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Abstract 

In multicomponent quantum chemistry, more than one type of particle is treated quantum 

mechanically with either density functional theory or wave function based methods.  In particular, 

the nuclear-electronic orbital (NEO) approach treats specified nuclei, typically hydrogen nuclei, 

on the same level as the electrons.  This approach enables the incorporation of nuclear quantum 

effects, such as nuclear delocalization, anharmonicity, zero-point energy, and tunneling, as well as 

non-Born-Oppenheimer effects directly into quantum chemistry calculations.  Such effects impact 

optimized geometries, molecular vibrational frequencies, reaction paths, isotope effects, and 

dynamical simulations.  Multicomponent density functional theory (NEO-DFT) and time-

dependent DFT (NEO-TDDFT) achieve an optimal balance between computational efficiency and 

accuracy for computing ground and excited state properties, respectively.  Multicomponent wave 

function based methods, such as the coupled cluster singles and doubles (NEO-CCSD) method for 

ground states and the equation-of-motion counterpart (NEO-EOM-CCSD) for excited states, attain 

similar accuracy without requiring any parameterization and can be systematically improved but 

are more computationally expensive. Variants of the orbital-optimized perturbation theory (NEO-

OOMP2) method achieve nearly the accuracy of NEO-CCSD for ground states with significantly 

lower computational cost. Additional approaches for computing excited electronic, vibrational, 

and vibronic states include the delta self-consistent field (NEO-ΔSCF), complete active space SCF 

(NEO-CASSCF), and non-orthogonal configuration interaction methods.  Multireference methods 

are particularly important for describing hydrogen tunneling processes.  Other types of 

multicomponent systems, such as those containing electrons and positrons, have also been studied 

within the NEO framework.  The NEO approach allows the incorporation of nuclear quantum 

effects and non-Born-Oppenheimer effects for specified nuclei into quantum chemistry 

calculations in an accessible and computationally efficient manner. 
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1. Introduction  

Nuclear quantum effects play important roles in many aspects of chemistry, including zero- 

point energy, vibrationally excited states, hydrogen bonding interactions, proton transfer reactions, 

and hydrogen tunneling.1-4 In addition, nonadiabatic effects between electrons and protons are 

known to be significant in proton-coupled electron transfer reactions,5-6 which are essential for a 

wide range of chemical and biological processes.7-9  In most quantum chemistry calculations, the 

Born-Oppenheimer separation is invoked between the electrons and the nuclei, and the electrons 

are assumed to respond instantaneously to the motions of the nuclei.  In conventional Born-

Oppenheimer methods, the nuclei move on the ground state potential energy surface, which is 

generated by solving the electronic time-independent Schrödinger equation to obtain the energy at 

each nuclear configuration.  In many cases, the nuclei are assumed to move classically on this 

potential energy surface, but the nuclei can also be propagated quantum mechanically on this 

potential energy surface using wave packet or path integral methods. 

 In the nuclear-electronic orbital (NEO) method,10 specified nuclei are treated quantum 

mechanically on the same level as the electrons using molecular orbital techniques.  In this case, 

the Born-Oppenheimer separation is invoked between the subsystem composed of the electrons 

and quantum nuclei and the subsystem composed of the other nuclei, which are referred to as 

“classical” for simplicity. Henceforth, we will not use quotation marks for the “classical” nuclei, 

with the understanding that they could also be treated quantum mechanically. The classical nuclei 

move on the potential energy surface obtained by solving the mixed nuclear-electronic time-

independent Schrödinger equation. The NEO approach includes the nuclear delocalization and 

zero-point energy associated with the quantum nuclei during geometry optimizations, reaction 

paths, and dynamics.  This approach also avoids the Born-Oppenheimer separation between the 
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electrons and quantum nuclei.  In addition, the NEO approach is useful for computing 

hydrogen/deuterium geometric and kinetic isotope effects. Both density functional theory (DFT)11-

21 and wave function based methods10, 22-25 have been developed within the NEO framework.  

Figure 1 depicts the protonic orbitals for the ethane molecule computed with the NEO-DFT 

method. 

 

Figure 1. Protonic orbitals (red mesh) in ethane (C2H6) calculated with the NEO-DFT method. 

Reprinted with permission from Ref. 26. Copyright 2019 American Chemical Society.  

 

A variety of related multicomponent molecular orbital methods have been investigated.  A 

fundamental non-Born-Oppenheimer molecular orbital theory was proposed by Thomas in 1969.27 

Significantly later, the nuclear orbital molecular orbital (NOMO)28-34 and multicomponent 

molecular orbital (MCMO)35-44 methods were developed by Tachikawa, Nakai, and coworkers 

independently and in parallel with the NEO method.10  In many of these implementations, all 

nuclei, as well as all electrons, are treated quantum mechanically, requiring the removal of 

translations and rotations.45-46  More recently, the NEO method was incorporated into the 

LOWDIN code as the any particle molecular orbital (APMO) method by Reyes.47-49 The two 

component quantum theory of atoms in molecules (TC-QTAIM) method50 is also related to these 

other approaches. In addition to treating nuclei quantum mechanically, multicomponent molecular 

orbital methods have also been used to study systems containing positrons and muons.24, 51-60 
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A number of challenges arise with these types of multicomponent orbital methods.  The 

multicomponent Hartree-Fock and second-order perturbation theory method produce nonphysical, 

over-localized proton densities61-62 and thus are not reliable for computing molecular properties.  

Until recently, multicomponent configuration interaction and coupled cluster calculations have 

been limited to small systems,30, 36, 45, 63-64 no larger than diatomics, and have not been shown to 

provide accurate predictions of molecular properties depending on the proton densities. In an 

alternative approach, Adamowicz and coworkers have used explicitly correlated wave function 

methods to treat all electrons and all nuclei (or positrons) quantum mechanically on the same 

level.65-75  These methods have been shown to be highly accurate for small molecular systems but 

are computationally expensive and therefore currently not easily applied to larger systems.   

Various aspects of multicomponent DFT have also been explored over the past several 

decades.  The Hohenberg-Kohn theorems76 and the Kohn-Sham formalism77 have been extended 

to multicomponent systems composed of two or more different types of particles.46, 78-80 Additional 

multicomponent DFT work has been conducted in the context of electron-positron systems.81-82 

Until recently, the multicomponent DFT methods have been limited by the lack of accurate 

electron-proton correlation functionals.12, 14-15, 31-32, 38, 44  In terms of excited states, the 

multicomponent TDDFT formalism was developed by van Leeuwen and Gross to treat all 

electrons and nuclei quantum mechanically,83-84 but such a fully quantum mechanical approach 

has not been applied to molecular systems. 

This review summarizes the various NEO methods and their capabilities in describing 

ground and excited state properties of chemical systems.  The other related multicomponent 

molecular orbital and DFT methods will be mentioned throughout this review to provide historical 

context and points of comparison as warranted.  In addition to these approaches, alternative types 
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of theoretical methods for describing nuclear quantum effects and nonadiabatic effects, such as 

path integral,85-103 wavepacket,104-108 multiconfigurational time-dependent Hartree (MCTDH),109-

111 and quantum Monte Carlo112-116 methods, are also available.  Given the vast literature available 

for each of these methods, only brief summaries will be provided, with references to the relevant 

papers and reviews.  A detailed discussion of each of these many methods is beyond the scope of 

this review, which by design is focused predominantly on the NEO approach.   

The structure of this review is as follows.  First the NEO Hamiltonian and the simplest 

form of the nuclear-electronic wave function, which is based on Hartree-Fock (HF) theory,10 will 

be presented. Explicitly correlated wave function methods61-62, 117-119 lead to significant 

improvements over the NEO-HF method, which is not even qualitatively reasonable, but are 

significantly more computationally expensive.  After this introductory material, the NEO-DFT11-

18, 20 and multicomponent time-dependent DFT (TDDFT)19, 21 approaches for computing ground 

and excited state properties, respectively, will be discussed.  The next section will illustrate the 

calculation of molecular vibrational frequencies120-121 and diagonal Born-Oppenheimer 

corrections26 within the NEO framework.  Subsequently, the NEO-coupled cluster23, 25 and 

equation-of-motion24 wave function based approaches, which also provide ground and excited 

state properties, will be presented.  These approaches will be shown to be capable of providing 

accurate densities, energies, optimized geometries, and vibrational frequencies for chemical 

systems.  In addition, an overview of other NEO approaches for computing excited states and 

hydrogen tunneling splittings,122-123 including multireference methods,10 will be provided for 

completeness.   

Following this presentation of the underlying theories and capabilities, the NEO approach 

will be placed in the context of other types of theoretical methods for describing nuclear quantum 
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effects and nonadiabatic effects, including path integral and wavepacket methods.   In contrast to 

some of these alternative options, the NEO approach is designed to serve as a computationally 

practical method for incorporating nuclear quantum effects and non-Born-Oppenheimer effects for 

only specified nuclei. As for any computational method, the NEO methods will not be suitable for 

all applications, but they are particularly applicable to the wide range of important systems 

involving hydrogen bonding and hydrogen transfer.  They are also easily applied to positronic 

systems, in which the positrons and electrons are treated quantum mechanically on the same level.  

The remaining challenges and future directions will be discussed at the end of this review. 

 

2. Foundations of the Nuclear-Electronic Orbital (NEO) Method 

2.1. NEO Hamiltonian and Hartree-Fock Theory 

In the NEO approach, the system is divided into Ne electrons, Np quantum nuclei, and Nc 

classical nuclei.10  Typically, at least two nuclei are treated classically to avoid complications with 

translations and rotations. For simplicity, here the quantum nuclei are assumed to be protons or 

deuterons, but the extension to other nuclei or to other quantum particles such as positrons is 

straightforward.  The NEO Hamiltonian includes the standard electronic terms (i.e., the kinetic 

energy of the electrons, the attractive Coulomb interaction between the electrons and the classical 

nuclei, and the repulsive electron-electron Coulomb interaction), the analogous terms for the 

quantum nuclei, and the attractive Coulomb interaction between the electrons and the quantum 

nuclei.  This Hamiltonian is expressed in atomic units as 
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where e

ir  is the coordinate of electron i,  p

Ir  is the coordinate of proton I , c

Ar  is the coordinate of 

the Ath classical nucleus, and mp is the mass of a proton. The main goal of the NEO method is to 

solve the following mixed nuclear-electronic time-independent Schrödinger equation for fixed 

classical nuclei: 

 c c c

NEO N

e p e p

EO( , ; ) ( ) ( , ; )H E x x r r x x r   (2) 

where e
x  and p

x  are the collective spatial and spin coordinates of the electrons and quantum 

protons, respectively, and c
r  is the collective spatial coordinate for the classical nuclei.  The 

solution of the mixed nuclear-electronic time-dependent Schrödinger equation is another challenge 

that will be discussed later in this review. 

 The simplest NEO wave function is the NEO Hartree-Fock (NEO-HF) wave function,10 

which is expressed as 

 e p e e p p

NEO-HF( , ) ( ) ( )  x x x x  (3) 

Here e e( ) x  and p p( ) x  are Slater determinants composed of electronic and nuclear spin 

orbitals, respectively.  In practice, the electronic and nuclear spatial orbitals are expanded in 

Gaussian basis sets.  The NEO-HF energy is computed as the expectation value of 
  
H

NEO
 given in 

Eq. (1) with respect to the NEO-HF wave function given in Eq. (3) and can be expressed as 
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where  
  
he  (

  
hp ) denotes the electronic (protonic) contributions to the energy from the core 

Hamiltonian (i.e., the kinetic energy and interaction with the external potential), 
  
J e (

  
J p) and 

  
K e  (

  
K p ) are the electronic (protonic) Coulomb and exchange energies, respectively, and 

epJ  is the 

electron-proton Coulomb energy. These terms are defined according to standard quantum 

chemistry definitions, and the subscript indices denote the electronic and protonic spin orbitals.124 

Note that the repulsion term between classical nuclei is omitted from Eq. (4) for simplicity. 

Because the nuclear-nuclear exchange terms are negligible in molecular systems, and the lowest 

energy state corresponds to one nucleus per orbital, neglecting the effects of nuclear spin within 

the NEO framework is a well-justified approximation.   

The NEO-HF energy is optimized variationally by varying the coefficients of the basis 

functions in the electronic and nuclear spatial orbitals, leading to Hartree-Fock-Roothaan 

equations for the electrons and quantum protons: 

 

e e e e e

p p p p p





F S C ε

F S C

C

εC
  (5) 

Here e
F , 

e
C , 

e
S , and 

e
ε  are the electronic Fock matrix, orbital coefficient matrix, overlap matrix, 

and orbital energy matrix, respectively.10, 124  The protonic matrices are defined analogously.  

These equations are solved iteratively until self-consistency to produce the ground state mixed 

nuclear-electronic wave function, which can be used to calculate the total NEO-HF energy in Eq. 

(4).  

Over the past decade, even-tempered nuclear basis sets16-17, 21 have been developed for the 

quantum nuclei in terms of the traditional s, p, d, and higher angular momentum Gaussian basis 

functions used for electrons.125  Most of the calculations presented in this review were performed 

with the 8s8p8d8f even-tempered nuclear basis set with exponents spanning the range from 2 2
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to 32. These Gaussian basis sets allow the usage of the efficient integral codes developed for 

electronic structure packages.  Alternatively, more compact nuclear basis sets with exponents fit 

to relevant data sets can be used to optimize efficiency and accuracy.  Moreover, current 

applications assume that the electronic and nuclear basis functions associated with a given 

hydrogen atom are centered at the same position,10 although this restriction could be removed.  In 

general, the basis function centers for all quantum nuclei should be optimized variationally within 

the NEO framework.  Typically, this optimization of the basis function centers occurs as part of 

the self-consistent field procedure (i.e., as an outer loop when solving Eq. (5)). Alternative schemes 

are also possible, such as placing the basis function centers at the positions corresponding to the 

expectation values of the quantum protons. 

 Although the NEO-HF method is straightforward to implement, it does not provide even 

qualitatively reasonable proton densities and energies because of the inadequate treatment of 

electron-proton correlation, which is fundamentally different from electron-electron 

correlation.117, 119  Electron-proton correlation is particularly important because the electron-proton 

Coulomb interaction is attractive rather than repulsive.  In contrast, proton-proton correlation is 

negligible in molecular systems because the protons are predominantly localized.126 Because of 

the critical importance of electron-proton correlation, the proton densities are highly over-

localized, and other properties, such as vibrationally averaged geometries, energies, and 

frequencies are unreliable with the NEO-HF method.  For this reason, methods that are effective 

in electronic structure are not always effective within the NEO framework.  

