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Abstract 
 
Following the occurrence of an extreme natural or man-made event, community recovery 
management should aim at providing optimal restoration policies for a community over a planning 
horizon. Calculating such optimal restoration policies in the presence of uncertainty poses 
significant challenges for community leaders. Stochastic scheduling for several interdependent 
infrastructure systems is a difficult control problem with huge decision spaces. The Markov 
decision process (MDP)-based optimization approach proposed in this study incorporates different 
sources of uncertainties to compute the restoration policies. The computation of optimal 
scheduling presented herein employs the rollout algorithm, which provides an effective 
computational tool for optimization problems dealing with real-world large-scale networks and 
communities. The proposed methodology is applied to a realistic community recovery problem, 
where different decision-making objectives are considered. The approach accommodates current 
restoration strategies employed in recovery management; computational results indicate that the 
restoration policies identified herein significantly outperform the current recovery strategies. 
Finally, the applicability of the method to address different risk attitudes of policymakers, which 
include risk-neutral and risk-averse attitudes in the community recovery management, is 
examined. 
 
Keywords: Approximate Dynamic Programming, Community-level Decision Making, 
Community Recovery Management, Markov Decision Process, Optimization, Rollout 
 

1 Introduction 
 

Natural and man-made hazards pose significant challenges to civil infrastructure systems. 
Although proactive mitigation planning may lessen catastrophic effects, efficacious recovery 
scheduling can yield significant post-event benefits to restore functionality of critical systems to a 
level of normalcy in a timely fashion, thereby minimizing wastage of limited resources and 
disaster-related societal disorders. During the recovery process, the decision maker (also called the 
“agent”) must select recovery actions sequentially to optimize the objectives of the community.  
There are several characteristics of a rational agent; the most important include: 
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i. The agent must balance the desire for low present cost with the undesirability of high future 
costs [1] (in the sequel, this is referred to as “non-myopic agent” or look-ahead property); 

ii. The agent must consider different sources of uncertainties; 
iii. The agent must make decisions periodically to not only take advantage of information that 

becomes available when recovery actions are in progress but also to adapt to disturbances 
during the recovery process.  Periodic decisions need not be taken at fixed intervals; rather, 
they may occur at arbitrary decision epochs, as required in the recovery process.   

iv. The agent must be able to handle a large decision-making space, which is typical for the 
problems at the community level. This decision-making space can cause an agent to suffer 
from decision fatigue. Decision fatigue refers to the diminished quality of decisions made by 
a human decision maker after a prolonged spell of decision making. Thus, no matter how 
rational and high-minded an agent tries to be, one cannot make decision after decision without 
paying a cost [2]. 

v. The agent must consider different types of dependencies and interdependencies among 
networks, because a single decision can trigger cascading effects in multiple networks at the 
community level. 

vi. The agent must be able to handle multi-objective tasks, which are common in real-world 
domains. The interconnectedness among networks and probable conflicts among competing 
objectives complicate the decision-making procedure. 

vii. The agent must consider different constraints, such as time constraints, limited budget and 
repair crew, and current regional entities’ policies.  

viii. External factors, like the available resources and the type of community and hazard, shape the 
risk attitude of the agent. The different risk behaviors must be considered.  

Community-level decision makers would benefit from an algorithmic framework that 
empowers them to take rational decisions and that accounts for the characteristics above. Markov 
Decision Processes (MDPs) address stochastic dynamic decision-making problems efficiently and 
offer an agent the means to identify optimal sequential post-event restoration policies. 

  
In the realm of civil infrastructure management, several studies have used MDPs to optimize 

the repair and maintenance of infrastructure [3-5]. Papakonstantinou and Shinozuka [6] reviewed 
the literature on optimal maintenance planning using Dynamic Programming (DP) and MDPs. 
Memarzadeh and Pozzi [7] introduced a model-free reinforcement learning technique for 
infrastructure recovery planning. Smilowitz and Madanat [8] applied MDP to system-level 
maintenance scheduling, where they considered condition state and budgetary constraints.   
Medury and Madanat [9] used Approximate Dynamic Programming (ADP) with MDP for 
pavement management systems. Meidani and Ghanem [10] studied the problem of maintenance 
of pavement using DP and MDP with random transitions. Memarzadeh and Pozzi [11] proposed 
an approach for adaptive maintenance planning based on Partially Observable Markov Decision 
Process (POMDP) by solving independently the component-level POMDPs. Gomez and Baker 
[12] utilized a stochastic programming approach in transportation networks to minimize the cost 
of retrofit actions on bridges and the expected cost of post-hazard outcomes. Typically, real-time 
scheduling techniques, like mixed-criticality scheduling [13-15], have been proposed in the past 
to address related problems.  
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The above studies have focused on individual facilities or infrastructure systems.   Community-
level decision makers would benefit from an algorithmic framework that allows them to consider 
the interdependent systems within a community as a whole and empowers them to take rational 
decisions and that accounts for the characteristics above. Markov Decision Processes (MDPs) 
address stochastic dynamic decision-making problems efficiently and offer an agent the means to 
identify optimal sequential post-event restoration policies. 

This study introduces a stochastic scheduling formulation based on MDP to identify near-
optimal recovery actions following extreme natural hazards. This approach possesses all the above 
mentioned properties (i-viii) and can support rational risk-informed decision making at the 
community level. To this end, we leverage the ADP paradigm to address large-scale scheduling 
problems in a way that overcomes the notorious curse of dimensionality that challenges the 
practical use of Bellman’s equation [16]. To this end, a promising class of approximation 
techniques called rollout algorithms is used. The application of ADP and rollout algorithms, along 
with the MDP formulation, provides not only a robust and computationally tractable approach but 
also the flexibility of incorporating current organizational recovery policies.  In addition, current 
restoration policies can be treated as heuristics in the rollout mechanism.  

