electronic-protonic excitation operators are defined

analogously. Moreover, hqp D<q|he‘ p> is a matrix element of the electronic one-particle core

Hamiltonian, and g** [ <rsH pq> = <rs‘ pq> - <rs‘ qp> is the antisymmetrized two-electron Coulomb

repulsion tensor element. The corresponding protonic one-particle core Hamiltonian and the
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antisymmetrized two-proton Coulomb repulsion tensor element are defined analogously. Finally,
g”P <qQ| pP> is the electron-proton attraction tensor element. The standard Kutzelnigg and
Mukherejee tensor notation along with the Einstein summation convention over repeated indices

are used herein. '8¢

The NEO Hamiltonian in Eq. (32) is rewritten using the Wick’s theorem contraction

I.11168186—187 as
A 1
(1P i
H, —(h gql g )a +4g
+(n"+g” 0, Laroges a’ (33)
o 80 ~80)dr 48k Yro ~gpdy; ©
I 1_ i
+hl,+5g”!+h[’+5g5—gﬂ’
or simply
uHN :1«1 +W +F'O+Wp W°"+ENEOHF (34)
=H +E

NEO-HF
Here, [:INis the normal-ordered (with respect to the NEO-HF reference wave function) NEO

1

1 B A
Hamiltonian, where F = Eral (£} P a?) and W —Zgi"’ YWY :Zglfsg i, ) are normal-

ordered electronic (protonic) NEO Fock and fluctuation operators, respectively. Furthermore, the
electronic NEO Fock matrix element is defined as F; = hqp + g;" - gZI, and the protonic NEO
Fock matrix element is defined analogously. In addition, WNep = g a is the normal-ordered

electronic-protonic fluctuation operator. Finally, the NEO-HF energy is

B rosr <Oeop‘ NEO >
- I P B (33)
= hi +5gz}' +h1 +5glJ — 8y
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where ‘060p> is the NEO-Hartree-Fock reference wave function. Note that H N is also known as

the correlation Hamiltonian because its action on a wave function produces the correlation energy
contribution. For the exact wave function, it will give the exact correlation energy contribution to
the total energy.

Two common approaches for constructing the exact wave function lead to the same exact
solution of the Schrodinger equation: full configuration interaction (FCI) and full coupled cluster

expansion (FCC). The FCI approach assumes the linear wave function ansatz

“I’NEO_FCI>:(1+f )‘ 060p>, whereas the FCC approach assumes the exponential wave function

g
ansatz “PNEO_FCC> =e

OeOP> 23.03 The operator T = Ztﬂd# is the cluster excitation operator that
u

generates single, double, triple, and further excited determinants by acting on the reference state.

These excited determinants are weighted by the unknown amplitudes (i.e., coefficients) t,s and

they have different values for the two approaches. Here, y represents the excitation manifold (i.e.,

single, double, and so forth) produced from excitations of the same particles (i.e., electrons or
protons) or mixed particles (i.e., electrons and protons).

In the limit where all excited configurations are included in the wave function expansion,
these two approaches will produce the exact solution in the complete basis set limit. However, due
to the factorial scaling of these methods, this limit is attainable for only small molecules with
modest basis sets. For practical purposes, the cluster operator is truncated to include up to double
excitations. This truncation leads to configuration interaction with singles and doubles (NEO-
CISD) and coupled cluster with singles and doubles (NEO-CCSD).? In this case, the cluster

operator has the form
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T:Tf+T;+Tl"+T2‘°+T2eID
(36)

; | R 1 ead
=ta’ +4t’fb a’+1,a; +thga33+t’f a

A - A o A~ 1 . 1 -
where T° =t a’ (TF = l‘:alA) and T = Zt;’ba;b (TP = 2 —t¥ a’") are the electronic (protonic) single

and double cluster excitation operators, and T P = =1, ! aA is the mixed electronic-protonic double

cluster excitation operator that promotes both particles simultaneously.
The correlation energy and unknown cluster amplitudes are calculated for a
multicomponent system in an analogous manner as with the conventional electronic structure

counterparts. Thus, these quantities are computed for NEO-CISD from the equations

0 ES i = (0°0°) A1 (1+T)

NEO-CISD

0°0°) (37)

{EST o =1l A (1+T)

4~ NEO-CISD

0e0p> (38)

and for NEO-CCSD from the equations

0 B oy =(0°07| e T A | 0°07) (39)
o 0={ule i dov) @

ab| [ A aAd
AVAEY o\ I

are defined as < | = <0 0p| , and other excited determinants are defined analogously.

where < y| O {<1 ,<1Af } is a set of excited determinants.?® These excited determinants

Additional approximate methods have been developed by neglecting the single excitations
within the NEO-CISD and NEO-CCSD methods. This neglect of the single excitations leads to
the configuration interaction with doubles (NEO-CID) and coupled cluster with doubles (NEO-
CCD) methods. Furthermore, the second-order Mgller-Plesset perturbation theory (NEO-MP2)**

3% method may be viewed as an approximation to the NEO-CCD method. This approximation is

48



achieved by imposing the Moller-Plesset partitioning of the normal-ordered NEO Hamiltonian, in
which the zeroth-order contribution is a sum of normal-ordered Fock operators and the first-order
correction is a sum of normal-ordered fluctuation operators. The NEO-MP2 energy and excitation

amplitude equations are defined as

o B = (0000|2117 0

NEO-MP2

0°0") (41)

0 0=(0°0°| (s + B0 )10 + (WS + 2 + 1)

0°0") (42)

U PR
where 7" = 770 + 70 + 770 = Zt:jlf”a;b +— 2 2 Va"" + 1"V is the first-order excitation cluster

A

operator and are the first-order amplitudes. The programmable expressions for Egs. (37)-(40)

and Eqs. (41)-(42) have been obtained?* '*® by applying the generalized Wick’s theorem.!86-187
In the context of calculating properties with wave function based methods, it is convenient
to express the correlation contribution to the energy defined in Eqgs. (37), (39), and (41) in terms

of the one- and two-particle reduced density matrices. The correlation contribution to the energy

is given as
1 1
DE*" = F'7!+— gP‘fr” +F, 7y +— gR T — g (43)

qQ"~ pP

where 7 and I are correlation one- and two-particle reduced density matrices.”> These matrices

are defined as

a7 = (¥ o @ ¥ o) (44)
al™ = (¥ ol @ |¥ o) (45)
75 =¥ ol 8 ¥ ) (40)
ol = (¥ ol dme| ¥ o) (47)



Df“:}g < NEO|an‘\PNEO> (48)

where |‘P > is a normalized NEO wave function. For variational methods such as NEO-CISD,

NEO

the calculation of these matrices is straightforward because < |ﬂ"{’ > . In NEO-CCSD,

NEO

where the amplitudes are obtained non-variationally, this property does not hold, and the bra is

defined as <‘I’NEO| =<060p|(1+f\)e_f , whereas the ket is defined as ’lPNEO>

OeOP> Here

~ 1 i
__na~i - ab ~ij AB [J aA~1I _ . . . .
A=2'a + 1 ﬂ,l.j a,.+A'a ﬂ, +A7a E is a de-excitation operator, and 4, is a

set of unknown de-excitation amplitudes also known as Lagrange multipliers.!®-'0 These de-

excitation amplitudes are determined by solving a set of A-equations defined as?