Because the NEO-HF method does not produce accurate proton densities, the NEO-HF 

wave function is not a suitable reference for perturbative methods.  In particular, the NEO-MP2 
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method,22 which is based on second-order perturbation theory, does not lead to noticeable 

improvements in the proton densities.  The NEO-MP2 energy has the form 

 
pp(2) ee(2) ep(2)

NEO-MP2 NEO-HFE E E E E      (6) 

where 
pp(2)E , 

ee(2)E , and 
ep(2)E correspond to the second-order energy corrections for proton-

proton, electron-electron, and electron-proton correlation, respectively.22  These correlation 

energies are defined in more detail in Section 5.  Several other methods29-30, 35, 45, 48 that are 

equivalent or nearly equivalent to NEO-HF and NEO-MP2 suffer from the same 

problems.  Unfortunately, these methods do not yield accurate proton densities, rendering them 

unreliable for computing molecular properties.  In particular, geometric isotope effects, which rely 

on a delicate balance between the hydrogen stretch and bend frequencies, cannot be reliably 

predicted with the NEO-HF or NEO-MP2 approaches.37-38, 47-48, 127-130 

The proton-proton exchange and correlation energies are negligible in molecular systems 

because the protons are well-localized.47, 126  To illustrate this property, the electronic and protonic 

Coulomb and exchange contributions to the NEO-HF energy, as well as the MP2 electron-electron, 

proton-proton, and electron-proton correlation energy corrections,22 have been calculated for a 

series of representative molecules. This series consists of acetylene, ethylene, and ethane, which 

include two, four, and six quantum protons, respectively. These molecules are considered to be 

representative because of the different spatial arrangements of the quantum protons in each system 

and the proximity of the quantum protons for ethylene and ethane (Figure 1).  As shown in Table 

1, the protonic exchange contributions to the energy, as well as the proton-proton MP2 energy 

corrections, are negligible for all three molecules. These results indicate that proton-proton 

exchange and correlation energies are many orders of magnitude smaller than electron-electron 

exchange and correlation and electron-proton correlation energies. Note that the NEO-MP2 
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method does not provide accurate proton densities, which would impact the quantitative proton-

proton correlation contribution. 

Table 1. Electronic and Protonic Coulomb and Exchange Energies, as well as MP2 Correlation 

Energy Corrections, for Acetylene, Ethylene, and Ethane.a 

 

Je Jp Jep Ke Kp ee(2)E  
pp(2)E  

ep(2)E  

C2H2 54.675 0.158 10.892 4.530 6.20E-10 -0.265 -1.37E-09 -0.0067 

C2H4 63.785 1.333 24.371 5.166 < 1.0E-10 -0.288 -1.11E-07 -0.0136 

C2H6 73.050 3.530 39.345 5.751 1.57E-08 -0.318 -4.03E-07 -0.0204 

a J e =
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 are defined analogously, as given in Eq. 4.  The 

MP2 correlation energy corrections given in Eq. 6 are defined in Ref. 22.  All energies are given in Hartree. 

 

For predominantly electronically adiabatic systems, the standard grid-based approach 

provides accurate proton densities and energies. In the standard grid-based approach for a single 

quantum proton with all other nuclei fixed, the hydrogen is positioned at points comprising a three-

dimensional grid, and the energy at each point is computed by solving the time-independent 

electronic Schrödinger equation at the appropriate level of theory.  Subsequently, the proton 

vibrational wave functions and energies are determined by solving the three-dimensional time-

independent Schrödinger equation for the proton moving on this potential energy surface using the 

Fourier grid Hamiltonian (FGH) method.131-132  This type of grid-based calculation serves as a 

numerically accurate reference for testing the NEO methods for predominantly electronically 

adiabatic systems, where the electrons respond nearly instantaneously to the motion of the proton.  

The NEO-HF approach is much less accurate than this grid-based approach because the electronic 

and nuclear wave functions are determined within a mean field treatment for NEO-HF, in contrast 

to the grid-based approach, where the electrons respond fully to the proton position at each grid 

point.   



14 
 

2.2. Explicitly Correlated Wave Functions for Quantum Protons and Positrons 

Explicitly correlated methods using a wave function ansatz that includes Gaussian-type 

geminal functions133 within the SCF procedure provide a much more accurate description of 

electron-proton correlation. The following explicitly correlated wave function ansatz has been 

investigated within the NEO framework117-118 

 
2p geme pe

e p e e p p
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Here the Ngem Gaussian-type geminal functions depend on the electron-proton distance, as well as 

the parameters bk and γk, which are determined for small model systems and remain constant during 

the variational procedure.61-62, 117-119 In the NEO explicitly correlated Hartree-Fock (NEO-XCHF) 

approach,117-118 the NEO-XCHF energy is computed as the expectation value of 
  
H

NEO
 given in Eq. 

(1) with respect to the NEO-XCHF wave function given in Eq. (7).  This energy is optimized 

variationally with respect to the coefficients of the basis functions in the electronic and nuclear 

orbitals within the Slater determinants, leading to two sets of equations corresponding to the 

electrons and quantum protons that must be solved iteratively to self-consistency.  In the reduced 

XCHF approach, denoted NEO-RXCHF,56, 61 only specified electronic orbitals are explicitly 

correlated to the nuclear orbitals to enhance the computational efficiency. Moreover, for the 

systems studied, the NEO-RXCHF method was found to be more accurate than the NEO-XCHF 

method, which correlates all electronic orbitals to the nuclear orbitals in the same manner using 

the same geminal parameters. By explicitly correlating only the relevant electronic orbitals to the 

nuclear orbitals, the RXCHF method ensures that the geminal parameters and explicitly correlated 

wave function are optimized to produce an accurate description of the key short-ranged electron-

nucleus interactions. 
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Although the NEO-RXCHF approach is more accurate than the NEO-XCHF approach, the 

proton densities are still over-localized, particularly for the off-axis, bending modes.61-62  

Moreover, the NEO-XCHF and RXCHF approaches require the calculation of up to six-particle 

integrals for systems with multiple quantum protons and therefore are computationally prohibitive 

for large molecular systems.  The accuracy of these approaches may be enhanced by allowing the 

electronic atomic basis functions or the geminal parameters to depend on the proton coordinate, 

thereby leading to more complex and expensive integrals that may not be analytically computable.  

Another option is to use a product rather than a sum of Gaussian-type geminals, which would lead 

to higher-dimensional integrals that would also be computationally expensive (i.e., the dimension 

of the integrals would be equivalent to the number of quantum particles).  Other explicitly 

correlated methods have been applied to multicomponent systems in which all nuclei as well as all 

electrons are treated quantum mechanically.65-75, 116 In some cases, these methods produce accurate 

results for small systems, but typically they are not computationally tractable for larger molecular 

systems. 

 The NEO-XCHF approach was more successful in applications to positronic molecular 

systems because the electron and positron masses are identical, avoiding the substantial mass 

disparity inherent to treating electrons and protons on equal footing.  In these applications, the 

electrons and positron are treated quantum mechanically on the same level, but the nuclei are fixed.  

Applications to positronium hydride (PsH), positron-lithium (e+Li), lithium positride (LiPs), and 

positron-lithium hydride (e+LiH) illustrated that the NEO-XCHF approach provides accurate 

average contact densities, electron-positron contact densities, two-photon annihilation rates, and 

electronic and positronic single-particle densities.53-54, 56   Moreover, this approach predicts 

reasonably accurate binding energies of a positron to lithium, beryllium, sodium, and magnesium, 
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as well as the electron-positron annihilation rates for these systems.59  Several highly accurate but 

computationally expensive methods, such as the stochastic variational method, have been applied 

successfully to positronic systems.67, 70, 72, 134-140  However, these approaches are not easily 

extended to larger systems due to the computational expense. 

 

3. Multicomponent Density Functional Theory (DFT) and Time-Dependent Density 

Functional  Theory (TDDFT) 

3.1. NEO-DFT 

Multicomponent DFT,11, 13, 46, 78-80, 141 which refers to DFT with more than one type of 

quantum particle, has been found to achieve an especially effective balance between accuracy and 

computational tractability.  Here the two types of particles are assumed to be electrons and protons, 

but the extension to other types of particles is straightforward.  The Hohenberg-Kohn theorems76 

have been derived for multicomponent systems.78  In this formulation, the total energy is a 

functional of the one-particle densities associated with the different types of quantum particles 

(i.e., the one-particle electron and proton densities).  The Kohn-Sham formalism77 has also been 

developed for multicomponent systems,11, 13, 46, 79 treating the reference system as the product of 

electronic and nuclear Slater determinants composed of Kohn-Sham orbitals.  In this case, the total 

energy is expressed as  

 
e p e p e p e p e p

ext ref exc pxc epc[ , ] [ , ] [ , ] [ ] [ ] [ , ]E E E E E E                (8) 

Here 
  
E

ext
[re ,r p] is the interaction of the two densities with the external potential created by the 

classical nuclei, 
  
E

ref
[re ,r p] includes the noninteracting kinetic energies of the electrons and 

quantum protons, as well as the electron-electron, electron-proton, and proton-proton classical 
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Coulomb energies, and the last three terms correspond to the electron-electron exchange-

correlation functional, the proton-proton exchange-correlation functional, and the electron-proton 

correlation functional.   

 Application of the variational principle leads to two sets of Kohn-Sham equations for the 

electrons and quantum protons:12 
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where the effective potentials contain terms based on the functional derivatives of terms in Eq. (8) 

with respect to either the electron or the proton density. Here  e e

1i r  and  p p

1I r  are the electron 

and proton Kohn-Sham spatial orbitals, respectively, that form the single-particle densities 

   
e 2

2
e e e e

1 1

1

2
N

i

i

 r r   and    
p 2

p p p p

1 1

1

N

I

I

 


r r . Analogous to the NEO-HF method discussed 

above, the electronic and nuclear spatial orbitals are expressed as linear combinations of electronic 

and nuclear basis functions, respectively, and the two sets of Kohn-Sham equations are solved 

iteratively to self-consistency.12  These Kohn-Sham equations are written for a restricted closed-

shell electron system with each spatial electronic orbital doubly occupied and a high-spin proton 

system with each spatial protonic orbital singly occupied. These equations are easily extended to 

open-shell electron systems.  

The implementation of NEO-DFT requires an electron-electron exchange-correlation 

functional, a proton-proton exchange-correlation functional, and an electron-proton correlation 

functional.  Within the NEO framework, the electron-electron exchange-correlation functional is 
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defined identically to the conventional electronic functionals.13  Thus, any electronic functional 

can be used within the NEO framework.15, 18  As discussed in Section 2.1, the proton-proton 

exchange and correlation energies are negligible in molecular systems because of the spatial 

localization of the protons. As a result, the proton-proton exchange-correlation functional is simply 

equated to the diagonal Hartree-Fock exchange terms to eliminate self-interaction error, although 

in practice all proton-proton exchange terms may be included.  The major challenge within this 

field has been the development of electron-proton correlation functionals.  Previous attempts that 

treated this term as a correction to the energy after the SCF procedure31, 38 were not able to produce 

even qualitatively accurate proton densities and therefore were unreliable.  Electron-proton 

correlation functionals based on the explicitly correlated nuclear-electronic wave function12, 14-15 

given in Eq. (7) were included during the SCF procedure and led to improved proton densities for 

the on-axis, hydrogen stretching modes. However, these functionals did not provide sufficiently 

accurate proton densities for the off-axis, hydrogen bending modes119, 142 and were 

computationally expensive. 

  Recently, a series of electron-proton correlation functionals based on a multicomponent 

extension16-18, 20 of the Colle-Salvetti formalism143 were developed and shown to produce accurate 

proton densities, energies, and optimized geometries in a computationally efficient manner. These 

functionals have been denoted epc17,16-17 epc18,18 and epc1920 based on the year in which each 

one was developed.  Previously, this formalism produced the well-known Lee-Yang-Parr (LYP) 

electron-electron correlation functional,144 but several essential differences were required for its 

application to electron-proton correlation. The multicomponent Colle-Salvetti formulation started 

with the following multicomponent electron-proton wave function ansatz:16 
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        
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where the correlation factor is 

      e p 2 2, exp 1 (1 )i I r r         r r R R   (11) 

Here 
p

IR r , e p

i Ir  r r , and   R  is the inverse correlation length associated with electron-

proton correlation.  The subscript FCI for the wave functions given on the right-hand side of Eq. 

(10) denotes full configuration interaction for a given type of particle, including all exchange and 

correlation effects between particles of this type but only including a mean-field Coulomb 

interaction with the other type of particle.  

An important aspect of these electron-proton correlation functionals is that the inverse 

correlation length depends on both the electron and proton densities.  The analogous LYP 

electronic correlation functionals144 assumed that the inverse correlation length was the inverse 

Wigner-Seitz radius for the electron:  
1 3

e ( )   R R  .  For the epc1716-17 and epc1920 

functionals, the inverse correlation length was defined as the geometric mean of the inverse 

Wigner-Seitz radii for the electron and the proton:  
1 6 1 6

e p( ) ( )       R R R   .  Following this 

assumption,   R was expressed in terms of   R , followed by a Taylor series expansion of the 

correlation energy, truncation of this expansion, and several other approximations described 

elsewhere.16   

The epc17 functionals retained only terms depending on the electron-proton pair density 

and therefore are considered to be a local density approximation (LDA) type of functional.  These 

functionals have the following form:16 
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The three parameters a, b, and c were determined by fitting to the proton densities and energies of 

HCN and FHF‒.  The epc17-1 functional16 focused on reproducing accurate proton densities but 

does not provide accurate energies.  The epc17-2 functional17 was parameterized to reproduce 

reasonably accurate proton densities and energies, although the proton densities are not as accurate 

as those obtained with the epc17-1 functional.   

Previous multicomponent functionals based on the Colle-Salvetti formulation assumed that 

 
1 3

e ( )   R R  , identical to the form used to develop the analogous LYP electronic 

functionals.31-32, 38, 42  This assumption is not physically reasonable for multicomponent functionals 

because the correlation length between two different types of particles should depend on both 

densities.  Moreover, typically these previous functionals were not included in the SCF procedure 

but rather were added as corrections to the energies.31, 38  In this case, the proton densities are the 

same as the NEO-HF proton densities and are much too localized.  If the proton densities are 

nonphysical, other properties such as vibrationally optimized geometries, molecular vibrational 

frequencies, and vibronic couplings are not reliable. 

In contrast, the epc17 functional is included in the SCF procedure and leads to dramatic 

improvement in the proton densities.16  This improvement is illustrated by NEO calculations for 

FHF, where the proton and all electrons are treated quantum mechanically with fixed heavy nuclei 

(Figure 2 and Figure 3).  The grid-based reference proton density (black solid curve in Figure 3) 

was obtained by the FGH method described above using DFT to compute the energies on the three-

dimensional grid.132 The NEO-DFT/no-epc method (red dashed curve) includes electronic 
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exchange-correlation with the B3LYP functional144-146 but does not include any electron-proton 

correlation, and the NEO-DFT/epc17-2 method (blue dotted curve) includes electron-proton 

correlation as well as electronic exchange-correlation. The NEO-HF proton densities are nearly 

identical to the NEO-DFT/no-epc proton densities and therefore are not included in Figure 3. All 

of these proton densities are normalized in three-dimensional space.  This figure illustrates that the 

proton density computed without electron-proton correlation is highly over-localized and that the 

inclusion of electron-proton correlation significantly delocalizes the proton density, leading to 

much better agreement with the grid-based reference. Similar behavior was observed for the HCN 

molecule.  These differences are quantified by the root-mean-square deviation (RMSD) of the 

proton density provided by each NEO method relative to the proton density obtained with the grid-

based reference method.  The average of the RMSDs for the proton densities associated with the 

HCN and FHF‒ molecules are provided in Table 2. 

 

 

 

Figure 2. Protonic orbital (red mesh) in the FHF molecule calculated with the grid-based method.  

The fluorine atoms are shown in green, and the F—F distance is indicated. 

 

F–F distance 
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Figure 3. On-axis (top) and off-axis (bottom) proton density for the FHF– molecule calculated with 

the grid-based reference (solid black curve), NEO-DFT/no-epc (dashed red curve), NEO-

DFT/epc17-2 (dotted blue curve), and NEO-DFT/epc19 (dashed-dotted green curve) methods. The 

quantum proton basis functions are positioned at the origin, and the fluorine atoms are positioned 

at ± 2.1746 a.u.  On-axis refers to the slice of the proton density along the axis connecting the 

heavy nuclei, while off-axis refers to the slice perpendicular to this axis, crossing through the 

midpoint between the two heavy nuclei.  The B3LYP electronic functional, def2-QZVP electronic 

basis set, and 8s8p8d nuclear basis set were used to compute these densities.  Data obtained from 

Ref. 20. 

