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The difficulty of simulating quantum dynamics depends on the norm of the
Hamiltonian. When the Hamiltonian varies with time, the simulation complex-
ity should only depend on this quantity instantaneously. We develop quantum
simulation algorithms that exploit this intuition. For sparse Hamiltonian simu-
lation, the gate complexity scales with the L! norm [} dr ||H(7)||,,.., Whereas
the best previous results scale with tmax (g [|[H(7)|| 0. We also show anal-
ogous results for Hamiltonians that are linear combinations of unitaries. Our
approaches thus provide an improvement over previous simulation algorithms
that can be substantial when the Hamiltonian varies significantly. We introduce
two new techniques: a classical sampler of time-dependent Hamiltonians and a
rescaling principle for the Schrédinger equation. The rescaled Dyson-series al-
gorithm is nearly optimal with respect to all parameters of interest, whereas the
sampling-based approach is easier to realize for near-term simulation. These al-
gorithms could potentially be applied to semi-classical simulations of scattering
processes in quantum chemistry.
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1 Introduction

Simulating the Hamiltonian dynamics of a quantum system is one of the most promising
applications of a quantum computer. The apparent classical intractability of simulating
quantum dynamics led Feynman [25] and others to propose the idea of quantum compu-
tation. Quantum computers can simulate various physical systems, including condensed
matter physics [3], quantum field theory [28], and quantum chemistry [2, 14, 37, 48|. The
study of quantum simulation has also led to the discovery of new quantum algorithms,
such as algorithms for linear systems [27], differential equations [10], semidefinite optimiza-
tion [11], formula evaluation [23], quantum walk [17], and ground-state and thermal-state
preparation [20, 41].

Let H(7) be a Hamiltonian defined for 0 < 7 < ¢. The problem of Hamiltonian
simulation is to approximate the evolution exps (—i fg dr H(7)) using a quantum circuit
comprised of elementary quantum gates, where exps denotes the time-ordered matrix
exponential. If the Hamiltonian H(7) = H does not depend on time, the evolution operator
can be represented in closed form as e . Then the problem can be greatly simplified
and it has been thoroughly studied by previous works on quantum simulation [1, 4, 5, 7—
9, 13, 16, 18, 19, 29, 31-33, 35, 36].

Simulating a general time-dependent Hamiltonian H (7) naturally subsumes the time-
independent case, and can be applied to devising quantum control schemes [38, 40|, de-
scribing quantum chemical reactions [12], and implementing adiabatic quantum algorithms
[22]. However, the problem becomes considerably harder and there are fewer quantum
algorithms available. Wiebe, Berry, Hgyer, and Sanders designed a time-dependent Hamil-
tonian simulation algorithm based on higher-order product formulas [50]. They assume
that H(7) is smooth up to a certain order and they give an example in which a desired
approximation cannot be achieved due to the non-differentiability of the Hamiltonian. The
smoothness assumption is relaxed in subsequent work by Poulin, Qarry, Somma, and Ver-
straete [42] based on techniques of Hamiltonian averaging and Monte Carlo estimation.
The fractional-query algorithm of Berry, Childs, Cleve, Kothari, and Somma can also sim-
ulate time-dependent Hamiltonians [6], with an exponentially improved dependence on
precision and only logarithmic dependence on the derivative of the Hamiltonian. A related
quantum algorithm for time-dependent Hamiltonian simulation was suggested by Berry,
Childs, Cleve, Kothari, and Somma based on the truncated Dyson series [8|, which is
analyzed explicitly in [29, 36].

In this paper, we study time-dependent Hamiltonian simulation based on a simple
intuition: the difficulty of simulating a quantum system should depend on the integrated
norm of the Hamiltonian. To elaborate, first consider the special case of simulating a time-
independent Hamiltonian. The complexity of such a simulation depends on t|H|| [15],
where ||-|| is a matrix norm that quantifies the size of the Hamiltonian. It is common to
express the complexity in terms of the spectral norm || H]|| (i.e., the Schatten co-norm),
which quantifies the maximum energy of H.

In the general case where the Hamiltonian H(7) is time dependent, we expect a quan-
tum simulation algorithm to depend on the Hamiltonian locally in time, and therefore to
have complexity that scales with the integrated norm f(f dr||H(7)||. This is the L' norm of
| H (7)|| when viewed as a function of 7, so we say such an algorithm has L!-norm scaling.
Surprisingly, existing analyses of quantum simulation algorithms fail to achieve this com-
plexity; rather, their gate complexity scales with the worst-case cost t max (o4 | H (7)]|. Tt
is therefore reasonable to question whether our intuition is correct, or if there exist faster
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time-dependent Hamiltonian simulation algorithms that can exploit this intuition.'

Our work answers this question by providing multiple faster quantum algorithms for
time-dependent Hamiltonian simulation. These algorithms have gate complexity that
scales with [{ d7 ||H(7)]|, in contrast to the best previous scaling of ¢ max e [[H (7). As
the norm inequality [j dr ||H(7)|| < tmax ¢(oq [[H(7)|| always holds but is not saturated
in general, these algorithms provide a strict speedup over existing algorithms. We further
analyze an application to simulating scattering processes in quantum chemistry, showing
that our improvement can be favorable in practice.

We introduce notation and terminology and state our assumptions in Section 2. Fol-
lowing standard assumptions about quantum simulation, we consider two different input
models of Hamiltonians. The first is the sparse matrix (SM) model common for analyzing
Hamiltonian simulation in general, in which the Hamiltonian is assumed to be sparse and
access to the locations and values of nonzero matrix elements are provided by oracles. We
quantify the complexity of a simulation algorithm by the number of queries and additional
gates it uses. The second model, favorable for practical applications such as condensed
matter physics and quantum chemistry simulation, assumes that the Hamiltonian can be
explicitly decomposed as a linear combination of unitaries (LCU), where the coefficients
are efficiently computable on a classical computer and the summands can be exponentiated
and controlled on a quantum computer. We ignore the cost of implementing the coeffi-
cient oracle and focus mainly on the gate complexity. Quantum simulation algorithms can
sometimes work more efficiently in other input models, but we study these two models
since they are versatile and provide a fair comparison of the gate complexity.

Reference [6] claims that the fractional-query algorithm can simulate time-dependent
Hamiltonians with L°°-norm scaling. However, it is not hard to see that its query com-
plexity in fact scales with the L' norm. While we do not show how to achieve this scaling
for the gate complexity, our analysis is simple and suggests that such a result might be
possible. We analyze the query complexity of the fractional-query algorithm in Section 2.5.

We develop two new techniques to simulate time-dependent Hamiltonians with L'-
norm scaling. Our first technique is a classical sampling protocol for time-dependent
Hamiltonians. In this protocol, we randomly sample a time 7 € [0,¢] and evolve under
the time-independent Hamiltonian H (7), where the probability distribution is designed
to favor those 7 with large |[H(7)||. Campbell introduced a discrete sampling scheme
for time-independent Hamiltonian simulation [13] and our protocol can be viewed as its
continuous analog, which we call “continuous gDRIFT”. We show that continuous qDRIFT
is universal, in the sense that any Hamiltonian simulable by [13] can be simulated by
continuous qDRIFT with the same complexity. In addition, we shave off a multiplicative
factor in the analysis of [13]| by explicitly evaluating the rate of change of the evolution
with respect to scaling the Hamiltonian. Continuous qDRIFT and its analysis are detailed
in Section 3. Our algorithm is also similar in spirit to the approach of Poulin et al. [43]
based on Hamiltonian averaging and Monte Carlo estimation, although their algorithm
does not have L'-norm scaling. We discuss the relationship between these two approaches
in Appendix A.

We also present a general principle for rescaling the Schrodinger equation in Section 4.
In the rescaled Schrédinger equation, the time-dependent Hamiltonian H(7) has the same
norm for all 7 € [0,t], so the norm inequality i dr ||H(7)|| < tmax, ¢y || H(7)| holds

!For the Dyson-series approach, Low and Wiebe claimed that the worst-case scaling may be avoided by
a proper segmentation of the time interval [36]. However, it is unclear how their analysis can be formalized
to give an algorithm with complexity that scales with the L' norm. In Section 4, we propose a rescaling
principle for the Schrédinger equation and develop a rescaled Dyson-series algorithm with L'-norm scaling.
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with equality. Using this principle, we show that the simulation algorithm based on the
truncated Dyson series [8, 29, 36] can also be improved to have L!-norm scaling.

To illustrate how our results might be applied, we identify a specific problem in quantum
chemistry for which our L'-norm improvement is advantageous: semi-classical scattering
of molecules in a chemical reaction. For such a simulation, ||H(7)|| changes dramatically
throughout the evolution, so its L' norm can be significantly smaller than its L® norm.
We discuss this application further in Section 5.

Finally, we conclude in Section 6 with a brief discussion of the results and some open
questions.

2 Preliminaries

2.1 Time-dependent Hamiltonian evolution

Let H(T) be a time-dependent Hamiltonian defined for 0 < 7 < ¢. By default, we assume
that H(7) is continuously differentiable and H(7) # 0 everywhere, and we defer the discus-
sion of pathological cases to Section 6. If the Hamiltonian H(7) = H is time independent,
the evolution is given in closed form by the matrix exponential e~ . However, there exists
no such closed-form expression for a general H(7) and we instead represent the evolution
by exps (— i fg dr H(7)), where exps denotes the time-ordered matrix exponential. We
have

%expT ( _ z'/ot dr H(T)) — “iH(t) expy ( "y /Ot dTH(T)) (1)

If G(7) is another time-dependent Hamiltonian, the evolutions generated by H(7) and
G(7) have distance bounded by the following lemma.

Lemma 1 (L'-norm distance bound of time-ordered evolutions [45, Appendix B]). Let
H(T) and G(7) be time-dependent Hamiltonians defined on the interval 0 < 1 <t. Then,

expr < —i/othH(T)> —eXpT(—i/OthG(T))HOO < /Ot dr |H(r) - G- (2)

Here, |||, denotes the spectral norm.

We will abbreviate the evolution operator as E(t, s) := exp (—i [’ dr H(r)) when there
is no ambiguity. In the special case where H(7) = H is time independent, the evolution
e~"H only depends on the time duration so we denote E(t) := E(t,0). Therefore, we have
the differential equation

%E(t, 0) = —iH(t)E(t,0),  E(0,0)=1. (3)

We may further obtain an integral representation of E(t,0). To this end, we apply the
fundamental theorem of calculus to the Schréodinger equation and obtain

tq t
E(t,0) — I = E(t,0) — £(0,0) = / dr —E(1,0) = —i/ dr H(H)E(,0).  (4)
0 0
Equivalently, E(¢,0) satisfies the integral equation

B(t,0) = I —i /0 " dr H(r)E(r,0). (5)
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For any 0 < s < t, the evolution operator satisfies the multiplicative property
E(t,0) = E(t, s)E(s, 0). (6)
The operator E(0,¢) with ¢ > 0 is understood as the inverse evolution operator
E(0,t) := E~1(t,0) = ET(¢,0). (7)

For a thorough mathematical treatment of time-dependent Hamiltonian evolution, we refer
the reader to [21]. Finally, the quantum channel corresponding to the unitary evolution

E(t,0) is denoted as £(t,0) and is defined by
E(1,0)(p) := E(t,0)pE(t,0) = E(t,0)pE(0, ). (8)

For time-independent Hamiltonians, we denote £(t) := £(t,0).