 
As an illustrative example, critical interdependent infrastructure systems within a community 

modeled after Gilroy, California, which is susceptible to severe earthquakes emanating from the 
San Andreas Fault, are considered.  These systems include the Electrical Power Network (EPN), 
Water Network (WN), and main food retailers, including interconnectedness within and between 
networks. The EPN is particularly critical because the restoration and operation of most other vital 
systems need electricity. Additionally, the WN and food retailers supply water, food (e.g., ready-
to-eat meals), and prescription medications that are essential for human survival following 
disasters. The functionality of the WN not only depends on its physical performance but also on 
the operation of the EPN, where a working EPN provides electricity for pumping station and water 
tanks. The serviceability of food retailers depends heavily on the WN and EPN. Two decision-
making objective functions for optimization are considered: to minimize the number of days 
needed to restore networks to an arbitrary level of service and to maximize number of people who 
have utilities per unit of time. The proposed approach enables the agent (decision maker) to 
compute near-optimal recovery strategies to provide the three essential services — electricity, 
potable water, and food — to urban inhabitants and food retailers following a severe earthquake. 
We discuss the integrated recovery policies that consider multiple networks and objectives 
simultaneously, which can remarkably outperform the conventional isolated policies. Finally, we 
also discuss how risk-averse decision makers can utilize the proposed method. Below a systematic 
list of our salient is provided, novel contributions in this work:  

 

1.    This study addresses large-scale real-world community recovery post-hazard. We 
also consider interdependencies between and within networks and model the cascading 
effects. 

2.    The research not only considers the current policies of the decision-makers and 
entities but also addresses the risk-preferences of the decision makers.  
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3.    The methodology leverages the powerful theory of Markov decision processes (MDPs) 
at the community level. Different sources of uncertainties such as the source of uncertainty 
in the outcome of repair decisions are considered. 

4.    Our decision framework is a closed-loop approach, which incorporates feedback 
from the temporal evolution of the state of the community into the decision making. 

2 Technical Preliminaries 
 

This section presents the mathematical setting for the MDP. A detailed treatment of the 
subject is available in [16, 17]. 
 
2.1  MDP Framework 
 

A Markov decision process (MDP) is defined by the six-tuple (X, A, A (.), P, R, γ), where X 
denotes the state space, A denotes the action space, A (x) ⊆ A is the set of admissible actions in 
state x, P(y| x, a) is the probability of transitioning from state x ∈ X to state y ∈ X when action a ∈ 
A (x) is taken, R(x, a) is the reward obtained when action a ∈ A (x) is taken in state x ∈ X, and γ is 
the discount factor.  Let Π be the set of Markovian policies (π), where π: X → A is a function such 
that π(x) ∈ A (x) for each x ∈ X.  The objective is to compute a policy π that optimizes the expected 
total discounted reward given by 

0
0

( ): ( , ( )) . (1)t
t t

t
V x E R x x xx  


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The optimal value function for a given state x ∈ X is denoted as
*

V  : X →ℝ given by 
 

*( ) max ( ). (2)x V xV 

 
   

 
The optimal policy is given by 
 

* ( ). (3)arg maxV x






  

 
This form of the optimal policy is due to Bellman [47]. Note that the optimal policy is 
independent of the initial state x0. Also, note that we maximize over policies π, where at each 
time t the action taken is at = π(xt).  
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Figure 1. Decision graph of a Markov Decision Process 

The optimal policy π* can be computed using different methods, which include linear 
programming and dynamic programing. The methods of value iteration, policy iteration, policy 
search, etc., can find a strict optimal policy. We briefly discuss the Bellman’s optimality principle 
[17], useful for defining the Q-value function, which plays a pivotal role in the description of the 
rollout algorithm.  The Bellman’s optimality principle states that 𝑉π∗

(𝑥) satisfies  
 

**
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in which the Q-value function associated with the optimal policy π* is defined as  
 

**( , ) : ( , ) ( | , ) ( ), (5)
y X

Q x a R x a P y x a V y 


    

which is the term within the curly braces in (4).  Similarly, we can define ( , )Q x a  associated 
with any policy π. 
 
2.2  Simulation-based MDP 
 

For large-scale problems, it is essential to represent the state, action, or outcome space in the 
framework defined in Section 2.1 in a compact form. Such a compact representation is possible in 
the simulation-based representation [18]. A simulation-based representation of an MDP is a 7-
tuple (X, A, A (.), P, R, γ, I), where |X| or |A| (|·| = the cardinality of the argument set “·”) is usually 
large, and the matrix representation of P and R is infeasible because of the large dimensions of a 
typical community recovery problem. P, R, and I are presented as functions implemented in an 
arbitrary programming language. R returns a real-valued reward, given the current state, current 
action, and future state (R: X  A  X ℝ). I is a stochastic function that provides state according 
to the initial state distribution. P is a function that returns the new state given the current state and 
action. Essentially, the underlying MDP model is implemented as a simulator. 

X0 X1 X2

R0 R1

A0 A1

R2

A2

X3

. . .
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. . .
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2.3 Approximate Dynamic Programming 

Calculating an optimal policy using the methods above is usually infeasible owing to the 
dimensions of the state and/or action spaces.  The size of the state/action space grows exponentially 
with the number of state/action variables, a phenomenon referred to by Bellman as the curse of 
dimensionality.  The computational costs of running a single iteration of the value iteration and 
policy iteration algorithm, for the MDPs defined in Section 2.1, are O(|X|2|A|) and O(|X|2|A| + |X|3), 
respectively. The computational cost of finding the optimal policy by directly solving the linear 
system provided by the Bellman equation is O(|X|3 |A|3). Additionally, the computational cost of 
an exhaustive direct policy search algorithm, for a single trajectory consisting of K simulation 

steps, is | |

1
3 | | | | | |

K
k X

k
X A X



 
 
 
  [19], which is prohibitive for even small-sized problems. 

