

1

2 Organic-to-inorganic structural chirality transfer in a 2D hybrid
3 perovskite and impact on Rashba-Dresselhaus spin-orbit
4 coupling

5

6 Manoj K. Jana¹, Ruyi Song², Haoliang Liu³, Dipak Raj Khanal³, Svenja M. Janke¹, Rundong
7 Zhao¹, Chi Liu², Z. Valy Vardeny³, Volker Blum,^{1,2} and David B. Mitzi^{1,2*}

8 ¹*Department of Mechanical Engineering and Materials Science, Duke University, Durham,
9 NC 27708, USA*

10 ²*Department of Chemistry, Duke University, Durham, NC 27708, USA*

11 ³*Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA*

12 *e-mail: david.mitzi@duke.edu

13

14 **Correspondence**

15 D.B.M; david.mitzi@duke.edu; ORCID: 0000-0001-5189-4612

16

17

18

19

20

21

22

23 **Abstract**

24 Translation of chirality and asymmetry across structural motifs and length scales plays a
25 fundamental role in nature, enabling unique functionalities in contexts ranging from
26 biological systems to synthetic materials. Here, we introduce a structural chirality transfer
27 across the organic-inorganic interface in two-dimensional hybrid perovskites using
28 appropriate chiral organic cations. The preferred molecular configuration of the chiral spacer
29 cations, R-(+)- or S-(-)-1-(1-naphthyl)ethylammonium and their asymmetric hydrogen-
30 bonding interactions with lead-bromide-based layers cause symmetry-breaking helical
31 distortions in the inorganic layers, otherwise absent when employing a racemic mixture of
32 organic spacers. First-principles modeling predicts a substantial bulk Rashba-Dresselhaus
33 spin-splitting in the inorganic-derived conduction band with opposite spin textures between
34 R- and S-hybrids due to the broken inversion symmetry and strong spin-orbit coupling. The
35 ability to break symmetry using chirality transfer from one structural unit to another provides
36 a synthetic design paradigm for emergent properties, including Rashba-Dresselhaus spin-
37 polarization for hybrid perovskite spintronics and related applications.

38

39

40

41

42

43

44

45 **Introduction**

46 Inversion asymmetry is at the heart of various physical properties of inorganic systems.
47 Especially in conjunction with relativistic effects such as spin-orbit coupling (SOC), it
48 engenders rich condensed matter phenomena, such as the quantum spin Hall effect,¹
49 topological surface states and Rashba/Dresselhaus coupling²⁻⁴ in non-magnetic systems as
50 well as exotic spin topologies including chiral domain walls⁵ and skyrmions⁶ in magnetic
51 systems, with promising applications in electronic, magnetic and spintronic technologies.^{7,8}
52 One potential route for inducing asymmetry relies on chirality, a fundamental design feature
53 based on lack of inversion and mirror symmetries that permeates all hierarchies of molecular
54 organization and assembly.⁹ Transmission of chiral information and asymmetry across
55 structural motifs and length scales plays a vital role in biological as well as synthetic systems.
56 The chirality transfer is often expressed as cooperative self-assembly of chiral organic
57 monomers into supramolecular¹⁰ and macroscopic chiral aggregates¹¹ or templated chiral
58 helicity in otherwise achiral molecules¹² through intra- and inter-molecular interactions.
59 While such chirality transfer phenomena have been mainly established in organic systems,
60 the ability to exploit the influence of chiral organic molecules to structurally modify an
61 extended inorganic lattice and thereby engender emergent properties based on crystal
62 asymmetry remains underexplored.

63 In this context, two-dimensional (2D) layered hybrid organic-inorganic perovskites
64 (HOIPs) provide ideal platforms to study structural chirality transfer across organic-inorganic
65 interfaces. They exhibit crystallographically well-ordered structures with alternating organic
66 and inorganic layers, coupled with broad flexibility in the choice of organic cations and
67 inherent sensitivity of properties to structural tuning. 2D HOIPs are currently in the spotlight
68 owing to their chemical stability, structural versatility as well as exceptional photophysical
69 properties, including large exciton binding energies, high photoluminescence quantum

70 efficiency, strong exciton-phonon couplings and tailorabile optoelectronic properties for light-
71 emitting and energy-related applications.¹³⁻¹⁵ Chiral organic cations have been recently
72 employed in 2D HOIPs, resulting in ferroelectricity¹⁶ and chiroptical properties such as
73 circular dichroism and circularly polarized luminescence.^{17,18} Notably, the inorganic-related
74 chiroptical activity in these already reported HOIP systems is evidently an optically induced
75 phenomenon caused by dipolar interactions with chiral cations,^{19,20} and thus, the chain of
76 evidence for structural chirality/asymmetry transfer to the inorganic layers remains
77 incomplete if solely based on chiroptical spectroscopies. Indeed, we find (as will be discussed
78 later) that the introduction of a chiral organic cation in 2D HOIPs does not necessarily imply
79 a significant degree of structural chirality within the inorganic framework.

80 Here, we demonstrate a structural chirality transfer across the organic-inorganic
81 interface in a prototypical 2D HOIP, R-(+)- or S-(-)-1-(1-naphthyl)ethylammonium lead
82 bromide, wherein the enantiopure chiral spacers induce symmetry-breaking helical distortions
83 in the inorganic framework via asymmetric hydrogen bonding interactions, otherwise absent
84 when employing a racemic mixture of organic spacers. As a result, the $P2_1$ chiral symmetry
85 of the organic sublattice ‘transfers’ to the inorganic sublattice. The use of chiral organic
86 spacers imparts added functionalities to the semiconducting inorganic framework including a)
87 distinct circular dichroism (CD) of excitonic absorption in the $[PbBr_4]^{2-}$ layers, induced by
88 net crystallographic handedness and dipolar interactions with polarizable π clouds of chiral
89 organic cations, and b) Rashba-Dresselhaus (RD) spin-splitting of otherwise two-fold spin-
90 degenerate electronic bands as a consequence of the broken inversion symmetry (resulting
91 from organic-to-inorganic chirality transfer) and strong SOC. While the chiroptical activity
92 enables detection of circularly polarized light in practical applications,²¹ the RD effect (the
93 focus of the current study) is actively pursued in the field of spintronics,^{8,22,23} which relies on
94 the spin degrees of freedom. In the present chiral HOIP, hybrid density functional theory

95 (DFT) calculations are used to predict a substantial bulk RD splitting of the inorganic-derived
96 conduction band, which is absent in the racemic analog.

97 **Results**

98 **Structural chirality transfer in 2D HOIP**

99 Single crystals of R/S/racemic-NPB (NPB=1-(1-naphthyl)ethylammonium lead bromide)
100 were grown by slowly cooling an aqueous HBr solution of stoichiometric amounts of PbBr_2
101 and R/S/racemic-NEA (NEA: 1-(1-naphthyl)ethylamine) (see Methods). All three
102 compounds crystallize as 2D HOIPs, with anionic $[\text{PbBr}_4]^{2-}$ layers of corner-sharing PbBr_6
103 octahedra separated by bilayers of NEA^+ spacer cations (Fig. 1a-c). Racemic-NPB
104 crystallizes in the centrosymmetric $P2_1/c$ space group, whereas R- and S-NPB adopt the
105 chiral $P2_1$ space group (see Supplementary Table 1 for crystallographic data). In all three
106 compounds, any set of four interconnected PbBr_6 octahedra forms a puckered square pattern
107 due to the tilting of adjacent octahedra (Fig. 1d-f), causing equatorial Pb-Br-Pb bond angles
108 to deviate significantly from the ideal 180° for an undistorted perovskite sheet. Whereas
109 racemic-NPB features symmetric tilting distortions, resulting in a single Pb-Br-Pb angle of
110 152° (Fig. 1f), both R- and S-NPB exhibit significant tilting asymmetry with two widely
111 disparate equatorial Pb-Br-Pb angles of 143° and 157° , corresponding to two distinct
112 equatorial Br atoms (denoted with purple and red spheres, respectively, in Fig. 1d,e).

113 The equatorial bond angle disparity in chiral NPB likely follows from asymmetric
114 hydrogen (H)-bonding associated with the in-plane Br atoms of the inorganic $[\text{PbBr}_4]^{2-}$ layers
115 (for H-bonding distances and angles, see Supplementary Table 2). As can be seen in
116 Supplementary Figure 1, each axial (i.e., out-of-plane) Br atom forms the same number of H-
117 bonds in both chiral- and racemic-NPB, i.e., two H-bonds with nearest H-atoms of NH_3^+
118 groups in the adjacent organic layer, as commonly found among 2D HOIPs. Thus, in all three

119 compounds (racemic and chiral), H-bonding to axial Br atoms is symmetric for opposite sides
120 of the same inorganic layer. In contrast, for the chiral NPB, when considering the two distinct
121 equatorial (i.e., in-plane) Br atoms within a given inorganic layer (Fig. 1g,h), each purple-
122 labeled Br atom H-bonds with both NH_3^+ ($\text{H}_2\text{N-H...Br} = 2.92 \text{ \AA}$) and $\alpha\text{-CH}_3$ ($\text{H}_2\text{C-H...Br} =$
123 2.83 \AA) groups of the NEA^+ spacer on one side of the inorganic layer, but with only NH_3^+
124 ($\text{H}_2\text{N-H...Br} = 2.87 \text{ \AA}$) group of the NEA^+ spacer on the opposite side of the inorganic layer.
125 For the red-labeled Br atoms, the corresponding H...Br contacts exceed the van der Waals
126 limit of 3.05 \AA , suggesting substantially reduced H-bonding interactions. The equatorial Br
127 atoms thus incur out-of-plane distortions that propagate helically about the 2_1 -screw axis
128 parallel to the *b*-axis (Fig. 1d,e); the spirals formed by the bonds that connect the two types of
129 Br via adjoining Pb atoms (also indicated in Fig. 1d,e) exhibit opposite yet dissimilar
130 helicities, and the ensuing net crystallographic helicity of Br distortions in R-NPB (Fig. 1d) is
131 opposite to that in S-NPB (Fig. 1e). In the racemic-NPB, this type of helical distortion does
132 not occur. Here, each of the equatorial Br atoms H-bonds to a single NH_3^+ ($\text{H}_2\text{N-H...Br} =$
133 2.59 \AA) group on either side of the inorganic layer, with all the equatorial Br atoms being
134 coplanar (Fig. 1f,i). The peculiar H-bonding found for the equatorial Br atoms in chiral NPB
135 derives from the specific organic tethering group configuration. On either side of the
136 inorganic layer, terminal $-\text{CH-NH}_3^+$ bonds of chiral NEA^+ cations are oriented nearly parallel
137 with respect to one another and slightly offset across the inorganic layer (Fig. 1d,e). In
138 racemic-NPB, the $-\text{CH-NH}_3^+$ bonds orient in a more typical crisscross fashion (Fig. 1f),
139 leading to a hydrogen bonding pattern frequently observed among 2D HOIPs.

140 The structural symmetry determined using PLATON's²⁴ ADDSYM tool yields the
141 same $P2_1$ chiral space group for mutually isolated organic and inorganic frameworks in R-
142 and S-NPB (Supplementary Figure 2). The chiral NEA^+ spacers assemble into a $P2_1$
143 sublattice and transfer the $P2_1$ chiral symmetry to the inorganic sublattice (Pb and Br atoms

144 in polar C_1 point group) by inducing in-plane tilting asymmetry and out-of-plane helical 2_1
145 screw distortions, as discussed above. Wilson statistics and cumulative intensity distributions
146 of X-ray reflections both confirm the noncentrosymmetric inorganic layers in chiral NPB
147 (Supplementary Figures 3 and 4). In contrast, the $[\text{PbBr}_4]^{2-}$ framework in the racemic-NPB is
148 centrosymmetric ($P2_1/c$), with Pb and Br atoms in the C_i point group. Bond length distortions
149 for R-, S-, and racemic-NPB, $\Delta d = \left(\frac{1}{6}\right) \Sigma (d_i - d)^2 / d^2$ (where d_i denotes the six Pb-Br bond
150 lengths and d is the mean Pb-Br bond length), as well as the bond angle variances, $\sigma^2 =$
151 $\Sigma_{i=1}^{12} (\theta_i - 90)^2 / 11$ (where θ_i denotes the individual Br-Pb-Br bond angles), quantify the
152 distortions of individual PbBr_6 octahedra relative to an undistorted octahedron
153 (Supplementary Table 3). Both Δd and σ^2 values for chiral R- and S- NPB substantially
154 exceed those for racemic-NPB (Supplementary Table 3) and are among the largest values
155 reported for the $<100>$ -oriented 2D lead bromide HOIP class (Supplementary Figure 5). Such
156 substantial symmetry-breaking distortions in the inorganic framework, owing to the chirality
157 transfer from the chiral NEA^+ spacer cations, are crucial for determining the associated
158 electronic structure and lead to an emergent Rashba-Dresselhaus spin-splitting of electronic
159 bands (discussed below) in chiral R- and S- NPB, otherwise absent when employing a
160 racemic mixture of NEA^+ spacers.