 

Table 2. Mean Unsigned Error (MUE) of Calculated Proton Affinities with Respect to Experimentally 

Determined Values, RMSD of Proton Density Calculated with NEO Method versus FGH Reference, and 

Equilibrium FF Distance for FHF– a 

Method 
Proton affinity 

MUEb 

Proton density 

RMSDc 
Equilibrium FF 

distanced 

NEO-DFT/no-epc 0.78 0.775 2.3308 

NEO-DFT/epc17-2 0.06 0.261 2.3206 

NEO-DFT/epc19 0.06 0.170 2.3302 

FGHe N. A. N. A. 2.3185 

DFT 0.05 N. A. 2.2978 
a The calculations reported in this table used the B3LYP electronic functional, the def2-QZVP electronic basis 

set, and the 10s10p10d nuclear basis set, with the exception of the proton density RMSD calculations, which 

used the 8s8p8d nuclear basis set. 

b The MUEs for the proton affinities are in units of eV.  The 23 molecules studied are NH
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c The RMSD was computed as the square root of the average of the squares of the differences between the 

NEO-DFT and FGH proton density at each grid point of the three-dimensional grid. For FHF−, the F atoms 

are located at ±1.1507 Å, and the cubic grid ranges from −0.5610 Å to 0.5984 Å along and perpendicular to 

the F–F axis. For HCN, the carbon and nitrogen atoms are positioned at 0.0 Å and −1.1463 Å, respectively, 

and the cubic grid ranges from 0.3245 Å to 1.8652 Å along the C–N axis and from −0.7455 Å to 0.7952 Å 

perpendicular to this axis. The reported RMSD value is the average RMSD obtained for the HCN and FHF‒ 

systems given in atomic units. Data from Ref. 20. 
d The equilibrium F—F distances are in units of Å.  Data from Ref. 20. 
e The FGH grid method serves as a benchmark reference for the calculated equilibrium F—F distances. 

 

 

In addition to the proton densities, the NEO-DFT method in conjunction with the epc17 

functional provides accurate proton affinities.17  The proton affinities were computed for a set of 

23 diverse molecules, including amines, aromatics, inorganics, and carboxylates.  The proton 

affinity of a molecule A was determined from the difference between E
A

, which is the energy of 

A computed with conventional DFT, and E
AH+

, which is the energy of AH+ computed with NEO-

DFT with only the additional proton treated quantum mechanically (Figure 4).  The constant 5/2 

RT, where T = 298 K, is added to this energy difference to account for the conversion from energy 

to enthalpy and the change in translational energy upon protonation of A.  Thus, the proton affinity 

is calculated from the following expression:17  

  PA(A) = E
A
- E

AH+ +
5

2
RT  (13) 

The geometries of both A and AH+ were optimized variationally for these calculations, and the 

differences in the vibrational energies associated with the nuclei other than the quantum proton for 

these two molecules were assumed to be negligible.  This assumption was tested and shown to be 

reasonable within the desired level of accuracy.23  The mean unsigned error (MUE) compared to 

experiment was 0.78 eV for NEO-DFT/no-epc and 0.06 eV for NEO-DFT/epc17-2, indicating a 

significant improvement upon inclusion of electron-proton correlation.  Note that the epc17-2 

functional was parameterized to reproduce qualitatively reasonable proton densities and energies 
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for HCN and FHF.17 Without further parameterization, this functional produced accurate proton 

affinities for the other 22 molecules in this set.  Although conventional electronic DFT with 

harmonic zero-point energy calculations produces a similar MUE of 0.05 eV,17 this conventional 

approach does not include anharmonic effects, which are important in other contexts discussed 

below.  In related work, the APMO method was combined with second-order propagator theory to 

compute accurate proton affinities,34, 147-151 but this approach does not provide accurate proton 

densities and therefore is not easily used to compute other molecular properties.    

 

 

 

 

Figure 4. Schematic representation of the calculation of the proton affinity for methylamine within 

the NEO framework, where the protonic orbital is depicted as red mesh, and the carbon, nitrogen, 

and hydrogen atoms are depicted as gray, blue, and white spheres, respectively. Reprinted with 

permission from Ref. 17. Copyright 2017 American Chemical Society. 

Another advantage of the NEO approach over conventional electronic DFT is that proton 

delocalization, anharmonicity, and zero-point energy are included in geometry optimizations.  To 

illustrate this effect, the equilibrium F—F distance in FHF was determined by minimizing the 

NEO-DFT energy.  The inclusion of nuclear quantum effects of the proton increases the 

equilibrium F—F distance by ~0.02 Å compared to the equilibrium distance obtained with 

conventional electronic DFT.17  The NEO-DFT/no-epc method over-estimates this distance, and 

the NEO-DFT/epc17-2 method produces a distance within 0.01 Å of the grid-based reference 

value.  
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As discussed above, the derivation of the epc17 functional was based on the assumption 

that the inverse correlation length is proportional to the geometric mean of the inverse Wigner-

Seitz radii of the electron and the proton.  To test the sensitivity of this approach to the form of the 

inverse correlation length, the epc18 functionals18 were developed with the assumption that the 

inverse correlation length was the arithmetic mean of the inverse Wigner-Seitz radii of the electron 

and the proton: b R( )µ re(R)é
ë

ù
û

1 3

+ rp(R)é
ë

ù
û

1 3

.18 After suitable parameterization, the epc18-1 

and epc18-2 functionals are of similar accuracy as the analogous epc17-1 and epc17-2 functionals 

for the proton densities and proton affinities.18  Thus, the specific form of the inverse correlation 

length is not critical, as long as it depends on both the electron and proton densities.  Because the 

epc17 functionals are more straightforward to implement, the epc17-2 functional has been used 

most extensively. Both the epc17 and epc18 functionals are based on the local density 

approximation (LDA) in the sense that they depend on only the local electron and proton densities.   

The more recently developed epc19 functional depends on the electron and proton density 

gradients, as well as the densities, and is a type of generalized gradient approximation (GGA) 

functional.20  This functional was obtained by following the formalism described above for the 

epc17 functional and retaining two additional terms that depend on the electron and proton density 

gradients. The epc19 functional has the following form: 
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  (14) 

This functional includes two additional parameters, d and k, compared to the epc17 functional, 

leading to a total of five parameters, and it depends on the mass of the quantum nucleus 
  
m

p
. The 
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epc19 functional was shown to provide more accurate proton densities and similarly accurate 

energies compared to the epc17-2 functional.20  The improved proton density for FHF‒ is depicted 

in Figure 3 (green dashed-dotted curve).  The MUE for the proton affinities of the set of 23 

molecules discussed above is identical for the epc17-2 and epc19 functionals.20  The equilibrium 

F—F distance for FHF obtained with the epc19 functional deviates slightly more from the grid-

based reference value compared to the distance obtained with the epc17-2 functional, but the 

differences between these distances are very small.20   

Furthermore, although the epc19 functional was parameterized for hydrogen, it was also 

shown to provide accurate densities and energies for deuterium without further parameterization. 

The NEO-DFT method in conjunction with either the epc17-2 or epc19 functional can be used to 

compute geometric isotope effects.  For example, the decrease in the equilibrium F—F distance 

upon deuteration of FHF was determined to be 0.0055 Å, 0.0021 Å, and 0.0008 Å when computed 

with the grid-based reference method, the NEO-DFT/epc17-2 method, and the NEO-DFT/epc19 

method, respectively.20 Given that the proton densities computed with NEO-DFT/epc19 are 

significantly more accurate than those computed with NEO-DFT/epc17-2 (Figure 3 and Table 2), 

the slightly more accurate geometric isotope effect obtained with NEO-DFT/epc17-2 appears to 

be fortuitous.  Moreover, the differences in these equilibrium F—F distance are quite small and 

arise from a subtle balance between the stretch and bend modes for hydrogen and deuterium.  More 

extensive parameterization of the epc19 functional for hydrogen and/or deuterium could lead to 

further improvements. A number of fundamental mathematical properties of the exact universal 

multicomponent functional have been derived.13 Although the epc17, epc18, and epc19 functionals 

were formulated from a wave function ansatz that satisfies some of the limiting conditions of the 

exact functional, the approximate parameterized form was designed to describe physical properties 
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of molecular systems. The analysis of the properties of these functionals and the development of 

functional forms that satisfy the conditions for the exact universal functional are potential future 

directions. 

Electron-electron and electron-proton correlation have been found to be predominantly 

uncoupled within the NEO framework,15 allowing the independent development of electronic 

exchange-correlation functionals and electron-proton correlation functionals.  The epc17, epc18, 

and epc19 functionals16-18, 20 were parameterized and tested in conjunction with the B3LYP 

electronic exchange-correlation functional.144-146 To test the transferability of these electron-proton 

correlation functionals, the proton affinities were computed with a series of seven other electronic 

exchange-correlation functionals in conjunction with the epc17-2 and epc18-2 functionals (Figure 

5).18  For both of these electron-proton correlation functionals, the MUE for the computed proton 

affinities for the set of 23 diverse molecules relative to the experimental values is similar for all 

electronic functionals studied.18  An exception is the SVWN electronic functional,152-153 which 

resulted in a larger MUE because of inherent limitations in the accuracy of this functional. Thus, 

these electron-proton correlation functionals are transferable and can be used in conjunction with 

any reasonable electronic exchange-correlation functional. 
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Figure 5. The MUEs for the calculated proton affinities for the set of 23 molecules given in Table 

2 relative to the experimental values. The proton affinities were calculated with the NEO-DFT/no-

epc (red), NEO-DFT/epc17-2 (green), and NEO-DFT/epc18-2 (blue) methods using eight different 

electronic exchange-correlation functionals. Reprinted with permission from Ref. 18. Copyright 

2018 American Institute of Physics. 

 

3.2. NEO-TDDFT for Excited States 

 The NEO-TDDFT method builds upon the conventional electronic formulation of 

TDDFT.154-163 The formalism for multicomponent TDDFT with all particles treated quantum 

mechanically was developed by van Leeuwen and Gross.83-84  Subsequently, the NEO-TDDFT 

method19, 21 was developed to compute excited electronic and proton vibrational states within the 

NEO framework, where only specified nuclei are treated quantum mechanically.  In this approach, 

the linear response of the NEO Kohn-Sham system to perturbative external nuclear and electronic 

fields is computed.  The working equation for NEO-TDDFT is19, 21 
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where 
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Here, the lower case indices i and j denote occupied electronic orbitals, while the indices a and b 

denote virtual electronic orbitals. The upper case indices are defined analogously for protonic 

orbitals. The density matrix is denoted by P, and the orbital energies are denoted by e . Because 

the derivation of Eq. (15) is based on the adiabatic approximation, in which the kernel is assumed 

to be frequency-independent, this formulation can only capture single excitations.  In principle, 

the character of these excitations may be pure electron, pure proton, or mixed electron-proton, as 

long as the excitation can be described as a linear combination of products of electron and proton 

determinants with only one singly-excited determinant in each term. 

The solution of Eq. (15) provides the electronic and proton vibrational excitation energies 

w  in a single calculation at a similar cost to electronic TDDFT.  The eigenvectors Xe and Ye 

contain the transition amplitudes for electronic excitations and de-excitations, respectively, and 

the protonic eigenvectors are defined analogously.  These eigenvectors are subject to the 

orthonormalization condition  
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For predominantly adiabatic systems, the electronic and proton vibrational excitations are distinct, 

and each excitation is dominated by either Xe and Ye or Xp and Yp (Figure 6).19, 21  In this case, the 

electronic excitation energies are very similar to those computed with conventional electronic 

TDDFT with the same electronic functional, with variations of only ~0.01 eV for the lower excited 

electronic states of the systems studied.19 However, significantly larger variations are observed for 

some of the higher excited electronic states in these systems, illustrating nonadiabatic vibronic 

mixing between the electronic and protonic excitations. Moreover, this vibronic mixing is expected 

to become more significant for predominantly nonadiabatic systems and processes. 

 

 

 

 

 

 

 

 

Figure 6. Schematic depiction of the electron and proton excitations that can be obtained from a 

single NEO-TDDFT calculation. The separation between the electronic and proton vibrational 

excitations depicted in this figure is typical of predominantly adiabatic systems. For systems with 

significant nonadiabatic effects between the electrons and proton(s), the single excitations would 

represent electron−proton vibronic excitations that are not separable. Reprinted with permission 

from Ref. 19. Copyright 2018 American Chemical Society. 
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The proton vibrational excitation energies computed with NEO-TDDFT have been 

compared to those computed with the grid-based reference method (i.e., the FGH method) 

described above.  The NEO-TDDFT proton vibrational excitation energies have been found to be 

mostly within 20 cm−1 of the grid-based reference values for the systems studied, with occasional 

differences of ~100 cm-1 (Table 3).21  Note that this level of quantitative accuracy requires large 

protonic and electronic basis sets for the quantum proton.  Furthermore, the NEO-TDDFT proton 

vibrational excitation energies are not as accurate for the vibrational states higher than those 

corresponding to the fundamental modes, most likely due to limitations of the electron-proton 

correlation functional or the linear response treatment with the NEO framework. 

Table 3: Proton Vibrational Excitation Energies (in cm-1) Calculated with the FGH Reference 

Method and the NEO-TDDFT Methoda  

 Vibrational Mode Grid 

NEO-TDDFT 

epc17-2       no-epc 

HCN 

CH bend 642 670 662 

CH stretch 3122 3110 3098 

FHF− 

FH bend 1245 1272 1249 

FH stretch 1659 1754 1823 

HNF2
+ 

NH asymmetric bend 466 610 621 

NH symmetric bend 1275 1262 1260 

NH stretch 2962 2986 2923 

a The heavy nuclei were fixed for these calculations.  The 8s8p8d8f nuclear basis set and the cc-pV6Z electronic basis 

set were used for the hydrogen nucleus.  The cc-pVTZ electronic basis set was used for the heavy nuclei with the 

exception that the cc-pVDZ electronic basis set was used for the two fluorine atoms in HNF2
+

. The electronic and 

nuclear basis functions for the quantum proton were centered at the XH bond distance obtained from a conventional 

electronic DFT geometry optimization, where X = C, F, or N. The B3LYP electronic functional was used. Data from 

Ref. 21. 

 

Despite violating the sum rules, the Tamm-Dancoff approximation has been shown to 

produce excitation energies similar to those obtained from the corresponding full linear response 
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treatment in conventional electronic structure theory.19, 24, 27, 36 The Tamm-Dancoff approximation 

within the NEO framework, denoted the NEO-TDDFT-TDA method, is represented by19 

 

e e e

T p p p

    
    

    

A C X X

C A X X
   (18) 

where the definitions of the   A
e
,   A

p
, and  C blocks are given in Eq. (16). In contrast to the 

electronic excitation energies, the proton vibrational excitation energies obtained with the NEO-

TDDFT-TDA method were found to exhibit errors of thousands of wavenumbers, indicating the 

importance of the Be  and   B
p

 blocks, as well as the  C block, in NEO-TDDFT.19  Interestingly, 

these NEO-TDDFT proton vibrational excitation energies are not very sensitive to the electron-

proton correlation functional (i.e., the results are similar for NEO-DFT/no-epc and NEO-

DFT/epc17-2, as shown in Table 3), suggesting that the NEO-TDDFT formulation is able to 

incorporate electron-proton correlation in an alternative manner through the de-excitations. This 

observation also highlights the importance of the Be and  C blocks for the accuracy of NEO-

TDDFT because the   B
p

 blocks are zero in the case of NEO-DFT/no-epc for a single proton.  