2.2 Notation for norms

We introduce norm notation for vectors, matrices, operator-valued functions, and linear
maps on the space of matrices.

Let a = [al ay - aL} € C* be an L-dimensional vector. We use e[, to repre-
sent the vector £, norm of o. Thus,

L L
laly ==Y lagl, llallyi= | Sl ol = _max ol (9)
Jj=1 j=1 je{1,2,....L}

For a matrix A, we define ||A||, to be the Schatten p-norm of A [47, 51]. We have
[A]l, = Tr(VATA), (Al = /Tr(ATA), Al = max | A1)l - (10)

Finally, if f: [0,#] — C is a continuous function, we use || f[|, to mean the L” norm of the
function f. Thus,

= [Carlf@l Ili=y [ Al @R Il = max 5@l QD

€[0,]

We combine these norms to obtain norms for vector-valued and operator-valued func-
tions. Let a: [0,#] — C* be a continuous vector-valued function, with the jth coordinate
at time 7 denoted a;(7). We use [[af[, , to mean that we take the £, norm [|a(7)]|, for
every 7 and compute the L? norm of the resulting scalar function. For example,

t L L
lleelly 12/ dry_lai(m), el e = max > lay(7)]. (12)
0 = T€[0,t] =

Note that [[a(7)]], is continuous as a function of 7, so [lal|,, , is well defined and is indeed a
norm for vector- Valued functions. Similarly, we also define [ A][, , for a continuous operator-
valued function by taking the Schatten p-norm |[A(7)||, for every 7 and computing the L?
norm of the resulting scalar function. In rare cases, we will also encounter time-dependent

linear combinations of operators of the form A(7) = Y22, A;(7), and we write Al to
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mean that we take the Schatten p-norm [[A;(7)|, of each summand, and apply the £; norm
and L" norm to the resulting vector-valued functions. For example,

L
1All2,1,00 = max > [l A7)l - (13)

T€[0,t] =

We also define || A|| as the largest matrix element of A in absolute value,

max

1A e 1= miax Ay (14)
The norm || A, is & vector norm of A but does not satisfy the submultiplicative property
of a matrix norm. It relates to the spectral norm by the inequality |15, Lemma 1]

[ Al max < 1Al oo - (15)
If A is a continuous operator-valued function, we interpret ||A||
above. Therefore,

max,q in a similar way as

t
Al max,1 iz/ A7 AT e > [ Allmax,c0 7= max [|A(T) || jax - (16)
0 T€[0,¢]

Finally, we define a norm for linear maps on the space of matrices. Let £: A — E(A)
be a linear map on the space of matrices on H. The diamond norm of & is

1€l == max{[|(€ @ Ly)(B)], : [ Bll, <1}, (17)

where the maximization is taken over all matrices B on H ® H satisfying ||B||; < 1. Below
is a useful bound on the diamond-norm distance between two unitary channels.

Lemma 2 (Diamond-norm distance between unitary channels [9, Lemma 7]). Let V and U
be unitary matrices, with associated quantum channels V : p — VoVt and U : p — UpUT.
Then,

U=V, <2|U =V (18)

The sampling-based algorithm (Section 3) produces a channel close to £(t,0)(p) =
expr (—i[3 d7'H(7'))peXpJr (—i [y drH(T)), and its error is naturally quantified by the
diamond-norm distance. Other simulation algorithms such as the Dyson-series approach
(Section 4) produce operators that are close to the unitary exps ( —i [J d7H (7)), and we
quantify their error in terms of the spectral norm. For a fair comparison one may instead
describe all simulation algorithms using quantum channels and use the diamond-norm
distance as the unified error metric. By Lemma 2, we lose at most a factor of 2 in this
conversion.

2.3 Hamiltonian input models

Quantum simulation algorithms may have different performance depending on the choice
of the input model of Hamiltonians. In this section, we describe two input models that
are extensively used in previous works: the sparse matrix (SM) model and the linear-
combination-of-unitaries (LCU) model. We also discuss other input models that will be
used in later sections.

Let H(7) be a time-dependent Hamiltonian defined for 0 < 7 < ¢t. In the SM model,
we assume that H(7) is d-sparse in the sense that the number of nonzero matrix elements
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within each row and column throughout the entire interval [0,¢] is at most d. We assume
that the locations of the nonzero matrix elements are time independent. Access to the
Hamiltonian is given through the oracles

010C|j7 5> = |.77 COl(j7 S)>7 (19)
Ova1|7—)j7 ka Z> = |7—7j7 ka z® H]k(T)>
Here, col(j, s) returns the column index of the sth element in the jth row that may be
nonzero over the entire time interval [0,¢]. We quantify the complexity of a quantum
simulation algorithm by the number of queries it makes to O, and Oy, together with
the number of additional elementary gates it requires. Such a model includes many realistic
physical systems and is well-motivated from a theoretical perspective [27].
As the following lemma shows, a d-sparse Hamiltonian can be efficiently decomposed
as a sum of 1-sparse terms.

Lemma 3 (Decomposition of sparse Hamiltonians [6, Lemma 4.3 and 4.4]). Let H be a
time-independent d-sparse Hamiltonian accessed through the oracles O and Oy Then

1. there exists a decomposition H = 2?2:1 Hj, where each Hj is 1-sparse with || Hj|| . <
| H || and a query to any Hj can be simulated with O(1) queries to H; and

max’

2. for any v > 0, there exists an approrimate decomposition® |H — 72}7:1 Gl <

max —

V27, where n = O(d? |H||,... /), each G; is 1-sparse with eigenvalues 1, and a
query to any G; can be simulated with O(1) queries to H.

For the LCU model, we suppose that the Hamiltonian H(7) admits a decomposition

L

H(r) =Y au(r)Hi, (20)

=1

where the coefficients (1) > 0 are continuously differentiable and nonzero everywhere,
and the matrices H; are both unitary and Hermitian. We assume that the coefficients a;(7)
can be efficiently computed by a classical oracle Ocoer, and we ignore the classical cost of
implementing such an oracle. We further assume that each |0)(0| ® I + |1)(1| ® H; can be
implemented with gate complexity g., and each [0)(0|® I +|1)(1|® e~ for an arbitrarily
large 7 can be performed with g. gates. Such a setting is common in the simulation
of condensed matter physics and quantum chemistry. We quantify the complexity of a
simulation algorithm by the number of elementary gates it uses.

Quantum simulation algorithms can sometimes work in other input models. For ex-
ample, the qDRIFT protocol introduced in Section 3 requires only that the Hamiltonians
have the form

L
H(r) =) H(r), (21)
=1

where the Hermitian-valued functions H;(7) are continuous, nonzero everywhere, and can
be efficiently exponentiated on a quantum computer. We call this the linear combination

*Reference [6] uses [6, Lemma 4.3] and the triangle inequality to show that HH - 72?:1 Gj H <

V/2yd?. However, this bound can be tightened to /2y, since the max-norm distance depends on the largest
error from rounding off the d? 1-sparse matrices.
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Algorithms SM LCU

Monte Carlo estimation (first step) [42] || O((d? 1H | pax.00 1)°1/€) | O((letlly o0 1)*ge/€)

Fractional-query [6] O(d?|H | max.00 t7) N/A
Dyson series [8, 29, 36] O(d | H || pay o0 t72) O(llevll oo 00 tLge)
Continuous gDRIFT (Section 3.3) O((d? 1H || a1 )72/ €) O( HaHil ge/€)
Rescaled Dyson series (Section 4.2) O(d 1 H || a1 7) O( ]l o1 L?9e)

Table 1: Complexity comparison of previous algorithms (top three) and the algorithms introduced
in this paper (bottom two) for simulating time-dependent Hamiltonians. Logarithmic factors are
suppressed by O notation and the (non-query) gate complexities are compared. The product
formula algorithm of [50] is omitted as its gate complexity scales polynomially with high-order
derivatives and is not directly comparable to other algorithms in the table. The complexity of the
full Monte Carlo estimation algorithm [42] is not analyzed explicitly; only its first step is compared.
The fractional-query algorithm [6] does not have an explicit implementation for Hamiltonians in the
LCU model, and its implementation in the SM model is streamlined by the Dyson-series approach
[8, 29, 36].

(LC) model. On the other hand, the Dyson-series algorithm can be described in terms of
the SELECT operation

SELECT(H) := ZL: |1)(l| ® Hy, (22)
=1

irrespective of how this operation is implemented. We consider the SM and LCU models
for all the time-dependent simulation algorithms so that we can give a fair comparison of
their complexity.

2.4 Simulation algorithms with L!-norm scaling

We now explain the meaning of L'-norm scaling in the SM and the LCU models. Let
H(T) be a time-dependent Hamiltonian defined for 0 < 7 < ¢t. We say that an algo-
rithm in the SM model simulates H(7) with L'-norm scaling if, given any continuously
differentiable upper bound Apmax(7) > ||H (7)|| ,0x, the algorithm has query complexity and
gate complexity that scale with ||Amax|l; = fy A7 Amax(7) up to logarithmic factors. The
norm bound Apax(7), together with other auxiliary information, must be accessed by the
quantum simulation algorithm; we assume such quantities can be computed efficiently.

In the LCU model, we are given a time-dependent Hamiltonian with the decomposition
H(r) = Y, oy(7)H;. We say that an algorithm has L'-norm scaling if, for any contin-
uously differentiable vector-valued function A(t) with A;(7) > «ay(7), the algorithm has
query and gate complexity that scale with [|A, = J3 dr max; Aj(7) up to logarithmic
factors.

For better readability, we express the complexity of simulation algorithms in terms of
the norm of the original Hamiltonian, such as [|H| .. ; and [|a|[, ;, instead of the upper
bounds [[Amax||; and [[A]l,, ;- We use standard asymptotic notation, with O, Q, and ©
representing asymptotic upper, lower, and tight bounds, respectively. We also suppress
logarithmic factors using the O notation when the complexity expression becomes too
complicated. Table 1 compares the results of this paper with previous results on simulating
time-dependent Hamiltonians.

Our goal is to develop simulation algorithms that scale with the L'-norm with respect
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to the time variable 7, for both query complexity and gate complexity. We start by
reexamining the fractional-query approach. It was mentioned in [6] that this approach can
simulate time-dependent Hamiltonians with L°°-norm scaling, but we find that its query
complexity scales with the L! norm. We give this improved analysis in the next section.

2.5 Query complexity with L!-norm scaling

We begin by reviewing the result of [6] for simulating time-independent Hamiltonians. We
assume that the Hamiltonian is given by a linear combination of unitaries G = Zlel 5i1Gy
with nonnegative coefficients §;. Here, G; are both unitary and Hermitian, so they are
reflections and their eigenvalues are +1.