161 Critically, individual symmetries of organic and inorganic sublattices can differ,
162 although the use of chiral spacer cations generally entails a global chiral crystallographic
163 description of the HOIP. We underscore the above point by comparing to the previously
164 reported 2D lead iodide HOIP comprising chiral cations, i.e., R/S-1-methyl benzylammonium
165 lead iodide (MBPI).^{18,25} Temperature-dependent (298 K, 200 K, and 100 K) single-crystal X-
166 ray diffraction for S-MBPI as an example indicates a centrosymmetric $Pnma$ (i.e., $P 2_1/n 2_1/m$
167 $2_1/a$) space group for the inorganic framework despite an overall chiral $P2_12_12_1$ description
168 for the hybrid. Note that the inorganic framework scatters X-rays more strongly than the

169 organic component, and the positions of Pb and I atoms, therefore, predominantly dictate the
170 space group determination by crystallographic indexing based on Wilson statistics; a $\langle E^2 - 1 \rangle$
171 value close to 1 is obtained from Wilson statistics, suggesting a centrosymmetric space group
172 (Supplementary Figure 3). The cumulative intensity distribution plot also points to a
173 centrosymmetric space group (Supplementary Figure 4). However, structure refinement in the
174 *Pnma* space group is precluded by the chiral organic cations, thereby requiring an alternative
175 *P2₁2₁2₁* chiral space group, as inferred from the observed total systematic absences. The
176 global structure of S-MBPI could be successfully refined in the *P2₁2₁2₁* chiral space group at
177 all three temperatures investigated (Supplementary Table 4), in agreement with an earlier
178 report on its 298 K structure.²⁵ However, despite the overall chiral space group, our post-
179 refinement symmetry analysis using PLATON suggests a *Pnma* space group for the isolated
180 $[\text{PbI}_4]^{2-}$ framework (i.e., excluding organic cations) (Supplementary Figure 2). In contrast to
181 S-NPB and R-NPB, the observations for S-MBPI clearly point to a predominantly
182 centrosymmetric inorganic $[\text{PbI}_4]^{2-}$ framework to within the default positional/angular
183 tolerance criteria used in the PLATON analysis.

184 Importantly, S-MBPI lacks the asymmetric H-bonding interactions or helical
185 distortions found in chiral NPB and exhibits nearly flat perovskite layers, similar to racemic-
186 NPB (Supplementary Figure 6). The in-plane tilting distortion is relatively smaller, with
187 equatorial Pb-Br-Pb angles of 151° and 157°, and the computed σ^2 value is about half the
188 value found in chiral NPB (Supplementary Table 3). We ascribe the organic-to-inorganic
189 structural chirality transfer in NPB and a lack of detectable transfer in MBPI, at least in part,
190 to the relative strengths of associated H-bonding interactions [e.g., $\Delta H_{(\text{H}\dots\text{Br})} > \Delta H_{(\text{H}\dots\text{I})}$] that
191 mainly determine the templating influence of chiral organic spacers. Our attempts to grow
192 single crystals of an iodide analog of NPB led to a 1D hybrid comprising a face-sharing
193 $[\text{Pb}_2\text{I}_6]^{2-}$ framework (Supplementary Figure 7 and Supplementary Table 5). On the other

hand, the chiral lead bromide analog of MBPI readily crystallizes into a similar 1D $[\text{Pb}_2\text{Br}_6]^{2-}$ hybrid,²⁵ although the target 2D phase could be stabilized in thin films.¹⁷ While we cannot directly compare bromide/iodide analogs for the same chiral organic cation (from a single-crystal structure standpoint), the key point is that detectable organic-to-inorganic structural chirality transfer does not inevitably follow from the use of a chiral cation within the 2D HOIPs, but additionally relies on the detailed H-bonding interactions that couple the organic and inorganic sublattices. Furthermore, as seen below, the degree of structural chirality transfer (and associated structural distortions in the lead halide framework) is found to have a significant impact on the electronic structure of the resulting HOIP.

203 Circular dichroism and photoluminescence

204 Thin films of R-, S- and racemic-NPB were deposited by spin coating DMF solutions of
205 corresponding single crystals (see Methods and Supplementary Figure 8). The linear
206 absorption spectra for R-, S- and racemic-NPB films all reveal a sharp resonance centered at
207 ~ 390 nm that corresponds to excitons confined within the 2D lead bromide layers (Fig. 2a).
208 The excitonic bands in R- and S-NPB are blue-shifted by ~ 30 meV relative to racemic-NPB,
209 due to more pronounced structural distortions in the former.²⁶ Circular dichroism (CD)
210 measures differential absorption of left and right circularly polarized light passing through a
211 chiral system and can establish the absolute configuration (i.e., handedness) of chiral
212 enantiomers. Quantum theory relates the CD intensity in a chiral molecule to the imaginary
213 part ('Im') of the dot product of electric ($\vec{\mu}_{12}$) and magnetic (\vec{m}_{21}) dipole transition
214 moments²⁰:

$$\text{CD}_{\text{molecule}} \propto \text{Im}[\vec{\mu}_{12} \cdot \vec{m}_{21}], \quad (1)$$

215 where the indices 1 and 2 denote, respectively, the initial and final chiral molecule quantum
216 states. For a non-zero CD signal, $\vec{\mu}_{12}$ and \vec{m}_{21} cannot be orthogonal, a condition satisfied

217 only by chiral point groups devoid of inversion and mirror symmetries. The CD spectra from
218 R- and S-NPB thin films (Fig. 2b) change signs due to their opposite absolute configurations
219 but are otherwise identical within the experimental error, while racemic-NPB, as expected,
220 shows a negligible CD signal. The distinct CD bands centered at 393 nm for R- and S-NPB
221 correspond to the excitonic absorption in Fig. 2a. The linear absorption spectrum at 50 K for
222 the chiral NPB reveals a 2D-type band-edge absorption onset at 3.54 eV that appears as a
223 step-like feature preceding the exciton band (Supplementary Figure 9). Consequently, we
224 assign the higher energy CD band centered at 351 nm for chiral NPB as due to transitions
225 into the continuum (i.e., above bandgap) states. It is noteworthy that the CD spectrum reveals
226 these band-edge-like transitions even at room temperature, while they are not resolved in the
227 room-temperature linear absorption spectrum due to the inhomogeneous broadening of the
228 exciton absorption band (Fig. 2a). The exciton binding energy (E_b) of ~0.38 eV, estimated
229 from the energy difference between excitonic and continuum CD bands, matches the value
230 obtained from the 50 K linear absorption (Supplementary Figure 9).

231 The opposite CD signals in the inorganic-derived part of the spectra for chiral R- and
232 S-NPB can, in part, arise from the crystallographic handedness induced by structural chirality
233 transfer. However, R- and S-MBPI also exhibit inorganic-derived excitonic and interband CD
234 bands despite their nominally centrosymmetric lead iodide layers, as discussed above.¹⁸
235 Indeed, the frontier orbitals at the conduction and valence band edges derive from the
236 inorganic framework for all the 2D HOIPs studied here (see Fig. 3d-f), and no significant
237 direct contribution arises from chiral organic cations to the associated band edge or excitonic
238 transitions. The CD bands in chiral NPB can originate from the coupling of dipole transition
239 moments in the inorganic framework and the chiral organic spacer cations (the chiral,
240 screening medium surrounding the inorganic framework), as previously observed in
241 inorganic semiconductor nanocrystals capped with chiral surface ligands.¹⁹ The same dipolar

242 interactions with the chiral, organic screening medium can induce excitonic CD signals in R-
243 and S-MBPI despite their nominally centrosymmetric inorganic layers,^{18,27} thus suggesting
244 that an induced CD does not always imply substantial chirality transfer from organic to
245 inorganic layers.

246 The room-temperature photoluminescence (PL) spectra measured from single crystals
247 (Fig. 2c) reveal a moderate excitonic emission (centered at 402 nm) for racemic-NPB, which
248 is quenched in the chiral R- and S-NPB. In addition, all three HOIPs exhibit a weak,
249 spectrally shifted broad PL band in the 450-800 nm range, which significantly increases in
250 intensity at 7 K (Fig. 2d). Such a broad PL band may be attributed to exciton self-trapping
251 within excited state transient lattice distortions (i.e., polaron formation), mediated by strong
252 electron-phonon coupling and defects induced during crystal growth.²⁸ The PL behavior in
253 chiral- vs. racemic-NPB indeed agrees with a previous empirical correlation—i.e., that the
254 intensity ratio of narrow free-excitonic emission to broad self-trapped excitonic emission in
255 <100>-oriented lead bromide HOIPs decreases with increasing structural distortions in the
256 ground state.²⁹ Despite the substantial distortions in chiral NPB (Supplementary Figure 5),
257 the relatively weak room-temperature broad PL emission suggests competing non-radiative
258 decay channels for the self-trapped excitons.³⁰ The lack of free excitonic emission in chiral
259 NPB is, in part, ascribed to asymmetry-induced changes in the electronic band structures, as
260 discussed below.

261 **Rashba-Dresselhaus SOC and conduction band splitting**

262 Spin-orbit coupling (SOC) describes a relativistic effect, relevant especially for heavy atoms.
263 Pb-based HOIPs are gaining substantial interest in spintronics owing to a strong SOC induced
264 by the heavy Pb constituent and structural flexibility provided by the organic cation.^{31,32} In
265 Pb-containing HOIPs, the SOC-induced energy splitting of the Pb-6p-derived conduction

266 band (CB) is of the order of eV.³³⁻³⁵ The SOC can be rationalized approximately as the
 267 Zeeman-like interaction of electron spin with an effective magnetic field experienced by an
 268 electron (in its rest frame) moving in an electric field.⁷ In non-magnetic systems, SOC
 269 conserves time-reversal symmetry (TRS), i.e., $E\uparrow(\mathbf{k})=E\downarrow(-\mathbf{k})$, where E is the single-particle
 270 (electron or hole) band energy, \mathbf{k} represents the crystal momentum (Bloch wavevector), and
 271 the arrows correspond to states of $s = +1/2$ and $-1/2$ character. TRS, in combination with
 272 inversion symmetry [i.e., $E\uparrow(\mathbf{k})=E\uparrow(-\mathbf{k})$], leads to a two-fold spin-degeneracy for the up (\uparrow)
 273 and down (\downarrow) spins (Fig. 3a). When the inversion symmetry is broken, a strong SOC lifts this
 274 two-fold spin degeneracy. The emergence of the ensuing dispersion relations near the CB
 275 minimum along one dimension of an RD system is schematically illustrated in Figure 3a-c.
 276 Without SOC, the CB minimum is located at the Γ point in this illustration. Upon including
 277 SOC, the energy bands about the CB minimum assume the general form^{2,32}:

$$E^\pm(\mathbf{k}) = \frac{\hbar^2 \mathbf{k}^2}{2m} \pm \lambda |\mathbf{k}| \quad (2)$$

278 where \mathbf{k} is the electron wavevector, and λ is the Rashba (Dresselhaus) coupling parameter for
 279 a pure Rashba (Dresselhaus) SOC effect. E^+ and E^- are called the spin-polarized sub-
 280 branches (Fig. 3b,c). Owing to the \mathbf{k} -space separation of electronic bands (Fig. 3b), forward
 281 and backward moving carriers have opposite spins at the band extrema (spin-momentum
 282 locking). This effect was first noted by Dresselhaus in strained zinc-blende III-V
 283 semiconductors³, then by Rashba in Wurtzite structures⁴ and later generalized by Bychkov
 284 and Rashba for 2D electron gases (2DEG).² In this paper, we use the combined term, RD
 285 splitting, throughout since Rashba and Dresselhaus SOC effects can occur in 2D systems
 286 either exclusively or simultaneously with characteristic spin textures for each case.³² A
 287 detailed discussion of the RD effect for quasi-2D systems was recently given by Even, and
 288 coworkers.³² Opposite spin-textures associated with the spin-split sub-bands in opposite

289 momentum directions (Fig. 3b) due to the RD SOC effect lead to circular photogalvanic
290 effects³⁶ and enable interconversion between charge and spin currents (by Edelstein and
291 inverse Edelstein effects),^{22,23} of interest for spintronic technologies.

292 To examine the effect of chirality-induced inversion asymmetry on the electronic
293 structures of chiral R- and S-NPB, we have computed the associated electronic band
294 structures using DFT-based first-principles calculations with the all-electron electronic
295 structure code FHI-aims.³⁷ The code is a high-precision implementation of current density-
296 functional methods,^{38,39} including an implementation of SOC that has been successfully
297 benchmarked⁴⁰ and used to calculate band structures of complex HOIPs in previous works
298^{35,41-43} (see Methods section for more details). The input structures for the 2D HOIPs were
299 obtained from our single-crystal X-ray experiments. Geometry optimizations were conducted
300 using dispersion-corrected semilocal DFT (PBE⁴⁴ generalized-gradient approximation
301 including the Tkatchenko-Scheffler (TS) van der Waals correction,⁴⁵ PBE+TS for short);
302 computationally relaxed lattice parameters fall within 2.5% of the experimental values, while
303 associated bond angles fall within 7° (Supplementary Table 6 and Supplementary Figures
304 10-12). Figure 3f-g shows the electronic band structures of racemic-, R- and S-NPB
305 calculated with DFT-HSE06+SOC and decomposed into Pb- (purple), Br- (green) and
306 organic-derived (black) states. For all three structures, the frontier orbitals at the band edges
307 derive from the inorganic sublattice so that a type Ib quantum well results.³⁵ In agreement
308 with other Pb-based hybrid perovskites,⁴⁶ the conduction band maximum (CBM) and valence
309 band minimum (VBM) consist mainly of Pb- and halogen-derived states, respectively. The
310 calculated bandgaps are the same for R- and S-NPB (2.97 eV) and slightly higher than the
311 predicted bandgap of 2.78 eV for racemic-NPB.