  
These computationally intractable algorithms cannot be used for large problems involving 

resilience assessment or recovery of a real-size community and approximate solutions are 
necessary. To this end, several algorithms have been developed in the realm of Approximate 
Dynamic Programming (ADP) that result in tractable computations for finding the near-optimal 
restoration policies.  One popular class of algorithms involves approximating the Q-value function 
in (5). However, it often is difficult in practice to approximate the Q-value function for practical, 
large-scale problems.  In the following, a promising class of ADP algorithms known as rollout are 
pursued, which sidestep these difficulties by avoiding an explicit representation of the Q-value 
function. 
 
2.4 Rollout 
 
While computing an optimal policy for an MDP is often quite difficult because of the curse of 
dimensionality, policies based on heuristics (termed as base policies) can be readily designed in 
many cases. The principal idea behind the rollout technique is to improve upon the performance 
of the base policy through various means. Therefore, the base policy does not have to be close to 
optimal. In this study, we focus on improvement of the base policy through simulation. The base 
policy is generally some heuristic, and the rollout policy is computed based on the repeated 
application of this heuristic. The base policy can be defined in various ways: experts' judgments, 
importance analyses, greedy algorithms, etc. [20]. We will discuss base policies in more detail 
later in Section 5. 
 

The concept of rollout was first proposed for stochastic scheduling problems by Bertsekas 
and Castanon [21]. Instead of the classical DP scheme [1], the agent “rolls out” or simulates the 
available policy over a selected finite horizon H< ∞; thereafter, the agent implements the most 
“promising” action in an on-line fashion. In on-line methods, unlike classical off-line techniques, 
optimal decisions are computed only for the states encountered in the real-world (reached states); 
the idea is to eliminate unnecessary computational effort on the unreached states. Conversely, in 
off-line computations the policy is pre-computed for all the states and then stored; then, the agent 
selects an optimal action from the stored policy corresponding to the observed evolution of the 
system [20]. The present study focuses on the application of the proposed rollout algorithm 
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following a disaster, where recovery actions are calculated in an on-line manner. The rollout 
algorithm incorporates a series of “virtual experiments” in the form of Monte Carlo simulations to 
select an action at each decision epoch to be applied to the system in the real world, and 
information collected in-field in the form of measuring the actual completion times of tasks and 
actual resulting damage states.  

 
Monte Carlo (MC) simulations assess the Q-value function on demand. To estimate the Q-

value function ( ˆ ( , )Q x a represents the estimate) of a given state-action pair (x, a), a set of  NMC 
trajectories are simulated, where each trajectory is generated using the policy π, has length H, and 
starts from the pair (x, a). The assessed Q-value function is typically taken as the average of the 
sample returns obtained along these trajectories: 

MC

0 0 0 0
0

,1 , , , 1
1 1MC

1ˆ ( , ) ( , , ) ( , (x ), ) . (6)
N H

k
i i k i k i k

i k
Q x a R x a x R x x

N
   

 

 
  

 
   

For each trajectory i0, the first state-action pair to (x, a) is fixed; the simulator provides the next 
state 

0 ,1ix  when the current action 𝑎 in state 𝑥 is completed. Actions are chosen using the base 
policy.  Note that if the simulator is deterministic, a single trajectory suffices, while in the 
stochastic case, a sufficient number of trajectories (NMC) should be pursued to approximate the Q-
value function. This study focuses on the application of the proposed rollout algorithm following 
a disaster. In an on-line manner, all possible actions are tried NMC times, and only the best action 
in each time slot is selected based on (6). This procedure is repeated until the end of recovery. 
Therefore, one recovery trajectory is the outcome of NMC simulation trajectories. In this study, the 
rollout policy is computed with single-step look-ahead. An agent can consider multistep look-
ahead, at an added computational cost, to extract maximum performance out of our solution 
technique. The number of look-ahead steps mainly depends on the scale of the problem, 
computational budget, real-time constraints, and agent’s preferences.  

 
An important property of the rollout algorithm is that it improves upon the performance of 

the underlying base policy, if the base policy is not strictly optimal. The rollout policy computed 
above is not necessarily strict-optimal, but it is guaranteed that it would never perform worse than 
the underlying base policy. For a rigorous discussion on this property of the rollout algorithm, the 
reader is directed to [22]. Our simulation results present significant improvements (e.g., about 26% 
for the first objective) over the base policy in providing utilities (electricity and water) to household 
units and food retailers in the minimum amount of time. Our framework offers the agent the 
flexibility of incorporating the current regional entities’ policy as the base policy. To properly 
tailor the MDP and rollout formulations for our problem, we describe the real test-bed community 
and infrastructure systems in the next section and the proposed formulation in Section 4. 
 

3 Community Testbed 
 

To evaluate the applicability and efficiency of the proposed methodology on real 
communities, we model the community of Gilroy, California, USA, which is susceptible to severe 
earthquakes on the San Andreas Fault. The City of Gilroy is a moderately-sized growing city and 
located approximately 50 kilometers (km) south of the city of San Jose. It had a population of 
48,821 at the time of the 2010 census. The availability of reasonable information about EPN, WN, 
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population density, main food retailers, as well as the high level of seismic exposure of the area 
makes it an interesting case study. The study area is divided into 36 rectangular regions organized 
as a grid to define the properties of community, with an area of 41.9 km2 and with a population of 
47,905 as shown in Fig. 2. In this section, we provide the general information about the studied 
networks and facilities of the community. Detailed information of the community is provided in 
[23, 24].  
 