We say that a quantum operation is a fractional-query algorithm if it is of the form

UmQTm m—1""" leQT1 UOa (23)

where () is unitary with eigenvalues 1, U; are unitary operations, and 7; > 0. Here, we
regard () as the oracle and U; as non-query operations, so this algorithm has fractional-
query complexity 377" 7;. A quantum algorithm that makes (discrete) queries to @ is a
fractional-query algorithm with 7; = 1. Conversely, any fractional-query algorithm can
be efficiently simulated in the discrete query model. In particular, an algorithm with
fractional-query complexity 7" can be simulated with error at most € using O(T%)
discrete queries [6, Lemma 3.8].

To apply the fractional-query approach, we approximate the evolution under G using

the first-order product formula

r
e—itG _ (6_7;:”8101 L. e—iﬁﬁLGL)

_ O(W). (24)

o0

Observe that e "Gt are unitary operations with eigenvalues £1, so (e_’%BlGl “ee e_’%BLGL)T
can be viewed as a fractional-query algorithm with query complexity O(||3]|;t), provided
that we can make fractional queries to multiple oracles e~"7¢1 ... e~ CL_ This can be
realized by a standard fractional-query algorithm accessing the single oracle

L
SELECT(EXP-G) = Z 1)(l] @ e~ G (25)
1=1

with the same query complexity [6, Theorem 4.1].
To simulate with accuracy €, we set r = O((||8]|; t)?/€) to ensure that

o—itG _ <e—iﬁ6101 . e—iﬁﬁLGL>r = O(e). (26)

o0

We now convert this multi-oracle algorithm to a single-oracle algorithm with the same
fractional-query complexity T' = O(||5]|; t) and, with precision O(e), implement it in the
discrete query model. Altogether, this approach makes

log(T/e) \ log(181] t/¢)
O(Tloglogme)) -o( '5”1tloglog<u5u1t/e>) (21)

queries to the operation SELECT(ExP-G) = Y F | |1)(I| @ e~"Ct.
As mentioned in [6], the fractional-query approach can also be used to simulate time-
dependent Hamiltonians by replacing (24) with a product-formula decomposition of the
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time-ordered evolution. However, [6] only gives a brief discussion of this issue and the
claimed complexity has only L scaling. We now give an improved analysis of this algo-
rithm for the SM model, showing that its query complexity achieves L!-norm scaling.

Theorem 4 (Fractional-query algorithm with L'-norm scaling (SM)). A d-sparse time-
dependent Hamiltonian H(T) acting on n qubits can be simulated for time T € [0,t] with
accuracy € using

10g(d || H || pay o0 t/€) ) (28)

0(d2 H| ox
bt g Tog (@2 1y /0

queries to the oracles Oy, Oyal-

Proof. For readability, we assume that ||H ||, .1, [[H]|

upper bounds provided to the algorithm. We first decompose exps(—i [j dr H(7)) into a
product of evolutions of time-independent Hamiltonians H (kt/r), each evolving for time
< / " ods
kt
o0 ™

t/r. By Lemma 1, we have
kt
-7
r [e.e]
(k+1)t

<[, ds(s_";f> 2 —)

)kt
T

max oo and [[H'|| o are the norm
k) )

(k+1)t

expr <—z /ﬁ

‘ (k+1)t

dr H(T)) — e_i%H(%)

H
- 2r2 ’

which implies

1| o, 00 2

2r (30)

<

. t o —iiH(ﬁ)
exp7—<—z/ ds H(s)) - H e r\r
0 k=0 00
To approximate with precision ¢, it suffices to choose

r= O(W> (31)

€

Note that we use O here because we can choose r to be the minimum integer satisfying
(30), giving an upper bound on the number of steps that suffice to achieve error at most
€.

We then decompose the evolution under each time-independent sparse Hamiltonian
H(kt/r) for time t/r with precision O(e/r). By Lemma 3, H(kt/r) can be decomposed
into a sum of n = O(d? ||H (kt/r)||,,.. /) terms G;(kt/r) such that

n

H(kt/r) =~ Y Gi(kt/r)| < V27. (32)
‘7:1 max

Furthermore, each G; is 1-sparse and Hermitian with eigenvalues £1 and the value and

location of each non-zero matrix element in G; can be accessed using O(1) queries to H.

We choose v = O(e/td) so that

—it 1 (5) - 21, 65 (%)

a3 _ e ],

&

‘ o 00
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n

t
<! |H<kt/r> 1Y Gy(kt/r)
i=1 o
td !
< — |H(kt/r) —~ Z Gj(kt/r)

IN

e -0((5)-o(:)
r td r
In the third line we have used the inequality between the spectral norm and max norm,

in the fourth line we have used the bound on the max norm (32), and in the fifth line we
have used v = O(e/td). This implies n = O(d® ||H (kt/7)|| ,ax t/€) and the fractional query

complexity is 2 .
t H(kt/r
77;,}/ — O( || ( / )Hmax ) (33)

r

We apply the first-order product formula to obtain

e G (B) _ mitaGi(B) | itaGy(K)

r2

I CaLICTaTl

Therefore, it is possible to choose 1 as

S (LTI T (LR )

€ €

such that the error of the first-order product-formula decomposition is at most

€
o) &
By choosing r as the maximum of (31) and (35), we ensure that the error in each of the r

time steps is O(e/r), so the total error is O(e).
Altogether, we find a fractional-query algorithm with total query complexity

o (Z TG s @)

e G () L mitacn(B) | mitaG ()

k=0 r
and error
t r—1 . . S
eXpT(_Z'/ ds H(s)) - H (6—%276‘1('?) ...e—ZTZan(kf)> <e. (38)
0 k=0

We now convert this multi-oracle algorithm to a single-oracle algorithm with the same
fractional-query complexity and, with precision O(e), implement it in the discrete query
model. The single oracle for the standard fractional-query algorithm is now

r—1n(k)—1
SELECT(EXP-G) = > Y [k)(k| ® |I)(1] @ e~ Cukt/r), (39)

This oracle encodes the time-dependence of H in an ancilla. The operators U; in the
fractional-query algorithm then need to increment the time register.
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Altogether, we make

O(T log(T/¢) > B 0<§ &2 |H(kt)r)||, ot 108(d% [ H oy 00 t/€) >
log log(T/e) N E—0 r lOg 10g(d2 ||H||max,oo t/E)
discrete queries.

We now show how the query complexity of this approach achieves L'-norm scaling.
The intuition is that the total query complexity O( 3724 d? || H (kt/7)|| ax t/7) should be

(40)

close to O(d? [ dr ||H(7)||,,., ) When 7 is sufficiently large. Specifically,
r—1 (k+1)t
Z H()‘ 7_/ dT”H max Z/ max HH( >’
k=0 max max
(k+1)t
kt
< —HI=
Z / ) ( r ) ‘ max
HH llmax,o0 t
- 2r
(41)

To achieve an additive error of §, it suffices to choose

oIl )
]
Since § can be made arbitrarily close to 0, we have the total query complexity of
of [t 10g(d” || H| e, 00 t/€)
O(&( ) 9O e +8) e 76
Oy L 119 )
091 106 1o (@ [ H oo 1/€)

as claimed. O

(43)

The above analysis shows that the fractional-query algorithm can simulate a time-
dependent Hamiltonian with query complexity that scales with the L'-norm. However,
this approach does not directly give a useful result for the gate complexity. The difficulty
arises from the factor of g in [6, Proof of Theorem 1.1], which corresponds to the complexity
of applying a sequence of driving operations U;. These operations need to increment k
(indexing the time), as well as [, which takes n(k) values depending on k. Applying the
sequence of operations U; therefore requires determining new values of | and k, which
can depend on the sum of n(k) over a long sequence of values of k. This will introduce
significant gate complexity, so a fast algorithm would require a more efficient procedure
for implementing the driving operations.

Instead, we develop other quantum algorithms that achieve L'-norm scaling for not
only the query complexity but also the gate complexity. We employ two main techniques:
the continuous qDRIFT sampling protocol (Section 3) and a rescaling principle for the
Schrodinger equation (Section 4).

3 Continuous gDRIFT

We show in Section 3.2 that continuous qDRIFT is universal, in the sense that any time-
independent Hamiltonian simulable by the algorithm of [13] can be simulated by our pro-
tocol. We then discuss the simulation complexity in both the SM and the LCU models in
Section 3.3.
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The continuous qDRIFT protocol also has similarities with the approach of Poulin
et al. [43] based on Hamiltonian averaging and Monte Carlo sampling, although their
approach does not have L'-norm scaling. We give a detailed comparison between these
two approaches in Appendix A.

3.1 A classical sampler of time-dependent Hamiltonians

Let H(7) be a time-dependent Hamiltonian defined for 0 < 7 < t. For this section only, we
relax our requirements on the Hamiltonians: we assume that H(7) is nonzero everywhere
and is continuous except on a finite number of points. We further suppose that each H ()
can be directly exponentiated on a quantum computer. The ideal evolution under H(7) for
time ¢ is given by E(¢,0) = expy (—1 fg dr H(7)) and the corresponding quantum channel
is

E(t,0)(p) = E(t,0)pE'(t,0) —exp7—< /dTH >pexp7-< /dTH > (44)

The high-level idea of the sampling algorithm is to approximate the ideal channel by a
mixed unitary channel

3 i H(7) i H(T)
= [ drp(r)e v et (45)
0

where p(7) is a probability density function defined for 0 < 7 < ¢. This channel can
be realized by a classical sampling protocol. With a proper choice of p(7), this channel
approximates the ideal channel and can thus be used for quantum simulation.

We begin with a full definition of (¢, 0). Inspired by [13], we choose p(7) to be biased
toward those 7 with large ||H(7)||,,. A natural choice is

H(7)lloo

p(r) == 1Al (46)

Note that U(t,0) is a valid quantum channel (in particular, p(7) can never be zero). Fur-
thermore, it can be implemented with unit cost: for any input state p, we randomly sample
a value 7 according to p(7) and perform e~*#(7)/P(T) Note also that H(7)/p(7) in the ex-
ponential implicitly depends on ¢. Indeed, ||H||, ; includes an integral over time, so p(7)
decreases with the total evolution time ¢. We call this classical sampling protocol and the
channel it implements “continuous qDRIFT”.

This protocol assumes that the spectral norm ||H(7)]|, is known a priori and that we
can efficiently sample from the distribution p(7). In practice, it is often easier to obtain
a spectral-norm upper bound A(7) > ||H(7)||,,. Such an upper bound can also be used
to implement continuous qDRIFT, provided that it has only finitely many discontinuities.

Specifically, we define
A(r)
pA(T) = ; (47)
Al

so pa(T) is a probability density function. Using p, to implement continuous gDRIFT, we
obtain the channel

t L HE) L HG)
= [ drpatr)e” BT pe i, (48)
0
whose analysis is similar to that presented here. For readability, we assume that we can
efficiently sample from p(7) = [[H(7)||,, / [[H|| ., 1 and we analyze U(t,0).