312 In line with the RD picture, chiral R- and S-NPB exhibit characteristic splitting of an
313 otherwise two-fold degenerate conduction band (CB) away from the Γ -point (Fig. 3g,h),

whereas the centrosymmetric racemic-NPB does not show CB splitting (Fig. 3f). Broken inversion symmetry in the chiral lead bromide layers results in CB splitting into upper and lower spin-polarized branches along the Γ -Z path. This \mathbf{k} -path coincides with the in-plane [100] crystallographic direction in the 2D $[\text{PbBr}_4]^{2-}$ layers (see Fig. 1d,e), along which the local geometry fluctuates as the equatorial Pb-Br-Pb bond angles alternate between 143° and 157° (Fig. 1d,e). The lack of band dispersion along the Γ -X path (i.e., coinciding with the out-of-plane [001] layer-stacking direction, which is perpendicular to the 2D inorganic plane in Fig. 1a,b) is in accord with the confinement and localization of inorganic-derived states in the out-of-plane direction. The Γ -Y path coincides with the in-plane [010] crystallographic direction (Fig. 1d, e) along which the same kind of Br atoms— i.e., either purple- or red-type— and hence the associated Pb-Br-Pb bond angles propagate by 2_1 -screw translational symmetry (Fig. 1d, e). So, the C_2 rotational axis for chiral NPB (corresponding to $P2_1$ space group) points along the Γ -Y path, thereby explaining the minimal spin-splitting along this direction. This configuration contrasts with conventional 2D Rashba systems such as inorganic quantum well (QW) heterostructures^{32,47} or BiTeI,⁴⁸ which exhibit the C_{nV} symmetry and where the C_n ($n=2, 3$) axis coincides with the stacking direction. Therefore, as suggested in earlier work on quasi-2D systems by Even and coworkers,³² the situation in chiral NPB corresponds to a 1D problem with dominant SOC contributions only along the [100] crystallographic direction (Fig. 1d,e).

We describe an effective RD coupling parameter, $\lambda_{\text{RD}} = \frac{\Delta E}{2\mathbf{k}_0}$, where \mathbf{k}_0 denotes the momentum-offset from the Γ -point and ΔE is the energy difference between the upper (E^+) and lower (E^-) conduction band branches at \mathbf{k}_0 . E_{RD} is the characteristic energy difference between $\mathbf{k} = \mathbf{k}_0$ (i.e., the bottom of the parabola) and $\mathbf{k} = 0$ (i.e., Dirac point where the two parabolas intersect), which for the exact parabolic dispersion, would amount to one-fourth of ΔE (Fig. 3c).³² Based on our DFT-HSE06+SOC band structure calculations, $\Delta E^{\Gamma-Y} = 0.01$

339 eV and $\Delta E^{\Gamma-Z} = 0.22$ eV, with corresponding RD coupling parameters of $\lambda_{RD}^{\Gamma-Y} = 0.28$ eV·Å
340 and $\lambda_{RD}^{\Gamma-Z} = 1.52$ eV·Å for CBs in both R- and S-NPB along Γ -Y and Γ -Z paths, respectively.
341 The predicted $\lambda_{RD}^{\Gamma-Z}$ of 1.52 eV·Å and estimated E_{RD} ($\sim \Delta E/4$)^{32,49} of 55 meV in chiral NPB
342 are orders of magnitude higher than those found in QW heterostructures such as
343 InAlAs/InGaAs ($\lambda \approx 0.07$ eV·Å; $E_{RD} \approx 1$ meV).⁵⁰ These values are indeed similar to those
344 recently observed in the 2D phenethylammonium lead iodide HOIP using optical
345 spectroscopies,^{36,49} although the precise origin of the bulk inversion asymmetry is still
346 unclear given its centrosymmetric X-ray crystal structure with symmetrical disposition of in-
347 plane bond angles and relatively low distortions (in contrast to chiral NPB).²⁶ We speculate
348 that an instantaneous band splitting in phenethylammonium lead iodide can arise from
349 dynamic structural changes induced by temperature and/or photoexcited coherent phonon
350 modes, as recently proposed for methylammonium lead iodide 3D perovskite.^{51,52}
351 Nonetheless, in contrast with the substantially lower RD splitting predicted for
352 noncentrosymmetric lead iodide-based HOIPs ($E_{RD} \ll 10$ meV),⁵³ we ascribe the relatively
353 large in-plane RD CB spin-splitting in the chiral NPB compounds to a considerable
354 asymmetry in the in-plane PbBr_6 octahedral tilting distortions—i.e., widely disparate Pb-Br-
355 Pb bond angles (see Fig. 1d,e)—likely inducing large electric fields and thus large RD SOC,
356 in agreement with our simulations of model structures with distorted vs. undistorted inorganic
357 layers (Supplementary Figure 14). Furthermore, the opposite chirality in the inorganic layers
358 leads to opposite spin textures for the spin subbands between R-NPB and S-NPB, thus
359 enabling a unique control of RD spin polarization using the chiral organic cations
360 (Supplementary Figure 15).

361 In R- and S-NPB, the resulting CB minima due to RD splitting are offset in k-space
362 from the VB maxima (indicated by black arrows in Fig. 3g,h), resulting in a momentum-
363 forbidden indirect bandgap close to Γ -point. In contrast, the bandgap in racemic-NPB is

364 direct and momentum-allowed. We thus speculate that the quenched free-excitonic PL
365 emission in the chiral NPB compounds may arise in part due to the indirect transition caused
366 by substantial RD CB splitting.^{52,54} The frontier VB in NPB systems is primarily comprised
367 of Br-derived states (Fig. 3f-h) and, owing to the low (compared to Pb) SOC effects
368 associated with the lighter Br, RD VB spin-splitting is expectedly small in chiral NPB (Fig.
369 3g,h).³⁴ For comparison, we have also computed the DFT-HSE06+SOC electronic band
370 structure of chiral S-MBPI (Supplementary Figure 16), which, however, shows much lower
371 CB splitting of $\Delta E^{\Gamma-Z} = 0.025$ eV due to the previously discussed nearly centrosymmetric
372 $[\text{PbI}_4]^{2-}$ layers, thus reflecting the essential prerequisite of substantial local symmetry-
373 breaking for a large RD spin-splitting.

374 **Discussion**

375 2D HOIPs exhibiting quantum and dielectric confinement of carriers are potential RD
376 candidates,⁴⁹ in analogy with the inorganic 2DEGs, provided the perovskite layers lack
377 inversion symmetry. Most of the known 2D HOIPs, however, adopt centrosymmetric crystal
378 structures, lacking the bulk and/or site inversion asymmetries that are prerequisite to the RD
379 SOC effect (neglecting dynamical effects).^{32,55} Our present work shows that the use of
380 enantiopure chiral building blocks provides a pathway to induce inversion asymmetry in
381 otherwise centrosymmetric HOIPs, reflecting an additional degree of freedom in HOIP
382 design. Notably, the surrounding chiral cations, the presence of which induces a chiroptical
383 response, need not always entail a significant structural chirality within the inorganic layers;
384 chirality can be structurally transferred to the inorganic layers only when mediated by
385 suitably strong hydrogen-bonding interactions with chiral cations, as exemplified by the
386 present chiral NPB systems. Moreover, while specific achiral organic cations might also
387 induce symmetry-breaking distortions in the inorganic layers, the ability to control the
388 associated handedness of these distortions (and associated spin texture in the electronic

389 bands) is made possible by employing chiral organic cations. These structural insights,
390 coupled with theoretical findings in our work, enable the discovery and design of an
391 emerging class of multifunctional hybrid systems with an amalgam of semiconducting,
392 chiroptical, and spin-dependent properties. Indeed, the combination of chiral induced spin
393 selectivity of chiral organic molecules⁵⁶⁻⁶² and an intrinsic RD spin-splitting in the inorganic
394 framework is a hitherto unexplored aspect unique to 2D chiral HOIPs and might have
395 practical implications in future HOIP-based spintronics. Further, the structural chirality
396 transfer and ensuing lowering of symmetry within the inorganic sublattice opens up a
397 gateway to other emergent properties such as nonlinear light-matter interactions and piezo-
398 /ferro-electricity, not just in 2D HOIPs but also in related diverse low-dimensional metal
399 halide hybrids.

400

401

402 **Methods**

403 **Materials**

404 (S)-(-)-1-(1-naphthyl)ethylamine ($\geq 99\%$), (R)-(+)-1-(1-naphthyl)ethylamine ($\geq 99\%$), 1-(1-
405 naphthyl)ethylamine (98%), (S)-(-)- α -methyl benzylamine (98%), hydrobromic acid
406 (48 wt.% in H₂O, $\geq 99.99\%$), and hydroiodic acid (57 wt. % in H₂O, distilled, stabilized,
407 99.95%) were purchased from Sigma Aldrich and used without further purification.

408 **Synthesis**

409 For growing single crystals of chiral R- or S-NPB, stoichiometric amounts of PbBr₂ (45 mg,
410 0.12 mmol), and R- or S-1-(1-naphthyl)ethylamine (39 μ L, 0.24 mmol) were first dissolved
411 in a mixture of 0.5 ml aq. HBr and 1.2 ml deionized water in a sealed vial with an N₂
412 atmosphere at 95 °C. The hot solution was slowly cooled to room temperature over 48 hr.
413 Single crystals of racemic-NPB were grown in a similar way from a solution of racemic 1-(1-
414 naphthyl)ethylamine (39 μ L, 0.24 mmol) and PbBr₂ (45 mg, 0.12 mmol) in 0.5 ml of aq.
415 HBr and 1.2 ml methanol. The as-obtained colorless plate-like crystals were filtered, washed
416 with diethyl ether, and vacuum-dried. Single crystals of 1D S-NEA₂Pb₂I₆ (S-NPI) were
417 obtained by cooling a hot aq. HI solution of S-1-(1-naphthyl)ethylamine (0.25 mmol) and
418 PbI₂ (0.125 mmol) from 90 °C to room-temperature in 48 hr. The as-obtained pale-yellow,
419 needle-like crystals were filtered, washed with diethyl ether, and vacuum-dried. Single
420 crystals of S-MBPI were grown by slowly evaporating a solution of (S)-(-)- α -methyl
421 benzylamine (25 μ L, 0.2 mmol) and PbI₂ (45 mg, 0.1 mmol) in 1 ml aq. HI and 1 ml
422 methanol at room temperature under N₂ atmosphere. The as-obtained orange-red, needle-like
423 crystals were filtered, washed with copious amounts of diethyl ether and vacuum-dried. To
424 fabricate thin films, 0.2 M solutions of R/S/racemic-NPB single crystals in DMF were spin-
425 cast on glass substrates (precleaned by ultrasonication in IPA for 10 min followed by Ar-O₂

426 plasma treatment for 10 min) at a spin speed of 3000 rpm for 30 s and annealed at 120° C for
427 10 min in an N₂ glove box. Similarly, thin films of S-MBPI were spin coated from 0.2 M
428 DMF solution and annealed at 100° C for 5 min in an N₂ glove box.

429 **Characterization**

430 Single crystal X-ray diffraction (XRD) was performed at 298 K on a Rigaku XtaLAB
431 Synergy-S diffractometer (Mo-K α radiation, λ =0.710 Å; X-ray tube operating at 50 kV and
432 30 mA) for the chiral R- and S-NPB and S-MBPI single crystals and on a Bruker APEX II
433 CCD diffractometer (Mo-K α radiation, λ =0.710 Å; X-ray tube operating at 50 kV and 30
434 mA) for the racemic-NPB and S-NPI. For S-MBPI, X-ray diffraction data were collected
435 subsequently at 298 K, 200 K, and 100 K using an Oxford Cryosystem for temperature
436 control. Structure solutions were obtained by SHELXS direct methods and refined using
437 SHELXL least-squares method within the Olex² crystallographic package. A post-refinement
438 analysis for missing symmetry has been carried out for both full structures and isolated
439 inorganic frameworks (i.e., after manually deleting the organic component) using the
440 ADDSYM tool implemented in the PLATON program. Powder XRD was carried out for thin
441 films using a PANalytical Empyrean powder X-ray diffractometer (CuK α radiation)
442 operating at 45 kV and 40 mA. Room-temperature circular dichroism (CD) spectra were
443 measured for thin films (on glass substrates) of R/S/racemic-NPB using an AVIV 420 CD
444 spectrophotometer with 1 nm s⁻¹ scan speed. UV-Vis absorption spectra for thin films were
445 obtained at room temperature using a Shimadzu UV-3600 UV-vis-NIR spectrophotometer.
446 For low-temperature absorption measurements, thin films of R-, S- and racemic-NPB
447 deposited on sapphire substrates were transferred into a He Cryostat and cooled down to low
448 temperatures using a close cycle refrigerator. An incandescent light source from a Xenon
449 lamp dispersed through a monochromator was focused on the sample and detected by an
450 ultraviolet-enhanced silicon photodetector. Transmission spectra were measured using a lock-

451 in amplifier, and optical densities were subsequently calculated. The PL emission from single
452 crystals was recorded at room temperature on a Horiba Jobin Yvon LabRam ARAMIS
453 spectrophotometer using a HeCd (325 nm) laser as an excitation source, 1800 gr/min
454 diffraction grating, and an InGaAs detector. For 7 K PL measurements on single crystals, a
455 solid-state laser operating at 266 nm was used as the pump excitation with an oblique
456 incidence angle of 45 degrees, and the PL emission was collected in reflection geometry and
457 measured with a fiber spectrometer (Ocean Optics USB4000). Thin crystals of NPB were
458 cooled down in a cryostat with optical windows (Cryocooler Model SRDK-205).