3.1 Electrical Power and Water Networks 
 

Figs. 3 and 4 show, respectively, the EPN and WN of Gilroy community. A 115 kV 
transmission line supplies the Llagas power substation, which provides electricity to the 
distribution system. The distribution line components are placed at intervals of 100 m and modeled 
from the power substation to the main facilities of WN, food retailers, and the centers of urban 
grids.   The EPN and WN in this study are described as networks that contain nodes (vertices) and 
links (edges). The dependencies within and between networks are modeled through an adjacency 
matrix A = [xij], where xij ∈ [0, 1] indicates the magnitude of dependency between components i 
and j [25]. If a component is damaged following a hazard, it becomes non-functional and all 
dependent components in the same or other networks would also be non-functional. The adjacency 
matrix A captures these cascading effects. 

 
The EPN does not depend on any other network; hence, we only need to consider the 

dependency within the network. The probability that a critical facility like a water pump or a food 
retailer G has electricity is 

ˆ

1

( ): , (7)
n

l
l

P EG P EE


 
  

 
 

where EG is the event that G has electricity, EEl is the event that the lth EPN component is 
functional, and n̂  is the minimum number of EPN components required to supply electricity to G. 
The sample space is a singleton set that has the outcome, “is functional.” The lth EPN component 
is functional when it is undamaged or completely repaired, and all the EPN components serving 
that EPN component are functional.   Fig. 3 shows the interdependence between the EPN 
components. 
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Figure 2: Map of Gilroy’s population over the defined grids  

 
The municipal water network of Gilroy is supplied by the Llgas sub-basin, which is 

recharged by Llagas and Uvas Creeks [23]. We have considered the main potable water pipelines, 
wells, water tanks, and booster pump stations (BPS) of the WN, as shown in Fig. 4. The 
functionality of the WN depends on not only the functionality of its components but also the 
availability of electricity following the extreme hazard for water pump operation. Therefore, we 
consider the dependency between WN and EPN. The probability that a critical facility like an 
urban grid rectangle or a food retailer G has potable water is 

'

ˆ

' 1

( ): , (8)
k

l
l

P WG P EW


 
   

 
 

where WG is the event that G has water, k̂  is the minimum number of WN components (which 
could be BPS, wells, water tanks, or pipelines) required to supply water to G, and EWi is the event 
that the l’th WN component is functional. Again, the sample space here is a singleton set that has 
the outcome, “is functional.” If the l’th WN component is a pipeline, then it is said to be functional 
when it is undamaged or completely repaired, and all the WN components serving that pipeline 
are functional. 
 

In addition, if the l’th WN component is a BPS, well, or water tank, then it is said to be 
functional when it is undamaged or completely repaired and all the EPN components serving the 
l’th WN component are functional. While the pipelines are not directly dependent on the EPN, they 
are indirectly dependent on the EPN through the other WN components. The variables 𝑛̂ and 𝑘̂ 
accommodate any potential redundancy in the EPN and WN.  
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Figure 3: Gilroy electrical power network 

 
3.2. Food Retailers 
 

Food retailers play a vital role in the well-being of households in  
Gilroy. Fig. 5 shows the locations of the six main food retailers of Gilroy (each of which has more 
than 100 employees) that provide services to the community. Electricity and water are two 
essential elements that play crucial role in the functionality of retailers following hazards. 
Policymakers are always concerned about the adequate supply of these critical utilities for retailers. 
Hence, we consider food retailers and their dependencies to EPN and WN during restoration 
analysis and optimization.  To capture the effects of the restoration of each food retailer on 
different households over the community, we use a gravity model [26, 20], which assigns the 
shopping probabilities based on the food retailers’ capacities and locations so that bigger and closer 
retailers have greater impacts on household units.  
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Figure 4: Gilroy water network  

 
 

 
Figure 5: Gilroy’s main food retailers 

3.3. Hazard Modeling 
 

Gilroy is susceptible to the effects of severe earthquakes from the nearby San Andreas 
Fault (SAF). The event simulated for this study is an earthquake of magnitude Mw=6.9 that 
occurs at one of the closest points on the SAF projection to downtown Gilroy with an epicentral 
distance of roughly 12 km, which is similar to the 1989 Loma Prieta earthquake, one of the most 
devastating events that Gilroy has experienced. We use the Abrahamson et al. [27] Ground 
Motion Prediction Equation (GMPE) to estimate the median seismic demands (Intensity 
Measures) on infrastructure facilities: Peak Ground Acceleration (PGA) for the EPN components 
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and above-ground WN facilities and Peak Ground Velocity (PGV) for buried pipelines. We 
assess the physical damage to components with seismic fragility curves [28-33].  

 
Available repair crews, replacement components, and required tools for restoration are 

designated as Resources Units (RU). The number of RUs depends on the capacities and policy of 
the regional entities following disasters.  Restoration times are synthesized based on exponential 
distributions from studies [20, 28-32], as summarized in Table 1. The proposed framework, 
nevertheless, allows one to use any arbitrary distribution. 