In addition to excitation energies, the formalism for computing transition densities and 

transition dipole moments within the NEO framework has been developed.19, 21 For a given 

protonically dominated excitation, the transition densities for NEO-TDDFT are calculated 

according to  

          p * p * p

trans X YI A IA I A IA

IA

       r r r r r   (19) 

where the indices I and A denote protonic occupied and virtual orbitals, respectively. The terms 

  
X

IA

p
 and 

  
Y

IA

p
 are elements of the NEO-TDDFT eigenvectors calculated according to Eq. (15). 
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Protonic transition densities can be used to characterize and visualize NEO-TDDFT excitations, 

as illustrated in Figure 7 for FHF. Another quantity that is useful for the characterization of NEO-

TDDFT excitations is the transition dipole moment vector, which indicates the polarization of the 

transition. For a given NEO excited state 
 
Y

k
, the transition dipole moment vector is defined 

according to 

 

  

Y
0

r̂
g
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= X

IA

p I r
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ù
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ù
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where r̂  = x̂ , ŷ , or ẑ  for g  = 1, 2, or 3, respectively, and the X and Y vector elements are 

obtained from solving Eq. (15).  The transition dipole moment vectors are of particular importance 

when calculating full molecular vibrational frequencies with the NEO-DFT(V) approach, as will 

be discussed in Section 4.1. 

 

Figure 7. Transition densities for degenerate bend mode (top) and stretch mode (bottom) for FHF, 

as computed with NEO-TDDFT in conjunction with the B3LYP electronic functional and the 

epc17-2 electron-proton correlation functional.  Reprinted with permission from Ref. 21. Copyright 

2019 American Institute of Physics.  

 

The NEO-TDDFT method has also been used to compute proton vibrational excitation 

energies for molecules with multiple quantum protons.121 In this case, the collective protonic 

excitations correspond to linear combinations of single excitations associated with different 

protons (Figure 8).  These collective protonic excitation energies are in good agreement with those 

obtained from normal mode calculations with fixed heavy nuclei, but they have the distinct 
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advantage of incorporating the anharmonic effects associated with the quantum nuclei.  As 

discussed in Section 4.1, the accuracy of these computed protonic excitations has been validated 

by calculations of full molecular vibrational frequencies.  Because the derivation of the NEO-

TDDFT equations given in Eq. (15) is based on the adiabatic approximation, in which the kernel 

is assumed to be frequency-independent, this formulation can only capture single excitations.  

 

 

Figure 8. Proton vibrational modes and excitation energies calculated with NEO-TDDFT in 

conjunction with the B3LYP electronic functional and the epc17-2 electron-proton correlation 

functional for HCCH with the carbon nuclei fixed at a separation of 1.207 Å. The red mesh depicts 

the ground state quantum proton density, and the red arrows indicate the direction of the transition 

dipole moment vector associated with each quantum proton. Mode (A) is a doubly degenerate CH 

symmetric bend, mode (B) is a doubly degenerate asymmetric CH bend, mode (C) is an 

asymmetric CH stretch, and mode (D) is a symmetric CH stretch. Reprinted with permission from 

Ref.121. Copyright 2019 American Chemical Society.  
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3.3. Stability Analysis 

The goal of a NEO-DFT calculation is to use the SCF procedure to find a solution that is 

the global minimum associated with the molecular orbital coefficients.164 A converged SCF 

solution identifies a stationary point, which may not correspond to the global minimum with 

respect to the molecular orbital coefficients. To determine whether the solution is a minimum or a 

saddle point, a stability analysis is required. While the gradient is always zero for an SCF solution, 

the orbital Hessian must be positive semi-definite for the solution to be a minimum rather than a 

saddle point. The stability matrix (i.e., the orbital Hessian) for NEO-DFT is identical to the 

working matrix in NEO-TDDFT given in Eq. (15) but has a different metric.19, 164 When the orbital 

Hessian has a negative eigenvalue, the underlying SCF solution corresponds to a saddle point, 

which is considered an instability. Electron-proton systems could potentially exhibit electronic, 

protonic, and electron-proton vibronic instabilities. Analysis of the internal and external stabilities 

with different constraints on the spin and spatial orbitals enables the characterization of SCF 

solutions.164 This type of stability analysis is also useful when searching for lower-energy 

solutions. 

 

4. Molecular Properties within the NEO Framework 

4.1. Computing Molecular Vibrational Frequencies 

 The calculation of molecular vibrational frequencies for comparison to experimental 

spectra is a challenge within the NEO framework because the Born-Oppenheimer separation is 

invoked between the subsystem containing the electrons and quantum protons and the subsystem 

containing the classical nuclei. In this case, the quantum protons are assumed to respond 
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instantaneously to the motion of the classical nuclei, and the NEO potential energy surface depends 

on only the classical nuclei.  For each classical nuclear configuration (i.e., for each point on the 

NEO potential energy surface), typically the quantum nuclear basis function centers are optimized 

variationally for a finite basis set.  The NEO Hessian matrix, 
  
H

NEO
 is composed of the second 

derivatives of the NEO energy with respect to the classical nuclear coordinates.165   In practice, 

this Hessian can be computed via a matrix folding procedure that rigorously accounts for the effect 

of the variational optimization of the basis function centers associated with the quantum nuclei.120  

Diagonalization of the mass-weighted NEO Hessian produces vibrational modes with 

contributions from only the classical nuclei.  However, clearly the quantum and classical nuclear 

motions are coupled in the molecular vibrational frequencies measured experimentally.  Thus, the 

challenge is to compute vibrational frequencies corresponding to modes composed of both 

quantum and classical nuclei. 

 The NEO-DFT(V) procedure120-121 addresses this challenge by coupling the NEO-DFT 

Hessian for the classical nuclei with the vibrational excitations produced by NEO-TDDFT for the 

quantum nuclei.  This procedure requires the generation of an extended Hessian that depends on 

the classical nuclear coordinates, represented by the collective coordinate c
r , and the expectation 

values of the quantum protons, represented by the collective coordinate q
r .   Here q

r  is a 

concatenation of the expectation value 
   
r

i

q = rr
i

q (r)drò  for each quantum nucleus, where 
   
r

i

q (r)  

is the density of the ith quantum nucleus. This approach is based on the assumption that each 

quantum nucleus occupies a distinct nuclear orbital that is spatially localized, and 
   
r

i

q (r)  is the 

square of this nuclear orbital. Such an assumption of effective distinguishability among the 

quantum nuclei is valid for most molecular systems of interest. The potential energy surface 
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associated with the extended coordinate space, which depends on the coordinates of the classical 

nuclei and the expectation values of the quantum nuclei, can be generated by introducing Lagrange 

multipliers to impose constraints on the expectation values.166 The stationary points in this 

extended coordinate space are identical to those in the original NEO coordinate space. The NEO-

DFT(V) procedure does not use this extended potential energy surface but rather uses information 

from NEO-TDDFT to incorporate anharmonic effects associated with the quantum protons. 

The extended NEO Hessian matrix is written as  
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. The 
  
H

0
 submatrix is composed of 

second derivatives of the NEO energy with respect to the classical nuclei with the expectation 

values of the quantum nuclei fixed.  After mathematical manipulations of various partial 

derivatives, this submatrix can be rigorously expressed as 
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=H

NEO
+H

1

T
H

2

-1
H

1
=H

NEO
+R

T
H

2
R  . (22) 

The NEO Hessian matrix 
  
H

NEO
 can be obtained analytically or numerically, assuming the Born-

Oppenheimer separation between the classical and quantum nuclei. The R matrix is defined as 

 
  
R =

dr
q

dr
c

 , (23) 

where the derivative for each quantum nucleus is given as 
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and can be calculated numerically or analytically from the gradient of the expectation value of 

each quantum nucleus with respect to each classical nucleus. The 
  
H

1
 submatrix can also be 

expressed in a mathematically rigorous manner as 

 1 2 H H R  . (25) 

Eqs. (21) – (25) indicate that if the 
  
H

2
 submatrix is known, then the target 

  
H

NEO

ext
 can be 

constructed. The direct calculation of 
  
H

2
 is challenging, however, because its elements are second 

derivatives of the NEO energy with respect to specific components of the expectation values of 

the quantum nuclei with other components fixed.  

To address this challenge, the harmonic vibrational excitation energies contained in the 

submatrix 
  
H

2
 are approximated by those obtained from a NEO-TDDFT calculation according to  
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2
=

¶2 E

¶rq 2
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è
ç
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ø
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r
c

= MUΩU-1
  (26) 

Here M is the diagonal mass matrix corresponding to the quantum nuclei, Ω  is the diagonal matrix 

with elements 
2  corresponding to the NEO-TDDFT proton vibrational frequencies for fixed 

classical nuclei, and U is a matrix that transforms the diagonal frequency matrix to the coordinate 

system of the classical nuclei. Note that this approach incorporates anharmonic effects inherent to 

NEO-TDDFT calculations of vibrational excitations. The expressions for the matrix elements of 

  
H

0
 and 

  
H

1
 are mathematically rigorous, and the main approximation in the construction of the 

extended NEO Hessian lies in the generation of 
  
H

2
 from quantities computed with NEO-TDDFT. 

To provide more details, the U matrix is constructed from the transition dipole moment 

vectors obtained from a NEO-TDDFT calculation according to  
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   (27) 

where  
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In Eqs. (27) and (28), Np is the number of quantum protons, k denotes a proton vibrational excited 

state, Q denotes a quantum proton with mass 
 
m

Q
, and 

 
u
g

kQ = u
x

kQ , 
 
u

y

kQ , 
 
u

z

kQ
 for g = 1, 2, and 3, 

respectively. The operator 
  
r̂
g

Q  in Eq. (28) acts on only the Qth quantum proton occupying the Qth 

nuclear orbital in the ground state and is associated with the matrix element 

 
p p

0
ˆQ

k QA QA

A

r X Q r A Y A r Q  
    
   . (29) 

Here r̂  = x̂ , ŷ , or ẑ  for g  = 1, 2, or 3 , 
 
Y

0
 is the protonic ground state, 

 
Y

k
 is the kth 

proton vibrational excited state, A denotes virtual protonic orbitals, and 
  
X

QA

p  and 
  
Y

QA

p  are protonic 

excitation and de-excitation amplitudes, respectively. For a single type of quantum nucleus (as in 

the purely protonic case presented here), the mass 
 
m

Q
 in the denominator of the expression for 
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u
g

kQ  can be factored out. However, Eq. (28) is a general expression for 
 
u
g

kQ  and is valid for systems 

with quantum nuclei of different masses. 

 The diagonalization of the extended NEO Hessian provides coupled vibrational 

frequencies that depend on both the classical and quantum nuclear coordinates.120-121  An example 

for HCN is depicted in Figure 9.  For HCN, the NEO Hessian provides only a single vibrational 

mode corresponding to the CN stretch, where the electrons and proton respond instantaneously to 

this motion.  NEO-TDDFT provides the three fundamental vibrational excitations associated with 

the quantum proton, namely two degenerate bend modes and one stretch mode.  The CN mode 

from the NEO Hessian and the three proton vibrational modes from NEO-TDDFT are combined 

to produce four molecular vibrational frequencies that couple the CN mode with the proton 

vibrational modes.  The resulting molecular vibrational frequencies are in excellent agreement 

with experimental values and with values obtained from conventional DFT calculations that 

include anharmonic effects perturbatively167 (Table 4). 

 

Figure 9. Diagrammatic representation of NEO-DFT(V) procedure for HCN. The quantum proton 

is represented by a red mesh, and the classical nitrogen and carbon nuclei are represented by blue 

and gray spheres, respectively. The top left panel shows the single vibrational mode obtained from 

the NEO Hessian. The bottom left panel shows the protonic NEO-TDDFT excitations for the 

doubly degenerate bend and stretch with the classical nuclei fixed. The right panel shows the 

coupling of the mode obtained from the NEO Hessian with the NEO-TDDFT vibrational 

excitations to obtain the full molecular vibrational frequencies.  Reprinted with permission from 

Ref. 120. Copyright 2019 American Chemical Society.  
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 Focusing on molecules with a single quantum proton, the XH stretch frequencies computed 

with NEO-DFT(V) for HCN, HNC, HCFO, HCF3, and FHF are in good agreement with 

conventional DFT calculations that include anharmonic effects perturbatively.120  Comparison to 

conventional DFT calculations based on the harmonic approximation illustrates that the inclusion 

of anharmonic effects lowers the frequency for the terminal hydrogen vibrational stretch modes.  

The frequencies obtained from both the NEO-DFT(V) and conventional electronic anharmonic 

DFT calculations are in excellent agreement with the experimental frequencies for the terminal 

hydrogen vibrational stretch modes.120  In contrast to the observations for the terminal hydrogen 

stretch modes, the inclusion of anharmonic effects increases the stretch frequency for the internal 

hydrogen in FHF−.  In this case, the frequencies obtained from the NEO-DFT(V) and conventional 

electronic anharmonic DFT calculations are similar to each other but do not agree well with the 

experimental frequency.  Coupled cluster singles and doubles with perturbative triples (CCSD(T)) 

calculations for FHF‒ indicate a similar magnitude of increase in the hydrogen stretch frequency 

(148 cm-1) due to anharmonic effects.168  However, the CCSD(T) calculations that include 

anharmonic effects are in much better agreement with the experimental frequency, suggesting that 

the discrepancy for NEO-DFT(V) arises mainly from limitations of DFT. 

Table 4. XH Stretch Frequencies (cm−1) Computed with NEO-DFT(V) and Conventional 

Electronic Anharmonic and Harmonic DFT.a 

 Experiment NEO-DFT(V) Conv. Anharmonic Conv. Harmonic 

HCN 3311 3317 3321 3439 

HNC 3653 3645 3644 3814 

HCFO 2976 2947 2942 3081 

HCF
3
 3035 2988 2999 3119 
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FHF− 1331 1695 1615 1451 

C2H2 

sym 
3374 3378 3390 3503 

C2H2 

asym 
3289 3263 3294 3388 

H2O2 

sym 
3609-3618 3599 3528 3792 

H2O2 

asym 
3610-3619 3596 3522 3789 

H2CO 

sym 
2783 2724 2706 2882 

H2CO 

asym 
2843 2772 2651 2935 

H2NF 

sym 
3234 3241 3192 3420 

H2NF 

asym 
3346 3336 3266 3506 

a 
Calculated data from Ref. 120 for the single-proton systems and Ref. 121 for the multiple proton systems.  These 

calculations were performed with the B3LYP electronic functional and the epc17-2 electron-proton correlation 

functional. The electronic and nuclear basis sets used in these calculations are given in Ref. 120 and 121. Experimental 

data from Ref. 169-174. 