We show that continuous qDRIFT approximates the ideal channel with error that
depends on the L'-norm.
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Theorem 5 (L'-norm error bound for continuous gDRIFT, short-time version). Let H(7)
be a time-dependent Hamiltonian defined for 0 < 1 < t; assume it is continuous except on
a finite number of points and nonzero everywhere. Define E(t,0) = exps(—i fg drH(7))
and let £(t,0)(-) = E(t,0)(-)ET(¢,0) be the corresponding quantum channel. Let U(t,0) be
the continuous ¢qDRIFT channel

Ut,0)(p) = | drp(r)e " »0 pe s | (49)
where p(1) = | H(T)|| oo / | Hlloo1- Then

IE(t,0) = U(t,0)ll, < 4[| HZ ;- (50)

I
Note that this bound is only useful when ¢ is small enough that the right-hand side of
(50) is less than 1 (the norm || H|| ; involves an integral over ¢, so it increases with t).
To prove this theorem, we need a formula that computes the rate at which the evolution
operator changes when the Hamiltonian is scaled. To illustrate the idea, consider the
degenerate case where the Hamiltonian H is time independent. Then the evolution under
H for time t is given by e . A direct calculation shows that
iefitsH — _itHefitsH (51)
ds ’
so the rate is —itHe ™" in the time-independent case. This calculation becomes signif-
icantly more complicated for a time-dependent Hamiltonian. The following lemma gives
an explicit formula for

(iexp7-<—i /Ot dr SH(T)). (52)

We sketch the proof of this formula for completeness, but refer the reader to [21, p. 35] for
mathematical justifications that are beyond the scope of this paper.

Lemma 6 (Hamiltonian scaling). Let H(7) be a time-dependent Hamiltonian defined
for 0 < 7 < t and assume it has finitely many discontinuities. Denote Egs(t,v) =
expy(—i [ dr sH(7)). Then,

(iEAuw::AZhEALﬂL4H@ﬂE4ﬂv) (53)

Proof sketch. We first consider the special case where H (1) is continuous in 7. We invoke
the variation-of-parameters formula [30, Theorem 4.9] to construct the claimed integral
representation for %ES (t,v). To this end, we need to find a differential equation satisfied
by %%Es (t,v) and the corresponding initial condition G%Es(t, v)|,_,. We differentiate the
Schrodinger equation %Es(t, v) = —isH (t)Es(t, v) with respect to s to get

dd . d .
a@ES(t’w _ _ZS]'{(t)g]E]S(t7 v) — iH(t)Es(t, v). (54)

Invoking the variation-of-parameters formula, we find an integral representation

d

&ES(L 1)) = Es(t7 'l)) ’ |:C(118E5(t’ U)‘

] [ arEle ) i

: t (55)
—Eu(t0) - | LBt |+ [ arBn)[ - iR ).
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It thus remains to find the initial condition SLE(t,v)|,_, .

We start from the Schrodinger equation %Es(t,v) = —isH(t)Es(t,v) and apply the
fundamental theorem of calculus with initial condition E4(v,v) = I, obtaining the integral
representation

¢
Ey(t,v) = T — is / dr H(7)E,(7, v). (56)
Differentiating this equation with respect to s gives
d t t d
LR (t,0) = —i / dr H(r)Es(t,v) — is / dr H(7) -~ E,(r,v), (57)
ds v v ds
which implies
d
Rt v)’ = 0. (58)

ds

Combining (55) and (58) establishes the claimed integral representation for LE(t,v).

Now consider the case where H(7) is piecewise continuous with one discontinuity at
t1 € [v,t]. We use the multiplicative property to break the evolution at t;, so that each
subevolution is generated by a continuous Hamiltonian. We have

t=v

LEt0) = LBt 0)Es (11, 0)]

ds ds
—iE(tt) Es(t1,v) + Es(t, 1) iE(t v)
—dssal s\l1, s\by b1 dssla
t
= [ d7Es(t,7)[ — iH(7)]|Es(7,t1) - Es(t1,v)
t1
t1
+ Eq(t,t1) - ; dr Es(t1,7)[ — iH(7)|Es(7,0) (59)
t
= [ drEs(t,7)[ — iH(7)]Es(7,v)
t1
t1
+ dr Es(t, 7)[ — iH(7)]Es(T,v)
v
t
:/ dr Ey(t, 7)[ — iH(7)]Es(7, ).
The general case of finitely many discontinuities follows by induction. O

Note that our argument implicitly assumes the existence of the derivatives and that
we can interchange the order of % and %. A rigorous justification of these assumptions is
beyond the scope of the paper; we refer the reader to [21, p. 35] for details.

Proof of Theorem 5. Define two parametrized quantum channels

. H(T) . H(T)

t
E(10)(p) = Eult.OPEL(£0).  Us(t0)(p) = [ drp(r)e 500 pe' 5 (60)
0
and observe that

Eo(t,0)(p) = p,  &E1(L,0)(p) = E(£,0)(p), Uo(t,0)(p) = p, UL(L,0)(p) =U(t,0)(p).
(61)
To bound the diamond-norm error ||€;(t,0) — U1 (t,0)|,, we should take a state o on the
joint system of the original register and an ancilla register with the same dimension and
upper bound |[[(&(¢,0) ® 1)(0) — (U1 (¢,0) @ 1)(0)||;. For readability, we instead show
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how to bound the error ||&(t,0)(p) — Ui (t,0)(p)|l;, but the derivation works in exactly
the same way for the distance ||(£1(¢,0) ® 1)(0) — (U1(t,0) ® 1)(0)]||; and the resulting
bound is the same.

Invoking Lemma 6, we have

t
d :/ dr Eg(t, 1)
0

By (1,0 o  =-i /0 drH(r).  (62)

Thus, the first derivatives of E(t,0)(p) and Us(t,0)(p) at s = 0 agree with each other:

- HEE

t
Sewo|_ = |- [ e
) d (63)
= [[arsn)] - 20| = o),
Applying the fundamental theorem of calculus twice, we obtain
&1(t,0)(p) = Ui(£,0)(p) = (£1(£,0)(p) — &0(t,0)(p)) — (U (t,0)(p) — Uo(t,0)(p))
1 s d?
= [ s [ av S 1000 (0) s 0.0)(o)]
= d/d —E,(t,0)-p-El(t,0
/ % Jo Y {d 2 ) p-Ey(t,0) (64)
oY E0) o LB 0) 1 Bu(t0) - p- LR (1, 0)
d p d ) (o ) p dv2 v )
H(T) . H(T)
/ dr p(r)e v [—iH(T), [— iH(T)mHew OIS
p(7) p(T)
By properties of the Schatten norms and the definition p(7) = [[H(7)| o, / [[H ||+ 1, We find
that
1€1(2,0)(p) — Ul(t, )( )
2 (65)
/ds/ dv{ By (t, 0) +2H Lol a2 }
Lemma 6 immediately yields an upper bound on H%EU (t,0) H
t
| B0 < [ ar i = 18]y (66)
v s Jo
It thus remains to bound H%Ev(t, O)H
Using Lemma 6 twice, we have
d2
SE(1,0) / dr Ey(t,7)[ — iH (r)]Eu(r, 0)
—/ dT/ dr’' E )= iH ()| Ey(7",7)[ — iH(7)]Ey(7,0) (67)
—|—/dTE t,T)[—iH(T / dr’ E,(r,7")[ — iH(7")]Eu(7',0),
which implies
d2 t t
SR < [ar [arEe)| HG +/ ar [ ar |H )] | H ()]
0 T
= 1HI%
(68)
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We finally obtain the desired bound

1 s
I8t 0)p) ~ th(60)p)l < [ s [Maw [2H1E w2 HIE, 4 IH I, = 418

(69)
as claimed. H

The above error bound works well for a short-time evolution. When ¢ is large, in order
to control the error of simulation, we divide the entire evolution into segments [t;, ;1]
with 0 =ty < t; < --- < t, =t and apply continuous qDRIFT within each. We employ a
variable-time scheme to segment the evolution, so that our L'-norm scaling result can be
generalized to a long-time evolution. Specifically, we have:

Theorem 7 (L'-norm error bound for continuous qDRIFT, long-time version). Let H(7)
be a time-dependent Hamiltonian defined for 0 < 1 < t. Assume that it is continuous except
at a finite number of points and nonzero everywhere. Define E(t,0) = expy (—i fg dr H(1))
and let £(t,0)(-) = E(t,0)(-)ET(¢,0) be the corresponding quantum channel. Let U(t,0) be
the continuous gDRIFT channel

t _H®  HT)
U(E0)(p) = [ drp(r)e 5 pe' 5 (70)
0
where p(7) = |H(7)|l o / |Hll.1- Then, for any positive integer v, there exists a division
D=ty <ty < - <t,=1t, such that
r—1 H 2
£(t.0)— [ttty ty)| < all=s )
j=0 . "
To ensure that the simulation error is at most €, it thus suffices to choose
H 2
T24F‘ ’oo,l-‘. (72)
€
Proof. The times t1,--- ,t._1 are selected as follows. We aim to simulate with accuracy
1H 121
4——" 73
= (73)
for each segment. To achieve this, we define ¢1,--- ,t._1 so that
t1 to tr 1 t
[ @l = [ HE g == [T drHE) g = [ dr 1)
0 t1 tr—1 T Jo
(74)

The existence of such times is guaranteed by the intermediate value theorem. By tele-
scoping, we find from Theorem 5 that

r—1 r—1
Et,0) = [TU@w1,t5)|| <D MUtz t) — E(tjar, t)]l,
j=0 =0

<

=, tj+1 2
sz:;él(/tj dTHH(T)HOO) (75)

1/t 2 HHlliol
— (L [arH@), ) =4,
rJo

r

which establishes the claimed error bound. O
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3.2 Universality

We now show that the continuous qDRIFT method introduced above can be applied in
the far more general LC model where the Hamiltonian is a sum of time-dependent terms.
In this sense it can be regarded as a universal method.

Recall from Section 2.3 that in the general LC model, the Hamiltonian can be expressed
as

L
H(r) =) H(r), (76)
=1

where each Hj(7) is continuous and can be efficiently exponentiated on a quantum com-
puter. This includes many familiar models as special cases:

(i) Campbell considered simulating a time-independent Hamiltonian of the form H =
SE L agHy, ||Hyll,, < 1 [13], which is subsumed by the LC model with the time
dependence dropped;

(ii) if H(7) is a time-dependent d-sparse Hamiltonian, then Lemma 3 shows that it can be
decomposed in the form H(7) = Z?; H;(7), which again belongs to the LC model
as the exponentiation of H;(7) can be performed efficiently; and

(iii) the LC model is naturally more general than LCU as each summand is not necessarily
unitary.

It is not hard to design a classical sampler for time-dependent Hamiltonians in the LC
model. A natural choice is

7.HZ(T) . Hy(7)

Lo
Ut 0)(p) == Z/O dr pi(7)e "B pe' m@ (77)
=1

where p;(7) is the probability distribution

= ()
PO H ™

To analyze the performance of this sampler, we adapt the analysis in Theorem 5 and
Theorem 7, which becomes more complicated as we are now sampling a discrete-continuous
probability distribution p;(7). Fortunately, a significant amount of effort can be saved with
the help of the following universal property.