    
Table 1: The expected repair times (Unit: days) 

Damage states 
Component Minor Moderate Extensive Complete 
Electric Sub-station 1 3 7 30 
Transmission line component 0.5 1 1 2 
Distribution line component 0.5 1 1 1 
Water tanks 1.2 3.1 93 155 
Wells 0.8 1.5 10.5 26 
Pumping plants 0.9 3.1 13.5 35 

 
 

4 Post-hazard Recovery Formulation 
 

Following an earthquake, the EPN and WN components either remain undamaged or 
exhibit a level of damage, which is determined from the seismic fragility curves. Suppose that an 
agent must restore a community that includes several networks, which function as a System of 
Systems (SoS).  Let L’ be the total number of damaged components at time t, and let tc denote the 
decision time at which all the damaged components are repaired (L’=0). The agent has only a 
limited number of RUs that can be assigned, usually much less than L’, especially in severe 
disasters that impact large communities. The RUs differ from network to network because of the 
skill of repair crews and qualities of the required tools.   
The problem is to assign the available RUs to L’ damaged components in a manner that best 
achieves the community objectives and policymakers’ preferences. 

  
The following assumptions are made: (1) The agent has access to all the damaged 

component for repair purposes; (2) A damaged component only needs one RU to be repaired and 
assigning more than one RU would not reduce the repair time [34];  (3) The agent has limited RUs 
for each network and cannot assign a RU of one network to another (e.g., a WN RU cannot be 
assigned to the EPN); (4) The agent can preempt the assigned RUs from completing their work 
and reassign them at different locations to maximize the beneficial outcomes. (5) Once a damaged 
component is repaired, all assigned RUs are available for re-assignment even if their assigned 
components are not fully repaired. It is also possible to let the RU continue the repair work at the 
same location in the next time slot according to the objectives of the agent.  Such assignments are 
referred to as preemptive scheduling, which allows the agent to be flexible in planning and is 
particularly useful when a central stakeholder manages an infrastructure system; see [35] for a 
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discussion on non-preemptive scheduling. (6) The agent can deal with stochastic scheduling, where 
the outcome of the repair actions is not fully predictable and can be quantified probabilistically. 
The unpredictability mainly arises from the randomness in the repair times (see Table 1). The MDP 
simulator exhibits stochastic behavior owing to the random repair times. On the other hand, the 
alternative perspective, where the outcome of actions is fully predictable, is also an active research 
topic [20]. 
 
 Markov Decision Process Formulation 

Suppose that E
tx and W

tx , respectively, represent the damage state of the EPN and WN at time 
t. E

tx is a vector of length E
tL , where E

tL  is the number of damaged components in the EPN. Each 
element of the vector E

tx is in one of the five damaged states (counting no damage as one state) in 
Table 1. Similarly, we define W

tx of length W
tL , where W

tL  is the number of damaged components 
in the WN at time slot t.  Let NE and Nw denote the available RUs for the EPN and WN, 
respectively, with E

E tN L  and t
W

WN L . The tuples of our MDP framework are defined as 
follows: 
 States X: xt denotes the state of the damaged components in the community at time slot t as the 

stack of two vectors, E
tx and ,W

tx  as follows: 

 : , . . | | . (9)E W E W
t t t t t tx x x s t x L L    

 
 Actions A: at denotes the repair actions to be carried out on the damaged components at time 

slot t, as the stack of two vectors, E
ta and W

ta , 

 : , . . | | , (10)E W E W
t t t t t ta a a s t a L L     

 
where both E

ta and W
ta  are binary vectors of length E

tL and W
tL , respectively, where a value of 

zero means no repair and one means carry out repair action. E
ta  and W

ta represent the actions 
(no repair, repair) to be performed on the damaged components of the EPN and WN. 

 Set of Admissible Actions, A (xt): The set of admissible repair actions A (xt) for the state 𝑥𝑡 is 
the set of all possible binary combinations of integers one and zero such that each element of 
this set is of size E W

t tL L , and each element has NE number of ones in the first E
tL  locations 

and Nw number of ones at the remaining locations. The interdependence between networks 
increases the size of the set of admissible actions as follows: 

Let E
tD  be the set of all damaged components of the EPN before a repair action at is 

performed.  E
tP D  denotes the powerset of E

tD ; 

    : :| | , (11)
E

E E
N t t EP D C P D C N    



14 
 

where  
E

E
N tP D  represents the size of the set of admissible actions for the EPN. We can 

also define  
W

W
N tP D  similarly. The size of the set of admissible actions, at any time t, is 

the product of the size of set of admissible actions for EPN and WN: 
 
    ( ) : . (12)

E W

E W
t N t N tA x P D P D   

 
Therefore, when multiple networks are considered simultaneously, the size of A (xt) grows 
very quickly. Searching exhaustively over the entire set A (xt) for calculating the optimal 
solution is not possible; therefore, the rollout technique is employed, as described in 
Section 2.4.  

 Simulator P: Given, xt and at, the simulator P provides the new state xt+1. P is a generative 
model that can be implemented as a simulator, without any explicit knowledge of the actual 
transitions. It considers the interconnectedness within and between networks to compute the 
cascading effects of at through the whole community and recovery process.  As we alluded to 
before, a compact representation of P is important for large-scale problems.  

In our problem formulation, as soon as at least one of the damaged components is repaired, 
the repair action at is considered complete. Define this completion time at every t by t̂t . Recall 
that the repair time is exponentially distributed. The completion time is the minimum of the 
repair time at one or more damaged locations, where a repair action is being performed. The 
minimum of exponential random variables is exponentially distributed; therefore, the 
completion time is also exponentially distributed [38]. The sojourn time (a.k.a. the holding 
time) is the amount of time that the system spends in a specific state. For an MDP, the sojourn 
time, ts, is exponentially distributed [1, 38, 39].  Note that for our MDP formulation, t̂t  is equal 
to ts.  