 

The NEO-DFT(V) approach has also been applied to molecules with multiple quantum 

protons.121  In this case, the modes associated with the quantum protons are transformed to the 

classical nuclear coordinate system using the transition dipole moments computed with NEO-

TDDFT.  Table 4 provides the symmetric and asymmetric hydrogen stretch modes for the C2H2, 

H2O2, H2CO, and H2NF molecules.  For the NEO calculations, all electrons and all protons were 

treated quantum mechanically.  For each of these molecules, the NEO Hessian produces a single 

vibrational mode associated with the two heavy atoms, and NEO-TDDFT produces six collective 

modes composed of both quantum protons (Figure 9).  The NEO-DFT(V) approach couples the 

classical and quantum nuclear modes to produce seven molecular vibrational modes for linear 

molecules and six molecular vibrational modes for non-linear molecules.  The resulting vibrational 

frequencies are in excellent agreement with frequencies obtained experimentally and with 

conventional DFT including anharmonic effects perturbatively (Table 4).121 
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 The NEO-DFT(V) approach relies on three underlying assumptions: (1) the harmonic 

approximation underlying the Hessian formalism; (2) the representation of the quantum nuclei by 

their expectation values; and (3) the construction of the quantum nuclear submatrix from the proton 

vibrational excitation energies and transition dipole moment vectors computed with NEO-TDDFT.  

This approach incorporates the anharmonic effects associated with the quantum nuclei through the 

NEO-DFT geometry optimizations and the NEO-TDDFT vibrational excitation energies.  In 

principle, the anharmonic effects associated with the classical nuclei could be included 

perturbatively.  Note that this molecular vibrational analysis approach is also applicable to wave 

function-based NEO methods, which will be discussed in Section 5. 

 

4.2. Diagonal Born-Oppenheimer Corrections 

As discussed above, the Born-Oppenheimer separation is invoked between the subsystem 

containing the electrons and the quantum protons and the subsystem containing the classical nuclei 

in the NEO framework.  Thus, the quantum protons, as well as the electrons, are assumed to 

respond instantaneously to the classical nuclei.  Analogous to conventional electronic structure 

calculations,175-178 the multicomponent diagonal Born-Oppenheimer corrections (DBOCs) can be 

added to the NEO potential energy surface to incorporate some of the non-Born-Oppenheimer 

effects between the classical and quantum nuclei.26  For a NEO wave function of the form 

e p

NEO   , the adiabatic NEO potential energy surface including the DBOCs can be expressed 

as 
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The electronic and protonic DBOCs can be expressed as follows: 
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Interestingly, the magnitudes of the electronic and protonic DBOCs are similar for the molecules 

that have been studied,26 namely HCN, HNC, HCC–, HCCH, H2CCH2, H3CCH3, FHF– , and H5O2
+, 

in part because the molecules contain substantially more electrons than quantum protons.  In 

addition, the investigation of model systems indicates that the DBOC is proportional to an intrinsic 

energy scale as well as the ratio of the masses of the two types of particles, and this intrinsic energy 

scale is smaller for the quantum protons than for the electrons.26 

 Most importantly, inclusion of the DBOC has negligible impact on the equilibrium 

geometries and vibrational frequencies for the molecules that have been studied.26  For these 

molecules, the DBOC impacts the bond lengths of the optimized geometries by less than 10−3 Å.  

Moreover, the DBOC impacts the vibrational frequencies by 1 – 2 cm−1 per quantum proton 

bonded to the heavy nuclei involved in the vibrational mode.  Thus, the Born-Oppenheimer 

separation between hydrogen and the other nuclei does not impact the molecular properties at 

equilibrium.  However, the DBOCs may become more important for regions of the potential 

energy surface far from equilibrium or for floppier molecules or clusters.  In such cases, the 

minimum energy paths and dynamics could be propagated on the full adiabatic NEO potential 

energy surface, including the DBOCs, as given by Eq. (30).  Furthermore, the DBOCs can also be 

computed for correlated wave function NEO methods, such as NEO-CCSD and configuration 

interaction methods, by extending analogous formulations developed for conventional electronic 

structure theory.178-182 
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5. NEO Wave Function Methods 

5.1. Theoretical Formalism for Configuration Interaction (CI) and Coupled Cluster (CC) 

Approaches 

Multicomponent wave function methods, in which more than one type of particle is treated 

quantum mechanically, offer another route for inclusion of correlation effects between quantum 

particles.10 The advantages of wave function methods183-185 are that they are parameter-free and 

systematically improvable, ultimately leading to the exact solution for a given multicomponent 

system. For simplicity, the theoretical formalism in this section will be presented in the context of 

electrons and quantum protons, but it can be applied to any multicomponent system, including 

those with electrons and positrons. 

The NEO Hamiltonian defined in Eq. (1) is expressed in second quantization notation as 

 Ĥ
NEO

= h
q

pa
p

q +
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4
g
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pqa
pq
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Q +
1

4
g

RS

PQa
PQ

RS - g
qQ

pPa
pP

qQ  (32) 

The occupied electronic spin orbitals in the NEO-HF reference wave function are denoted by 

i, j,k,l,..., the unoccupied (virtual) electronic spin orbitals are denoted by a,b,c,d,..., and the 

general electronic spin orbitals are denoted by p,q,r,s,.... The protonic spin orbitals are defined 

analogously using upper-case indices. In this equation, a
p
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are second-

quantized excitation operators written as a string of electronic creation ( a
p

† ) and annihilation ( a
p

) operators. The protonic and mixed electronic-protonic excitation operators are defined 

analogously. Moreover, h
q

p º q ĥe p  is a matrix element of the electronic one-particle core 

Hamiltonian, and g
rs

pq º rs pq = rs pq - rs qp  is the antisymmetrized two-electron Coulomb 

repulsion tensor element. The corresponding protonic one-particle core Hamiltonian and the 
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antisymmetrized two-proton Coulomb repulsion tensor element are defined analogously. Finally, 

g
qQ

pP = qQ pP  is the electron-proton attraction tensor element. The standard Kutzelnigg and 

Mukherejee tensor notation along with the Einstein summation convention over repeated indices 

are used herein.186  

The NEO Hamiltonian in Eq. (32) is rewritten using the Wick’s theorem contraction 

rules186-187 as 

   (33) 

or simply 
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Here, Ĥ
N

is the normal-ordered (with respect to the NEO-HF reference wave function) NEO 

Hamiltonian, where  ( ) and  ( ) are normal-

ordered electronic (protonic) NEO Fock and fluctuation operators, respectively. Furthermore, the 

electronic NEO Fock matrix element is defined as F
q

p = h
q

p + g
qi

pi - g
qI

pI
, and the protonic NEO 

Fock matrix element is defined analogously. In addition,  is the normal-ordered 

electronic-protonic fluctuation operator. Finally, the NEO-HF energy is 
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NEO

0e0p

= h
i

i +
1

2
g

ij

ij + h
I

I +
1

2
g

IJ

IJ - g
iI

iI
 (35) 



47 
 

where 0e0p
 is the NEO-Hartree-Fock reference wave function. Note that Ĥ

N
 is also known as 

the correlation Hamiltonian because its action on a wave function produces the correlation energy 

contribution. For the exact wave function, it will give the exact correlation energy contribution to 

the total energy.  

Two common approaches for constructing the exact wave function lead to the same exact 

solution of the Schrödinger equation: full configuration interaction (FCI) and full coupled cluster 

expansion (FCC). The FCI approach assumes the linear wave function ansatz 

Y
NEO-FCI

= 1+ T̂( ) 0e0p
, whereas the FCC approach assumes the exponential wave function 

ansatz Y
NEO-FCC

= eT̂ 0e0p
.23, 63 The operator  is the cluster excitation operator that 

generates single, double, triple, and further excited determinants by acting on the reference state. 

These excited determinants are weighted by the unknown amplitudes (i.e., coefficients) t
m
, and 

they have different values for the two approaches. Here, m  represents the excitation manifold (i.e., 

single, double, and so forth) produced from excitations of the same particles (i.e., electrons or 

protons) or mixed particles (i.e., electrons and protons).  

In the limit where all excited configurations are included in the wave function expansion, 

these two approaches will produce the exact solution in the complete basis set limit. However, due 

to the factorial scaling of these methods, this limit is attainable for only small molecules with 

modest basis sets. For practical purposes, the cluster operator is truncated to include up to double 

excitations. This truncation leads to configuration interaction with singles and doubles (NEO-

CISD) and coupled cluster with singles and doubles (NEO-CCSD).23 In this case, the cluster 

operator has the form  
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   (36) 

where  ( ) and  ( ) are the electronic (protonic) single 

and double cluster excitation operators, and  is the mixed electronic-protonic double 

cluster excitation operator that promotes both particles simultaneously.  

The correlation energy and unknown cluster amplitudes are calculated for a 

multicomponent system in an analogous manner as with the conventional electronic structure 

counterparts. Thus, these quantities are computed for NEO-CISD from the equations 

      E
NEO-CISD

corr = 0e0p Ĥ
N

1+ T̂( ) 0e0p
 (37) 

 t
m
E

NEO-CISD

corr = m Ĥ
N

1+ T̂( ) 0e0p
 (38) 

and for NEO-CCSD from the equations 

 E
NEO-CCSD

corr = 0e0p e-T̂ Ĥ
N
eT̂ 0e0p

 (39) 

          0 = m e-T̂ Ĥ
N
eT̂ 0e0p

 (40) 

where m º
i

a ,
ij

ab ,
I

A ,
IJ

AB ,
iI

aA{ } is a set of excited determinants.23 These excited determinants 

are defined as  , and other excited determinants are defined analogously.  

Additional approximate methods have been developed by neglecting the single excitations 

within the NEO-CISD and NEO-CCSD methods. This neglect of the single excitations leads to 

the configuration interaction with doubles (NEO-CID) and coupled cluster with doubles (NEO-

CCD) methods. Furthermore, the second-order Møller-Plesset perturbation theory (NEO-MP2)22, 

30 method may be viewed as an approximation to the NEO-CCD method. This approximation is 
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achieved by imposing the Møller-Plesset partitioning of the normal-ordered NEO Hamiltonian, in 

which the zeroth-order contribution is a sum of normal-ordered Fock operators and the first-order 

correction is a sum of normal-ordered fluctuation operators. The NEO-MP2 energy and excitation 

amplitude equations are defined as 

  E
NEO-MP2

corr = 0e0p Ŵ
N

e +Ŵ
N

p +Ŵ
N

ep( )T̂2

(1) 0e0p
 (41) 

  0 = 0e0p F̂
N

e + F̂
N

p( )T̂2

(1) + Ŵ
N

e +Ŵ
N

p +Ŵ
N

ep( ) 0e0p
 (42) 

where  is the first-order excitation cluster 

operator and t (1)
 are the first-order amplitudes. The programmable expressions for Eqs. (37)-(40) 

and Eqs. (41)-(42) have been obtained23, 188 by applying the generalized Wick’s theorem.186-187  

In the context of calculating properties with wave function based methods, it is convenient 

to express the correlation contribution to the energy defined in Eqs. (37), (39), and (41) in terms 

of  the one- and two-particle reduced density matrices. The correlation contribution to the energy 

is given as  

  (43) 

where  and  are correlation one- and two-particle reduced density matrices.25 These matrices 

are defined as 

  (44) 

  (45) 

  (46) 

  (47) 
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  (48) 

where  Y
NEO

 is a normalized NEO wave function. For variational methods such as NEO-CISD,  

the calculation of these matrices is straightforward because Y
NEO

º Y
NEO

†

. In NEO-CCSD, 

where the amplitudes are obtained non-variationally, this property does not hold, and the bra is 

defined as Y
NEO

= 0e0p 1+ L̂( )e-T̂ , whereas the ket is defined as Y
NEO

= eT̂ 0e0p
. Here

 is a de-excitation operator, and l
m
 is a 

set of unknown de-excitation amplitudes also known as Lagrange multipliers.189-190 These de-

excitation amplitudes are determined by solving a set of L-equations defined as25  

   (49) 

Eq. (49) was obtained by making the NEO-CCSD correlation energy functional, 

E
NEO-CCSD

corr (t
m
,l

m
) = 0e0p 1+ L̂( )e-T̂ Ĥ

N
eT̂ 0e0p , stationary with respect to the excitation cluster 

amplitudes t
m
.190-192 The calculation of the NEO-MP2 density matrices is analogous to the coupled 

cluster procedure, except the first-order de-excitation operator L̂
2

(1)
 is defined as L̂

2

(1) = T̂
2

(1)†
. The 

programmable expressions for the NEO-CCSD L-equations as well as the reduced density 

matrices for different NEO wave function methods25 have been obtained by applying the 

generalized Wick’s theorem.186-187 
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5.2.  Orbital-Optimized Coupled Cluster with Doubles (NEO-OOCCD) and Second-Order 

Perturbation Theory (NEO-OOMP2) Methods 

In addition to the methods that rely on the NEO-HF orbitals discussed in the previous 

subsection, other types of orbitals have also been explored. For example, the Brueckner orbitals 

are defined to be the optimal orbitals in the presence of correlation effects.193 In the basis of the 

Brueckner orbitals, singly excited determinants do not contribute to the FCI expansion of the wave 

function.193 One way of obtaining the Brueckner orbitals is by a projective technique,194-198 in 

which the single excitation amplitudes in the NEO-CCSD method are removed by repeated unitary 

rotations of the orbitals. This approach is known as Brueckner coupled cluster with doubles and is 

denoted NEO-BCCD within the NEO framework.25 Note that early implementations of 

multicomponent CCD and BCCD included only electron-proton correlation, neglecting electron-

electron correlation, with applications limited to diatomic systems.30  

Related to the Brueckner orbitals are the optimized orbitals199-202 (Figure 10) that are 

obtained by minimizing the NEO-OOCCD energy expression  

 E
NEO-OOCCD

= 0e0p 1+ L̂
2( )e-T̂

2e X̂ †- X̂ Ĥ
NEO

e X̂- X̂ †

e
T̂

2 0e0p    (50) 

with respect to the orbital rotation parameters x
m

1

in addition to the t
m
and l

m
wave function 

parameters. This procedure corresponds to the orbital-optimized coupled cluster with doubles 

(NEO-OOCCD) method.188 In this equation, T̂
2
and L̂

2
 consist of doubles excitation and de-

excitation operators, respectively, and X̂ = X̂ e + X̂ p = x
a

i a
i

a + x
A

I a
I

A º x
m

1
m

1

å a
m

1 , where 

a
m

1 = a
m

1

† = a
i

a ,a
I

A{ }  are the second-quantized electron and proton single excitation operators. The 

unknown orbital rotation parameters, x = x
a

i ,x
A

I{ }, are obtained iteratively by solving the Newton-
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Raphson equation, x = A
-1

w, where  w  and A  are the orbital gradient and the orbital Hessian, 

respectively. These quantities are defined as  

  (w)
m

1

=
¶E

NEO-OOCCD

¶x
m

1

x=0

 (51) 

  (A)
m

1

n
1 =

¶2 E
NEO-OOCCD

¶x
m

1 ¶x
n

1 x=0

 (52) 

and their programmable expression are given in Ref. 188.  

 

 

Figure 10. Schematic depiction of the NEO-HF orbitals and NEO optimized orbitals. Reprinted 

with permission from Ref. 188. Copyright 2020 American Chemical Society. 