0 0=(00°|(1+A) e " A e’.a, |

0°0" ) (49)
Eq. (49) was obtained by making the NEO-CCSD correlation energy functional,

B cesn(ts2,) = <0€0p\(1+A)e*fPINef

NEO-CCSD

>, stationary with respect to the excitation cluster
amplitudes ¢, 190-192 The calculation of the NEO-MP2 density matrices is analogous to the coupled

cluster procedure, except the first-order de-excitation operator A(Zl) is defined as A(21) = T;DT. The

programmable expressions for the NEO-CCSD A-equations as well as the reduced density
matrices for different NEO wave function methods? have been obtained by applying the

generalized Wick’s theorem. !36-187
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5.2. Orbital-Optimized Coupled Cluster with Doubles (NEO-OOCCD) and Second-Order

Perturbation Theory (NEO-OOMP2) Methods

In addition to the methods that rely on the NEO-HF orbitals discussed in the previous
subsection, other types of orbitals have also been explored. For example, the Brueckner orbitals
are defined to be the optimal orbitals in the presence of correlation effects.!”> In the basis of the
Brueckner orbitals, singly excited determinants do not contribute to the FCI expansion of the wave
function.!”® One way of obtaining the Brueckner orbitals is by a projective technique,!**!*® in
which the single excitation amplitudes in the NEO-CCSD method are removed by repeated unitary
rotations of the orbitals. This approach is known as Brueckner coupled cluster with doubles and is
denoted NEO-BCCD within the NEO framework.”® Note that early implementations of
multicomponent CCD and BCCD included only electron-proton correlation, neglecting electron-
electron correlation, with applications limited to diatomic systems.*°

Related to the Brueckner orbitals are the optimized orbitals!**2°2 (Figure 10) that are

obtained by minimizing the NEO-OOCCD energy expression

NEO-OOCCD

nk - <0e0p ‘ (1 * AZ ) eifzeﬁjﬁNEoekiﬁet

0°0") (50)
with respect to the orbital rotation parameters X, in addition to the t#and lﬂwave function
4h

parameters. This procedure corresponds to the orbital-optimized coupled cluster with doubles

(NEO-OOCCD) method.'®® In this equation, T ,and Az consist of doubles excitation and de-

. . . A A A . I 4
excitation operators, respectively, and X=X+X"=x'a’+xa’ 1] |x a", where
a’i AT H
#

h=qg = {af,a IA } are the second-quantized electron and proton single excitation operators. The

#

a

unknown orbital rotation parameters, X = {x; ,x; }, are obtained iteratively by solving the Newton-
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Raphson equation, X = A”'w, where w and A are the orbital gradient and the orbital Hessian,

respectively. These quantities are defined as

E
o(w), = —NE‘;S?CCD (51)
x=0
PE
0 (A) = e (52)
Y x=0

and their programmable expression are given in Ref. 1%,

NEO Hartree-Fock NEO Optimized
Orbitals Orbitals

N T W
H fot

e Ht e Ht

Figure 10. Schematic depiction of the NEO-HF orbitals and NEO optimized orbitals. Reprinted
with permission from Ref. '3, Copyright 2020 American Chemical Society.

As discussed in the previous subsection, the NEO-MP2 method can be viewed as an

approximation to the NEO-CCD method. Minimization of the NEO-MP2 energy given in Eq. (6)
with respect to the orbital rotation parameters, X = {xi,xi }, using the procedure described above

produces the NEO-OOMP2 method.!®® This method becomes significantly more accurate by

applying scaling factors for the opposite-spin (¢ ) and same-spin (¢ ) components in the second-
order correction to the electronic correlation energy E*? 2929 In the analogous conventional

electronic scaled-opposite-spin (SOS) method, these two parameters were set to ¢ =1.2 and
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c,=0.0. These same parameter values were used for the multicomponent NEO-SOS-OOMP2
method.'®® The accuracy of this method can be further improved by scaling the second-order

correction to the electron-proton correlation energy, E¥®, by an additional parameter, ¢, =12,

producing the NEO-SOS’-OOMP2 method.'® An advantage of these scaled-opposite-spin
methods is that they can be implemented with N* scaling with a combination of density fitting®®’

and Laplace transformation of the energy denominators.?%

5.3. Benchmarking and Applications of NEO-CI, NEO-CC, and NEO-OOMP2 Methods
The NEO-CISD, NEO-CID, NEO-CCSD, NEO-CCD, NEO-BCCD, NEO-MP2, NEO-
OOCCD, NEO-OOMP2, NEO-SOS-OOMP2, and NEO-SOS’-OOMP2 methods have been
implemented and applied to molecular systems for benchmarking purposes.?> >> As discussed
above, the proton density is a particularly important quantity within the NEO framework. For the

methods discussed in this section, the proton density is computed as

op"(rP) =D yEw, (" )y, () (53)
PO

where {l//P} are the real protonic orbitals and ¥, = y f +7 g is a matrix element of the total proton

density with 7 defined as the NEO-HF one-particle proton density matrix. The proton densities

were calculated with various NEO wave function methods for the FHF~ and HCN molecules.
These proton densities were compared to the grid-based reference method with the potential energy
for the proton on the three-dimensional grid computed at the CCSD/aug-cc-pVTZ level of theory.
As discussed above, the FGH method provides numerically accurate proton densities for
predominantly electronically adiabatic systems. Figure 11 depicts one-dimensional slices of the

proton densities for FHF~, where the hydrogen nucleus and all electrons are treated quantum
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mechanically (Figure 2). Table 5 provides the RMSD between each NEO method and the grid-

based reference averaged over the HCN and FHF~ systems.
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Figure 11. On-axis (top) and off-axis (bottom) proton density for the FHF™ molecule calculated
with the grid-based reference (solid black curve), NEO-HF (dashed red curve), NEO-CCSD
(dotted blue curve), and NEO-BCCD (dashed-dotted green curve) methods. The quantum proton
basis functions are positioned at the origin, and the fluorine atoms are positioned at + 1.1335 A.
On-axis refers to the slice of the proton density along the axis connecting the heavy nuclei, while
off-axis refers to the slice perpendicular to this axis, crossing through the midpoint between the
two heavy nuclei. These densities were computed with the aug-cc-pVTZ electronic basis set for
the classical nuclei, the aug-cc-pVQZ electronic basis set for the quantum hydrogen, and the
8s8p8d8f nuclear basis set. Data obtained from Ref.?.