Theorem 8 (Universality of continuous qDRIFT). Let H(r) = Yk, H)(t) be a time-
dependent Hamiltonian defined for 0 < 7 < t that is nonzero everywhere. Assume that
each Hi(T) is continuous and nonzero everywhere. Define the probability distribution

E@
)= L (%)

Then there ezists a time-dependent Hamiltonian G(1) defined for 0 < 7 <t with finitely
many discontinuities, such that the following correspondence holds:

LGl son = I1H oo 10+

2. [Ldr G(r) = Sk, [Ldr Hy(7).
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¢ _;¢n 6 I . _H@ H()
3. [ydrq(r)e "« pe'am =Sf | [Ldrp(r)e P pe' mE) | where we have the proba-
bility distribution q(7) = ||G(7)|| . / HG”oo,r

Before presenting the proof, we explain how Theorem 8 can be applied to simulation in
Hl("') Hz("’)

the LC model. We expect that the mixed-unitary channel Zf:l fg dr py(1)e” @ pe'n®
approximates the ideal evolution with L'-norm scaling as in Theorem 5 and Theorem 7, but
direct analysis would be considerably more complicated. However, universality (Statement

_;G(0)
3 of Theorem 8) shows that this channel is the same as [j d7 g(7)e” "4 pe' q(T> Thus, the
analysis of Section 3.1 can be applied with the help of Theorem 8.

Proof of Theorem 8. We define G(7) to be the piecewise Hamiltonian

H T
12Efl)7 OST<p1t7
() t <7< (p1+p2)t
— P2 - T
G(T) _ D2 ’ Pt > P1 p2)t, (80)
T‘*(P1+p2+~-+pL_1)t
He ( =
o , (prt+p2t++pra)t <7 <A,
where we use the abbreviation
t
p= ol = [ drpi(e) (81)

for the marginal probability distribution. Statements 1 and 2 can both be proved by
directly evaluating the integrals

p1t HHI(I,%)’ (P1+P2)t HH2 T p1t)H
(Gl = [ art—ton g [ gl T
b1 pit P2
—(p1+p2+-+pr_1)t
L M L Sy | N (52)
(p1+p2+--+pr—1) pbL
t
—/dﬂW1||+/dﬂWz ot [ ar I HL) e = [Hll
t pit  Hy(o- (pr+pa)t  Ho(T2RA
/ dTG(T):/ dTi(pl) —|—/ dTi( Pz )
0 0 b1 p1t D2
" H; T=(prtpat-tpr_1)t L .
+ot dr ( bL )ZZ/ dr Hy(7)
(p1+p2+-+pr—1)t pL =170
(83)
We use Statement 1 to deduce that
()]
P1||H||oo,1,1 ’ U=r< plt’
i (52|
o(r) = NGO 2 [ pit <7 < (p1+p2)t,
1Ges :
HL(T—(P1+p2+‘--+pL71)t) ‘
DI, -
P H N 14 s pi+p2+Hpr)t <7t <t

(84)
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Therefore,

t _Z'G(T) Z'G(T)
/ dr q(T)e (™) pe a(m)
0

me ()| () H (57)
= /0 dTm exp ( m HHHOO 1 1>P6XP < le’w |HHOO,1,1>

p1
(p1+p2)t HHQ(T;W)H H (T Plt) H. (T;i’lt)
" 2(“pﬂuflquéemp< ‘PJQT;@)mnrﬂﬂwJJ>pema<’PJQTﬁz)wmnHﬂmJJ)
+m+/t dTHHL ~(putpten iy )HOO
(p1+p2+-+prL—1)t bL HHHoo,l,l

HL(T—(Z’1+QD2+"'+PL71)t) HL(T—(p1+p2+--~+pL,1)t)
- €xp <—i PL H [1H [o.1,1 )PeXp <ZHH ( PL HHHoo,1,1>

HH (T—(P1+P2+~~+pL—1)t> T—(p1+P2+"'+pL—1)t) H
L DL pL 00

Hy(r) Hy(r)

L
= [drpre T peln, (85)
=170

which completes the proof of Statement 3. O

Theorem 5’ (L'-norm error bound for continuous qDRIFT (LC), short-time version).
Let H(t) = SSE | Hi(7) be a time-dependent Hamiltonian defined for 0 < 7 < t that
is nonzero everywhere. Assume that each Hj(T) is continuous and nonzero everywhere.
Define E(t,0) = expy (—i [y dr H()) and let £(t,0)(-) = E(t,0)(-)Ef(t,0) be the corre-
sponding quantum channel. Let U(t,0) be the continuous gDRIFT channel

. Hy(7) L Hy(7)

L ¢
=3 [Cdrnfr)e HE e, (86
=170

where py(7) is the probability distribution pi(7) := [|H/(7)|lo / |Hll oo 1,1- Then,

IE(t,0) —U(t,0)], < 41| HII3 (87)

co,1,1*

In the special case where H = Zlel H; is time independent, our bound reduces to

l&(t,0) — ut, <42Nmu) (38)

This tightens a bound due to Campbell |13, Eq. (B12)] by a multiplicative factor from a
tail bound. Note that [13] considered the distance ||E(t,0) — U(¢,0)||, /2, which is different
from our definition of the diamond-norm distance [|E(t,0) — U(t,0)]l.,.

Proof of Theorem 5. Consider the channel

() ,G(@)
/ qu q(‘F) pe a(r) | (89)

where ¢(7) := [|G(7)[|o / [|Gll o1 and G(7) is defined by (80). By Theorem 8, it suffices
to bound ||£(¢,0) — G(¢,0)

lo-
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Define two parametrized quantum channels

£:(1,0)(p) = B (t, 0)pEL(1,0), o= [ drame T p T o0
and observe that
Eo(t,0)(p)=p  &(t,0)(p) =&t 0)(p)  Go(t,0)(p) =p  Gi(t,0)(p) = G(¢,0)(p).

(91)
For readability, we only consider the trace norm ||&€(¢,0)(p) — Gi(t,0)(p)||;, whose anal-
ysis can be easily adapted to bound ||(£1(¢,0) ® 1)(0) — (G1(£,0) ® 1)(0)||; and thus the
diamond-norm distance ||€;(¢,0) — G1(t,0)],-

By Lemma 6 and Theorem 8, we find that the first derivatives of &(¢,0)(p) and
Gs(t,0)(p) at s = 0 agree with each other:

%Es(t,())(p) - {—i/ﬂthH(T),p} _ [—z/ dr G(r ] Cfg 40| . ©
Thus, we can apply the fundamental theorem of calculus twice and obtain
E1(t,0)(p) — G1(t,0)(p)
= (&(t,0)(p) — ( 0)(p)) — (G1(£,0)(p) — Go(t,0)(p))
= [ [T 5 1ut.0)(0) - 6u0,0)(0)
= [Cas [ { o(£,0) - - B (1,0)
. . (93)
+2Ey(t,0) - o —El(t,0)
Bu(1.0) - p- -L5E(1,0)
t WS LG [ G ] s
_/0 drg(rle T { q(7) [ q(7) ’p” “}’
which implies
Hgl(t70)(p) - G1 (t70)(p)H1
1 s 94
S/O dS/O dv {2 ”HHzon +2 ”H||§o11 +4 ”GHiol } =4 H‘HHioll o)
O

Theorem 7' (L'-norm error bound for continuous gDRIFT (LC), long-time version).
Let H(t) = YSE, Hy(7) be a time-dependent Hamiltonian defined for 0 < 7 < t that
is nonzero everywhere. Assume that each Hi(T) is continuous and nonzero everywhere.
Define E(t,0) = expy (—i [3dr H(r)) and let £(t,0)(-) = E(t,0)(-)Ef(t,0) be the corre-
sponding quantum channel. Let U(t,0) be the continuous ¢gDRIFT channel

HL(T) HL(T)

Lo
=3 [ dr () e, (95)
1=1"0
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where py(T) is the probability distribution pi(7) = |[Hi(T)|lo /[H|lso11- Then, for any
positive integer r, there exists a division 0 =tg < t; < --- < t, =1, such that

i ”HHgoll
Et,0) — [JU(tj41.t5)|| < 4= (96)
j=0 o
To ensure that the simulation error is at most €, it thus suffices to choose
HII2
r> 4“”0‘371’1-‘ (97)
€

The proof of Theorem 7" follows from Theorem 5’ using the same reasoning as that
used to prove Theorem 7.

3.3 Complexity of the continuous gDRIFT algorithm

As an immediate consequence of universality, we obtain the complexity of the continuous
gDRIFT algorithm for simulating time-dependent Hamiltonians in both the SM and the
LCU models.

Corollary 9 (Continuous qDRIFT algorithm with L'-norm scaling (SM)). A d-sparse

time-dependent Hamiltonian H(T) acting on n qubits can be simulated for time T € [0, t]

with accuracy € using
d* || H|?
O(”Hmwl) (98)
€

queries to Ojpe, Opar and an additional

_od || H| 2
O(’”max,ln) (99)
€
gates, assuming that the probability distribution p;(T) == ||H(7)|| yux /@ [ H || a1 s J €

{1,...,d?} can be efficiently sampled.

Proof. For any 7 € [0,t], Lemma 3 shows that H(7) admits a decomposition H(7) =
?2:1 H;(7), where each H;(7) is 1-sparse and a query to any H;(7) can be simulated
with O(1) queries to H(7). We use the continuous qDRIFT algorithm to simulate H(7) =

?2:1 H;(1). We estimate

a2 a2
[H o110 = Z/ dr [ Hj ()]l = Z/ A7 (| H5(7) ||y
j=1"0 j=1"0 (100)

max,1 ?

t
<& [ dr [HE) e = 2 1H]

where the second equality follows because H;(7) is 1-sparse, and the inequality follows
from Lemma 3. Assuming ||H;(7)| .,/ |H|lo 1, can be sampled efficiently, Theorem 7’
implies that the algorithm has sample complexity and thus query complexity

d (| H[2
O ———"=%). (101)

For each elementary exponentiation, we initialize a quantum register in the computa-
tional basis state |7, j) and use it to control the 1-sparse term we need to simulate. This
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can be done with gate complexity 6(n) Since the number of 1-sparse simulations is the
query complexity, we obtain the gate complexity
_rd* || H|?
O( H Hmax,l n) (102)

€

as claimed.

Our above argument assumes that || H;(7)||  is known a priori and that the distribution
IH; (7)o / [1H | 1,1 can be efficiently sampled. However, the argument still works if we
replace each || H;(7)||,, by the upper bound

loo

5T loe = I ()l inaxe < IH (7))l

max —

(103)

max ’

which means we sample the distribution p;(7) := || H(7)|| ..y /4> [ H | a1 s J € {1,- - ,d?}.
The claimed query and gate complexities follow from a similar analysis. O

Corollary 9’ (Continuous qDRIFT algorithm with L!'-norm scaling (LCU)). A time-
dependent Hamiltonian with the LCU decomposition H(t) = Y2E, oy(1)H;, where the
controlled exponentiation of each H; can be performed with g. gates, can be simulated for
time T € [0,t] with accuracy € with gate complexity

2
L s (104)

assuming that the probability distribution pi(T) := oy(7)/ ||ct||; ; can be efficiently sampled.