459 **First-principles calculations**

460 The all-electron electronic structure code FHI-aims³⁷ was employed to perform the first-
461 principles density functional theory (DFT) calculations. All calculations are based on numeric
462 atom-centered orbital (NAO) basis sets. The massively parallel simulations were assisted by
463 the ELSI infrastructure^{63,64} and ELPA eigenvalue solver.⁶⁵ Full relaxation of lattice
464 parameters and atomic coordinates for all systems was performed with the semilocal Perdew-
465 Burke-Ernzerhof (PBE) functional⁴⁴ plus the Tkatchenko-Scheffler (TS) pairwise dispersion
466 scheme for van der Waals (vdW) interactions.⁴⁵ FHI-aims “tight” numerical defaults were
467 used, and the k-point grid was set to (2 × 4 × 4). In the experimental structures, the layer-
468 stacking direction is along the *c*-axis for R- and S-NPB while it is along *a*-axis for the
469 racemic-NPB (see Supplementary Table 1). For the calculations, we chose consistent
470 labelling of crystal axes for all the structures so that the stacking direction is always along *a*-
471 axis while the *b*- and *c*-axes (*c*>*b*) span the plane of inorganic layers (see Fig. 3d,e). Hence,
472 the short dimension of the k-space grid corresponds to the long, out-of-plane lattice direction
473 in real space. Regarding energy band structures, it is well-known that DFT-GGA suffers from
474 the electronic delocalization error⁶⁶ that can lead to too small band gaps or wrong ordering of
475 electronic levels.⁶⁷ As the lowest-energy crystal structure and electronic structure are

476 different observables, we here used spin-orbit coupled hybrid DFT on top of the PBE+TS
 477 relaxed atomic structures for the description of electronic properties, offering a good
 478 compromise between affordability in terms of computational cost and known accuracy for
 479 HOIPs, as we have shown in past work,^{35,41-43,68} compared to more computationally involved
 480 GW .⁶⁹ We employed the Heyd-Scuseria-Ernzerhof (HSE06) hybrid density functional^{70,71}
 481 (with 25% Hartree-Fock exchange and a screening parameter of 0.11 bohr⁻¹) plus second-
 482 variation non-self-consistent spin-orbit coupling (SOC)⁴⁰ within FHI-aims using
 483 “intermediate” numerical settings and again a (2 × 4 × 4) k-point grid to predict the
 484 character of frontier orbitals and band structure properties.

485 **Spin texture implementation and validation**

486 Spin texture based on SOC calculations can help understand the spin polarization behaviour
 487 of individual bands. Spin texture can be defined as the expectation value of the vector of
 488 Pauli matrices σ_i and this functionality has here been implemented in the FHI-aims code³⁷:

$$\sigma_{i,n\mathbf{k}} = \langle \Psi_{n\mathbf{k}} | \sigma_i | \Psi_{n\mathbf{k}} \rangle, \quad i = x, y, z. \quad (3)$$

489 Here, $\Psi_{n\mathbf{k}}$ is the n^{th} crystal orbital associated with the crystal momentum \mathbf{k} . It is a two-
 490 component spinor, which can be expanded using N spatial Bloch basis functions $\varphi_{\mu\mathbf{k}}$:

$$\Psi_{n\mathbf{k}} = \sum_{\mu=1}^N \left(C_{\mu n}^{\alpha} \varphi_{\mu\mathbf{k}}^{\alpha} + C_{\mu n}^{\beta} \varphi_{\mu\mathbf{k}}^{\beta} \right). \quad (4)$$

491 The quantities C are the expansion coefficients and the two spinor components associated
 492 with each basis function are denoted as α and β . $\varphi_{\mu\mathbf{k}}^{\alpha}$ and $\varphi_{\mu\mathbf{k}}^{\beta}$ are expressed in vector form as
 493 follows:

$$\varphi_{\mu\mathbf{k}}^{\alpha} = \begin{pmatrix} \varphi_{\mu\mathbf{k}} \\ 0 \end{pmatrix}, \quad \varphi_{\mu\mathbf{k}}^{\beta} = \begin{pmatrix} 0 \\ \varphi_{\mu\mathbf{k}} \end{pmatrix}. \quad (5)$$

494 They are Bloch basis functions and, summing over individual unit cells and appropriate phase
 495 factors, can be further expressed in terms of localized atom-centered orbital basis
 496 functions.^{37,40} The final expression for the expectation values of the three Pauli matrices can
 497 be obtained using the overlap matrix between basis functions μ and ν , $S_{\mu\nu} = \langle \varphi_{\mu\mathbf{k}} | \varphi_{\nu\mathbf{k}} \rangle$:

$$\langle \sigma_{x,n\mathbf{k}} \rangle = \langle \sigma_{x,n\mathbf{k}} \rangle_{\alpha\alpha} + \langle \sigma_{x,n\mathbf{k}} \rangle_{\beta\beta} + \langle \sigma_{x,n\mathbf{k}} \rangle_{\alpha\beta} + \langle \sigma_{x,n\mathbf{k}} \rangle_{\beta\alpha} \quad (6a)$$

$$= \sum_{\mu=1}^N \sum_{\nu=1}^N C_{\mu n}^{\alpha*} C_{\nu n}^{\beta} S_{\mu\nu} + \sum_{\mu=1}^N \sum_{\nu=1}^N C_{\mu n}^{\beta*} C_{\nu n}^{\alpha} S_{\mu\nu},$$

498 in which the $\langle \sigma_{x,n\mathbf{k}} \rangle_{\alpha\alpha}$ and $\langle \sigma_{x,n\mathbf{k}} \rangle_{\beta\beta}$ terms both vanish. Similarly, we have:

$$\langle \sigma_{y,n\mathbf{k}} \rangle = -i \sum_{\mu=1}^N \sum_{\nu=1}^N C_{\mu n}^{\alpha*} C_{\nu n}^{\beta} S_{\mu\nu} + i \sum_{\mu=1}^N \sum_{\nu=1}^N C_{\mu n}^{\beta*} C_{\nu n}^{\alpha} S_{\mu\nu}, \quad (6b)$$

$$\langle \sigma_{z,n\mathbf{k}} \rangle = \sum_{\mu=1}^N \sum_{\nu=1}^N C_{\mu n}^{\alpha*} C_{\nu n}^{\alpha} S_{\mu\nu} - \sum_{\mu=1}^N \sum_{\nu=1}^N C_{\mu n}^{\beta*} C_{\nu n}^{\beta} S_{\mu\nu}. \quad (6c)$$

499 We benchmarked the spin texture functionality within our FHI-aims code against
 500 results for several reference systems found in the literature, calculated using other codes. The
 501 implementation details of SOC vary between different codes, for instance due to the use of
 502 non-self-consistent vs. self-consistent SOC⁴⁰ or due to the use of a pseudo-potential vs. all-
 503 electron approach. We thus expect a qualitative, but not necessarily an exactly quantitative
 504 match to literature results from different codes. In FHI-aims, SOC calculations are performed
 505 non-self-consistently⁴⁰, based on an all-electron approach that makes no shape approximation
 506 to the potential. An underlying atomic zero-order regular approximation (atomic ZORA)
 507 treatment is used to include scalar relativistic effects in the kinetic energy expression,
 508 following the specific Equations (55) and (56) in reference 37. Three benchmark systems
 509 were chosen (see Supplementary Figures 17-19):

510 For the Au (111) surface, we compared with results published using the OpenMX
 511 code.⁷²⁻⁷⁴ In Supplementary Figure 17a, the bands showing Rashba splitting around the Γ

512 point are indexed as the 241st and 242nd bands (corresponding to the 55th and 56th bands
513 calculated by OpenMX).⁷⁴ The calculated spin textures show exactly opposite spin
514 polarizations perpendicular to the momentum \mathbf{k} in the $k_x - k_y$ plane, in qualitative agreement
515 between FHI-aims and OpenMX (see Supplementary Figures 17b and 17c). The precise
516 locations of the Fermi surfaces in reciprocal space vary somewhat, which we ascribe to
517 differences in SOC and pseudopotential (OpenMX) vs. all-electron (FHI-aims) treatments.

518 For the 2D hybrid organic-inorganic perovskite (4-BrBzA)₂PbI₄,⁵³ the spin textures
519 for the inner and outer branches of the valence and conduction bands were calculated using
520 FHI-aims and compared with results shown in reference 53, which were calculated using the
521 VASP code (see Supplementary Figures 18a and 18b). The spin textures show similar shapes
522 and features.

523 A third test case, IrBiSe, shows a giant bulk-type Dresselhaus splitting. Along the
524 symmetry line X (0.5, 0, 0) → Γ (0, 0, 0), the valence band spin polarization should be
525 parallel to the \mathbf{k} -direction.⁷⁵ This is confirmed in Supplementary Figures 19a and 19b, in
526 which both σ_y and σ_z vanish, and only σ_x shows non-zero values. In contrast, along X (0.5, 0,
527 0) → M (0.5, 0.5, 0), the z component of the spin polarization vanishes.

528

529

530

531

532

533

534

535

536 **Data Availability**

537 Additional data supporting the findings of this work are provided as a Supplementary
538 Information file. Single-crystal structures in this work are available in The Cambridge
539 Crystallographic Data Center (CCDC) database: Racemic-NPB: 2015614
540 [<https://dx.doi.org/10.5517/ccdc.csd.cc25ndt2>]; S-NPB: 2015618
541 [<https://dx.doi.org/10.5517/ccdc.csd.cc25ndy6>]; R-NPB: 2015620
542 [<https://dx.doi.org/10.5517/ccdc.csd.cc25nf09>]; S-MBPI_298 K: 2015617
543 [<https://dx.doi.org/10.5517/ccdc.csd.cc25ndx5>]; S-MBPI_200 K: 2015616
544 [<https://dx.doi.org/10.5517/ccdc.csd.cc25ndw4>]; S-MBPI_100 K: 2015619
545 [<https://dx.doi.org/10.5517/ccdc.csd.cc25ndz7>]; S-NPI: 2015615
546 [<https://dx.doi.org/10.5517/ccdc.csd.cc25ndv3>]. Single-crystal data are also available in the
547 HybriD³ material database (<https://materials.hybrid3.duke.edu/>) and can be accessed using
548 the search fields: 'racemic-NEA2PbBr4' (Racemic-NPB), 'S-NEA2PbBr4' (S-NPB), 'R-
549 NEA2PbBr4' (R-NPB), 'S-MBA2PbI4' (S-MBPI) and 'S-NEA2Pb2I6' (S-NPI). Relaxed
550 geometries and computed band structures can also be accessed from the HybriD³ materials
551 database: 'racemic-NEA2PbBr4 [<https://materials.hybrid3.duke.edu/materials/dataset/1634>]',
552 'S-NEA2PbBr4 [<https://materials.hybrid3.duke.edu/materials/dataset/1630>]', 'R-NEA2PbBr4
553 [<https://materials.hybrid3.duke.edu/materials/dataset/1632>]', 'S-MBA2PbI4
554 [<https://materials.hybrid3.duke.edu/materials/dataset/1636>}'. The whole computational
555 dataset is also deposited in NOMAD repository
556 (<https://dx.doi.org/10.17172/NOMAD/2020.08.11-1>). Other relevant data can be obtained
557 from the corresponding author or the first author upon reasonable request.

558

559 **References**

560 1 Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum Spin Hall Effect and Topological
561 Phase Transition in HgTe Quantum Wells. *Science* **314**, 1757 (2006).

562 2 Bychkov, Y. A. & Rashba, E. I. Properties of a 2D Electron Gas With Lifted Spectral
563 Degeneracy. *JETP Lett.* **39**, 78-81 (1984).

564 3 Dresselhaus, G. Spin-Orbit Coupling Effects in Zinc Blende Structures. *Phys. Rev.* **100**, 580-
565 586 (1955).

566 4 Rashba, E. I. Properties of Semiconductors With an Extremum Loop. 1. Cyclotron and
567 Combinational Resonance in a Magnetic Field Perpendicular to the Plane of the Loop. *Sov.*
568 *Phys. Solid State* **2**, 1224–1238 (1960).