 

As discussed in the previous subsection, the NEO-MP2 method can be viewed as an 

approximation to the NEO-CCD method. Minimization of the NEO-MP2 energy given in Eq.  (6) 

with respect to the orbital rotation parameters, x = x
a

i ,x
A

I{ }, using the procedure described above 

produces the NEO-OOMP2 method.188 This method becomes significantly more accurate by 

applying scaling factors for the opposite-spin ( c
os

) and same-spin ( c
ss

) components in the second-

order correction to the electronic correlation energy Eee(2) .203-206 In the analogous conventional 

electronic scaled-opposite-spin (SOS) method, these two parameters were set to c
os
=1.2 and 



53 
 

c
ss
= 0.0. These same parameter values were used for the multicomponent NEO-SOS-OOMP2 

method.188 The accuracy of this method can be further improved by scaling the second-order 

correction to the electron-proton correlation energy, Eep(2), by an additional parameter, c
ep
=1.2, 

producing the NEO-SOS′-OOMP2 method.188 An advantage of these scaled-opposite-spin 

methods is that they can be implemented with N4 scaling with a combination of density fitting207 

and Laplace transformation of the energy denominators.208 

 

5.3. Benchmarking and Applications of NEO-CI, NEO-CC, and NEO-OOMP2 Methods 

The NEO-CISD, NEO-CID, NEO-CCSD, NEO-CCD, NEO-BCCD, NEO-MP2, NEO-

OOCCD, NEO-OOMP2, NEO-SOS-OOMP2, and NEO-SOS′-OOMP2 methods have been 

implemented and applied to molecular systems for benchmarking purposes.23, 25 As discussed 

above, the proton density is a particularly important quantity within the NEO framework. For the 

methods discussed in this section, the proton density is computed as 

 p p p p( ) ( ) ( )Q

P P Q

PQ

   r r r  (53) 

where  P  are the real protonic orbitals and  is a matrix element of the total proton 

density with g  defined as the NEO-HF one-particle proton density matrix. The proton densities 

were calculated with various NEO wave function methods for the FHF‒ and HCN molecules. 

These proton densities were compared to the grid-based reference method with the potential energy 

for the proton on the three-dimensional grid computed at the CCSD/aug-cc-pVTZ level of theory. 

As discussed above, the FGH method provides numerically accurate proton densities for 

predominantly electronically adiabatic systems.  Figure 11 depicts one-dimensional slices of the 

proton densities for FHF‒, where the hydrogen nucleus and all electrons are treated quantum 
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mechanically (Figure 2).  Table 5 provides the RMSD between each NEO method and the grid-

based reference averaged over the HCN and FHF‒ systems.   

 

 

Figure 11. On-axis (top) and off-axis (bottom) proton density for the FHF– molecule calculated 

with the grid-based reference (solid black curve), NEO-HF (dashed red curve), NEO-CCSD 

(dotted blue curve), and NEO-BCCD (dashed-dotted green curve) methods. The quantum proton 

basis functions are positioned at the origin, and the fluorine atoms are positioned at ± 1.1335 Å.  

On-axis refers to the slice of the proton density along the axis connecting the heavy nuclei, while 

off-axis refers to the slice perpendicular to this axis, crossing through the midpoint between the 

two heavy nuclei.  These densities were computed with the aug-cc-pVTZ electronic basis set for 

the classical nuclei, the aug-cc-pVQZ electronic basis set for the quantum hydrogen, and the 

8s8p8d8f nuclear basis set.  Data obtained from Ref.25. 

 

 The proton densities calculated with the NEO-HF method are highly over-localized 

compared to the grid-based reference proton densities. The NEO-CCSD method produces 

significantly improved proton densities, whereas its approximate analogs NEO-CCD and NEO-

MP2, as well as NEO-CISD and NEO-CID, provide negligible improvement compared to the 

NEO-HF method.23, 25 The superior performance of the NEO-CCSD method can be explained in 

terms of the exponential form of the single excitations in the coupled cluster ansatz. According to 

the Thouless theorem,209 the single excitations in the NEO-CCSD method account for partial 
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orbital relaxation by mixing the unoccupied orbital character into the new reference wave 

function.23, 25 This orbital relaxation is particularly important within the NEO framework because 

NEO-HF is a poor starting point as a reference wave function. In the FCI ansatz, the orbital 

relaxation effects are included not only through linear single excitations but also through the higher 

excitation ranks of the cluster operator. The NEO-CISD method neglects the excitation ranks 

higher than double excitations, and the linear form of the single excitations does not account for a 

sufficient amount of orbital relaxation. In contrast, the exponential form of the single excitations 

in NEO-CCSD includes more orbital relaxation even with the neglect of higher order excitations. 

In the NEO-BCCD method,25 the reference orbitals are fully optimized, showing slight 

improvement over the NEO-CCSD method in the prediction of proton densities (Figure 11 and 

Table 5).   

Furthermore, variational optimization of the orbitals, as in the NEO-OOCCD and NEO-

OOMP2 methods, significantly improves the proton densities compared to the corresponding 

NEO-CCD and NEO-MP2 methods that use the NEO-HF orbitals (Table 5). Similar conclusions 

about the importance of orbital relaxation were reached in the context of the recently developed 

NEO-CISDTQ method.210  The NEO-CCSD, NEO-BCCD, and NEO-OOCCD methods produce 

similar proton densities as those obtained by NEO-DFT with the epc17-1,16 epc18-118 and epc1920 

functionals but avoid any parametrization and are systematically improvable. The NEO-SOS′-

OOMP2 method also produces similarly accurate proton densities as NEO-DFT and, given the 

same formal scaling, can be used as an alternative to the NEO-DFT method to avoid some of the 

problems inherent to DFT.211-212 Moreover, the tails of the proton densities appear to be more 

accurate with the NEO-CCSD, NEO-BCCD, NEO-OOCCD, and NEO-SOS′-OOMP2 methods. 
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 The NEO wave function methods have also been employed to compute the proton affinities 

of twelve small molecules.23, 25 Table 5 provides the MUE of the computed proton affinities 

relative to the experimentally determined proton affinities. The NEO-CCSD, NEO-BCCD, NEO-

OOCCD, and NEO-SOS′-OOMP2 methods produce accurate proton affinities with a MUE of 0.04 

– 0.05 eV. This MUE is within both chemical accuracy (~0.05 eV) and experimental accuracy 

(~0.09 eV) for proton affinity measurements. The other correlated methods produce a lower MUE 

than that obtained with the NEO-HF method, but their errors are still above chemical accuracy. 

The accuracy of the NEO-CCSD, NEO-BCCD, and NEO-OOCCD methods for predicting proton 

affinities is similar to the accuracy of the NEO-DFT method with the epc17-2, epc18-2, and epc19 

functionals. Again, the main advantage of the NEO-CCSD and NEO-BCCD methods is that they 

are parameter-free, although they are more computationally expensive than the NEO-DFT 

methods. The parametrized NEO-SOS′-OOMP2 method, which has the same formal 

computational scaling as the NEO-DFT method, also exhibits similar accuracy. 

Table 5. Mean Unsigned Error (MUE) of Calculated Proton Affinities with Respect to 

Experimentally Determined Values, RMSD of Proton Density Calculated with NEO Method 

versus FGH Reference, and Equilibrium FF Distance for FHF– a 

Method 

Proton 

affinity 

MUEb 

Proton 

density 

RMSDc 

Equilibrium 

FF distanced 

NEO-HF 0.62 0.750 2.278 

NEO-MP2 0.32 0.748 2.307 

NEO-CID 0.21 0.748 2.278 

NEO-CISD 0.20 0.723 2.280 

NEO-CCD 0.16 0.741 2.290 

NEO-CCSD 0.04 0.165 2.293 

NEO-BCCD 0.04 0.148 2.290 

NEO-OOCCD 0.04 0.231 2.289 

NEO-OOMP2 0.25 0.358 2.312 

NEO-SOS-OOMP2 0.11 0.362 2.307 

NEO-SOS′-OOMP2 0.05 0.234 2.305 

FGHe N. A. N. A. 2.289 

CCSDf 0.08 N. A. 2.267 
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a The calculations reported in this table used the aug-cc-pVTZ electronic basis set for the classical 

nuclei and the aug-cc-pVQZ basis set for the quantum hydrogen, along with the even-tempered 

8s8p8d8f nuclear basis set. 

b The MUEs for the proton affinities are in units of eV.  The 12 molecules studied are CN–, NO2
–, 

HCOO–, NH
3
, HO–, HS–, H

2
O, H

2
S, CO, N

2
, CO2, CH2O.  Data from Ref. 23, 25. 

c The RMSD was computed as the square root of the average of the squares of the differences 

between the NEO-wave function method and FGH proton density at each grid point of the three-

dimensional grid. For FHF−, the F atoms are located at ±1.1335 Å, and the cubic grid ranges from 

−0.5610 Å to 0.5984 Å along and perpendicular to the F–F axis. For HCN, the carbon and nitrogen 

atoms are positioned at ‒1.058 Å and −2.206 Å, respectively, and the cubic grid ranges from ‒

0.7258 Å to 0.7742 Å along and perpendicular to the C–N axis. The reported RMSD value is the 

average RMSD obtained for the HCN and FHF‒ systems given in atomic units. Data from Ref.25. 
d The equilibrium F—F distances are in units of Å.  Data from Ref. 25. 
e The FGH grid method serves as a benchmark reference for the calculated equilibrium F—F 

distances. 
f The conventional electronic CCSD method includes harmonic zero-point energies for the proton 

affinities. 

 

 Another important characteristic of the NEO method is the incorporation of nuclear 

quantum effects during geometry optimizations, thus enabling the straightforward calculation of 

vibrationally averaged geometries. Table 5 contains the calculated equilibrium F—F distances for 

the FHF– molecule. The inclusion of nuclear quantum effects for the hydrogen nucleus using the 

grid-based reference method increases the equilibrium F—F distance by 0.022 Å.  The NEO-

CCSD, NEO-BCCD, and NEO-OOCCD methods predict equilibrium F—F distances that are in 

excellent agreement with the grid-based reference value.  

 The NEO-CCSD method can also be used to calculate geometric isotope effects in systems 

containing hydrogen or deuterium. The equilibrium F—F distance for FHF– decreases upon 

deuteration by 0.006 Å using the FGH method with the grid generated at the conventional 

electronic CCSD level.  The NEO-CCSD method predicts this decrease upon deuteration to be 

0.007 Å. This agreement illustrates that the NEO-CCSD method is able to accurately describe 

changes in equilibrium geometries resulting from deuterium substitution. 
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5.4. Equation-of-Motion Coupled Cluster with Singles and Doubles (NEO-EOM-CCSD) for 

Excited States 

 The equation-of-motion coupled cluster with singles and doubles (NEO-EOM-CCSD) 

method allows the calculation of the excited state energies and properties of a multicomponent 

system.24  This approach uses the ground state NEO-CCSD wave function, Y
NEO-CCSD

= eT̂ 0e0p

, as a reference. Then the target left and right excited state wave functions are  

  
ˆR e p

NEO-ex
ˆ 0 0TRe   (54) 

  
ˆL e p

NEO-ex
ˆ0 0 Te L   (55) 

where R̂  and L̂  ( R̂† ¹ L̂) are linear excitation and de-excitation operators,213-215 respectively, 

defined as 

   (56) 

   (57) 

using the same notation as introduced in Sec. 5.1.   

The excitation energies w  and the r  and l  amplitudes that parametrize the right and left 

excited state wave functions are determined by solving the left and right eigenproblems, 

respectively, given as24 
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where the building blocks of the non-Hermitian Hamiltonian are H
SS
= S H

N
S , 

H
SD
= S H

N
D , H

DS
= D H

N
S , and H

DD
= D H

N
D .213, 215 Here H

N
 is the normal-

ordered similarity-transformed NEO Hamiltonian defined to be H
N
= e-T̂ Ĥ

N
eT̂

.24 These equations 

are similar to the conventional electronic EOM-CCSD equations but differ in the dimensionality 

of the non-Hermitian Hamiltonian because S º
i

a ,
I

A{ } and D º
ij

ab ,
IJ

AB ,
iI

aA{ }. The 

programmable expressions have been obtained24 utilizing the generalized Wick’s theorem.186-187 

An additional advantage of the NEO-EOM-CCSD method for the calculation of excitation 

energies is that the excitation energies are size-intensive,216-217 signifying that the excitation 

energies are unaffected by the presence of non-interacting fragments.24 

 The NEO-EOM-CCSD method has been applied to positronium hydride (PsH) and has 

been compared to the NEO-FCI and NEO-FCC methods for benchmarking purposes.24 In this 

system, both electrons and the positron are treated quantum mechanically, and the hydrogen 

nucleus is treated classically. The NEO-FCC method for PsH is attained by extending the NEO-

CCSD cluster excitation operator with  to account for mixed triple excitations, in 

which both electrons and the single positron are promoted. The operators R̂   and L̂  are extended 

with an analogous term. Then the normal-ordered similarity-transformed NEO Hamiltonian is 

diagonalized in the basis of the 
i

a ,
I

A ,
ij

ab ,
IJ

AB ,
iI

aA ,
ijI

abA{ } excited determinants.24 Alternatively, 

the same result is obtained with the NEO-FCI method by diagonalization of the normal-ordered 

NEO Hamiltonian in the basis of the ground state reference wave function and excited 
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determinants 0e0p ,
i

a ,
I

A ,
ij

ab ,
IJ

AB ,
iI

aA ,
ijI

abA{ }.24, 51 The two approaches produce the same 

results for all excited states, as shown in Table 6 for the PsH system. 

 Table 6 also provides the ground state correlation energy and the first three excitation 

energies calculated with the NEO-FCI, NEO-FCC, NEO-EOM-CCSD, and NEO-CISD methods 

for the PsH system.24 Based on the leading NEO-EOM-CCSD amplitudes, the ground and the first 

three excited states have been characterized to have dominant contributions from the 1s
e

21s
p

1, 

1s
e

2 2 p
p

1, 1s
e

2 2s
p

1 , and 1s
e

12s
e

11s
p

1  configurations, respectively, where the subscripts e and p 

correspond to electronic and positronic orbitals. The first two excitations are predominantly 

positronic, and the third excitation is predominantly electronic. A schematic representation of PsH 

along with its ground and excited states with assigned configurations is depicted in Figure 12. The 

NEO-EOM-CCSD and NEO-FCI excitation energies are in excellent agreement, deviating by ~1 

mHartree, whereas the NEO-CISD excitation energies deviate by ~20 mHartree. This observation 

is consistent with conventional electronic CISD, which does not provide accurate excitation 

energies due to an unbalanced treatment of correlation effects in the ground and excited states.218  

Table 6. Ground State Correlation Energies and Excitation Energies for PsH Computed with 

Various NEO Methodsa 

state NEO-FCI NEO-FCC 
NEO-EOM-

CCSDb 
NEO-CISD 

ground state -0.090593 -0.090593 -0.085978 -0.085733 

1st excited state 0.156700 0.156700 0.155107 0.179252 

2nd excited state 0.165857 0.165857 0.166041 0.187039 

3rd excited state 0.242055 0.242055 0.239553 0.254243 
a The aug-cc-pVTZ basis sets were used both electrons and positrons. The excitation energy ω for each 

excited state is defined relative to the ground state energy. The energies are given in units of Hartree. Data 

from Ref. 24. 

b For the NEO-EOM-CCSD calculations, the ground state energy was determined with the NEO-CCSD 

method. 
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Figure 12. Schematic representation of the PsH system (left) and the ground and excited states 

(right). The energy levels are depicted with equal spacing, but the excitation energies are given 

relative to the ground state (Table 6).  Reprinted with permission from Ref. 24. Copyright 2019 

American Institute of Physics.  
 

The NEO-EOM-CCSD method can be applied to other types of multicomponent systems, 

such as those where all electrons and specified protons are treated quantum mechanically. Similar 

to the NEO-TDDFT method described in Sec. 3.2, the NEO-EOM-CCSD method allows the 

simultaneous calculation of the excited electronic and proton vibrational states, as well as excited 

mixed electron-proton vibronic states. Due to the systematically improvable nature of the NEO-

EOM-CCSD method, there is a clear path forward for accurately calculating excited states that 

correspond to double excitations.219-220 Furthermore, the NEO-DFT(V) method discussed in Sec. 