The proton densities calculated with the NEO-HF method are highly over-localized
compared to the grid-based reference proton densities. The NEO-CCSD method produces
significantly improved proton densities, whereas its approximate analogs NEO-CCD and NEO-
MP2, as well as NEO-CISD and NEO-CID, provide negligible improvement compared to the
NEO-HF method.?**> The superior performance of the NEO-CCSD method can be explained in
terms of the exponential form of the single excitations in the coupled cluster ansatz. According to

the Thouless theorem,?” the single excitations in the NEO-CCSD method account for partial
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orbital relaxation by mixing the unoccupied orbital character into the new reference wave
function.?®?* This orbital relaxation is particularly important within the NEO framework because
NEO-HF is a poor starting point as a reference wave function. In the FCI ansatz, the orbital
relaxation effects are included not only through linear single excitations but also through the higher
excitation ranks of the cluster operator. The NEO-CISD method neglects the excitation ranks
higher than double excitations, and the linear form of the single excitations does not account for a
sufficient amount of orbital relaxation. In contrast, the exponential form of the single excitations
in NEO-CCSD includes more orbital relaxation even with the neglect of higher order excitations.
In the NEO-BCCD method,” the reference orbitals are fully optimized, showing slight
improvement over the NEO-CCSD method in the prediction of proton densities (Figure 11 and
Table 5).

Furthermore, variational optimization of the orbitals, as in the NEO-OOCCD and NEO-
OOMP2 methods, significantly improves the proton densities compared to the corresponding
NEO-CCD and NEO-MP2 methods that use the NEO-HF orbitals (Table 5). Similar conclusions
about the importance of orbital relaxation were reached in the context of the recently developed
NEO-CISDTQ method.?!® The NEO-CCSD, NEO-BCCD, and NEO-OOCCD methods produce
similar proton densities as those obtained by NEO-DFT with the epc17-1,'® epc18-1'® and epc19%°
functionals but avoid any parametrization and are systematically improvable. The NEO-SOS'-
OOMP2 method also produces similarly accurate proton densities as NEO-DFT and, given the
same formal scaling, can be used as an alternative to the NEO-DFT method to avoid some of the
problems inherent to DFT.2!!212 Moreover, the tails of the proton densities appear to be more

accurate with the NEO-CCSD, NEO-BCCD, NEO-OOCCD, and NEO-SOS’-OOMP2 methods.
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The NEO wave function methods have also been employed to compute the proton affinities
of twelve small molecules.?* %> Table 5 provides the MUE of the computed proton affinities
relative to the experimentally determined proton affinities. The NEO-CCSD, NEO-BCCD, NEO-
OOCCD, and NEO-SOS’-OOMP2 methods produce accurate proton affinities with a MUE of 0.04
— 0.05 eV. This MUE is within both chemical accuracy (~0.05 eV) and experimental accuracy
(~0.09 eV) for proton affinity measurements. The other correlated methods produce a lower MUE
than that obtained with the NEO-HF method, but their errors are still above chemical accuracy.
The accuracy of the NEO-CCSD, NEO-BCCD, and NEO-OOCCD methods for predicting proton
affinities is similar to the accuracy of the NEO-DFT method with the epc17-2, epc18-2, and epc19
functionals. Again, the main advantage of the NEO-CCSD and NEO-BCCD methods is that they
are parameter-free, although they are more computationally expensive than the NEO-DFT
methods. The parametrized NEO-SOS-OOMP2 method, which has the same formal
computational scaling as the NEO-DFT method, also exhibits similar accuracy.

Table 5. Mean Unsigned Error (MUE) of Calculated Proton Affinities with Respect to
Experimentally Determined Values, RMSD of Proton Density Calculated with NEO Method
versus FGH Reference, and Equilibrium F-F Distance for FHF ¢

Proton Proton

Method affinity density Equﬂ.l brlumd
MUE? RMSD* F-F distance

NEO-HF 0.62 0.750 2.278
NEO-MP2 0.32 0.748 2.307
NEO-CID 0.21 0.748 2.278
NEO-CISD 0.20 0.723 2.280
NEO-CCD 0.16 0.741 2.290
NEO-CCSD 0.04 0.165 2.293
NEO-BCCD 0.04 0.148 2.290
NEO-OOCCD 0.04 0.231 2.289
NEO-OOMP2 0.25 0.358 2.312
NEO-SOS-OOMP2 0.11 0.362 2.307
NEO-SOS’-OOMP2 0.05 0.234 2.305
FGH* N. A. N. A. 2.289
Cccsp’ 0.08 N. A. 2.267
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“The calculations reported in this table used the aug-cc-pVTZ electronic basis set for the classical
nuclei and the aug-cc-pVQZ basis set for the quantum hydrogen, along with the even-tempered
8s8p8d8f nuclear basis set.

> The MUEs for the proton affinities are in units of eV. The 12 molecules studied are CN-, NO7™,
HCOO", NH,, HO", HS", H,0, H,S, CO, N, CO,, CH;0. Data from Ref. 23,25,

¢ The RMSD was computed as the square root of the average of the squares of the differences
between the NEO-wave function method and FGH proton density at each grid point of the three-
dimensional grid. For FHF", the F atoms are located at +£1.1335 A, and the cubic grid ranges from
—0.5610 A to 0.5984 A along and perpendicular to the F-F axis. For HCN, the carbon and nitrogen
atoms are positioned at —1.058 A and —2.206 A, respectively, and the cubic grid ranges from —
0.7258 A to 0.7742 A along and perpendicular to the C—N axis. The reported RMSD value is the
average RMSD obtained for the HCN and FHF- systems given in atomic units. Data from Ref..
4The equilibrium F—F distances are in units of A. Data from Ref. 2.

¢ The FGH grid method serves as a benchmark reference for the calculated equilibrium F—F
distances.

/The conventional electronic CCSD method includes harmonic zero-point energies for the proton
affinities.

Another important characteristic of the NEO method is the incorporation of nuclear
quantum effects during geometry optimizations, thus enabling the straightforward calculation of
vibrationally averaged geometries. Table 5 contains the calculated equilibrium F—F distances for
the FHF~ molecule. The inclusion of nuclear quantum effects for the hydrogen nucleus using the
grid-based reference method increases the equilibrium F—F distance by 0.022 A. The NEO-
CCSD, NEO-BCCD, and NEO-OOCCD methods predict equilibrium F—F distances that are in
excellent agreement with the grid-based reference value.

The NEO-CCSD method can also be used to calculate geometric isotope effects in systems
containing hydrogen or deuterium. The equilibrium F—F distance for FHF™ decreases upon
deuteration by 0.006 A using the FGH method with the grid generated at the conventional
electronic CCSD level. The NEO-CCSD method predicts this decrease upon deuteration to be
0.007 A. This agreement illustrates that the NEO-CCSD method is able to accurately describe

changes in equilibrium geometries resulting from deuterium substitution.
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5.4. Equation-of-Motion Coupled Cluster with Singles and Doubles (NEO-EOM-CCSD) for

Excited States

The equation-of-motion coupled cluster with singles and doubles (NEO-EOM-CCSD)

method allows the calculation of the excited state energies and properties of a multicomponent

system.** This approach uses the ground state NEO-CCSD wave function, [V, CCSD> OeOP>
, as a reference. Then the target left and right excited state wave functions are
= ‘LPNEO ex> Re’ Oeop> (54)
5 (Pheow|=(0°0°|e L (55)
where R and L (R [1L) are linear excitation and de-excitation operators,21>2!5 respectively,
defined as
R—]A? ]A?— i~ 1 ij ~ab 1 IJ ~AB z]~aA 56
o R=R+R =ra +ra +4rabal] +4rABaU +r.a (56)
r r r a~i 1 ab ~i 1 ad ~i.
L=L+L =1 +lI'a 41” '+41*‘B at +17'a o (57)

using the same notation as introduced in Sec. 5.1.
The excitation energies @ and the » and / amplitudes that parametrize the right and left
excited state wave functions are determined by solving the left and right eigenproblems,

respectively, given as**

H, H R
ol s e R —w | (58)
DS HDD R2 R2
H, H
A R (59)
DS DD
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where the building blocks of the non-Hermitian Hamiltonian are FISS :<S‘ITIN|S>,