569 5 Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of
570 chiral ferromagnetic domain walls. *Nat. Mater.* **12**, 611 (2013).

571 6 Romming, N. *et al.* Writing and Deleting Single Magnetic Skyrmions. *Science* **341**, 636
572 (2013).

573 7 Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena
574 induced by spin-orbit coupling at surfaces and interfaces. *Nature* **539**, 509 (2016).

575 8 Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for
576 Rashba spin-orbit coupling. *Nat. Mater.* **14**, 871 (2015).

577 9 Morrow, S. M., Bissette, A. J. & Fletcher, S. P. Transmission of chirality through space and
578 across length scales. *Nat. Nanotechnol.* **12**, 410 (2017).

579 10 Liu, M., Zhang, L. & Wang, T. Supramolecular Chirality in Self-Assembled Systems. *Chem.*
580 *Rev.* **115**, 7304-7397 (2015).

581 11 Yang, Y. *et al.* Macroscopic helical chirality and self-motion of hierarchical self-assemblies
582 induced by enantiomeric small molecules. *Nat. Commun.* **9**, 3808 (2018).

583 12 Yang, D., Duan, P., Zhang, L. & Liu, M. Chirality and energy transfer amplified circularly
584 polarized luminescence in composite nanohelix. *Nat. Commun.* **8**, 15727 (2017).

585 13 Saparov, B. & Mitzi, D. B. Organic-Inorganic Perovskites: Structural Versatility for
586 Functional Materials Design. *Chem. Rev.* **116**, 4558-4596 (2016).

587 14 Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-Dimensional Hybrid Halide Perovskites:
588 Principles and Promises. *J. Amer. Chem. Soc.* **141**, 1171-1190 (2018).

589 15 Smith, M. D., Connor, B. A. & Karunadasa, H. I. Tuning the Luminescence of Layered
590 Halide Perovskites. *Chem. Rev.* **119**, 3104-3139 (2019).

591 16 Yang, C.-K. *et al.* The First 2D Homochiral Lead Iodide Perovskite Ferroelectrics: [R- and S-
592 1-(4-Chlorophenyl)ethylammonium]₂PbI₄. *Adv. Mater.* **31**, 1808088 (2019).

593 17 Long, G. *et al.* Spin control in reduced-dimensional chiral perovskites. *Nat. Photonics* **12**,
594 528-533 (2018).

595 18 Ma, J. *et al.* Chiral 2D Perovskites with a High Degree of Circularly Polarized
596 Photoluminescence. *ACS Nano* **13**, 3659-3665 (2019).

597 19 Gao, X., Han, B., Yang, X. & Tang, Z. Perspective of Chiral Colloidal Semiconductor
598 Nanocrystals: Opportunity and Challenge. *J. Am. Chem. Soc.* **141**, 13700-13707 (2019).

599 20 Govorov, A. O., Fan, Z., Hernandez, P., Slocik, J. M. & Naik, R. R. Theory of Circular
600 Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon
601 Enhancement, Dipole Interactions, and Dielectric Effects. *Nano Lett.* **10**, 1374-1382 (2010).

602 21 Chen, C. *et al.* Circularly polarized light detection using chiral hybrid perovskite. *Nat.*
603 *Commun.* **10**, 1927 (2019).

604 22 Nomura, A., Tashiro, T., Nakayama, H. & Ando, K. Temperature dependence of inverse
605 Rashba-Edelstein effect at metallic interface. *Appl. Phys. Lett.* **106**, 212403 (2015).

606 23 Sánchez, J. C. R. *et al.* Spin-to-charge conversion using Rashba coupling at the interface
607 between non-magnetic materials. *Nat. Commun.* **4**, 2944 (2013).

608 24 Spek, A. L. Structure validation in chemical crystallography. *Acta Cryst.* **D65**, 148-155
609 (2009).

610 25 Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic-organic hybrids
611 incorporating an aromatic amine with a chiral functional group. *CrystEngComm* **8**, 686-695
612 (2006).

613 26 Du, K.-z. *et al.* Two-Dimensional Lead(II) Halide-Based Hybrid Perovskites Tempered by
614 Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity. *Inorg. Chem.*
615 **56**, 9291-9302 (2017).

616 27 Ahn, J. *et al.* A new class of chiral semiconductors: chiral-organic-molecule-incorporating
617 organic-inorganic hybrid perovskites. *Mater. Horiz.* **4**, 851-856 (2017).

618 28 Smith, M. D. & Karunadasa, H. I. White-Light Emission from Layered Halide Perovskites.
619 *Acc. Chem. Res.* **51**, 619-627 (2018).

620 29 Smith, M. D., Jaffe, A., Dohner, E. R., Lindenberg, A. M. & Karunadasa, H. I. Structural
621 origins of broadband emission from layered Pb-Br hybrid perovskites. *Chem. Sci.* **8**, 4497-
622 4504 (2017).

623 30 Wang, X. *et al.* Atomistic Mechanism of Broadband Emission in Metal Halide Perovskites. *J.*
624 *Phys. Chem. Lett.* **10**, 501-506 (2019).

625 31 Liao, K. *et al.* Spintronics of Hybrid Organic-Inorganic Perovskites: Miraculous Basis of
626 Integrated Optoelectronic Devices. *Adv. Opt. Mater.* **7**, 1900350 (2019).

627 32 Kepenekian, M. *et al.* Rashba and Dresselhaus Effects in Hybrid Organic-Inorganic
628 Perovskites: From Basics to Devices. *ACS Nano* **9**, 11557-11567 (2015).

629 33 Kuneš, J., Novák, P., Schmid, R., Blaha, P. & Schwarz, K. Electronic structure of fcc Th:
630 Spin-orbit calculation with 6p_{1/2} local orbital extension. *Phys. Rev. B* **64**, 153102 (2001).

631 34 Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. Importance of Spin-Orbit Coupling in
632 Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications. *J. Phys. Chem. Lett.* **4**,
633 2999-3005 (2013).

634 35 Liu, C. *et al.* Tunable Semiconductors: Control over Carrier States and Excitations in Layered
635 Hybrid Organic-Inorganic Perovskites. *Phys. Rev. Lett.* **121**, 146401 (2018).

636 36 Liu, X. *et al.* Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic-
637 inorganic perovskite multiple quantum wells. *Nat. Commun.* **11**, 323 (2020).

638 37 Blum, V. *et al.* Ab initio molecular simulations with numeric atom-centered orbitals. *Comput.*
639 *Phys. Commun.* **180**, 2175-2196 (2009).

640 38 Jensen, S. R. *et al.* The Elephant in the Room of Density Functional Theory Calculations. *J.
641 Phys. Chem. Lett.* **8**, 1449-1457 (2017).

642 39 Lejaeghere, K. *et al.* Reproducibility in density functional theory calculations of solids.
643 *Science* **351**, aad3000 (2016).

644 40 Huhn, W. P. & Blum, V. One-hundred-three compound band-structure benchmark of post-
645 self-consistent spin-orbit coupling treatments in density functional theory. *Phys. Rev.
646 Materials* **1**, 033803 (2017).

647 41 Jana, M. K. *et al.* A Direct-Bandgap 2D Silver-Bismuth Iodide Double Perovskite: The
648 Structure-Directing Influence of an Oligothiophene Spacer Cation. *J. Am. Chem. Soc.* **141**,
649 7955 (2019).

650 42 Dunlap-Shohl, W. A. *et al.* Tunable internal quantum well alignment in rationally designed
651 oligomer-based perovskite films deposited by resonant infrared matrix-assisted pulsed laser
652 evaporation. *Mater. Horiz.* **6**, 1707-1716 (2019).

653 43 Jana, M. K. *et al.* Resolving Rotational Stacking Disorder and Electronic Level Alignment in
654 a 2D Oligothiophene-Based Lead Iodide Perovskite. *Chem. Mater.* **31**, 8523-8532 (2019).

655 44 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple.
656 *Phys. Rev. Lett.* **77**, 3865-3868 (1996).

657 45 Tkatchenko, A. & Scheffler, M. Accurate Molecular Van Der Waals Interactions from
658 Ground-State Electron Density and Free-Atom Reference Data. *Phys. Rev. Lett.* **102**, 073005
659 (2009).

660 46 Katan, C., Mercier, N. & Even, J. Quantum and Dielectric Confinement Effects in Lower-
661 Dimensional Hybrid Perovskite Semiconductors. *Chem. Rev.* **119**, 3140-3192 (2019).

662 47 Lin, W. *et al.* Interface-based tuning of Rashba spin-orbit interaction in asymmetric oxide
663 heterostructures with 3d electrons. *Nat. Commun.* **10**, 3052 (2019).

664 48 Ishizaka, K. *et al.* Giant Rashba-type spin splitting in bulk BiTeI. *Nat. Mater.* **10**, 521 (2011).

665 49 Zhai, Y. *et al.* Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by
666 transient spectroscopies. *Science Adv.* **3**, e1700704 (2017).

667 50 Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an
668 inverted $\text{In}_{0.53}\text{Ga}_{0.47}\text{As}/\text{In}_{0.52}\text{Al}_{0.48}\text{As}$ heterostructure. *Phys. Rev. Lett.* **78**, 1335-1338 (1997).

669 51 Martin Schlipf, F. G. Dynamic Rashba-Dresselhaus Effect. Preprint at
670 <https://arxiv.org/abs/2004.10477> (2020).

671 52 Etienne, T., Mosconi, E. & De Angelis, F. Dynamical Origin of the Rashba Effect in
672 Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite
673 Solar Cells? *J. Phys. Chem. Lett.* **7**, 1638-1645 (2016).

674 53 Schmitt, T. *et al.* Control of crystal symmetry breaking with halogen substituted
675 benzylammonium in layered hybrid metal-halide perovskites. *J. Am. Chem. Soc.* **142**, 5060-
676 5067 (2020).

677 54 Zheng, F., Tan, L. Z., Liu, S. & Rappe, A. M. Rashba Spin-Orbit Coupling Enhanced Carrier
678 Lifetime in $\text{CH}_3\text{NH}_3\text{PbI}_3$. *Nano Lett.* **15**, 7794-7800 (2015).

679 55 Zhang, X., Liu, Q., Luo, J.-W., Freeman, A. J. & Zunger, A. Hidden spin polarization in
680 inversion-symmetric bulk crystals. *Nat. Phys.* **10**, 387 (2014).

681 56 Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral Molecules and the Spin Selectivity Effect. *J.*
682 *Phys. Chem. Lett.* **11**, 3660-3666 (2020).

683 57 Lu, H. *et al.* Spin-dependent charge transport through 2D chiral hybrid lead-iodide
684 perovskites. *Sci. Adv.* **5**, eaay0571 (2019).

685 58 Long, G. *et al.* Chiral-perovskite optoelectronics. *Nat. Rev. Mater.* **5**, 423-439 (2020).

686 59 Abendroth, J. M. *et al.* Spin Selectivity in Photoinduced Charge-Transfer Mediated by Chiral
687 Molecules. *ACS Nano* **13**, 4928-4946 (2019).

688 60 Ghosh, K. B. *et al.* Controlling Chemical Selectivity in Electrocatalysis with Chiral CuO-
689 Coated Electrodes. *J. Phys. Chem. C* **123**, 3024-3031 (2019).

690 61 Abendroth, J. M. *et al.* Spin-Dependent Ionization of Chiral Molecular Films. *J. Am. Chem.*
691 *Soc.* **141**, 3863-3874 (2019).

692 62 Lu, H. *et al.* Highly Distorted Chiral Two-Dimensional Tin Iodide Perovskites for Spin
693 Polarized Charge Transport. *J. Am. Chem. Soc.* **142**, 13030-13040 (2020).

694 63 Yu, V. W.-z. *et al.* ELSI: A unified software interface for Kohn–Sham electronic structure
695 solvers. *Comput. Phys. Commun.* **222**, 267–285 (2018).

696 64 Yu, V. W.-z. *et al.* ELSI — An open infrastructure for electronic structure solvers. *Comput.*
697 *Phys. Commun.* **256**, 107459 (2020).

698 65 Marek, A. *et al.* The ELPA library: scalable parallel eigenvalue solutions for electronic
699 structure theory and computational science. *J. Phys.: Condens. Matter* **26**, 213201 (2014).

700 66 Zheng, X., Liu, M., Johnson, E. R., Contreras-García, J. & Yang, W. Delocalization error of
701 density-functional approximations: A distinct manifestation in hydrogen molecular chains. *J.*
702 *Chem. Phys.* **137**, 214106 (2012).

703 67 Egger, D. A., Liu, Z.-F., Neaton, J. B. & Kronik, L. Reliable Energy Level Alignment at
704 Physisorbed Molecule–Metal Interfaces from Density Functional Theory. *Nano Lett.* **15**,
705 2448–2455 (2015).

706 68 Gao, Y. *et al.* Molecular engineering of organic–inorganic hybrid perovskites quantum wells.
707 *Nat. Chem.* **11**, 1151–1157 (2019).