A natural question that arises is “does this formulation work when the repair times are non-
exponential?” In that case, the completion time is not exponentially distributed. However, in 
the present problem formulation, the completion time is the same as the sojourn time. Thus, 
the sojourn time would not be exponentially distributed, which is inconsistent with the 
Markovian assumption. This can be remedied simply by incorporating the lifetime of the 
damaged component into the state definition. The lifetime of the damaged component is the 
time required for the damaged component to be repaired after the occurrence of hazard. With 
this new definition of the state space, the sojourn time is different from the completion time t̂t
, and the sojourn time is exponentially distributed. Here the completion time t̂t  is still the 
minimum of the repair time at one or more damaged locations but with any underlying 
distribution of the repair times; ˆ ( ) min( ( ))t jj

t t t t where ( )jt t  is the generated random repair 

time for the components under the repair action (j=1,…,NE+NW). Thus, our framework is 
sufficiently flexible to accommodate repair times with any underlying distribution.  

Instead of the “memoryless” distribution to model the repair times if any other type of 
distributions is used, the corresponding increase in the computational effort is nominal. The 
modification needed to accommodate a non-exponential distribution is not in the 



15 
 

computational complexity but in the specification of the state. Indeed, the increase in the 
computational effort and complexity is insignificant compared to other aspects of the problem 
because we deal with only the encountered (reached) state at any decision epoch. Suppose that 
there are “y” number of damaged components in the system; then, the state vector size will 
increase by “y” (the lifetimes associated with each damaged component), which is a relatively 
small increase. Different studies in the literature have used different distributions, and we 
would like to alert the reader regarding the correct state definition and respect the Markovian 
property under possible variations in the assumptions. 

The general steps of modeling and using the simulator P are as follows: 1- Assign 
components fragilities as described in Section 3.3. 2- Find the damage level per each 
hazard intensity; the damage level will be characterized as one among the following: 
Undamaged, Minor, Moderate, Extensive, and Complete. 3- Compute the 
functionality of each component, with due consideration to the interdependencies 
between and within networks as described in Section 3.1 and Section 3.2. 4- Generate 
samples of repair times for nonfunctional components based on the distributions in 
Table 1 depending on the type of the component. Assign a mean repair time based on 
the level of damage to each component. 5- Determine a base policy for the rollout 
method. 6- Apply rollout to create a recovery sequence list with the consideration of 
limited RUs. 

Owing to the randomness in the response of the networks to the hazard intensity as 
well as the repair times, there is stochasticity in the generative model. Therefore, 
Monte-Carlo simulations are employed. The reader interested in different 
applications and details of the aforementioned generative model in post-disaster 
community recovery should refer to Refs. [32, 40-42]. 

 Rewards R:  Two different objectives for the agent are considered. 
The first objective (hereinafter Obj. 1) is to optimally plan decisions so that a certain percentage 
of the total inhabitants (denoted by threshold α) are benefitted from the recovery of utilities in 
the shortest period of time, implying that household units not only have electricity and water 
but also have access to a functional retailer that has electricity and water.  Conversely, even if 
a household unit has electricity and water and has access to a retailer that has electricity but 
not water, the household unit does not benefit from the recovery actions. The mapping of 
people in the gridded rectangle to a food retailer is determined by the gravity model. Repair 
actions are optimally planned to minimize the time it takes to achieve the benefit from utilities 
to α percent of people. The reward function for the first objective is defined as:  

1 1
ˆ( , , ) , (13)t t t tR x a x t   

In the definition of R1, note the use of a negative sign before the completion time. 
Maximizing the reward function is equivalent to minimizing the completion time. 
 

The second objective (hereinafter Obj. 2) is to optimally plan decisions so that maximum 
number of inhabitants are benefited from recovery of utilities per unit of time (days, in our 
case). Therefore, in the second case, there are two objectives embedded in the reward as 
follows: 
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2 1( , , ) , (14)t t t
rep

rR x a x
t   

where r is the number of people deriving benefit from utilities after the completion of at, and 
trep is the total repair time to reach xt+1 from any initial state x0 (i.e., ˆ

rep tt t ). Note that the 
reward function is stochastic because the outcome of the repair action is stochastic. 

 Initial State I: As mentioned in Section 3, the stochastic damage model of the EPN and WN 
components can be obtained by the fragility curves. The initial damage states associated with 
the components will be provided by these models. 

 Discount factor γ: In this study, the discount factor is set to equal 0.99 [43]. This is a measure 
of how “far-sighted” the agent is in considering its decisions. The discount factor weighs the 
future stochastic rewards at each discrete time t. Stationary optimal policies are guaranteed to 
exist for discounted infinite-horizon optimization criteria [43]. 

In summary, the total N number of RUs are assigned to the N number of the damaged 
components in both networks. Based on Table 1, the repair times for each component related 
to the level of damages are generated. The minimum of these repair times ( ˆ ( )tt t ) determines 
the holding time that the community will stay in the current state before transiting to the 
new state. This process repeats until the end of recovery. 

 

5 Results and Discussion 
 

The results of optimizing objectives 1 and 2 are presented in two sections. The first section 
caters to risk-neutral decision makers, and the second section caters to risk-averse decision makers. 
Each of these sections is further divided into two sub-sections to demonstrate the performance of 
our method on two separate objectives functions. When Objective 1 is considered, the reward 
function in the MDP is given by (13), while for Objective 2, the reward function of our MDP is 
given by (14). For all the simulation results presented henceforth, NMC in (6) and (15) were selected 
so that the standard deviation of the estimated Q-value ˆ ( , )Q x a  is below 0.05.  