H, = <S‘ H |D>, H, = <D| I?IN‘S>, andP_IDD = <D| I?IN’D> 213215 Here H, is the normal-
ordered similarity-transformed NEO Hamiltonian defined to be FIN = efTA]'AII\]ef.24 These equations

are similar to the conventional electronic EOM-CCSD equations but differ in the dimensionality

f>, f>} and ‘D>D{ Z.b>, ;'JB>,

programmable expressions have been obtained®* utilizing the generalized Wick’s theorem.

of the non-Hermitian Hamiltonian because ‘S>D{

A>} The

il
186-187

An additional advantage of the NEO-EOM-CCSD method for the calculation of excitation

energies is that the excitation energies are size-intensive,?!¢-!7

signifying that the excitation
energies are unaffected by the presence of non-interacting fragments.>*

The NEO-EOM-CCSD method has been applied to positronium hydride (PsH) and has
been compared to the NEO-FCI and NEO-FCC methods for benchmarking purposes.?* In this

system, both electrons and the positron are treated quantum mechanically, and the hydrogen

nucleus is treated classically. The NEO-FCC method for PsH is attained by extending the NEO-

. . . - 1 il ~a . . . . .
CCSD cluster excitation operator with T, = thflf AaiifA to account for mixed triple excitations, in

which both electrons and the single positron are promoted. The operators R and L are extended

with an analogous term. Then the normal-ordered similarity-transformed NEO Hamiltonian is

a A ab AB ad
P[22 [

the same result is obtained with the NEO-FCI method by diagonalization of the normal-ordered

abA

diagonalized in the basis of the { il

>} excited determinants.* Alternatively,

NEO Hamiltonian in the basis of the ground state reference wave function and excited
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abA
ijl

oeop>,

>}.24* 1 The two approaches produce the same

a A ab AB ad
I A A VA T A

results for all excited states, as shown in Table 6 for the PsH system.

determinants {

Table 6 also provides the ground state correlation energy and the first three excitation
energies calculated with the NEO-FCI, NEO-FCC, NEO-EOM-CCSD, and NEO-CISD methods

for the PsH system.?* Based on the leading NEO-EOM-CCSD amplitudes, the ground and the first

three excited states have been characterized to have dominant contributions from the lse2 ls;,

1s?2p', 1s2s', and 1s'2s'ls' configurations, respectively, where the subscripts e and p
e P e p e e p

correspond to electronic and positronic orbitals. The first two excitations are predominantly
positronic, and the third excitation is predominantly electronic. A schematic representation of PsH
along with its ground and excited states with assigned configurations is depicted in Figure 12. The
NEO-EOM-CCSD and NEO-FCI excitation energies are in excellent agreement, deviating by ~1
mHartree, whereas the NEO-CISD excitation energies deviate by ~20 mHartree. This observation
is consistent with conventional electronic CISD, which does not provide accurate excitation
energies due to an unbalanced treatment of correlation effects in the ground and excited states.?!8

Table 6. Ground State Correlation Energies and Excitation Energies for PsH Computed with
Various NEO Methods”

NEO-EOM-
state NEO-FCI NEO-FCC CCSD? NEO-CISD
ground state -0.090593 -0.090593 -0.085978 -0.085733
1*'excited state 0.156700 0.156700 0.155107 0.179252
2M excited state 0.165857 0.165857 0.166041 0.187039
3" excited state 0.242055 0.242055 0.239553 0.254243

¢ The aug-cc-pVTZ basis sets were used both electrons and positrons. The excitation energy o for each
excited state is defined relative to the ground state energy. The energies are given in units of Hartree. Data
from Ref. 24,

b For the NEO-EOM-CCSD calculations, the ground state energy was determined with the NEO-CCSD

method.
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Figure 12. Schematic representation of the PsH system (left) and the ground and excited states
(right). The energy levels are depicted with equal spacing, but the excitation energies are given

relative to the ground state (Table 6). Reprinted with permission from Ref. 2*. Copyright 2019
American Institute of Physics.

The NEO-EOM-CCSD method can be applied to other types of multicomponent systems,
such as those where all electrons and specified protons are treated quantum mechanically. Similar
to the NEO-TDDFT method described in Sec. 3.2, the NEO-EOM-CCSD method allows the
simultaneous calculation of the excited electronic and proton vibrational states, as well as excited
mixed electron-proton vibronic states. Due to the systematically improvable nature of the NEO-
EOM-CCSD method, there is a clear path forward for accurately calculating excited states that
correspond to double excitations.?!*?2% Furthermore, the NEO-DFT(V) method discussed in Sec.
4.1 could be extended such that the NEO-EOM-CCSD method is used to compute the fundamental
proton vibrational frequencies, thereby producing the molecular vibrational frequencies at the
CCSD level. The DBOC terms discussed in Sec. 4.2 could also be computed at the NEO-CCSD
level to augment the potential energy surface during calculations of reaction paths and dynamics

at this level.
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6. Delta Self-Consistent Field (NEO-ASCF) and Multireference Methods
6.1. NEO-ASCF

Another method for computing excited states is NEO-ASCF, %4 which is a natural extension
of ASCF in conventional electronic structure theory.??!*> The goal of this approach is to identify
higher-energy stationary solutions corresponding to local minima in orbital space. NEO-ASCF
has been used to compute the relative energies of HCN and HNC using different initial guesses
corresponding to the proton localized near the carbon or the nitrogen, producing an SCF solution
on each side.!® The energy splitting between these two SCF solutions is within 0.3 kcal/mol of
the energy difference computed with the grid-based reference method. A more interesting example
is the calculation of the excited proton vibrational state for 2-cyanomalonaldehyde, where the
proton moves in an asymmetric potential, as depicted in Figure 13. For two different initial guesses
localizing the proton near one oxygen or the other, two different SCF solutions were obtained.'®*
The splitting between these two solutions is within 0.2 kcal/mol of the splitting computed with the
grid-based reference method. For both of these examples, the higher-energy SCF solutions were
shown to be minima in orbital space using the stability analysis discussed in Section 3.3. These
cases were relatively straightforward because of very small overlap between the two SCF
solutions.

More challenging applications may require different techniques. To compute the excited
proton vibrational states for molecules such as HCN or FHF", the initial guess can be chosen to
correspond to the proton in the virtual orbital with the appropriate symmetry (i.e., a single node,
analogous to the transition density depicted in Figure 7) instead of using the aufbau principle. In
some cases, the standard iterative procedure starting from this initial guess will produce an SCF

solution of the proper character due to the different symmetries of the excited and ground states.
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Other cases may require implementation of the maximum overlap method,??? which maximizes
the overlap between the occupied orbitals of the current and preceding SCF iterations, or the initial
maximum overlap method,?** which maximizes the overlap between the occupied orbitals and the
initial orbitals, to prevent variational collapse to the ground state. Another possibility is to extend
the excited constrained DFT approach that has been used to compute low-lying excited electronic
states to the NEO framework.??® Although the excited proton vibrational states obtained with these
types of methods may be of the proper character, their energies relative to the ground state tend to
be significantly over-estimated.