708 69 Golze, D., Dvorak, M. & Rinke, P. The GW Compendium: A Practical Guide to Theoretical
709 Photoemission Spectroscopy. *Front. Chem.* **7** (2019).

710 70 Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb
711 potential. *J. Chem. Phys.* **118**, 8207–8215 (2003).

712 71 Heyd, J., Scuseria, G. E. & Ernzerhof, M. Erratum: “Hybrid functionals based on a screened
713 Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. *J. Chem. Phys.* **124**, 219906 (2006).

714 72 Kotaka, H., Ishii, F. & Saito, M. Rashba Effect on the Structure of the Bi One-Bilayer Film:
715 Fully Relativistic First-Principles Calculation. *Jpn. J. Appl. Phys.* **52**, 035204 (2013).

716 73 Ozaki, T. & Kino, H. Efficient projector expansion for the ab initio LCAO method. *Phys.*
717 *Rev. B* **72**, 045121 (2005).

718 74 FermiLoop: Calculation on a constant-energy level. [http://www.openmx-](http://www.openmx-square.org/openmx_man3.9/node176.html)
719 [square.org/openmx_man3.9/node176.html](http://www.openmx-square.org/openmx_man3.9/node176.html) (2018).

720 75 Liu, Z. *et al.* A Giant Bulk-Type Dresselhaus Splitting with 3D Chiral Spin Texture in IrBiSe.
721 *Phys. Status Solidi RRL* **14**, 1900684 (2020).

722

723

724 **Acknowledgments**

725 All authors acknowledge funding from the Center for Hybrid Organic-Inorganic
726 Semiconductors for Energy (CHOISE), an Energy Frontier Research Center funded by the
727 Office of Basic Energy Sciences, Office of Science within the U.S. Department of Energy
728 (DOE) through contract number DE-AC36-08G028308. The views expressed in the article do
729 not necessarily represent the views of the DOE or the U.S. Government. The U.S.
730 Government retains and the publisher, by accepting the article for publication, acknowledges
731 that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to
732 publish or reproduce the published form of this work or allow others to do so, for U.S.
733 Government purposes. C.L. was supported by the National Science Foundation under Award
734 Number DMR-1729297. An award of computer time was provided by the Innovative and
735 Novel Computational Impact on Theory and Experiment (INCITE) program. This research
736 used resources of the Argonne Leadership Computing Facility, which is a DOE Office of
737 Science User Facility supported under Contract DE-AC02-06CH11357. This research also
738 used resources of the National Energy Research Scientific Computing Center (NERSC), a
739 U.S. Department of Energy (DOE) Office of Science User Facility operated under Contract
740 No. DE-AC02-05CH11231. S.M.J. thanks the Deutsche Forschungsgemeinschaft (DFG,
741 German Research Foundation) for a postdoctoral fellowship, grant number 393196393. We
742 thank Matthew C. Beard, Evan Lafalce, Sven Lidin, Tianyang Li and Pete Sercel for useful
743 discussions. The authors also thank Xinyi Lin for help with graphical plotting of spin texture
744 output.

745 **Author contributions**

746 D.B.M and M.K.J conceived the idea and designed the experiments. M.K.J and D.B.M
747 carried out the synthesis of HOIPs, determined their single-crystal X-ray structures, and

748 performed UV-Vis linear absorption, photoluminescence, and circular dichroism
749 measurements at room temperature. R.S, C.L, R.Z, S.M.J, and V.B carried out first-principles
750 DFT calculations. Z.V.V, H.L, and D.R carried out low-temperature absorption and
751 photoluminescence measurements. R.Z and V.B. developed the spin texture implementation
752 in the FHI-aims code. M.K.J, D.B.M, V.B, R.S, and S.M.J prepared the manuscript and
753 discussed it with other co-authors.

754 **Competing interests**

755 The authors declare no competing interests.

756

757

758

759

760

761

762

763

764

765

766

767

768

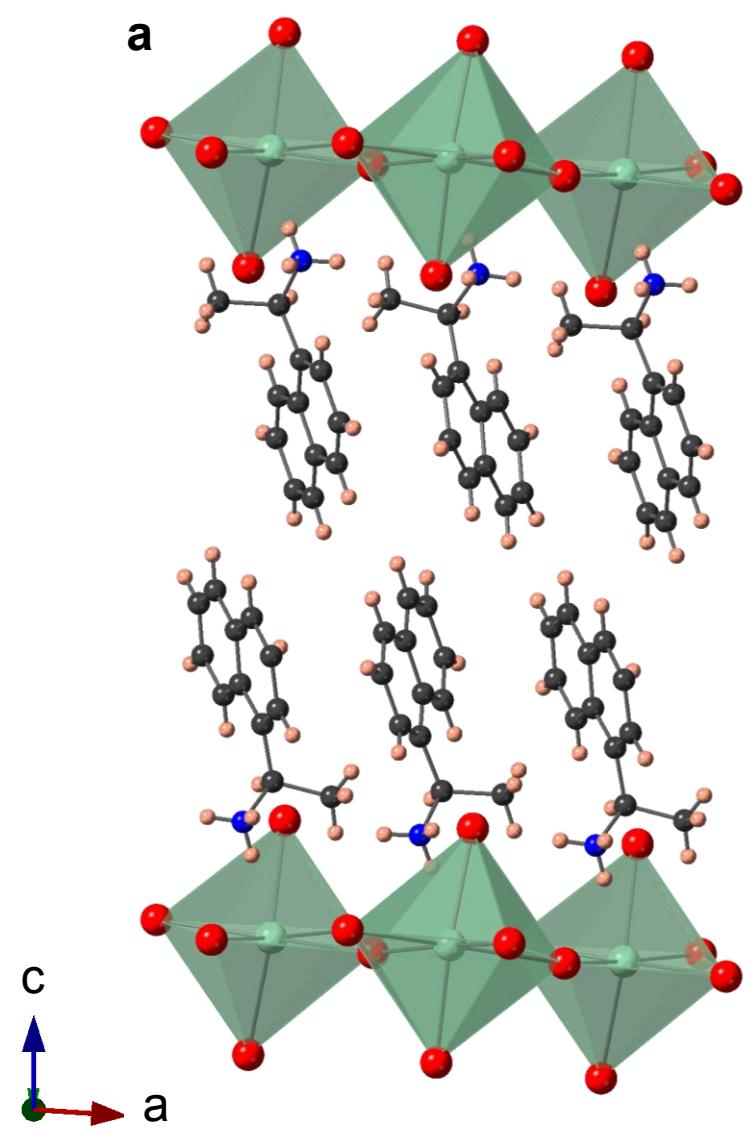
769

770 **Figure legends**

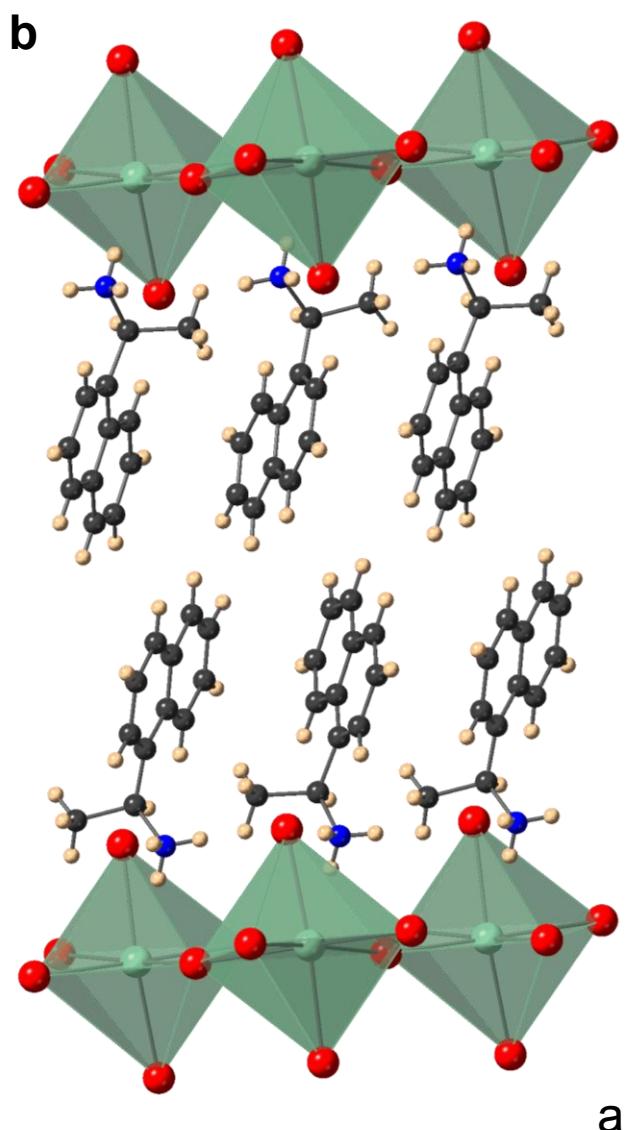
771 **Fig. 1** Structural characteristics of chiral and racemic NPB. **a-c**, Schematic X-ray single-crystal
772 structures of **(a)** R-NPB, **(b)** S-NPB, and **(c)** racemic-NPB. **d,e**, In-plane views of $[\text{PbBr}_4]^{2-}$ layers in
773 **(d)** R-NPB and **(e)** S-NPB show two different equatorial Pb-Br-Pb bond angles of 143° and 157°
774 associated with two different Br atoms, denoted as purple and red spheres, respectively. The axial Br
775 atoms are omitted for clarity. Opposite and dissimilar out-of-plane helical distortions (indicated by
776 small and big curved arrows) of red and purple Br atoms can be seen from the spiraling of
777 corresponding Pb-Br-Pb bonds (marked by thicker black and grey lines in **(d)** and **(e)**) around the 2_1 -
778 screw axes (red and purple arrows). **f**, Racemic-NPB shows a single equatorial Pb-Br-Pb bond angle
779 of 152° with no out-of-plane distortions of Br atoms. Also shown in **(d-f)** are the organic terminal -
780 $\text{CH}-\text{NH}_3^+$ groups, represented as solid and shaded dumbbells for the upper and lower organic layers,
781 respectively. **g-i**, Hydrogen bonding interactions between the equatorial purple Br atoms and NEA^+
782 cations in **(g)** R-NPB, **(h)** S-NPB, and **(i)** racemic-NPB. The axial Br atoms and associated
783 interactions are omitted for clarity. The out-of-plane distortions of equatorial Br atoms in **(d)** and **(e)**
784 are clearly seen in **(g)** and **(h)** for R-NPB and S-NPB, respectively. Green, red/purple, black, blue, and
785 pink spheres denote Pb, Br, C, N, and H atoms, respectively.

786

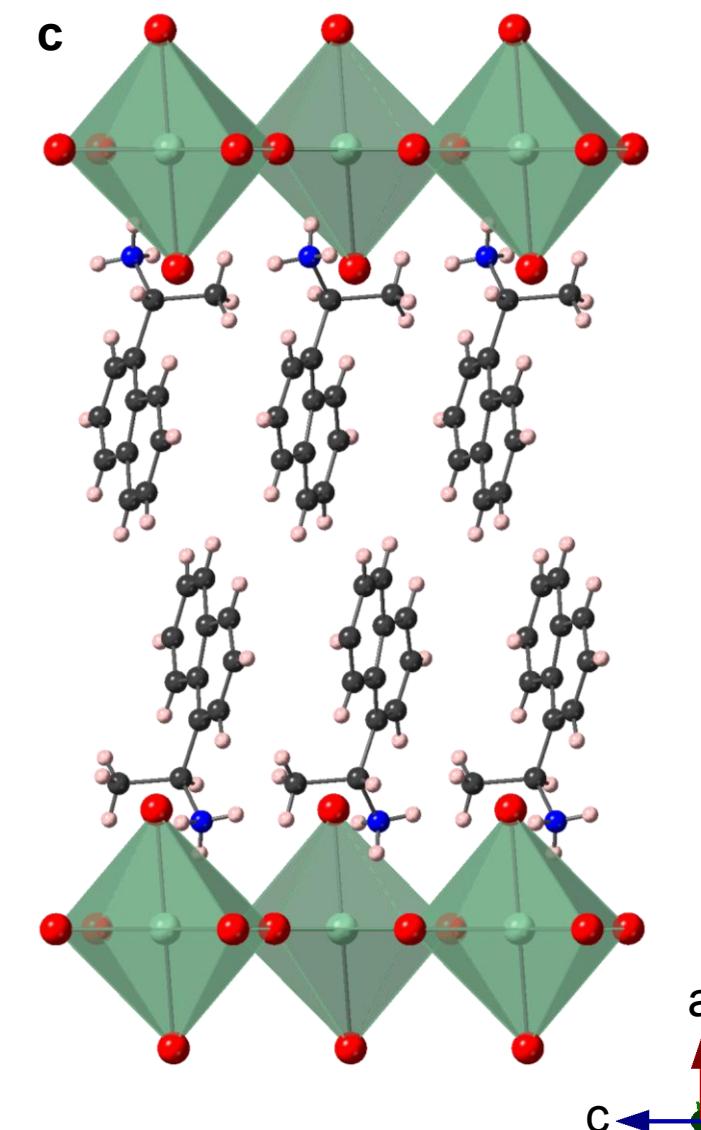
787 **Fig. 2** Optical properties of chiral and racemic NPB. **a**, UV-Vis linear absorption spectra and **b**,
788 circular dichroism (CD) spectra recorded at room-temperature for thin films of racemic-, R- and S-
789 NPB. **c,d**, Photoluminescence spectra from single crystals of racemic-, R- and S-NPB obtained at **(c)**
790 room-temperature using a 325 nm laser source, and at **(d)** 7 K using a 295 nm laser source; FE and
791 STE denote free excitons and self-trapped excitons.