Proof. For any H(1) = YL | a;(7)H;, we estimate

Lot
1#llo1s =Y [ drau() 1 Hille = ol (105)
=1
The claimed complexity then follows from Theorem 7’. O

4 Rescaled Dyson-series algorithm

In this section, we propose a general principle for rescaling the Schrédinger equation (Sec-
tion 4.1). We then apply this principle to improve the Dyson-series algorithm (Section 4.2)
to achieve L'-norm scaling.

4.1 A rescaling principle for the Schrodinger equation

Let H(7) be a time-dependent Hamiltonian defined for 0
H(1) for time ¢ is given by the unitary operator E(¢,0)
satisfies the Schrédinger equation

7 < t. The evolution under
expy(—i [5dr H(r)), which

I IA

d

aE(t, 0) = —iH(t)E(¢,0). (106)
We now propose a rescaling principle that helps to achieve L'-norm scaling. The

goal is to effectively have a Hamiltonian with constant spectral norm. Recall that for a

time-independent Hamiltonian one can multiply the time by a constant and divide the

Hamiltonian by the same constant and obtain the same time evolution. We can achieve
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something similar with a time-dependent Hamiltonian by rescaling the total evolution time
to

¢
s= 1= [ dr[HEl (107)
and using the rescaled Hamiltonian
H(s) = H(f <)/ [E( )| - (108)
From this definition, it is obvious that the Hamiltonian has constant norm, because
= H(f'(<)) H
H(s =l =1 (109)
01 = o .
Moreover, we find that the time-evolution operator satisfies
d d dt
—E(t,0) = —=E(t,0) - —
dS ( Y ) dt ( ) ) dS
1
= —iH(t)E(t,0) - ———— (110)
1H ()

= —iH (s)E(t,0).

Solving this equation shows that we can obtain exactly the same time-evolution operator
using the rescaled time and Hamiltonian:

E(t,0) = exp7—<—i/ dg ﬁ(g)) (111)
0
We also have the norm equality

s max [|H(o)], = s = | H]|

s€[0,s]

(112)

00,1

so any algorithm that simulates the rescaled Hamiltonian H (<) with complexity that scales
with the L norm can simulate the original Hamiltonian with L'-norm scaling.

While our above discussion considers the spectral norm |-||,,, other norms may be
used depending on the input model of the Hamiltonian. Indeed, in the analysis for the SM
model below we use the max-norm instead of the spectral norm.

Note that it may be hard in practice to compute the exact value of ||H(7)||. However,
we can instead use the change of variable

s= f(t) = /Ot dr A(7), (113)

where A(7) > ||H(7)]| is any upper bound on the norm that can be efficiently computed.

4.2 Complexity of the rescaled Dyson-series algorithm

In this section, we show how the Dyson-series algorithm [8, 29, 36| can be rescaled to have
L'-norm scaling. We address this first for the SM model of Hamiltonian access before
handling the LCU model (see Section 2.3 for definitions of these models).

Unlike continuous qDRIFT, the rescaled Dyson-series algorithm requires additional
oracle access to the input Hamiltonian. Specifically, we need oracles that implement the
inverse change-of-variable

Ovar|§7z> = ‘§7 z D f71(§)> (114)
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and compute the max-norm

Onorm|7,2) = |7,z @ [[H(7T)| (115)

max> :

A quantum computer with access to these oracles can simulate time-dependent Hamilto-
nians with L!-norm scaling. Note that because f(7) increases monotonically, we can use
binary search to compute f~1(s) up to precision § using O(log(t/d)) queries to f, so we
expect it to be straightforward to implement the oracle O,,; in practice.

Theorem 10 (Rescaled Dyson-series algorithm with L!'-norm scaling (SM)). For 7 €
(0,2], let H(r) be a d-sparse Hamiltonian acting on n qubits. Let f(t) := [3 AT [|H(T)|| axs
and suppose we have an upper bound on the maz-norm, denoted ||H(f_1(§))HmaX, that is
positive and continuously differentiable. Then H can be simulated for time t with accuracy
€ using

log(d || H|,yax 1 /€)
O(d H| o L > 116
et g g (A T e /0 o
queries to the oracles O, Oval, Ovars, Onorm and an additional
6(dHHHmax,1 n) (117)

gates.

Proof. We simulate the rescaled Hamiltonian H(s) := H(f~*(<))/|[H(f ()| .. for a

max
total time of |[H ||, 1 == J3 A7 ||H(7)||,0x Using the rescaling function

50 = [ Q) (118)

Following [36, Theorem 9], we construct a unitary operation that block-encodes

> e 29 _Saqe LD

§€[O,t/M,Zt/M,...,(M—l)t/M] dH ||max7oo

This construction is similar to [36, Lemma 8], except that the Hamiltonian is rescaled.
Specifically, we use oracles Oy, and Opopm to implement the transformation

HFH)| ), (120)

max

€,0,0) = 6, f 1<), |

from which we obtain the rescaled Hamiltonian by querying Oy, and re-normalizing the
result with ||H(f~1(<))]|,,., to compute Hjx(s):

X’j’ k’ Z> ’_> |f_1(§)7

H(FYQ)|, k2@ Hi(o)- (121)

ma:

We then uncompute the ancilla registers storing f~(s) and ||H(f~(<))||
implements a rescaled oracle

Overall, this

max’

Ovalls, 4s ky 2) = |6, 4, K, 2 ® Hjg(s)). (122)

The remaining algorithm proceeds as in [36]. As the implementation of each (5va1 requires
O(1) queries to the oracles Ojoc, Ovaly Ovary Onorm, the overall query complexity is obtained
by applying [36, Theorem 9] to the rescaled Hamiltonian, giving query complexity

log(T/¢)
O(Tloglogma) (123)
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where

T = ||, s = d|H| (124)

max,o0 max,1 *

Using this expression for T' gives the query complexity in (116).
We now analyze the gate complexity. If the entries of the Hamiltonian are given to

within precision
€
o) 125
( td) ’ (125)

then the overall error due to the finite precision is O(e). Since the maximum value of any
matrix entry of H is || H||max,00, the number of bits required is

n, € O (log (W)) . (126)

The implementation involves performing arithmetic on these values, which can be per-

formed with complexity? O(nz). Since this is a logarithmic gate cost for each oracle query,

it gives a contribution to the gate complexity of O(d || H|
The number of time steps is [36, Corollary 4]

t (11H || .
Meo < (””1 + ||H\|§OOO>> (127)
e t ’

where o = d||fI lmax,00- The complexity to prepare the time registers is log M times
the query complexity. We may ignore the second term in (127), because it is negligible
compared to the complexity of the arithmetic.

max,l)'

We have -
~ 5 dH
W= [ 2] s
1o = [ as | 3| (128
Evaluating this derivative, we get
dH _dr d ( H(r) )- o ( H(r) _H() I\H(T)!!;ax> (129)
so we obtain
/
[H loo,y = [ dT - 5
0 ||H(T)||max ”H(T)Hmax oo
V() N o 1 ()
o minTG[O,t} ‘|H(T>Hmax minTE[O,t] HH(T)H?nax
()] [L=CCoTINPS [P=CCol 0
B minTe[O,t] HH(T>HmaX minTE[O,t] ||H(T)”12nax

3In [29] and [36], the most complicated operations used are additions, which can be performed with
complexity O(ny,). Here we are normalizing the Hamiltonian, so we must also perform multiplication and/or
division, for which the straightforward approach has complexity O(ni). While it is possible to perform
multiplication and division with lower asymptotic complexity, such algorithms are only advantageous
for very large instances, and do not affect the result as presented in Theorem 10, where logarithmic
contributions to the gate complexity are suppressed.
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The gate complexity of the preparation of the time registers is log M times the query
complexity, where we have shown that

1| oo,1
Meo|—r—te=l ) (131)
<6dHHIImax,oo

where || H'||o0,1 is polynomial in norms of H and its derivative. Since this a logarithmic cost,
the contribution to the complexity from preparation of the time registers is 6(d 1 || 1) -

The remaining contribution to the gate complexity comes from acting on the system
itself. The cost of this is O(n) for each of the oracle queries, which gives gate complexity
O(d| H|| ) (this is the dominant cost in (117)). O

max,1 n

Thus, the rescaled Dyson-series algorithm can simulate time-dependent Hamiltonians
in the SM model with L'-norm scaling. Next we turn our attention to the LCU model.
For an input Hamiltonian H(7) = Zlel ay(7)H;, this approach assumes quantum access
to the coeflicient oracle

Ocoett| T, 1, 2) = |T,1, 2 ® ay(T)), (132)

in contrast to the continuous qDRIFT which only needs classical access. Given a classical
circuit that computes the coefficients «;(7), we can express it as a sequence of elementary
gates and construct a corresponding quantum circuit with the same gate complexity. In
our analysis, we ignore the implementation details and count the number of uses of the
quantum oracle Ocoefr. The definitions of Oy, and Oy are similar to the SM case, except
that the norm || H (1) is replaced by ||a(T)

Hmax ||oo

Theorem 10’ (Rescaled Dyson-series algorithm with L!-norm scaling (LCU)). For 7 €
[0, 1], let H be a time-dependent Hamiltonian with the decomposition H (1) = S2F 1 oy(1)H,
where each controlled H; can be performed with g. gates. Let f(t) := f(f dr ||a(7)]| o, and
suppose we have an upper bound on the £~ norm of the coefficients, denoted Ha(f_l(g)) HOO,
that is continuously differentiable. Then H can be simulated for time t with accuracy €
using

log(L [|arll 1 /€)
O<L ol ek ) 133
100t Tog Tog L ol /) 139)
queries to the oracles Ocoeff, Ovar, Onorm and an additional
O(llalloo 1 L*gc) (134)

gates.

Proof. We simulate the rescaled Hamiltonian H(s) := H(f~1())/ |la(f~()) |, for time
|l 1 using the rescaling function

5= [ ar (... (135)

The rescaled Hamiltonian takes the form
~ L
H() =Y a(f (<) H, (136)
=1

where o;(7) := a;(7)/ ||a(7)|| .- Therefore, we have a global upper bound on the absolute
value of the coefficients
€] o0 < 1. (137)

00,00 —
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The remaining construction is similar to [29, Section V C], except that the Hamiltonian
is rescaled. Specifically, we use oracles Oyar and Oporm to implement the transformation

(FHe]| L), (138)

oo

<,0,0) = |5, F(<),

from which we obtain the rescaled coefficients by querying Occeg and doing arithmetic,
giving

£ ot || o tz) = 117,

We then uncompute the ancilla registers storing f~'() and [|a(f(s))| .. Overall, this
implements a rescaled oracle

af )| breal).  (139)

6COBH‘§7 l7Z> = ‘g, l,z® &l(§)> (140)

The remaining algorithm proceeds as in [29]. As the implementation of each (7)0063 requires
O(1) queries to the oracles Ocoeft; Ovars Onorm, the overall query complexity is obtained by
applying [29, Theorem 2] to the rescaled Hamiltonian. The analysis of the gate complexity
proceeds along similar lines to that of Theorem 10. The multiplicative factor of Lg,. is the
cost of implementing the SELECT operation

SELECT(H) = i 1)(l| ® Hj. (141)

That complexity may be obtained from [18, Lemma G.7], or the unary iteration procedure
of [2, Section IIT A]. O

5 Applications to chemistry and scattering theory

There are numerous cases in physics where one needs to simulate time-dependent quantum
systems. Indeed, the pulse sequences that constitute individual quantum gates or adiabatic
sweeps are described by time-dependent Hamiltonians. Here, we look at the particular case
of simulating semi-classical scattering of molecules within a chemical reaction as an example
of time-dependent Hamiltonian dynamics [24, 46].