To address this issue and to enable the description of certain types of double excitations,
the NEO-ASCF and NEO-TDDFT methods can be combined. The general strategy is that NEO-
ASCEF solutions can be used as reference states in NEO-TDDFT calculations. The underlying
principles of this strategy are related to spin-flip approaches used in conventional electronic
TDDFT.*?” For 2-cyanomalonaldehyde, NEO-ASCF accurately describes the lowest proton
vibrational state in the higher-energy well and produces a quantitatively accurate energy splitting
between this state and the ground proton vibrational state localized in the lower-energy well
(Figure 13 and solid red arrow in lower potential of Figure 14).1%* Using either the ground proton
vibrational state or the excited proton vibrational state obtained from NEO-ASCF as a reference
state, NEO-TDDFT produces accurate fundamental proton vibrational excitations within each of

these wells (Table 7 and blue arrows in lower potential of Figure 14).

Table 7. NEO-TDDFT Excitation Energies (in cm ') for 2-Cyanomalonaldehyde?

Excitation energy  [NEO“ Grid
Eo — E¢ 587 623
E1—Eo 1050 974
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E>— Ey 1357 1245

Ei — Eo 1652 1612

“The energies with primes correspond to NEO-TDDFT states localized in the higher-energy well (right well in Fig.
7), and the energies without primes correspond to NEO-TDDFT states localized in the lower-energy well (left well in
Fig. 7). All calculations were performed with the B3LYP electronic functional and the epcl7-2 electron-proton
correlation functional. The cc-pVDZ electronic basis set was used for all atoms except the quantum hydrogen. For
computational tractability, the cc-pV5Z electronic basis set and the 8s8p8d8f nuclear basis set used for the quantum
hydrogen were located at the minimum of only the left or the right well for each calculation.

b This energy splitting was obtained from a NEO-ASCF calculation to compute the lowest proton vibrational state in
the higher-energy well. This proton vibrational state, which has energy E¢’, was used as the reference to compute E;'".

e° O ® o
N SO0

1.8 (1.8) kcal/mal

8.3 kcal/mol

2.1 kcal/mol

Figure 13. One-dimensional slice of the proton potential energy surface and the lowest two proton
vibrational states calculated with the other nuclei fixed to an average reactant/product geometry
for 2-cyanomalonaldehyde. The potential and proton vibrational wave function slices are
generated along the line connecting the optimized positions of the transferring hydrogen (depicted
in cyan mesh) on each oxygen (depicted as red spheres). The energy splitting between the lowest
two proton vibrational states was calculated with the reference FGH method and with the NEO-
DFT method, as given in parentheses, indicating excellent agreement within 0.2 kcal/mol. The
NEO-DFT calculations were performed with the B3LYP electronic functional and the epcl7-2
electron-proton correlation functional. The electronic and nuclear basis sets used in these
calculations are given in Ref. ', Reprinted with permission from Ref. ', Copyright 2018
American Institute of Physics.

A similar strategy can be employed to describe double excitations involving both an
electronic and a proton vibrational excitation. This strategy entails the following steps: (1) perform

a NEO-TDDFT calculation and identify the electronic excitation of interest; (2) use the dominant
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determinant associated with this electronic excitation as the target for a maximum overlap method
NEO-ASCEF calculation to compute the NEO vibronic state of interest (dashed red arrows in Figure
14); (3) use this vibronic state as the reference state in a NEO-TDDFT calculation to compute the
proton vibrational excitations relative to this state (blue arrows in upper potential of Figure 14).
This approach is feasible for an open-shell radical system if the electronic excitation of interest is
dominated by the HOMO to LUMO (i.e., HOMO + 1) transition. However, complications are
expected to arise for certain types of electronic excitations, such as excited singlet states, because
of issues including unstable SCF solutions, spin contamination, and triplet instabilities.??8-2%

As a proof of concept, a calculation of this type has been performed on HNF,". The
geometry for HNF," was optimized at the B3LYP/def2-QZVP level of theory. The subsequent
calculations on this system used the B3LYP electronic functional, the cc-pVDZ electronic basis
set, the epc17-2 electron-proton correlation functional, and the DZSPDN nuclear basis set.!'”
Following the scheme outlined above, first a NEO-TDDFT calculation was performed on this
system, and an electronic excitation dominated by a HOMO to LUMO excitation in the alpha set
of orbitals was identified and found to have an excitation energy of 7.541 eV. Subsequently, the
NEO-ASCF approach with the maximum overlap method was used to compute the excitation
energy associated with this state, leading to an electronic excitation energy of 7.371 eV (dashed
red arrow in Figure 14). Using the NEO-ASCF state as a reference, a NEO-TDDFT calculation
was performed to compute the proton vibrational excitation energies in the excited electronic state
(i.e., blue arrows in the S; state in Figure 14). All of the resulting excitation energies, which
correspond predominantly to proton vibrational excitations in the excited electronic state, were
real. These results are not quantitative, given the relatively small basis sets used, and this method

has not been extensively studied. The results presented here are intended only to demonstrate the
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feasibility of performing such calculations. Thus, further developments are required, and caution

in using these types of methods is warranted.

S1

\

~

Figure 14: Schematic depiction of different excitations that could potentially be described by
combining NEO-TDDFT and NEO-ASCF. The lower and upper potentials correspond to the
ground and excited electronic states, respectively. The solid and dashed red arrows depict
excitations that could be obtained with NEO-ASCF, and the blue arrows depict proton vibrational
excitations that could be described with NEO-TDDFT using the reference at the start of the arrow.

6.2. Nonorthogonal Configuration Interaction (NEO-NOCI) for Tunneling Splittings

Multireference approaches are required for describing proton vibrational wave functions
delocalized over two wells.!?> 2% One such approach is the NEO-nonorthogonal configuration
interaction (NEO-NOCI) method.'?? For a system such as malonaldehyde (Figure 15), a set of
electronic and nuclear basis functions can be positioned near the minimum of each well. For
single-reference methods, such as NEO-HF and NEO-DFT, the NEO vibronic wave functions
naturally localize onto one of these basis function centers?*® and can be computed with different
initial guesses, as in NEO-ASCF. The resulting two vibronic wave functions, each of which is
localized in one well, are nonorthogonal and can be used as the determinants in a two-state NEO-

NOCIT calculation to produce the adiabatic proton vibrational states delocalized over both wells.
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At the NEO-HF level, the proton vibrational wave functions in each well are much too localized
and cannot produce even qualitatively reasonable hydrogen tunneling splittings and vibronic
couplings. To address this problem, the localized protonic orbitals were fit to grid-based wave
functions for an application of NEO-NOCI to malonaldehyde,'?? but such an approach is not self-

contained.