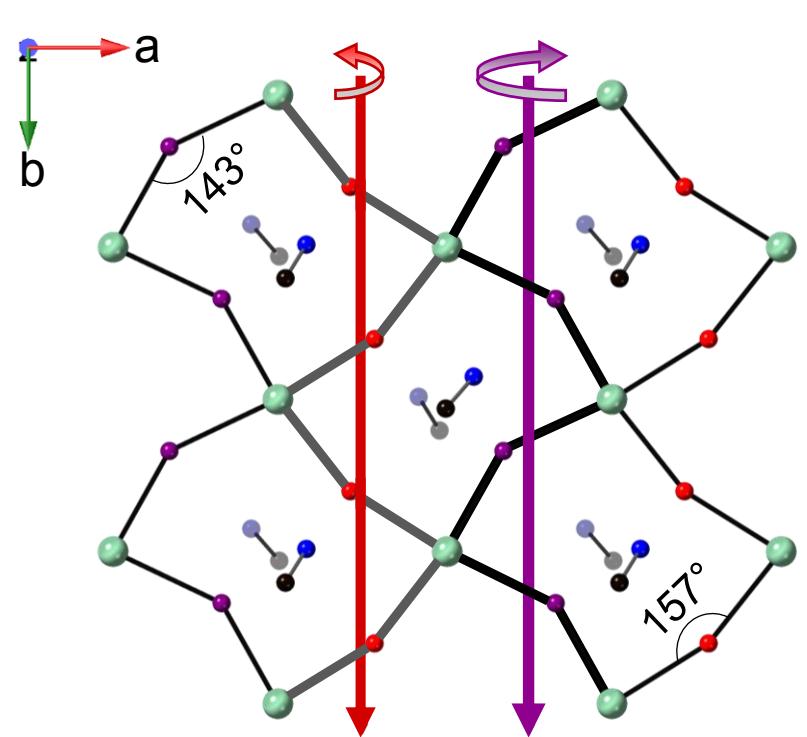

792

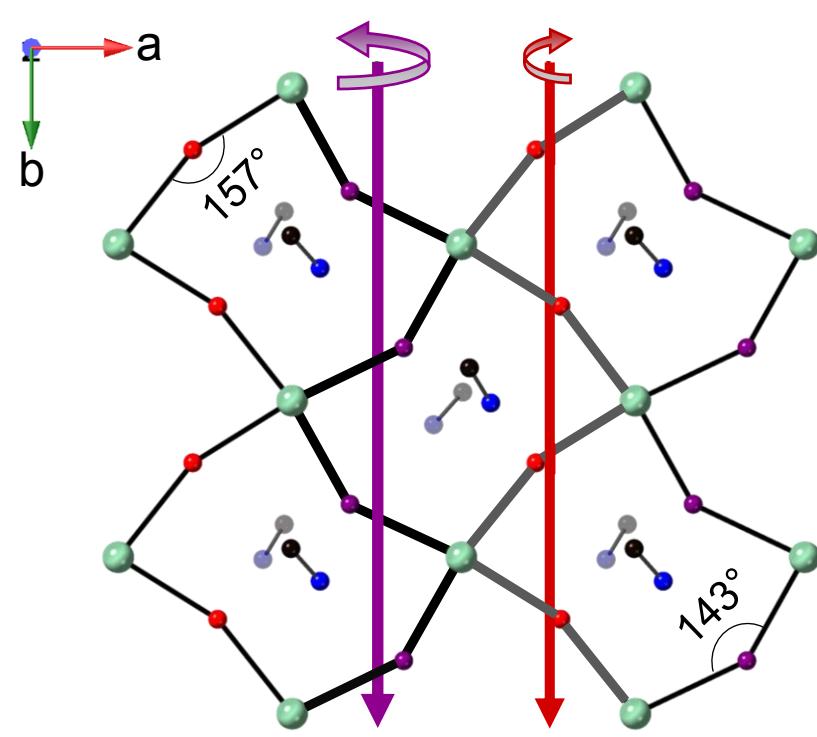
793 **Fig. 3** RD spin-splitting in chiral NPB. **a**, Schematic representation of a two-fold spin degenerate
794 electronic band in a conventional semiconductor. **b,c**, Spin-polarized sub-bands (red: down spin; blue:
795 up spin) separated in k-space due to the SOC and inversion asymmetry along one dimension of an RD

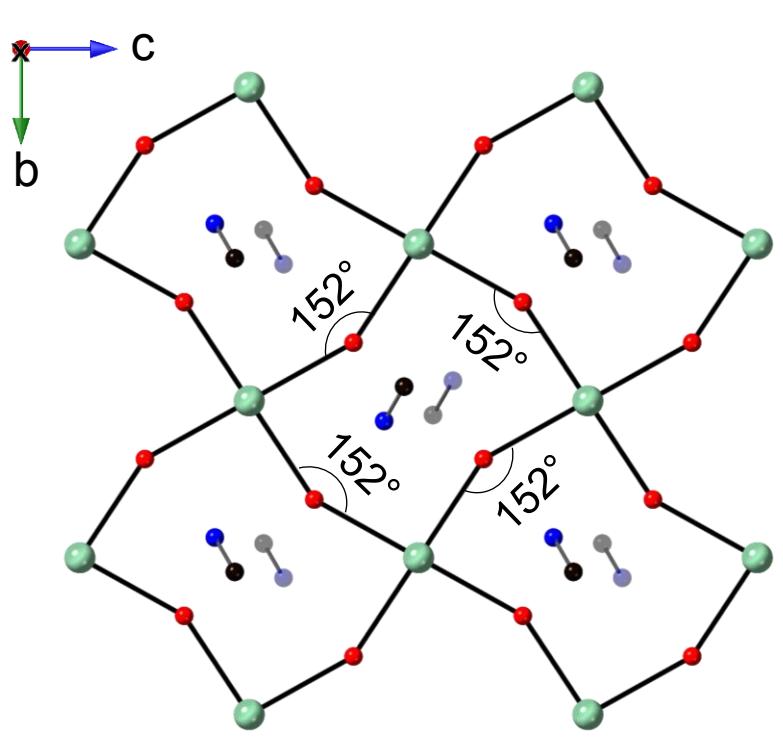

796 semiconductor. E^+ and E^- denote the inner and outer spin-polarized branches created by the RD spin-
797 splitting. ΔE denotes the energy difference between the two branches at the characteristic momentum
798 (\mathbf{k}_0), and E_{RD} is the characteristic RD energy. **d**, A representative unit cell of the relaxed S-NPB
799 structure in real space and **e**, its Brillouin zone showing the k-path in reciprocal space used for band
800 plotting in **f-g**. For the theoretical structures, cell axes were chosen to be consistent for racemic, R-
801 and S-NPB such that the stacking direction is always along the a -direction, and the inorganic layers
802 are parallel to the $b-c$ plane. **f-h**, The computed DFT+HSE06 electronic band structures of (**f**)
803 racemic-NPB, (**g**) S-NPB, and (**h**) R-NPB shown along selected k-paths. The atomic contributions to
804 the electronic continuum bands are identified for Pb (magenta), Br (green), and organic-derived
805 (black) states. The two-fold spin degenerate lowest conduction band in (**f**) racemic-NPB splits into
806 upper and lower branches in both (**g**) S-NPB and (**h**) R-NPB mainly along the Γ -Z direction of
807 reciprocal space due to inversion asymmetry in the $[\text{PbBr}_4]^{2-}$ perovskite layers of S-NPB and R-NPB.
808 Full band structures of R-, S-, and racemic-NPB for all the k-paths are presented in Supplementary
809 Figure 13.