4.1 could be extended such that the NEO-EOM-CCSD method is used to compute the fundamental 

proton vibrational frequencies, thereby producing the molecular vibrational frequencies at the 

CCSD level.  The DBOC terms discussed in Sec. 4.2 could also be computed at the NEO-CCSD 

level to augment the potential energy surface during calculations of reaction paths and dynamics 

at this level. 
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6. Delta Self-Consistent Field (NEO-ΔSCF) and Multireference Methods      

6.1. NEO-ΔSCF                                                                                      

 Another method for computing excited states is NEO-ΔSCF,164 which is a natural extension 

of ΔSCF in conventional electronic structure theory.221-225  The goal of this approach is to identify 

higher-energy stationary solutions corresponding to local minima in orbital space.  NEO-ΔSCF 

has been used to compute the relative energies of HCN and HNC using different initial guesses 

corresponding to the proton localized near the carbon or the nitrogen, producing an SCF solution 

on each side.164  The energy splitting between these two SCF solutions is within 0.3 kcal/mol of 

the energy difference computed with the grid-based reference method.  A more interesting example 

is the calculation of the excited proton vibrational state for 2-cyanomalonaldehyde, where the 

proton moves in an asymmetric potential, as depicted in Figure 13.  For two different initial guesses 

localizing the proton near one oxygen or the other, two different SCF solutions were obtained.164  

The splitting between these two solutions is within 0.2 kcal/mol of the splitting computed with the 

grid-based reference method.  For both of these examples, the higher-energy SCF solutions were 

shown to be minima in orbital space using the stability analysis discussed in Section 3.3.  These 

cases were relatively straightforward because of very small overlap between the two SCF 

solutions. 

 More challenging applications may require different techniques.  To compute the excited 

proton vibrational states for molecules such as HCN or FHF‒, the initial guess can be chosen to 

correspond to the proton in the virtual orbital with the appropriate symmetry (i.e., a single node, 

analogous to the transition density depicted in Figure 7) instead of using the aufbau principle.  In 

some cases, the standard iterative procedure starting from this initial guess will produce an SCF 

solution of the proper character due to the different symmetries of the excited and ground states.  
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Other cases may require implementation of the maximum overlap method,222 which maximizes 

the overlap between the occupied orbitals of the current and preceding SCF iterations, or the initial 

maximum overlap method,224 which maximizes the overlap between the occupied orbitals and the 

initial orbitals, to prevent variational collapse to the ground state.  Another possibility is to extend 

the excited constrained DFT approach that has been used to compute low-lying excited electronic 

states to the NEO framework.226  Although the excited proton vibrational states obtained with these 

types of methods may be of the proper character, their energies relative to the ground state tend to 

be significantly over-estimated. 

To address this issue and to enable the description of certain types of double excitations, 

the NEO-ΔSCF and NEO-TDDFT methods can be combined.  The general strategy is that NEO-

ΔSCF solutions can be used as reference states in NEO-TDDFT calculations.  The underlying 

principles of this strategy are related to spin-flip approaches used in conventional electronic 

TDDFT.227  For 2-cyanomalonaldehyde, NEO-ΔSCF accurately describes the lowest proton 

vibrational state in the higher-energy well and produces a quantitatively accurate energy splitting 

between this state and the ground proton vibrational state localized in the lower-energy well 

(Figure 13 and solid red arrow in lower potential of Figure 14).164  Using either the ground proton 

vibrational state or the excited proton vibrational state obtained from NEO-ΔSCF as a reference 

state, NEO-TDDFT produces accurate fundamental proton vibrational excitations within each of 

these wells (Table 7 and blue arrows in lower potential of Figure 14).   

 

Table 7. NEO-TDDFT Excitation Energies (in cm−1) for 2-Cyanomalonaldehydea 

Excitation energy NEOa Grid 

E0
ʹ − E0

b 587 623 

E1 – E0 1050 974 
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E2 – E0 1357 1245 

E1
ʹ − E0 1652 1612 

a The energies with primes correspond to NEO-TDDFT states localized in the higher-energy well (right well in Fig. 

7), and the energies without primes correspond to NEO-TDDFT states localized in the lower-energy well (left well in 

Fig. 7).  All calculations were performed with the B3LYP electronic functional and the epc17-2 electron-proton 

correlation functional. The cc-pVDZ electronic basis set was used for all atoms except the quantum hydrogen. For 

computational tractability, the cc-pV5Z electronic basis set and the 8s8p8d8f nuclear basis set used for the quantum 

hydrogen were located at the minimum of only the left or the right well for each calculation.  
b This energy splitting was obtained from a NEO-∆SCF calculation to compute the lowest proton vibrational state in 

the higher-energy well.  This proton vibrational state, which has energy E0ʹ, was used as the reference to compute E1ʹ.  

 

 

Figure 13. One-dimensional slice of the proton potential energy surface and the lowest two proton 

vibrational states calculated with the other nuclei fixed to an average reactant/product geometry 

for 2-cyanomalonaldehyde.  The potential and proton vibrational wave function slices are 

generated along the line connecting the optimized positions of the transferring hydrogen (depicted 

in cyan mesh) on each oxygen (depicted as red spheres). The energy splitting between the lowest 

two proton vibrational states was calculated with the reference FGH method and with the NEO-

DFT method, as given in parentheses, indicating excellent agreement within 0.2 kcal/mol.  The 

NEO-DFT calculations were performed with the B3LYP electronic functional and the epc17-2 

electron-proton correlation functional. The electronic and nuclear basis sets used in these 

calculations are given in Ref. 164.  Reprinted with permission from Ref. 164. Copyright 2018 

American Institute of Physics. 

 

A similar strategy can be employed to describe double excitations involving both an 

electronic and a proton vibrational excitation.  This strategy entails the following steps: (1) perform 

a NEO-TDDFT calculation and identify the electronic excitation of interest; (2) use the dominant 
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determinant associated with this electronic excitation as the target for a maximum overlap method 

NEO-ΔSCF calculation to compute the NEO vibronic state of interest (dashed red arrows in Figure 

14); (3) use this vibronic state as the reference state in a NEO-TDDFT calculation to compute the 

proton vibrational excitations relative to this state (blue arrows in upper potential of Figure 14). 

This approach is feasible for an open-shell radical system if the electronic excitation of interest is 

dominated by the HOMO to LUMO (i.e., HOMO + 1) transition. However, complications are 

expected to arise for certain types of electronic excitations, such as excited singlet states, because 

of issues including unstable SCF solutions, spin contamination, and triplet instabilities.228-229   

As a proof of concept, a calculation of this type has been performed on HNF2
+. The 

geometry for HNF2
+ was optimized at the B3LYP/def2-QZVP level of theory. The subsequent 

calculations on this system used the B3LYP electronic functional, the cc-pVDZ electronic basis 

set, the epc17-2 electron-proton correlation functional, and the DZSPDN nuclear basis set.10 

Following the scheme outlined above, first a NEO-TDDFT calculation was performed on this 

system, and an electronic excitation dominated by a HOMO to LUMO excitation in the alpha set 

of orbitals was identified and found to have an excitation energy of 7.541 eV. Subsequently, the 

NEO-ΔSCF approach with the maximum overlap method was used to compute the excitation 

energy associated with this state, leading to an electronic excitation energy of 7.371 eV (dashed 

red arrow in Figure 14). Using the NEO-ΔSCF state as a reference, a NEO-TDDFT calculation 

was performed to compute the proton vibrational excitation energies in the excited electronic state 

(i.e., blue arrows in the S1 state in Figure 14). All of the resulting excitation energies, which 

correspond predominantly to proton vibrational excitations in the excited electronic state, were 

real. These results are not quantitative, given the relatively small basis sets used, and this method 

has not been extensively studied. The results presented here are intended only to demonstrate the 
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feasibility of performing such calculations. Thus, further developments are required, and caution 

in using these types of methods is warranted. 

 

Figure 14: Schematic depiction of different excitations that could potentially be described by 

combining NEO-TDDFT and NEO-ΔSCF. The lower and upper potentials correspond to the 

ground and excited electronic states, respectively.  The solid and dashed red arrows depict 

excitations that could be obtained with NEO-ΔSCF, and the blue arrows depict proton vibrational 

excitations that could be described with NEO-TDDFT using the reference at the start of the arrow. 

 

6.2. Nonorthogonal Configuration Interaction (NEO-NOCI) for Tunneling Splittings                                                                                           

 Multireference approaches are required for describing proton vibrational wave functions 

delocalized over two wells.122, 230  One such approach is the NEO-nonorthogonal configuration 

interaction (NEO-NOCI) method.122  For a system such as malonaldehyde (Figure 15), a set of 

electronic and nuclear basis functions can be positioned near the minimum of each well.  For 

single-reference methods, such as NEO-HF and NEO-DFT, the NEO vibronic wave functions 

naturally localize onto one of these basis function centers230 and can be computed with different 

initial guesses, as in NEO-ΔSCF.  The resulting two vibronic wave functions, each of which is 

localized in one well, are nonorthogonal and can be used as the determinants in a two-state NEO-

NOCI calculation to produce the adiabatic proton vibrational states delocalized over both wells.  
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At the NEO-HF level, the proton vibrational wave functions in each well are much too localized 

and cannot produce even qualitatively reasonable hydrogen tunneling splittings and vibronic 

couplings.  To address this problem, the localized protonic orbitals were fit to grid-based wave 

functions for an application of NEO-NOCI to malonaldehyde,123 but such an approach is not self-

contained. 

 

 

 

 

 

 

Figure 15. Schematic depiction of proton moving in symmetric double well potential and NEO-

DFT states localized in each well (blue mesh in chemical structures) for malonaldehyde. NEO-

NOCI mixes the NEO-DFT states to generate the adiabatic states delocalized over both wells 

(blue/red curves). The tunneling splitting Δ is the energy difference between the NEO-NOCI 

states. 

Alternatively, the accurate proton densities provided by NEO-DFT with the epc17-217 or 

epc1920 electron-proton correlation functionals within each well can be used in conjunction with 

the NEO-NOCI method in a multistate NEO-DFT approach. The NEO-DFT method includes 

dynamical electron-proton correlation to obtain accurate proton densities in each well, and the 

NEO-NOCI method includes static correlation to combine these two states in a manner that leads 

to proton vibrational wave functions delocalized over both wells. In contrast to constrained 

DFT,231-232 which applies spatial or spin constraints to localize the electronic wave function, no 

constraints need to be applied in the NEO framework because the vibronic wave functions 

naturally localize in one well with the single-reference methods studied to date. Thus, the localized 

Δ 
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states can be obtained with NEO-ΔSCF using different initial guesses. Although this type of 

combined approach is not theoretically rigorous, it provides a qualitatively reasonable starting 

point for the development of more rigorous methods. 

A challenge of this approach is the definition of the off-diagonal Hamiltonian matrix 

elements in the basis of the localized Kohn-Sham determinants, denoted A  and B . Analogous 

to the multistate DFT approach of Gao and coworkers,233-234 this off-diagonal matrix element could 

be approximated as 

  corr corr

AB A NEO B AB A B

1

2
H H S E E       (60) 

where 
A NEO BH   is the energy computed with the NEO-HF Hamiltonian and the Kohn-

Sham determinants, AB A BS     is the overlap between the Kohn-Sham determinants, and 

corr DFT HF

A A AE E E    is the difference between the NEO-DFT and NEO-HF energies for A . This 

form of the off-diagonal matrix elements ensures that the vibronic coupling obtained after 

symmetric orthogonalization is the same as the NEO-NOCI coupling using the Kohn-Sham 

determinants.  Other forms of the off-diagonal Hamiltonian matrix element could also be utilized.  

These types of multistate NEO-DFT approaches represent an exciting future direction. 

The calculation of accurate tunneling splittings in a molecule such as malonaldehyde also 

requires coupling of the transferring hydrogen nucleus to the vibrations of the other nuclei.  For 

this purpose, the NEO method for the quantum mechanical treatment of the transferring hydrogen 

nucleus has been combined with vibronic coupling theory for the quantum mechanical treatment 

of the other nuclei.123  Note that there are many highly accurate approaches, such as the 

MCTDH235-236 and diffusion Monte Carlo237-239 methods, for computing hydrogen tunneling 
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splittings. The NEO approach is not expected to be as accurate as such methods but has the 

advantage of computational efficiency, which will be important for larger molecular systems.   

 

6.3. Complete Active Space Self-Consistent Field (NEO-CASSCF) and Orbital-Optimized 

Configuration Interaction with Singles (NEO-OOCIS) 

 A more general multireference approach is the NEO complete active space SCF (NEO-

CASSCF) method,10 which is analogous to its conventional electronic structure counterpart.240  In 

this multicomponent multireference approach, an active space composed of electronic and nuclear 

orbitals is chosen, and all possible configurations generated by excitations within this active space 

are included in a CI expansion.  The total energy is minimized with respect to the electronic and 

nuclear molecular orbitals as well as the CI coefficients.  In principle, dynamical correlation could 

be included by applying second-order perturbation theory to the NEO-CASSCF reference 

function, analogous to the conventional electronic structure CASPT2 method.241-242  To date, NEO-

CASSCF has not been found to include sufficient electron-proton correlation to produce accurate 

proton densities,10 but larger active spaces and basis sets may improve the accuracy. 

 Another option is the NEO orbital-optimized configuration interaction with single 

excitations (NEO-OOCIS) method, which also minimizes the energy with respect to the CI 

coefficients and molecular orbitals. This method is the NEO extension of the conventional 

electronic OOCIS method proposed by Subotnik and coworkers.243 In this method, the NEO-CIS 

energy for a given excited state is stationary with respect to the electronic and protonic singles 

amplitudes (i.e., Xe and Xp  in Eq. (18)) and orbital expansion coefficients. The orbitals are 

optimized in an analogous manner as that described in the context of the NEO-OOCCD method. 

The proton vibrational excitation energies for the HCN molecule are summarized in Table 8. 



70 
 

Table 8: Proton Vibrational Excitation Energies (in cm-1) for HCN Calculated with the NEO-CIS 

and NEO-OOCIS Methods a  

Method CH bend CH stretch 

NEO-CIS 3714 4911 

NEO-OOCIS 638 3607 

Grid 642 3122 

a The heavy nuclei were fixed with a C—N distance of 1.148 Å, as obtained from a conventional electronic CCSD/aug-

cc-pVTZ geometry optimization. The nuclear and electronic basis function centers for the quantum proton were 

positioned at a distance of 1.058 Å from the carbon atom, corresponding to the hydrogen position for this optimized 

geometry. The NEO calculation employed the 8s8p8d8f nuclear basis set and the cc-pV6Z electronic basis sets for the 

hydrogen nucleus. The cc-pVDZ electronic basis set was used for the heavy nuclei. The grid reference was obtained 

from Table 3.  