 
As mentioned in Section 2.4, the most feasible base policy for community recovery 

planning often is the current recovery strategy of regional responsible companies or organizations. 
However, there is no restriction on the selection of a policy as a base policy. We proposed the 
alternatives for the definition of base policies for recovery management problems in [20]. In this 
study, the base policy is defined based on expert judgment and importance analyses that prioritize 
the importance of components owing to their contribution to the overall risk. Specifically, the 
restoration sequence defined by our base policy for EPN is transmission line, power substation, 
and distribution lines to downtown and water pumps; similarly, the base policy for WN involves 
water wells, water tanks, BPS, and pipelines to downtown and food retailers. 
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5.1 Mean-based Stochastic Optimization 

The mean-based optimization is suited to risk-neutral decision makers [10]. In this 
approach, the optimal policy is determined based on the optimization of the Q-value function, 
where the estimate of the Q-value function ˆ ( , )Q x a  is based on the mean of NMC trajectories, as 
demonstrated in (6). Calculating the Q-value based on the expected Q-value of NMC trajectories 
may not always be appropriate, especially in the case of risk-averse decision makers. However, it 
has been shown that the mean-based stochastic optimization approach can be appropriate when the 
objective function properly encodes the risk preferences of policymakers [1]. the performance of 
the method when the decision maker has a risk-averse attitude to planning is illustrated in Section 
5.2. 
 
5.1.1 Implementation of Rollout Algorithm for Objective 1 

The rollout algorithm with respect to Obj. 1 identifies recovery strategies to minimize the 
time it takes to provide the utilities to α percent of people in the community. In this formulation, 
the selection of α depends on the preferences of policymakers. In this illustration, α was selected 
to equal 0.8, implying that the benefit of the utility recoveries to 80% of people in Gilroy is to be 
provided in a minimum amount of time.  

 
Figure 6 shows the performance of the rollout and base polices for Objective 1. The rollout 

algorithm optimizes the restoration of two networks, EPN and WN, simultaneously to provide 
utilities for 80% of people in 19.3 days following the earthquake, while the base policy completes 
this task in 26.1 days. This 35% improvement over the entire recovery period represents the 
performance of rollout at the community level.  Figure 6 also highlights the look-ahead property 
of rollout. Although the base policy showed a better performance during the first 15 days following 
the earthquake, the rollout algorithm outperformed the base policy in the whole recovery. By 
selecting conservative repair decisions initially, rollout can balance the desire for low present cost 
with the undesirability of high future costs. 

 
The performance of rollout on the individual food retailers is summarized in Table 2.  Note 

that the base policy restored EPN and WN to Safeway, Nob Hill Foods, and Mi Pueblo Food faster 
than the rollout policy; however, the base policy is incapable of determining the recovery actions 
to balance the rewards so that 80% of the population benefits from restoration of utilities ( the true 
objective).  
 

Table 2: Performance of rollout vs. base policy for the first objective function for the 
individual retailers 

Policy Recovery time Costco Walmart Target Safeway Nob Hill Foods Mi Pueblo Food  
Base 26.06 0.31 0.31 21.02 5.91 5.91 2.76 

Rollout 19.23 0.31 0.31 15.95 18.33 18.33 8.01 
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Figure 6: Performance of rollout vs. base policy for the first objective function 

 
 After 80% of the people have benefitted from utility restoration, the progress in restoration 
of the EPN and WN is evaluated further.  Even though the objective of providing the benefit of 
utilities to 80% of the population has been met, 25% of the EPN components remain unrepaired. 
This interesting result shows the importance of prioritizing the repair of the components of the 
network so that the objectives of the decision maker are met. Because the objective here was to 
restore utilities so that 80% of people would benefit owing to the restoration in minimum amount 
of time, the algorithm prioritized repair of only those components that would have maximum effect 
on our objective without wasting resources on the repair of the remaining 25% of EPN 
components. 
 
5.1.2 Implementation of Rollout Algorithm for Objective 2 

The rollout algorithm applied to Objective 2 identifies recovery strategies that maximize 
the number of inhabitants per day that benefit from the strategy selected. In other words, the 
algorithm must maximize the area under the restoration curve normalized by the total recovery 
time. This objective function is specifically defined to match the definition of the common 
resilience index, which is proportional to the area under the restoration curve [20].  Fig. 7 depicts 
the performance of base policy and the corresponding rollout policy. The mean number of people 
that benefit from utility restoration based on the base policy is 22,395 per day, whereas that for the 
rollout policy is 24,224. These values are calculated by dividing the area under the curves in Fig. 
7 by the total number of days for the recovery, which is our Obj. 2. Analogous to Fig. 6, Fig. 7 
highlights the look-ahead property of the rollout algorithm for Obj. 2. 

 
Note that the recovery in Fig. 6 appears to be faster than that in Fig. 7 (the slope appears 

steeper). This is because Fig. 6 shows the recovery for only 80% of the population (in accordance 
with optimizing Objective 1), whereas Fig. 7 shows the recovery for the entire population (in 
accordance with optimizing Objective 2). 
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 As in Section 5.1.1, the performance of the rollout algorithm for the individual networks 
was analyzed. One of the main reasons for this analysis is that these networks are restored and 
maintained by different public or private entities that would like to know how rollout would 
perform for their individual systems. Recovery actions at, are determined using the rollout policy 
for the combined network that considers all the interdependencies (for Obj. 2), and check impact 
of performance of these repair actions on individual networks is checked. 
 