Chemical scattering problems involve colliding reagents. As the molecules move closer,
the electronic configuration changes due to strengthening Coulomb interactions, which is
ultimately responsible for either the reagents forming a bond or flying apart depending
on the initial conditions and the nature of the reagents. In the non-relativistic case, the
Hamiltonian for two colliding atoms A and B at positions x4 and xp, respectively, and M
electrons with positions x,, for m =1,..., M, can be expressed as

H = Hnuc + Helec

_ P4 DB ZaZs
HnuC - +
2m A 2m \:vA — x|
pm
Hooo = n 142
Here pp, = [[pm]a, [Pmly, [Pm]2] and @y, = [[zm ]2, [Tm]y, [£m]-] are three-dimensional vectors

of operators, whereas the corresponding nuclear terms (such as x4 and zpg) are three-
dimensional vectors of scalars. We further define |z, — 2/,| to be the operator

[ = | =\ (Bl — [ ]2)? + (Emly — [r]y)? + ()= — []2)2
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The wave function can be thought of as having a nuclear as well as an electronic
component. First, we assume that the nuclear and the electronic wave functions are de-
coupled [26, 49|:

Y(xa, 2B, 21, 05 t) A Ynue(Ta, B ) Velec(T1, - - -, Tar; t). (143)

This approximation is justified by the fact that the nuclear mass is substantially greater
than the electronic mass. We then follow the time-dependent self-consistent field (TDSCF)
approximation, which further treats x4 and xp as classical degrees of freedom x4 (t) and
xp(t) with conjugate momenta (p(t), pp(t)). This simplification is justified by Ehrenfest’s
theorem, which states that for a sufficiently narrow quantum wave packet, the equation of
motion for the centroid follows the classical trajectory (to leading order in /). Under this
approximation, the electronic dynamics satisfy

. M p2 ZA ZB
Zat|¢elec(t)> = 27:: - |.CL‘ . - — + Z — ‘welec(t)>7
me1 e m A(t)‘ |xm ‘TB m<m! L/ |
(144)
where we have suppressed the implicit dependence of the electronic wave function on
Z1,...,Tp. The equation of motion for the two nuclear positions in the time-dependent

self-consistent field approximation within the Ehrenfest method is given by the Hamilton-
Jacobi equation:

at[pA(t)]i = _a[wA}i<¢elec(t)|He1ec|welec(t)> - a[;gA]iHnuc(t),
O [xA(t)]l = a[pA]iHnuc(t)a (145)

and similarly for xp. The function Hypyuc(t) here is simply the Hamiltonian Hy,e with the
classical substitutions x4 — z4(t), pa — pa(t) and similarly for zp and pg. Similarly, we
define Hepec(t) to be the electronic Hamiltonian under this classical substitution.

The evolution in the Ehrenfest method is governed by a pair of tightly coupled quan-
tum and classical dynamical equations, wherein the full Schrodinger equation only needs
to be solved to understand part of the dynamics for the system. Indeed, as the Born-
Oppenheimer approximation instantaneously holds under the above approximations, we
can further express the electronic dynamics within a second-quantized framework with
respect to a basis of molecular orbitals as

Hejec(t Z hpg(t) al »lq + 5 Z hpgrs (t) a aras, (146)
pq”"S
where for some basis of orthonormal molecular orbitals v, (Z;t) (which are implicitly time
dependent if these basis functions are chosen to be functions of the nuclear positions, as
would be appropriate for an atomic orbital basis),

M 2
- o de b (7 Pm Za _ ZB S
t) - / dxlqurbp(xht) (mZI 27’)’1,6 |$m — $A(t)| ‘.T)m — I’B(t)|> ¢q($2,t)
(147)
* (= 1 = =
oas(t) = [[[[ doudiesday @i 0 (@) 3 o (E ). (148)

m<m/

Thus under the above approximations, the dynamics that need to be simulated take the
form of a standard second quantized simulation of chemistry, except the Hamiltonian is
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Figure 1: Trajectory for two helium atoms colliding head on and interacting according to a Lennard-
Jones potential with an initial separation of 20 nm and a velocity of 1350 m/s.

time dependent. The generalization of this to multiple nuclei is similarly straightforward,
with the summation over two nuclear positions replaced by summation over all L positions.

Consider the case where two reagents move towards each other from distant points
with large momenta. To get an intuitive understanding of this evolution, it is instructive
to examine the case of two molecules colliding using a classical force field. This will give
us an expression that is qualitatively accurate for z4(t) and xg(t). To do this, we use a
Lennard-Jones potential to model the interaction between two helium nuclei. The potential

as a function of separation between the nuclei 7(t) = |z 4(t) —zp(t)| is assumed to be of the
12

form V(r) =€ (:% — 2:21), where € ~ 10 K and 7,,, ~ 2.6 A [44]. Setting the initial radial
velocity to be approximately the root mean square (RMS) velocity of helium at 25°C, we
solve the classical equations of motion to find the trajectory shown in Figure 1.

From Figure 1, we find that the interaction appears as a brief but intense kick between
the two systems. As a result, the norm of the Hamiltonian changes dramatically throughout
the evolution and we expect simulation algorithms with L'-norm scaling to be advantageous
over previous approaches. We leave a detailed study of such an advantage as a subject for
future work.

6 Discussion

We have shown that a time-dependent Hamiltonian H(7) can be simulated for the time
interval 0 < 7 < t with gate complexity that scales according to the L' norm [ dr |[H(7)|.
We designed new algorithms based on classical sampling and improved the previous Dyson-
series approach to achieve this scaling. This is a polynomial speedup in terms of the norm
dependence, an advantage that can be favorable in practice. In particular, our result
has potential applications to simulating scattering processes in quantum chemistry. Our
analysis also matches the intuition that the difficulty of simulating a quantum system
should depend on the norm of the Hamiltonian instantaneously. This dual interpretation
suggests that the L'-norm dependence of our result cannot be significantly improved.
However, further speedup might be possible if we know a priori the energy range of the
initial state, as is suggested in [34, 43].

The rescaled Dyson-series approach is nearly optimal with respect to all parameters of
interest. Indeed, a lower bound of Q(d || H ||,,,,, t+7 log(1/<) ) was given in |9, Theorem 2| for

max “ ' loglog(1/e)
simulating time-independent sparse Hamiltonians, which of course also holds for the more
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general time-dependent case. The query complexity (116) of the rescaled Dyson-series
approach matches this dependence on d||H||,,..t and on €, except that it scales as the
product of the two terms instead of the sum (so, as in all quantum simulation algorithms
prior to the advent of quantum signal processing [33|, it does not achieve the optimal
tradeoff between ¢ and €). However, this approach requires computing the rescaling function
(114) and the Hamiltonian norm (115) in quantum superposition, which may introduce
large overhead in practice. In comparison, continuous qDRIFT relies on classical sampling
and may be better suited to near-term simulation. Its complexity has no dependence
on the parameter L in the LCU decomposition (Corollary 9'), which is advantageous for
Hamiltonians consisting of many terms.

For most of our analysis, we have assumed that the Hamiltonian H(7) is continuously
differentiable. This assumption can be relaxed to allow finitely many discontinuities. In-
deed, if H(7) is discontinuous at the times 0 = ¢ty < ¢t; < -+ < t, = ¢ but otherwise
continuously differentiable, we may divide the evolution into r segments and apply a time-
dependent Hamiltonian simulation algorithm within each time interval [t;,¢;41]. For the
Dyson-series approach, the complexity depends linearly on the L' norm, so concatenation
gives a simulation of the entire evolution with L'-norm scaling. The assumptions about
the Hamiltonian can be even further relaxed: the continuous qDRIFT algorithm works
properly provided only that H(7) is Lebesgue integrable. Further discussion of this point
is beyond the scope of this paper, and we refer the reader to [21] for details.

Our analysis can also be adapted to simulate time-dependent Hamiltonians that have
countably many zeros. Indeed, since the equation H(7) = 0 has at most countably
many solutions, we can find ¢ € R such that H(7) + ¢l is nonzero everywhere. Then,
expy(—i [3dr (H(1) + cI)) = e expy(—i [i dr H(7)), so the result is only off by a
global phase. Note that this assumption can be completely dropped if we use continuous
gDRIFT: we define the exceptional set

Boi=p 1 (0) = {7 :p(r) = 0} = {7+ [H() o =0} = {r: H(r) =0} (1)
and redefine U(¢,0) as

_iH(T) lH(T) H
U, 0)(p) = / dr p(r)e P pe P p(7) = % (150)
0.6)\Bo 1 |,

We note that U(¢,0) is a valid quantum channel and can be implemented with unit cost.
Indeed, for any input state p, we randomly sample a value 7 according to p(7) and perform
e HM)/p(T) if 7 € [0,t]\Bo, and the identity operation otherwise. This implements

/ dr p(r)e 7@ pe' 7@ + [ dr p(r)p = U(L,0)(p). (151)
[0,£])\Bo Bo

The remaining analysis proceeds as in Section 3.

The qDRIFT protocol that we analyzed here only achieves first-order accuracy. It is
natural to ask if sampling a different probability distribution could lead to an algorithm
with better performance. The answer seems to be “no” if we only use a univariate dis-
tribution. To see this, consider the discrete case where H = X | H; is a Hamiltonian
consisting of L terms. We sample according to a probability vector p € [0,1]%. Upon get-

ting outcome [, we perform the unitary e~ itHi/pr, Effectively, we implement the quantum
_a pH
channel U(t)(p) == SSF, pre o peZt »1, which is a first-order approximation to the ideal

. L . L
evolution £(t)(p) := e " 2t Hlpe”Zzzl At n particular, the difference between U(t)(p)
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and £(t)(p) admits an integral representation

ut(p) i) = [ u [“a {lipl”[_;{z [t )

L L
e 31 [-izﬂl,pﬂeinflm}
=1 =1

To estimate the diamond-norm error [|U(t) — E(t)]|,, we take o to be a state on the joint
system of the original register and an ancilla register with the same dimension. We compute

@) @ 1)) - €0 e @) < [ du [“do {Zpl —ilen [~ it s 1]
[—iZHltx)]l,{—ig;Hl@]l,a”
< 25“(2 VA 1y, )

=1

(152)

1

J

(153)

By Jensen’s inequality,

L & (1ELY L (&
3 =S Pl ) o (3o ) e, (154)

= P =1 Pt =1

with equality if and only if all ||H;|| . /p are equal, implying that the probability distri-
bution p; := [[H||/[[H|| . is optimal. A similar optimality result holds for continuous
gDRIFT (though the proof is more involved).