 

As also indicated in Section 3.2 in the context of the TDA approximation, the NEO-CIS 

method produces inaccurate proton vibrational excitation energies relative to the reference grid 

results (Table 3 and Table 8). In contrast, the NEO-OOCIS method predicts proton vibrational 

excitation energies that are in reasonable agreement with the reference values. These calculations 

indicate that orbital optimization is crucial for obtaining even qualitatively accurate proton 

vibrational excitation energies. Moreover, these results suggest that the NEO-CASSCF method is 

a promising, more general approach for computing proton vibrational excitation energies. An 

advantage of these wave function approaches is the clear path forward for improving the excitation 

energies. 
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7. Other Approaches for Describing Nuclear Quantum Effects and Non-Born-Oppenheimer 

Effects                                           

 As discussed in the Introduction, several other multicomponent orbital methods have been 

developed.28-33, 35, 40, 42-43, 45-46, 48-49, 51, 80, 83-84, 147 Although the multicomponent Hartree-Fock and 

second-order perturbation theory methods suffer from over-localized proton densities, the coupled 

cluster methods23, 25, 30, 63-64 are promising, albeit more expensive.  The explicitly correlated wave 

function methods developed by Adamowicz and coworkers65-75 to treat all electrons and all nuclei 

quantum mechanically on the same level are highly accurate but computationally expensive.  As 

also discussed in the Introduction, the formalism for multicomponent DFT and TDDFT has been 

well-established.13, 46, 78-80, 83-84  Two earlier types of electron-proton correlation functionals based 

on the Colle-Salvetti formalism made the nonphysical assumption that the inverse correlation 

length depends on only the electron density, rather than both the electron and proton densities.31-

32, 38, 42  These functionals have not been shown to be broadly applicable for computing molecular 

properties.  The NEO-DFT method with the epc17 functional16-17 has been shown to produce 

accurate proton densities, optimized geometries, energies, and frequencies.  The NEO-DFT/epc17 

method is available in quantum chemistry packages such as GAMESS244 and Q-Chem245 and has 

also been incorporated into the deMon2k code246 in conjunction with density fitting methods to 

enhance the efficiency.247 

Other types of approaches for incorporating non-Born-Oppenheimer effects have also been 

developed. Abedi, Maitra, Gross, and coworkers have developed the exact factorization 

method,248-251 which rigorously reformulates the time-dependent Schrödinger equation to describe 

the quantum dynamics of an interacting electronic and nuclear system in terms of two coupled 

equations, providing the basis for nonadiabatic dynamics calculations.  Path integral and quantum 
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Monte Carlo methods can also be used to remove the Born-Oppenheimer approximation.95-96, 98-99, 

101, 103, 112-116  Such methods are rigorous but are also computationally expensive and limited in 

terms of the size of the system that can be studied. 

 Many more methods have been developed to include nuclear quantum effects within the 

Born-Oppenheimer approximation, where the nuclei move quantum mechanically on the adiabatic 

potential energy surface.  The multiconfigurational time-dependent Hartree (MCTDH) method109-

111 has been highly successful but often relies on an analytical potential energy surface, although 

recently it has been used without pre-computed potential energy surfaces.252-253 A variety of 

quantum nuclear wavepacket methods106-108 have been developed in conjunction with generating 

the potential energy surface on-the-fly, although the computational expense and scaling properties 

impose limitations on the system size.  Path integral methods have also been widely used for 

propagating nuclei on an adiabatic potential energy surface.  The ring polymer molecular dynamics 

(RPMD)92, 94 and centroid molecular dynamics (CMD)87-91 methods have been highly successful 

in treating all nuclei quantum mechanically in a computationally tractable manner.  Real-time path 

integral methods are also promising, although more expensive.97, 100 

 Nonadiabatic dynamics methods allow the study of processes that involve multiple 

potential energy surfaces.  The most widely used nonadiabatic dynamics methods treat the nuclear 

motion classically. In the Ehrenfest method, the nuclei move classically on an effective potential 

energy surface corresponding to a weighted average of the electronic states.254  Alternative 

approaches based on the initial value representation have also been developed.255-257  In the fewest 

switches surface hopping method,258 individual trajectories move classically on a single potential 

energy surface, and nonadiabatic transitions are incorporated between the surfaces according to 

the electronic time-dependent Schrödinger equation.  The more elaborate multiple spawning 
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method treats the nuclei as quantum mechanical wavepackets that move on individual surfaces but 

multiply and propagate to different surfaces as needed.259-263  The MCTDH method has been 

extended to nonadiabatic processes,110 and nonadiabatic extensions of the ring polymer molecular 

dynamics method have also been proposed.93, 95-96, 98-99, 101, 103 This discussion of other methods for 

including nuclear quantum effects and non-Born-Oppenheimer or nonadiabatic effects does not 

cover all of the possibilities but illustrates the wide range of options.   

 

8. Efficiency and Accessibility of NEO Approaches 

The NEO methods are not designed to replace the more rigorous and powerful wavepacket 

and path integral methods for treating all nuclei quantum mechanically.  Instead, the NEO methods 

are designed for situations in which only specified nuclei, typically the hydrogen nuclei, are treated 

quantum mechanically to capture the most essential nuclear quantum effects.  Advantages of the 

NEO approaches over some of these methods for certain applications are the computational 

efficiency and scaling, as well as the inclusion of non-Born-Oppenheimer effects between the 

electrons and quantum nuclei.  The computational cost of a NEO calculation is typically similar to 

the cost of the analogous electronic structure calculation because of the much smaller number of 

protons compared to electrons and the relative localization of the protons in molecular systems.  

Although HF and NEO-HF, as well as the DFT counterparts, have the same formal 

computational scaling, the NEO methods have a larger prefactor because of the need to converge 

both the electronic and protonic densities. Specifically, NEO SCF methods typically require more 

iterative cycles than their conventional electronic structure counterparts. However, the number of 

cycles can be greatly reduced by using suitable SCF protocols. For the initial guess, it is 

advantageous to first converge a pure electronic SCF calculation and use this electronic density as 
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a guess when constructing the protonic Fock matrix. Moreover, several options are possible for 

the iterative procedure. One option is to perform one electronic (protonic) orbital update followed 

by full convergence of the proton (electron) density in an alternating fashion. A second option is 

to fully converge the electronic and protonic SCF equations in an alternating fashion. A third 

option is to perform one electronic orbital update and one protonic orbital update in an alternating 

fashion. The second option, in conjunction with dynamically decreasing convergence criteria, has 

been found to be particularly effective. However, the convergence behavior depends on the 

specific system. These techniques, combined with direct inversion in the iterative subspace (DIIS) 

or Newton-Raphson methods, typically result in the convergence of a NEO calculation with a 

reasonable number of cycles.  

In terms of post-HF wave function methods, the increase in computational expense is 

typically even less pronounced.  For methods such as NEO-CCSD or NEO-CISD, the 

computational expense and memory requirement are dominated by the optimization of the 

electronic t or c amplitudes because typically the number of electronic basis functions is much 

greater than the number of protonic basis functions. The total number of double excitation t or c 

amplitudes is 
2 2 2 2

e e p p e e p po v o v o v o v , where o
e

, o
p

, v
e
, and v

p
 denote the occupied electronic and 

protonic and virtual (unoccupied) electronic and protonic orbitals, respectively.   As an example, 

consider the HCN molecule with 7 occupied and 100 unoccupied electronic orbitals, as obtained 

with a modest electronic basis set. For the 8s8p8d nuclear basis set, this molecule would have 1 

occupied and 71 unoccupied protonic orbitals. This system would have 490,000 versus 544,741 

double excitation amplitudes for conventional electronic CCSD versus NEO-CCSD. For wave 

function methods that are used for excited state calculations, such as NEO-CISD and NEO-EOM-

CCSD, the dimension of the singles-singles block in Eq. (58) is  e e p po v o v . For the HCN example 
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above, the dimension of the singles-singles block matrix for the conventional electronic versus 

NEO method is 700 versus 771. Thus, the computational cost of post-SCF methods is dominated 

by the size of the electronic space.  

In additional to the computational efficiency, the NEO approaches are as straightforward 

to use as the analogous electronic structure methods, simply requiring the selection of the quantum 

nuclei, a nuclear basis set, and an electron-proton correlation functional in the case of NEO-DFT. 

Thus, the NEO approaches enable non-experts to include nuclear quantum effects of specified 

protons into quantum chemistry calculations with similar ease and computational expense as 

conventional quantum chemistry calculations. The NEO approaches are available in several 

different quantum chemistry packages, including GAMESS244 and Q-Chem 5.3.245 

 

9. Remaining Challenges and Future Directions                             

Multicomponent quantum chemistry is still a relatively young and emerging field.  As a 

result, many challenges still need to be solved.  The development of more effective and efficient 

nuclear basis sets will enable a broader set of applications.  Within the field of NEO-DFT, the 

development of more accurate electron-proton correlation functionals is another important 

direction. Although the NEO-TDDFT method provides accurate fundamental vibrational 

excitations, the calculation of higher vibrational states will probably require the development of 

new electron-proton correlation functionals.  Moreover, the development of methods for 

computing double excitations must go beyond the linear-response NEO-TDDFT method.  Within 

the wave function methods, the accuracy of the NEO-CCSD approach would be enhanced by the 

inclusion of triple excitations, even if only in a perturbative manner.  The NEO-EOM-CCSD 

method is a promising but computationally expensive direction for computing electronic, 
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vibrational, and vibronic excitations and could be extended to describe double excitations.  

Multireference NEO methods, such as NEO-NOCI or NEO-CASSCF with a large, carefully 

selected active space, will be required to compute accurate hydrogen tunneling splittings and 

vibronic couplings. 

 To enable the study of even larger systems, such as proteins, the NEO approach can be 

combined with the vast array of hybrid approaches that have been developed for conventional 

electronic structure theory.  The NEO fragment molecular orbital (FMO) method has already been 

implemented and tested.264  Variants of embedding theory have also been formulated within the 

NEO framework.142 In addition, mixed quantum mechanical/molecular mechanical (QM/MM) 

methods or QM/QM methods in which the NEO approach is used for one of the QM levels can 

easily be implemented.  The NEO methods can also be used in conjunction with a dielectric 

continuum solvent,265 thereby enabling the calculation of more accurate pKa’s and solvation free 

energies of molecular systems.   

 The NEO approach will also be useful for studying reaction paths for chemical systems.  

The generation of minimum energy paths along the intrinsic reaction coordinate (IRC) will require 

analytic gradients, which are already available for the NEO-DFT methods, and analytic Hessians, 

which are under development.  Within the NEO framework, the IRC will be composed of 

contributions from only the classical nuclear coordinates.  In conventional electronic structure 

calculations, typically the IRC near the transition state is dominated by the transferring hydrogen 

nuclear coordinate for hydrogen transfer reactions. In the NEO approach, the transferring hydrogen 

nucleus is treated quantum mechanically on the same level as the electrons, and therefore it cannot 

contribute to the IRC in this manner. Thus, hydrogen transfer becomes analogous to electron 

transfer within the NEO framework, and the IRC is dominated by the motions of heavy nuclei that 
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alter the environment of the transferring hydrogen.  If the hydrogen samples an environment 

corresponding to a symmetric double well potential, where the proton vibrational wave function 

is bilobal, then multireference methods will be necessary.  For proton-coupled electron transfer 

reactions,7-9 analysis of the electron and proton densities along the minimum energy path will 

provide insights into the fundamental mechanisms of electron and proton transfer, distinguishing 

between sequential and concerted, or asynchronous and synchronous, mechanisms.  Thus, these 

types of calculations will provide new insights into chemical reactions. 

Another promising direction for the NEO approach is the investigation of the dynamics of 

chemical processes. At the simplest level, the classical nuclei can be propagated classically on the 

ground state NEO electron-proton vibronic potential energy surface.  In this case, the vibronic 

potential energy surface implicitly includes the zero-point energies of the quantum nuclei and 

depends explicitly on only the classical nuclear coordinates. This approach relies on the Born-

Oppenheimer separation between the quantum and classical nuclei. In order to account for non-

Born-Oppenheimer effects between the quantum and classical nuclei, the classical nuclei can be 

propagated on potential energy surfaces that include the diagonal Born-Oppenheimer corrections. 

However, initial studies suggest that these diagonal Born-Oppenheimer corrections may not 

impact the NEO potential energy surfaces significantly for many types of systems. 

A major advantage of the NEO approach is the inclusion of non-Born-Oppenheimer effects 

between the electrons and the quantum nuclei, as well as the ability to combine this approach with 

methods designed to include nonadiabatic effects between quantum and classical subsystems. To 

simulate nonadiabatic processes, surface hopping258 or multiple spawning259-261 methods can be 

used to incorporate nonadiabatic transitions between the electron-proton vibronic surfaces 

generated with NEO-TDDFT.  Similar to conventional electronic TDDFT, the simulations could 
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encounter difficulties if conical intersections between the ground and excited states play an 

important role.266  Multicomponent analogs of spin-flip TDDFT and related methods may enable 

a proper description of conical intersections involving the ground state.227  Another exciting 

direction is the development of real-time NEO-TDDFT, an extension of the conventional 

electronic real-time TDDFT. In the multicomponent extension, the time-dependent Schrödinger 

equation for electrons and quantum nuclei is integrated numerically.267-268  This approach will 

provide information about the dynamics of the electrons and quantum protons, as well as the 

classical nuclei, which could be propagated with Ehrenfest dynamics.269  The combination of real-

time NEO-TDDFT to describe the non-Born-Oppenheimer quantum dynamical effects between 

the electrons and quantum protons with Ehrenfest dynamics or other approaches to describe the 

nonadiabatic effects between the quantum and classical nuclei will be very powerful. 

Given all of these exciting directions to explore, the future of multicomponent quantum 

chemistry is wide open for innovation and technical advances.  Many of the multicomponent 

methods are extensions of their conventional electronic counterparts.  However, the additional 

complexity arising from treating both electrons and nuclei quantum mechanically on the same 

level often leads to technical challenges.  Moreover, in some cases, methods that are effective for 

electron-electron correlation are not adequate for electron-proton correlation, requiring the 

development of new types of approaches.  The efficient and accurate simulation of mixed nuclear-

electronic quantum dynamics also requires creative solutions. Thus, multicomponent quantum 

chemistry provides many opportunities for the development of novel approaches to overcome the 

wide array of remaining challenges. 
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CID Configuration Interaction with Doubles 

CIS Configuration Interaction with Singles 

CISD Configuration Interaction Singles and Doubles 
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DBOC Diagonal Born-Oppenheimer Correction 

DFT Density Functional Theory 

EOM-CCSD Equation-of-Motion Coupled Cluster Singles and Doubles 

epcX electron-proton correlation functional developed year X 

FCC Full Coupled Cluster 

FCI Full Configuration Interaction 

FGH Fourier-Grid Hamiltonian 

FMO Fragment Molecular Orbital 

HF Hartree-Fock 

IRC Intrinsic Reaction Coordinate 

LDA Local Density Approximation 

LYP Lee-Yang-Parr 

MCTDH Multiconfigurational Time-Dependent Hartree 

MP2 Second-Order Møller-Plesset Perturbation Theory 

MUE Mean Unsigned Error 

NEO Nuclear-Electronic Orbital  

NEO-DFT(V) Vibrational NEO-DFT  

NOCI Nonorthogonal Configuration Interaction 

OOCIS Orbital-Optimized Configuration Interaction with Singles 

OOCCD Orbital-Optimized Coupled Cluster with Doubles 

OOMP2 Orbital-Optimized Second-Order Møller-Plesset Perturbation Theory 

PA Proton Affinity 

QM/MM Quantum Mechanical/Molecular Mechanical 

RMSD Root-Mean-Square Deviation 

RXCHF Reduced Explicitly Correlated Hartree-Fock 

SCF Self-Consistent Field 

SOS Scaled-Opposite-Spin 

TDA Tamm-Dancoff Approximation 

TDDFT Time-Dependent Density Functional Theory 
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XCHF Explicitly Correlated Hartree-Fock 

ΔSCF Delta Self-Consistent Field 
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