Figure 15. Schematic depiction of proton moving in symmetric double well potential and NEO-
DFT states localized in each well (blue mesh in chemical structures) for malonaldehyde. NEO-
NOCI mixes the NEO-DFT states to generate the adiabatic states delocalized over both wells
(blue/red curves). The tunneling splitting A is the energy difference between the NEO-NOCI
states.

Alternatively, the accurate proton densities provided by NEO-DFT with the epc17-2!7 or
epc19?? electron-proton correlation functionals within each well can be used in conjunction with
the NEO-NOCI method in a multistate NEO-DFT approach. The NEO-DFT method includes
dynamical electron-proton correlation to obtain accurate proton densities in each well, and the
NEO-NOCI method includes static correlation to combine these two states in a manner that leads
to proton vibrational wave functions delocalized over both wells. In contrast to constrained
DFT,?!"232 which applies spatial or spin constraints to localize the electronic wave function, no
constraints need to be applied in the NEO framework because the vibronic wave functions

naturally localize in one well with the single-reference methods studied to date. Thus, the localized
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states can be obtained with NEO-ASCF using different initial guesses. Although this type of
combined approach is not theoretically rigorous, it provides a qualitatively reasonable starting
point for the development of more rigorous methods.

A challenge of this approach is the definition of the off-diagonal Hamiltonian matrix

elements in the basis of the localized Kohn-Sham determinants, denoted ¥, and ¥, . Analogous

to the multistate DFT approach of Gao and coworkers,?**** this off-diagonal matrix element could
be approximated as

1

Hyy = (¥, [Hyo| ¥ >+2S (Ex+Eg) (60)

where (W, |Hypo|Wy) is the energy computed with the NEO-HF Hamiltonian and the Kohn-

Sham determinants, S, < A|‘P > is the overlap between the Kohn-Sham determinants, and

ES" =EX"T —E\" is the difference between the NEO-DFT and NEO-HF energies for ¥, . This

form of the off-diagonal matrix elements ensures that the vibronic coupling obtained after
symmetric orthogonalization is the same as the NEO-NOCI coupling using the Kohn-Sham
determinants. Other forms of the off-diagonal Hamiltonian matrix element could also be utilized.
These types of multistate NEO-DFT approaches represent an exciting future direction.

The calculation of accurate tunneling splittings in a molecule such as malonaldehyde also
requires coupling of the transferring hydrogen nucleus to the vibrations of the other nuclei. For
this purpose, the NEO method for the quantum mechanical treatment of the transferring hydrogen
nucleus has been combined with vibronic coupling theory for the quantum mechanical treatment

23

of the other nuclei.’ Note that there are many highly accurate approaches, such as the

MCTDH?-2¢ and diffusion Monte Carlo>*’-**° methods, for computing hydrogen tunneling
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splittings. The NEO approach is not expected to be as accurate as such methods but has the

advantage of computational efficiency, which will be important for larger molecular systems.

6.3. Complete Active Space Self-Consistent Field (NEO-CASSCF) and Orbital-Optimized
Configuration Interaction with Singles (NEO-OOCIS)

A more general multireference approach is the NEO complete active space SCF (NEO-
CASSCF) method,'® which is analogous to its conventional electronic structure counterpart.*’ In
this multicomponent multireference approach, an active space composed of electronic and nuclear
orbitals is chosen, and all possible configurations generated by excitations within this active space
are included in a CI expansion. The total energy is minimized with respect to the electronic and
nuclear molecular orbitals as well as the CI coefficients. In principle, dynamical correlation could
be included by applying second-order perturbation theory to the NEO-CASSCF reference
function, analogous to the conventional electronic structure CASPT2 method.?*!">*? To date, NEO-
CASSCEF has not been found to include sufficient electron-proton correlation to produce accurate
proton densities,' but larger active spaces and basis sets may improve the accuracy.

Another option is the NEO orbital-optimized configuration interaction with single
excitations (NEO-OOCIS) method, which also minimizes the energy with respect to the CI
coefficients and molecular orbitals. This method is the NEO extension of the conventional
electronic OOCIS method proposed by Subotnik and coworkers.?*? In this method, the NEO-CIS

energy for a given excited state is stationary with respect to the electronic and protonic singles

amplitudes (i.e., X°and XP" in Eq. (18)) and orbital expansion coefficients. The orbitals are
optimized in an analogous manner as that described in the context of the NEO-OOCCD method.

The proton vibrational excitation energies for the HCN molecule are summarized in Table 8.
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Table 8: Proton Vibrational Excitation Energies (in cm™') for HCN Calculated with the NEO-CIS
and NEO-OOCIS Methods ¢

Method CH bend CH stretch
NEO-CIS 3714 4911
NEO-OOCIS 638 3607
Grid 642 3122

?The heavy nuclei were fixed with a C—N distance of 1.148 A, as obtained from a conventional electronic CCSD/aug-
cc-pVTZ geometry optimization. The nuclear and electronic basis function centers for the quantum proton were
positioned at a distance of 1.058 A from the carbon atom, corresponding to the hydrogen position for this optimized
geometry. The NEO calculation employed the 8s8p8d8f nuclear basis set and the cc-pV6Z electronic basis sets for the
hydrogen nucleus. The cc-pVDZ electronic basis set was used for the heavy nuclei. The grid reference was obtained
from Table 3.

As also indicated in Section 3.2 in the context of the TDA approximation, the NEO-CIS
method produces inaccurate proton vibrational excitation energies relative to the reference grid
results (Table 3 and Table 8). In contrast, the NEO-OOCIS method predicts proton vibrational
excitation energies that are in reasonable agreement with the reference values. These calculations
indicate that orbital optimization is crucial for obtaining even qualitatively accurate proton
vibrational excitation energies. Moreover, these results suggest that the NEO-CASSCF method is
a promising, more general approach for computing proton vibrational excitation energies. An
advantage of these wave function approaches is the clear path forward for improving the excitation

energies.
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7. Other Approaches for Describing Nuclear Quantum Effects and Non-Born-Oppenheimer

Effects

As discussed in the Introduction, several other multicomponent orbital methods have been
developed 28-33: 35, 40, 42-43, 45-46, 48-49, 51, 80, 83-84, 147 Although the multicomponent Hartree-Fock and
second-order perturbation theory methods suffer from over-localized proton densities, the coupled

cluster methods?? 23 30 63-64

are promising, albeit more expensive. The explicitly correlated wave
function methods developed by Adamowicz and coworkers®>7> to treat all electrons and all nuclei
quantum mechanically on the same level are highly accurate but computationally expensive. As
also discussed in the Introduction, the formalism for multicomponent DFT and TDDFT has been
well-established. ! 46 78-80.83-84 T4 earlier types of electron-proton correlation functionals based
on the Colle-Salvetti formalism made the nonphysical assumption that the inverse correlation
length depends on only the electron density, rather than both the electron and proton densities.!"
32.38.42 These functionals have not been shown to be broadly applicable for computing molecular
properties. The NEO-DFT method with the epcl7 functional'®!” has been shown to produce
accurate proton densities, optimized geometries, energies, and frequencies. The NEO-DFT/epcl7
method is available in quantum chemistry packages such as GAMESS?* and Q-Chem?* and has
also been incorporated into the deMon2k code**® in conjunction with density fitting methods to
enhance the efficiency.?¥’

Other types of approaches for incorporating non-Born-Oppenheimer effects have also been
developed. Abedi, Maitra, Gross, and coworkers have developed the exact factorization
method,?*3-2>! which rigorously reformulates the time-dependent Schrodinger equation to describe

the quantum dynamics of an interacting electronic and nuclear system in terms of two coupled

equations, providing the basis for nonadiabatic dynamics calculations. Path integral and quantum
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Monte Carlo methods can also be used to remove the Born-Oppenheimer approximation.®>-%% 98-%%-

101, 103, 112-116 - qych methods are rigorous but are also computationally expensive and limited in
terms of the size of the system that can be studied.