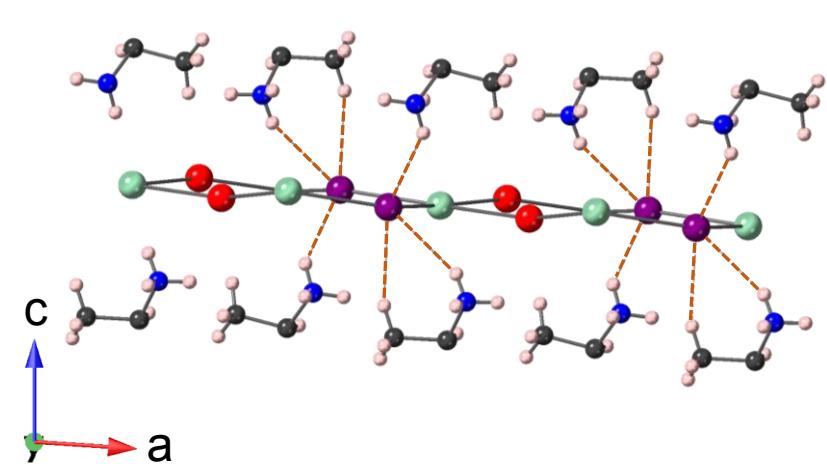
810

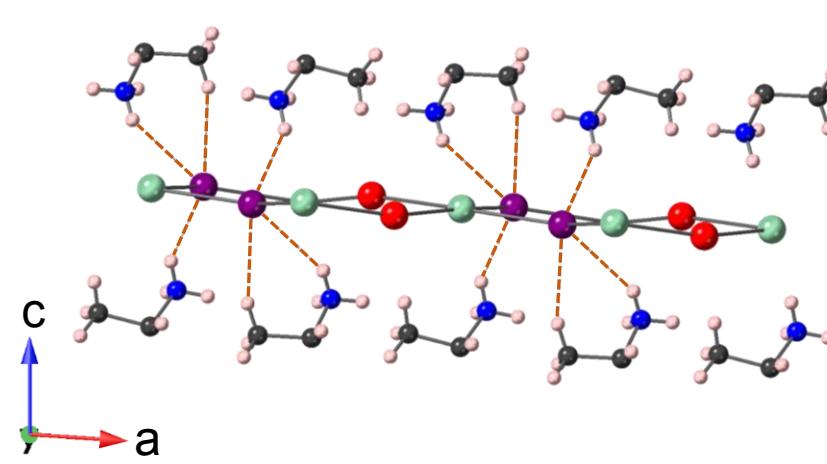

R-NPB


S-NPB

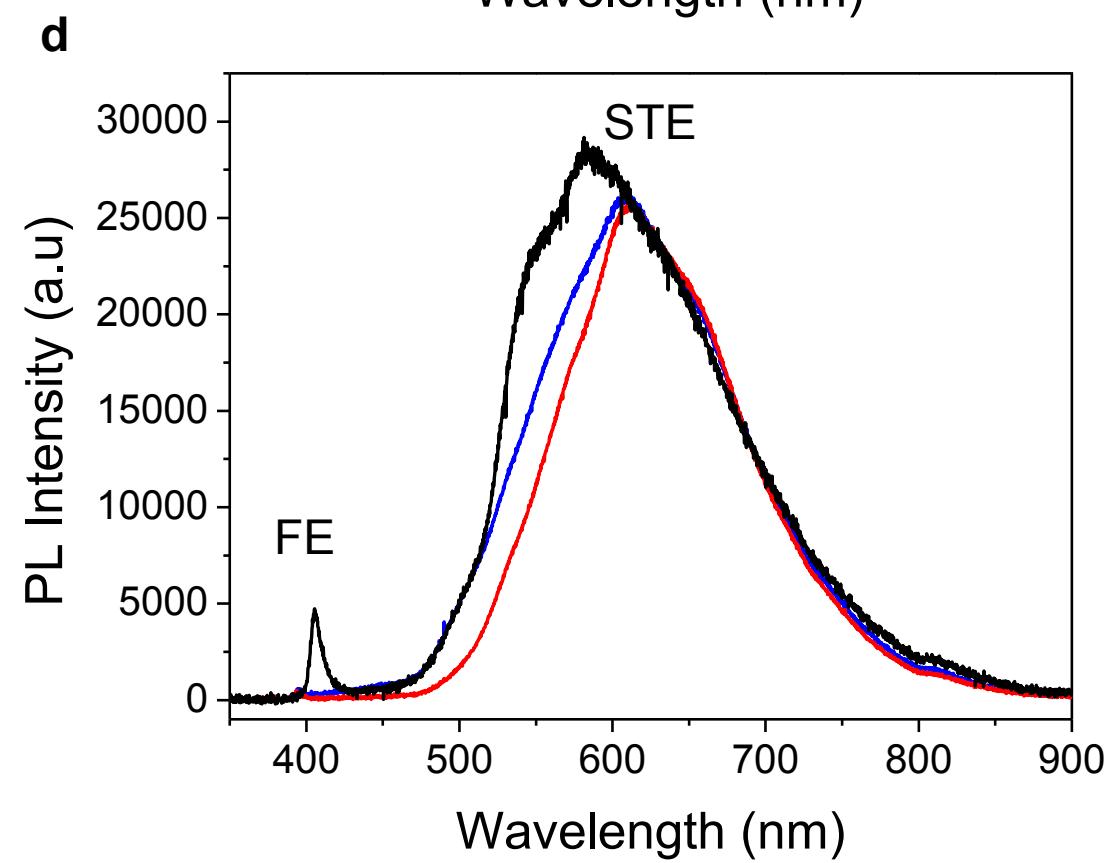
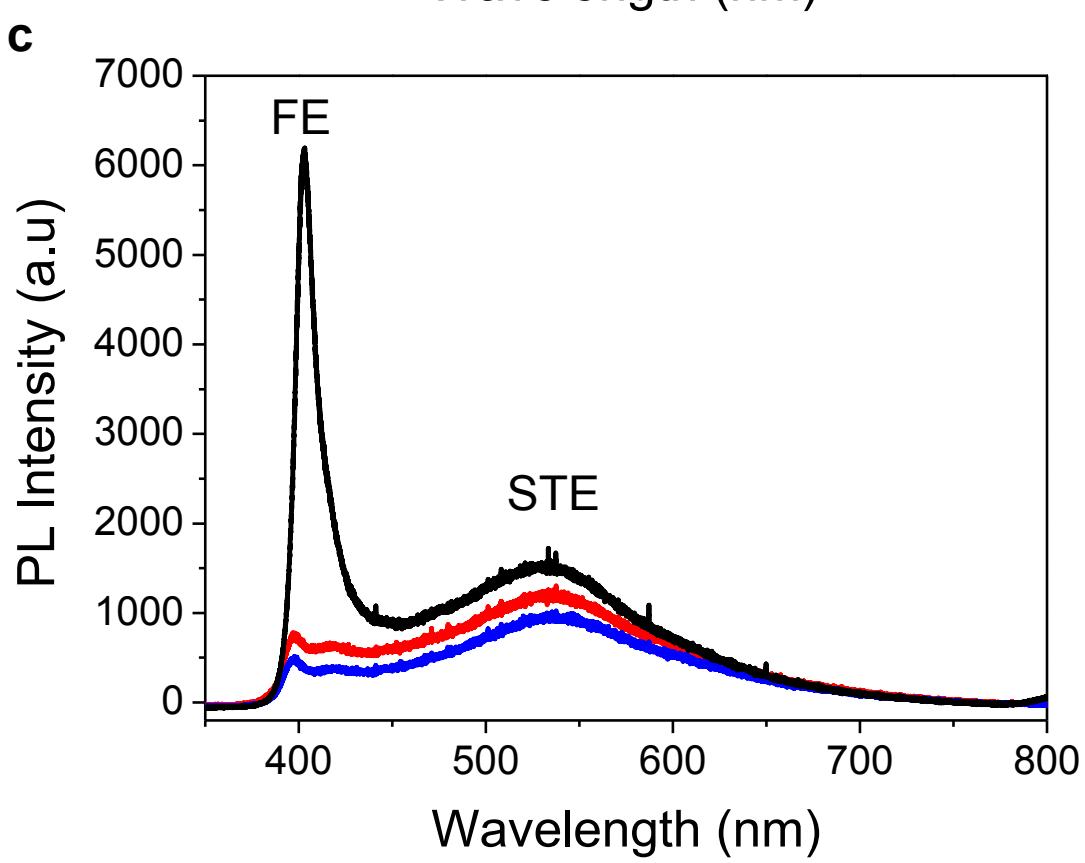
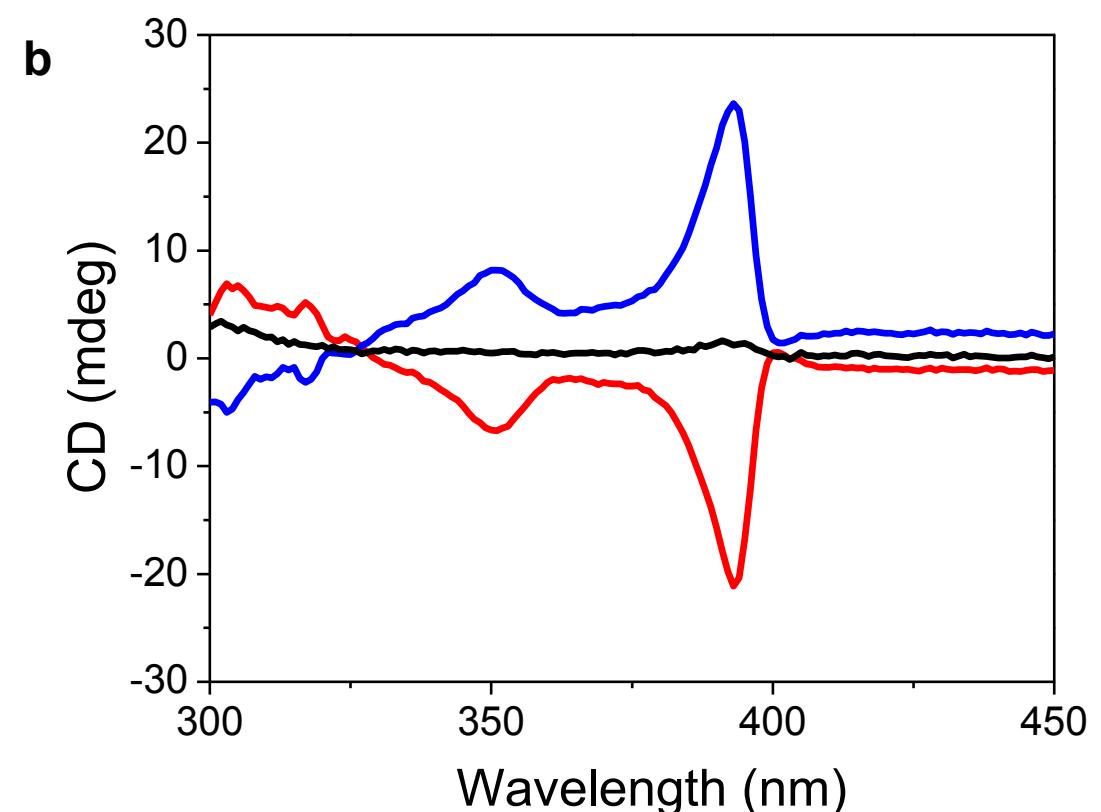
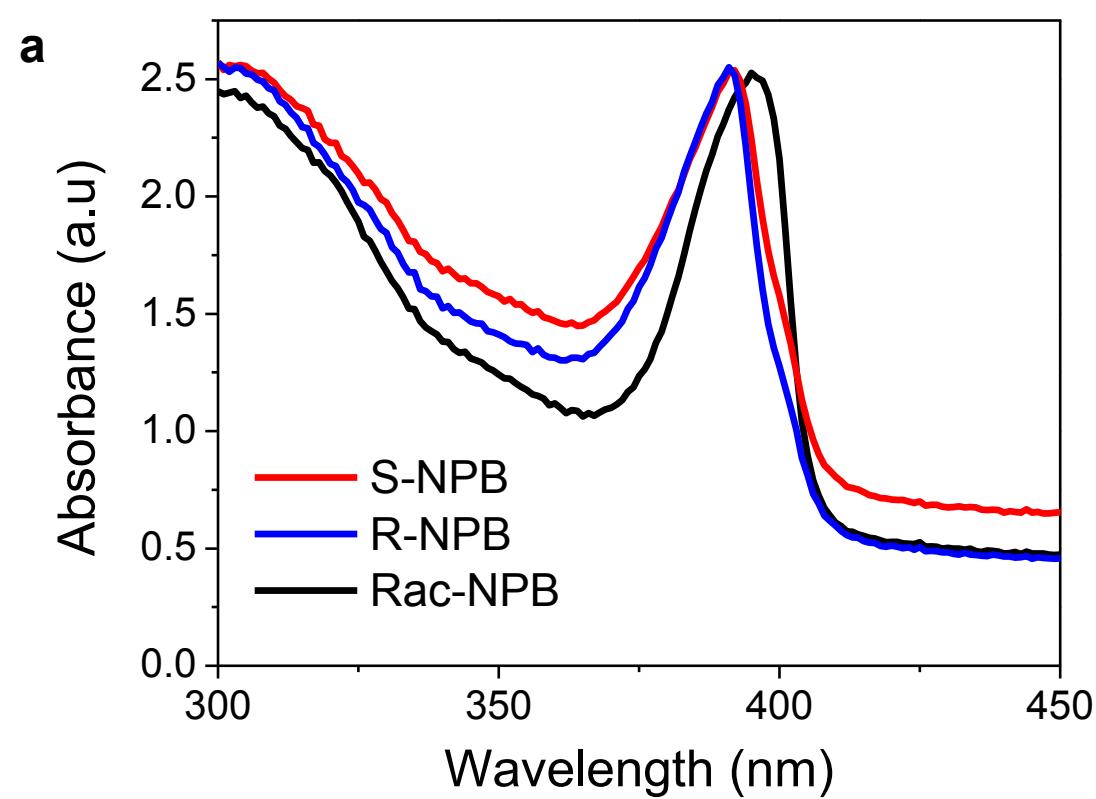

racemic-NPB

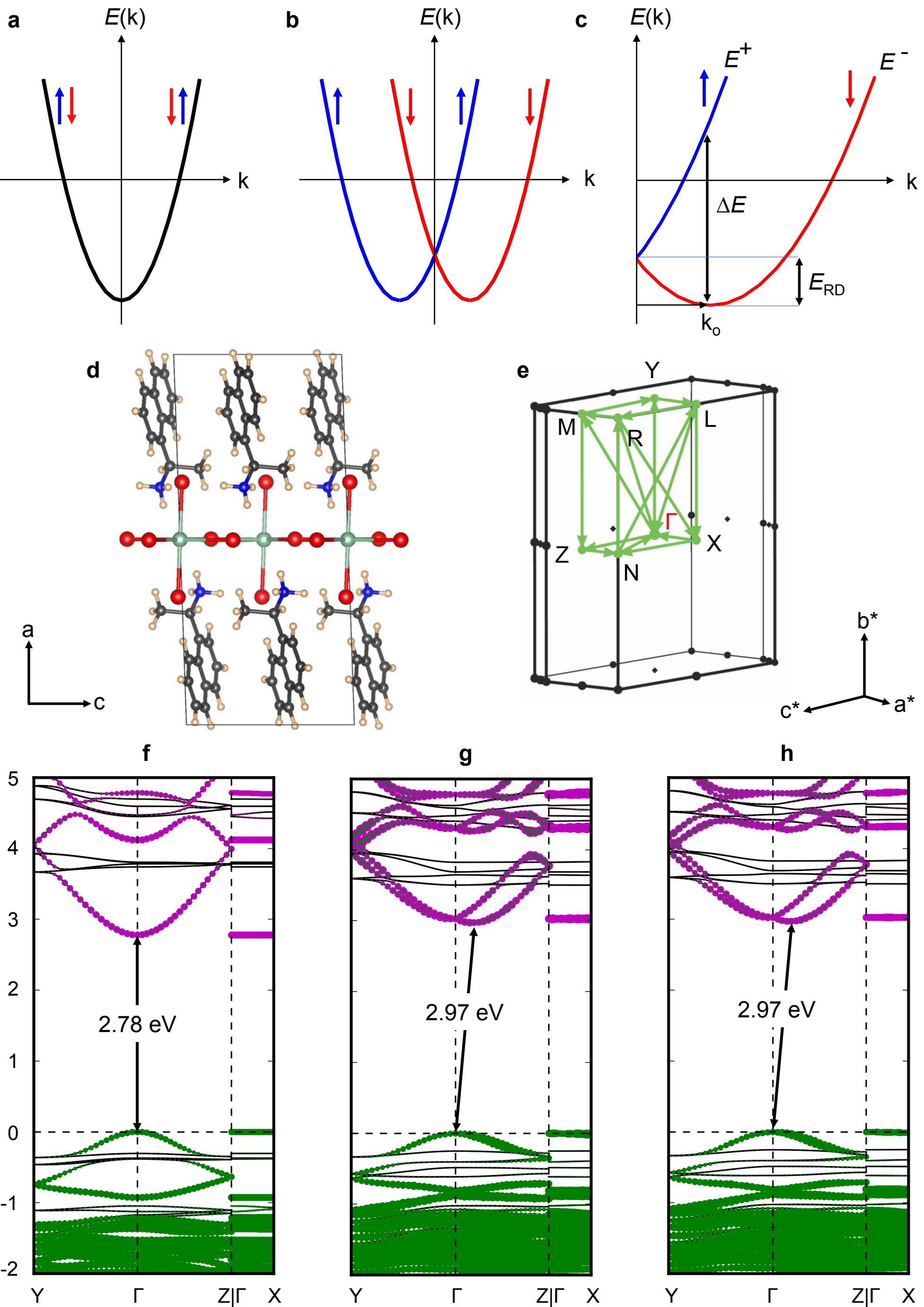

d


e


f

g


h

i