However, this does not preclude the existence of a higher-order qDRIFT protocol using
more complicated sampling [39]. For example, besides the basic evolutions e~ "HI/PL one
could evolve under commutators [H;, Hi] or anticommutators {H;, Hy}. We could also
use a multivariate distribution and correlate different steps of the gDRIFT protocol. For
future work, it would be interesting to find a higher-order protocol, or prove that such a
protocol cannot exist.

The fractional-query algorithm described in Section 2.5 provides a natural approach
to simulating time-dependent Hamiltonians whose query complexity scales with the L!-
norm. While we believe such a scaling also holds for the gate complexity, it would be
highly nontrivial to give an explicit implementation. In any case, the fractional-query
approach is streamlined by the Dyson-series approach and the latter can be rescaled to
achieve L'-norm scaling.

The rescaling principle that we proposed can potentially be applied to improve other
quantum simulation algorithms. For example, we can use the product- formula algorithm
[50] to simulate the rescaled Hamiltonian H(s) = H(f~'(s))/||H(f~ '(<))|, for time
s = |[H||- The difficulty here is that the derivative of the rescaled Hamiltonian can
be larger than the original one, making the rescaled algorithm perform worse. We leave a
thorough study of this issue as a subject for future work.

Finally, it would be interesting to identify further applications of our L'-norm scaling
result, such as to designing new quantum algorithms and to improving the performance of
quantum chemistry simulation. It might also be of interest to demonstrate these approaches
experimentally, for applications such as implementing adiabatic algorithms with quantum
circuits.
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A Continuous qDRIFT and Hamiltonian averaging

Poulin, Qarry, Somma, and Verstraete developed an algorithm for time-dependent Hamilto-
nian simulation based on techniques of Hamiltonian averaging and Monte Carlo estimation
[42]. In this section, we discuss the relation between their algorithm and our continuous
qDRIFT.

Let H(7) be a time-dependent Hamiltonian defined for 0 < 7 < t. Assume that H(7)
is continuous, nonzero everywhere, and efficiently simulable for each particular 7. Then,
Poulin et al.’s approach simulates H(7) for time 7 € [0,¢] in two steps: (i) they replace the
evolution exps (—i fg dr H(7)) by an ordinary matrix exponential e~ Hav of the average
Hamiltonian H,, = %fg dr H(7) with an error that scales like O((¢ ||H||OO’OO)2); (ii) they

further implement fg dr H(1) with Monte Carlo estimation by picking m random times
and approximating [y dr H(7) ~ = 23, H(7,) with error O(t 1 H | o 00 /+/m), the result
of which is further approximated by product formulas.

The approach of [42] is essentially a sampling-based algorithm and thus similar in spirit
to our continuous qDRIFT, except for a notable difference: their algorithm scales with the
L norm instead of the L' norm. Unfortunately, this drawback cannot be remedied merely

Accepted in { Yuantum 2020-04-14, click title to verify. Published under CC-BY 4.0. 37


https://doi.org/10.1103/PhysRevLett.106.170501
https://doi.org/10.1103/PhysRevLett.106.170501
https://doi.org/10.1016/S0927-7757(01)00628-8
https://doi.org/10.1103/PhysRevX.9.031006
https://doi.org/10.1039/a801824c
https://doi.org/10.1017/9781316848142
https://doi.org/10.1080/00268976.2011.552441
https://doi.org/10.1063/1.478291
https://doi.org/10.1088/1751-8113/43/6/065203
https://doi.org/10.1017/9781316809976

by a better analysis of the same algorithm. Indeed, they use a uniform distribution to pick
random times during the Monte Carlo estimation. This sampling ignores the instantaneous
norm || H (7)||,, of the Hamiltonian and therefore the resulting algorithm cannot scale with
the L' norm [J dr |[H(7)| .

Instead, continuous qDRIFT uses a probability distribution that biases toward those
times with larger instantaneous norm. In Section 3, we proved that such a sampling gives
a direct simulation of time-dependent Hamiltonians with complexity that scales with the
L' norm. We now give an indirect implementation: (i’) we show in Appendix A.1 that the
error of replacing expy ( — i [y d7 H(7)) by an ordinary matrix exponential of H,y, scales
like O(||H Hio,l ), improving the analysis of [42]; (ii”) we further prove in Appendix A.2 that
the average Hamiltonian can be simulated by continuous gDRIFT with L'-norm scaling.
Combining these two steps, we see that the Monte Carlo estimation approach of [42] is
superseded by continuous qDRIFT.

A.1 Hamiltonian averaging

Let H(7) be a time-dependent Hamiltonian defined for 0 < 7 < ¢ and assume that it is
continuous and nonzero everywhere. Define

E(s,0) := expy ( — z/ dr H(T)), Eay(s) := e 8y (155)
0
where H,, := % f dr H(7) is the average Hamiltonian. Our goal is to bound the distance
between E(s,0) and Eay(s) at s = ¢. Using the initial condition E(0,0) = E.y(0) = I, we
have
I5(.0) - B0, = [ELOEG0) - 1] =] [ B0 . (150)
By the Schrodinger equation
S Buls) = iHuFar(s), -B(5,0) = —H(5)E(s,0) (157
ds av S) = 1 av-+—-av S b dS S - ? S S? 9y
we obtain
t
/ ds— JE(s,0)] = / ds { B, (5) [iHax] E(s,0) + Ef () [~iH (5)]E(s,0)}
0
1 rt t
=+ [ s [ ar {EL)HMIE0) + EL(s) [-iH(5)]E(s,0)}
0 0
1 st t
= / ds [ dr {Bl,(s) {H(n)]E(s.0) + Ef, () [-iH(1)]E(r,0)}
0 0
(158)
which implies, by telescoping, that
1 st t
ds— 5,0 S*/dS/dT E.v(s) — Ea (7 H(t
A B 0| < [ ds [ dr (Eu(s) ~ Bl IHO, o

+ IE(s,0) = E(7, 0)l| oo 1 H (7) [l )-

By the fundamental theorem of calculus, the first term of the integrand can be bounded
as

1 t
[Eav(s) = Bav(T)lloo < [Havlloo [s = 7] < ;/0 du || H(u)llo s = 7| < [[H|l - (160)
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To handle the second term, we use Lemma 1. Observe that the generator of E(s,0) is
H(u), 0 <wu < s, whereas the generator of E(7,0) is H(u), 0 < u < 7. So they only differ
on the interval [ min{s, 7}, max{s, 7}]. Consequently,

max{s,7}
B6s.0) - B0l < [ Q@I < [ dulH@I = 1Hly 061

min{s,7}

Altogether, we have

|E(t,0) — Eav(t)”oo =

/ s [Eay (s)'E(s, 0)] HOO

. /0 ds /0 A7 ([Bas(5) = Ear (7)o [ ()] (162)
[[E(s,0) — B(r,0)] [ H(P)]l.0)

| /\

2
< 2[|H|%

Theorem 11 (Hamiltonian simulation by averaging (spectral-norm distance)). Let H(T)
be a time-dependent Hamiltonian defined for 0 < 7 <t and assume that it is continuous
and nonzero everywhere. Define E(t,0) 1= expy ( — i [y A7 H(7)) and Eg(t) 1= e v,
where H g, := %fg dr H(7) is the average Hamiltonian. Then,

IB(£,0) = Ean(t)lloo < 2[[H]%; - (163)

The above bound on the spectral-norm error can be converted to a bound on the
diamond-norm error using Lemma 2.

Theorem 11’ (Hamiltonian simulation by averaging (diamond-norm distance)). Let H(T)
be a time-dependent Hamiltonian defined for 0 < 7 < t and assume that it is continu-
ous and nonzero everywhere. Define unitary operators E(t,0) 1= expy ( —i [y dr H(7)),
Eoo(t) := e o and let £(t,0)(-) := E(t,0)(-)E(t,0)", £uu(t)(-) = Euu(t)()Eau(t)! be the
corresponding channels. Then,

I1E(t,0) = Eau(®)ll, < 4N H % s - (164)

A.2 Implementing Hamiltonian averaging by continuous qDRIFT

Let H(7) be a time-dependent Hamiltonian defined for 0 < 7 < ¢ and assume that it
is continuous and nonzero everywhere. We have showed that the ideal evolution can be
approximated by an evolution under the average Hamiltonian with error that scales with
the L' norm. We now show that such a Hamiltonian averaging can be implemented by
continuous gDRIFT, again with L!-norm scaling. This improves over the algorithm of [42]
which scales with the L*° norm.

Theorem 12 (Hamiltonian averaging by continuous qDRIFT). Let H(7) be a time-
dependent Hamiltonian defined for 0 < 7 <t and assume that it is continuous and nonzero
everywhere. Define Egy(t) := e "o and let E,,(t)(-) = Eau(t)(-)Ea(t)T be the correspond-
ing channels. Let U(t,0) be the continuous ¢DRIFT channel

_ H(T) H(T)
/ dr p(r Y50 pe ) (165)
where p(1) = |[H (7)o / [|H |l o1~ Then,

1€au(t) = U, 0)[l, < 4| HI3,; - (166)
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Note that by applying the triangle inequality to Theorem 5 and Theorem 11’, we obtain
2
1€av () —U(E,0)]], < 8|[HI|Z ;- (167)
Theorem 12 improves the constant prefactor from 8 to 4.

Proof of Theorem 12. We parametrize the two channels &, (t), U(t) and define

i [ i [ t L HE HD
Eavu(t)(p) =" Jo dTH(T)Pew Jo dTH(T), Uu(t,0)(p) == / dr p(r)e P pe P,
0

(168)

Since Eano(t)(p) = pr Eant (£)(9) = Eult)(0), Uo(t,0)(p) = p, and 2 (£,0)(p) = U(p), the
first derivative of &,y . (t)(p) and U, (t,0)(p) agrees with each other at u =0

d

—Eavalt)(0) { / dr H(r } U (1,0)(p) -~ (169)
Applying the fundamental theorem of calculus twice, we obtain
5av(t) (P) - L{(t, 0 (/0)
= (gav,l(t)(p> - gaV,O(t)(p» - (ul(tv 0)(p) - Uo(t, 0)(P))
1 u d2
— /O du /0 dv [Eavw(t)(p) — Us(t,0)(p)] (170)

= /Oldu/oudv {e_ivfo drH(r { / drH(t {_@/ drH (7 ”eivf(deH(ﬂ
— i 2 H(T i H
—/0 dr p(r)e e {_ Z;[((’T))’ {_ ; p(( ))7PH e }

We take o to be a state on the joint system of the original register and an ancilla
register with the same dimension. Using properties of the Schatten norms, we have

[(Eav(t) @ 1) (o) — U(t) @ 1) ()],

§/Oldu/0udv{ {—i/othH(T)(@]l,[—i/othH(T)lel,a”

e frorro|[ -5 e [ et

1 u t H 2
g/ du/ dv {4|]H||§Ol+4/ dr ”(T>||oo]
0 0 ’ 0 p(7)

Using the definition p(7) = ||H (7)o, / || H]]
further simplified as

1

} (171)

~o.1» the second term of the integrand can be

[far VO gz, (72)
o)
giving
|(Ew(®) © 1)(0) = (U(E0) @ 1)(0)], < 4[|H|2, (173)
Optimizing over o proves the claimed bound. O
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