Many more methods have been developed to include nuclear quantum effects within the
Born-Oppenheimer approximation, where the nuclei move quantum mechanically on the adiabatic
potential energy surface. The multiconfigurational time-dependent Hartree (MCTDH) method!®-
" has been highly successful but often relies on an analytical potential energy surface, although
recently it has been used without pre-computed potential energy surfaces.?>??3 A variety of
quantum nuclear wavepacket methods!'*®!% have been developed in conjunction with generating
the potential energy surface on-the-fly, although the computational expense and scaling properties
impose limitations on the system size. Path integral methods have also been widely used for
propagating nuclei on an adiabatic potential energy surface. The ring polymer molecular dynamics
(RPMD)**°* and centroid molecular dynamics (CMD)?’! methods have been highly successful
in treating all nuclei quantum mechanically in a computationally tractable manner. Real-time path
integral methods are also promising, although more expensive.”’> 1%

Nonadiabatic dynamics methods allow the study of processes that involve multiple
potential energy surfaces. The most widely used nonadiabatic dynamics methods treat the nuclear
motion classically. In the Ehrenfest method, the nuclei move classically on an effective potential

4 Alternative

energy surface corresponding to a weighted average of the electronic states.”
approaches based on the initial value representation have also been developed.?>>7 In the fewest
switches surface hopping method,?*® individual trajectories move classically on a single potential

energy surface, and nonadiabatic transitions are incorporated between the surfaces according to

the electronic time-dependent Schrdodinger equation. The more elaborate multiple spawning
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method treats the nuclei as quantum mechanical wavepackets that move on individual surfaces but
multiply and propagate to different surfaces as needed.>>*?$> The MCTDH method has been
extended to nonadiabatic processes,!!’ and nonadiabatic extensions of the ring polymer molecular
dynamics method have also been proposed.’?: 9399899, 101103 Thjg discussion of other methods for
including nuclear quantum effects and non-Born-Oppenheimer or nonadiabatic effects does not

cover all of the possibilities but illustrates the wide range of options.

8. Efficiency and Accessibility of NEO Approaches

The NEO methods are not designed to replace the more rigorous and powerful wavepacket
and path integral methods for treating all nuclei quantum mechanically. Instead, the NEO methods
are designed for situations in which only specified nuclei, typically the hydrogen nuclei, are treated
quantum mechanically to capture the most essential nuclear quantum effects. Advantages of the
NEO approaches over some of these methods for certain applications are the computational
efficiency and scaling, as well as the inclusion of non-Born-Oppenheimer effects between the
electrons and quantum nuclei. The computational cost of a NEO calculation is typically similar to
the cost of the analogous electronic structure calculation because of the much smaller number of

protons compared to electrons and the relative localization of the protons in molecular systems.

Although HF and NEO-HF, as well as the DFT counterparts, have the same formal
computational scaling, the NEO methods have a larger prefactor because of the need to converge
both the electronic and protonic densities. Specifically, NEO SCF methods typically require more
iterative cycles than their conventional electronic structure counterparts. However, the number of
cycles can be greatly reduced by using suitable SCF protocols. For the initial guess, it is

advantageous to first converge a pure electronic SCF calculation and use this electronic density as
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a guess when constructing the protonic Fock matrix. Moreover, several options are possible for
the iterative procedure. One option is to perform one electronic (protonic) orbital update followed
by full convergence of the proton (electron) density in an alternating fashion. A second option is
to fully converge the electronic and protonic SCF equations in an alternating fashion. A third
option is to perform one electronic orbital update and one protonic orbital update in an alternating
fashion. The second option, in conjunction with dynamically decreasing convergence criteria, has
been found to be particularly effective. However, the convergence behavior depends on the
specific system. These techniques, combined with direct inversion in the iterative subspace (DIIS)
or Newton-Raphson methods, typically result in the convergence of a NEO calculation with a

reasonable number of cycles.

In terms of post-HF wave function methods, the increase in computational expense is
typically even less pronounced. For methods such as NEO-CCSD or NEO-CISD, the
computational expense and memory requirement are dominated by the optimization of the
electronic ¢ or ¢ amplitudes because typically the number of electronic basis functions is much

greater than the number of protonic basis functions. The total number of double excitation ¢ or ¢

. . 2.2 2.2 . .
amplitudes is oV, +0,V, +0,v,0,v,, where 0_, o , v,,and v _denote the occupied electronic and

protonic and virtual (unoccupied) electronic and protonic orbitals, respectively. As an example,
consider the HCN molecule with 7 occupied and 100 unoccupied electronic orbitals, as obtained
with a modest electronic basis set. For the 8s8p8d nuclear basis set, this molecule would have 1
occupied and 71 unoccupied protonic orbitals. This system would have 490,000 versus 544,741
double excitation amplitudes for conventional electronic CCSD versus NEO-CCSD. For wave

function methods that are used for excited state calculations, such as NEO-CISD and NEO-EOM-

CCSD, the dimension of the singles-singles block in Eq. (58) is 0,v, +0,v, . For the HCN example
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above, the dimension of the singles-singles block matrix for the conventional electronic versus
NEO method is 700 versus 771. Thus, the computational cost of post-SCF methods is dominated

by the size of the electronic space.

In additional to the computational efficiency, the NEO approaches are as straightforward
to use as the analogous electronic structure methods, simply requiring the selection of the quantum
nuclei, a nuclear basis set, and an electron-proton correlation functional in the case of NEO-DFT.
Thus, the NEO approaches enable non-experts to include nuclear quantum effects of specified
protons into quantum chemistry calculations with similar ease and computational expense as
conventional quantum chemistry calculations. The NEO approaches are available in several

different quantum chemistry packages, including GAMESS?** and Q-Chem 5.3.2%

9. Remaining Challenges and Future Directions

Multicomponent quantum chemistry is still a relatively young and emerging field. As a
result, many challenges still need to be solved. The development of more effective and efficient
nuclear basis sets will enable a broader set of applications. Within the field of NEO-DFT, the
development of more accurate electron-proton correlation functionals is another important
direction. Although the NEO-TDDFT method provides accurate fundamental vibrational
excitations, the calculation of higher vibrational states will probably require the development of
new electron-proton correlation functionals. Moreover, the development of methods for
computing double excitations must go beyond the linear-response NEO-TDDFT method. Within
the wave function methods, the accuracy of the NEO-CCSD approach would be enhanced by the
inclusion of triple excitations, even if only in a perturbative manner. The NEO-EOM-CCSD

method is a promising but computationally expensive direction for computing electronic,
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vibrational, and vibronic excitations and could be extended to describe double excitations.
Multireference NEO methods, such as NEO-NOCI or NEO-CASSCF with a large, carefully
selected active space, will be required to compute accurate hydrogen tunneling splittings and
vibronic couplings.

To enable the study of even larger systems, such as proteins, the NEO approach can be
combined with the vast array of hybrid approaches that have been developed for conventional
electronic structure theory. The NEO fragment molecular orbital (FMO) method has already been
implemented and tested.?®* Variants of embedding theory have also been formulated within the
NEO framework.!** In addition, mixed quantum mechanical/molecular mechanical (QM/MM)
methods or QM/QM methods in which the NEO approach is used for one of the QM levels can
easily be implemented. The NEO methods can also be used in conjunction with a dielectric
continuum solvent,?®* thereby enabling the calculation of more accurate pK,’s and solvation free
energies of molecular systems.

The NEO approach will also be useful for studying reaction paths for chemical systems.
The generation of minimum energy paths along the intrinsic reaction coordinate (IRC) will require
analytic gradients, which are already available for the NEO-DFT methods, and analytic Hessians,
which are under development. Within the NEO framework, the IRC will be composed of
contributions from only the classical nuclear coordinates. In conventional electronic structure
calculations, typically the IRC near the transition state is dominated by the transferring hydrogen
nuclear coordinate for hydrogen transfer reactions. In the NEO approach, the transferring hydrogen
nucleus is treated quantum mechanically on the same level as the electrons, and therefore it cannot
contribute to the IRC in this manner. Thus, hydrogen transfer becomes analogous to electron

transfer within the NEO framework, and the IRC is dominated by the motions of heavy nuclei that
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alter the environment of the transferring hydrogen. If the hydrogen samples an environment
corresponding to a symmetric double well potential, where the proton vibrational wave function
is bilobal, then multireference methods will be necessary. For proton-coupled electron transfer
reactions,”” analysis of the electron and proton densities along the minimum energy path will
provide insights into the fundamental mechanisms of electron and proton transfer, distinguishing
between sequential and concerted, or asynchronous and synchronous, mechanisms. Thus, these
types of calculations will provide new insights into chemical reactions.

Another promising direction for the NEO approach is the investigation of the dynamics of
chemical processes. At the simplest level, the classical nuclei can be propagated classically on the
ground state NEO electron-proton vibronic potential energy surface. In this case, the vibronic
potential energy surface implicitly includes the zero-point energies of the quantum nuclei and
depends explicitly on only the classical nuclear coordinates. This approach relies on the Born-
Oppenheimer separation between the quantum and classical nuclei. In order to account for non-
Born-Oppenheimer effects between the quantum and classical nuclei, the classical nuclei can be
propagated on potential energy surfaces that include the diagonal Born-Oppenheimer corrections.
However, initial studies suggest that these diagonal Born-Oppenheimer corrections may not
impact the NEO potential energy surfaces significantly for many types of systems.

A major advantage of the NEO approach is the inclusion of non-Born-Oppenheimer effects
between the electrons and the quantum nuclei, as well as the ability to combine this approach with
methods designed to include nonadiabatic effects between quantum and classical subsystems. To

259-261 methods can be

simulate nonadiabatic processes, surface hopping®*® or multiple spawning
used to incorporate nonadiabatic transitions between the electron-proton vibronic surfaces

generated with NEO-TDDFT. Similar to conventional electronic TDDFT, the simulations could
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encounter difficulties if conical intersections between the ground and excited states play an

266

important role.”® Multicomponent analogs of spin-flip TDDFT and related methods may enable

a proper description of conical intersections involving the ground state.??’

Another exciting
direction is the development of real-time NEO-TDDFT, an extension of the conventional
electronic real-time TDDFT. In the multicomponent extension, the time-dependent Schrodinger
equation for electrons and quantum nuclei is integrated numerically.?®’2%® This approach will
provide information about the dynamics of the electrons and quantum protons, as well as the
classical nuclei, which could be propagated with Ehrenfest dynamics.?®® The combination of real-
time NEO-TDDFT to describe the non-Born-Oppenheimer quantum dynamical effects between
the electrons and quantum protons with Ehrenfest dynamics or other approaches to describe the
nonadiabatic effects between the quantum and classical nuclei will be very powerful.

Given all of these exciting directions to explore, the future of multicomponent quantum
chemistry is wide open for innovation and technical advances. Many of the multicomponent
methods are extensions of their conventional electronic counterparts. However, the additional
complexity arising from treating both electrons and nuclei quantum mechanically on the same
level often leads to technical challenges. Moreover, in some cases, methods that are effective for
electron-electron correlation are not adequate for electron-proton correlation, requiring the
development of new types of approaches. The efficient and accurate simulation of mixed nuclear-
electronic quantum dynamics also requires creative solutions. Thus, multicomponent quantum

chemistry provides many opportunities for the development of novel approaches to overcome the

wide array of remaining challenges.
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Abbreviations

BCCD Coupled Cluster Brueckner with Doubles

CASPT2 Complete Active Space Second-Order Perturbation Theory

CASSCF Complete Active Space Self-Consistent Field

CCD Coupled Cluster with Doubles

CCSD Coupled Cluster Singles and Doubles

CCSD(T) Coupled Cluster Singles and Doubles with Perturbative Triples

CI Configuration Interaction

CID Configuration Interaction with Doubles

CIS Configuration Interaction with Singles

CISD Configuration Interaction Singles and Doubles
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DBOC

Diagonal Born-Oppenheimer Correction

DFT Density Functional Theory

EOM-CCSD [Equation-of-Motion Coupled Cluster Singles and Doubles
epcX electron-proton correlation functional developed year X
FCC Full Coupled Cluster

FCI Full Configuration Interaction

FGH Fourier-Grid Hamiltonian

FMO Fragment Molecular Orbital

HF Hartree-Fock

IRC Intrinsic Reaction Coordinate

LDA Local Density Approximation

LYP Lee-Yang-Parr

MCTDH Multiconfigurational Time-Dependent Hartree

MP2 Second-Order Mgller-Plesset Perturbation Theory

MUE Mean Unsigned Error

NEO Nuclear-Electronic Orbital

NEO-DFT(V)|Vibrational NEO-DFT

NOCI Nonorthogonal Configuration Interaction

OO0CIS Orbital-Optimized Configuration Interaction with Singles
OOCCD Orbital-Optimized Coupled Cluster with Doubles
OOMP2 Orbital-Optimized Second-Order Moller-Plesset Perturbation Theory
PA Proton Affinity

QM/MM Quantum Mechanical/Molecular Mechanical

RMSD Root-Mean-Square Deviation

RXCHF Reduced Explicitly Correlated Hartree-Fock

SCF Self-Consistent Field

SOS Scaled-Opposite-Spin

TDA Tamm-Dancoff Approximation

TDDFT Time-Dependent Density Functional Theory
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XCHF Explicitly Correlated Hartree-Fock

ASCF Delta Self-Consistent Field
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