 First, the performance of the repair actions on the EPN is checked by calculating the effect 
of EPN restoration on only the household units. The results are depicted in Fig. 8. The base policy 
leads to EPN recovery so that the mean number of people with electricity is 24,229 per day, while 
the rollout policy provides the electricity for 27,689 people on average. Second, we check the 
performance of the repair actions on the EPN, but considering the effect of EPN restoration on 
both household units and retailers. In this analysis, summarized in Fig. 9, people derive benefit of 
EPN recovery when their household unit has electricity and they go to a retailer that has electricity. 
In this case, the mean number of people who benefit from the EPN recovery owing to the base 
policy is 23,155/day, whereas that owing to the rollout policy is 25,906/day. Third, we check the 
performance of the repair actions on the WN, calculating the effect of WN restoration on only the 
household units, as illustrated in Fig. 10. In this case, the mean number of people with potable 
water under the base and rollout policies is 31,346/day and 25,688/day, respectively.   Finally, we 
check the performance of the repair action on the WN, but where the effect of WN restoration on 
both household units and retailers is considered. In this case, people benefit from WN recovery 
when their household unit has water, and they go to a retailer that has water. In this case, the mean 
number of people with potable water under the base and rollout policies is 31,346/day and 
25,688/day, as shown in Fig. 11.  

 
 

 

 
Figure 7: Performance of rollout vs. base policy for the second objective function  
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Figure 8: The performance of policies to provide electricity for household units 

 
 

 
Figure 9: The performance of policies to provide electricity for household units and 

retailers 

 
 
It is interesting to note that the rollout policy need not outperform the individual base policy 

when the recovery of each individual network is considered separately because in our framework, 
the calculation of recovery actions due to rollout considers the combined network and 
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corresponding interdependencies that outperforms the base policy as shown in Figs. 6-9. Our 
objective considers two networks as one complex system (or), which is captured in the definition 
of the benefit, and is not reflected in the restoration of a single network alone. Figs. 10 and 11 
indicate that it is necessary to alleviate the concerns of individual stakeholders when recovery is 
performed based on interdependencies in the network.  Refs. [20, 29] provide a thorough 
examination of the performance of rollout when the EPN and WN are considered separately.  
Furthermore, the number of days required to restore the WN is less than what is required to restore 
EPN, even when the optimized recovery actions for the combined network are used to evaluate the 
performance of the individual network restoration (see Figs. 8-11). This behavior can be attributed 
to a lesser number of WN components being restored compared to the number of EPN components.  
 
 

 
Figure 10: The performance of policies to provide potable water for household units  
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Figure 11: The performance of policies to provide potable water for household units and 

retailers 

 
5.2 Worst-case Stochastic Optimization 

The mean-based stochastic optimization seeks to identify the most cost-efficient repair 
actions in the face of uncertainty under the assumption that the decision maker has a risk-neutral 
attitude.  This assumption has been criticized on several counts [44- 47].  Research on risk attitudes 
has revealed that most decision makers are not risk-neutral in the face of a low-probability threat 
or hazard. Moreover, policymakers and community stakeholders are not risk-neutral, especially 
when engaging large systems at the community level that influence public safety [44]. Finally, a 
stochastic model of uncertainty may not be possible in many practical problems in which only 
limited data exist and, accordingly, policy-makers tend to be more risk-averse [1]. These 
observations lead us to study the performance of the proposed rollout algorithm for risk-averse 
policymakers. 

 
Risk-averse policymakers are more worried about extrema, rather than expected 

consequences of uncertainty. Worst-case optimization (a.k.a. robust optimization) is employed for 
MDPs to allow for risk-averse behavior [10, 46]. Note that when Obj. 1 is under consideration, we 
are solving a minimization problem, whereas when Obj. 2 is under consideration, we deal with a 
maximization problem. As in Section 5.1, we make use of NMC trajectories. But unlike (6), we do 
not take mean of the NMC estimated Q-values to approximate the original Q-value function in (4) 
and (5). Instead, we use the maximum or minimum value among the NMC trajectories as a 
representation of worst-case behavior, depending on whether Obj. 1 or Obj. 2, respectively, is 
considered. If *

0i  maximizes (6), where  *
0 1, , ,MCi N   then, for Obj. 1, the worst-case Q-value 

estimation is represented in (15). It is this estimated Q-value that is used in (4). Conversely, for 
Obj. 2, *

0i  minimizes (6), where  *
0 1, , ,MCi N   
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* * * *
0 0 0 0,1 , , , 1

1

ˆ ( , ) ( , , ) ( , (x ), ) (15)
H

k
i i k i k i k

k
Q x a R x a x R x x  




   

 
In the worst-case optimization simulations, when Obj. 1 is considered, the number of days 

required to reach the threshold of α=0.8 under the base policy is 26.1 days whereas under rollout, 
it is 19.7 days, a 32% improvement that signifies a desirable performance of the proposed 
methodology for the risk-averse policymakers.  Fig. 12 shows the performance of rollout for Obj. 
2, where the number of people deriving benefit from utilities per day because of recovery actions 
under the base and rollout policies is 22,395/day and 24,478/day. Fig. 12 also illustrates the look-
ahead property, which is characteristic of the rollout algorithms. Finally, the performance of rollout 
for the individual networks is summarized in Table 3 and Fig. 13. As in Section 5.1.2, the results 
indicate that risk-averse policymakers should not presume that rollout will outperform the base 
policy when the EPN and WN are considered separately.  
 
 

Table 3: The performance of policies in different cases for the worse -case optimization 
(Unit: average No. of people per day)  

Case   Base policy Rollout policy 
EPN restoration for household units 24229 27897 
EPN restoration for household units and retailers 23155 26159 
WN restoration for household units 31346 25966 
WN restoration for household units and retailers 30099 23535 

 

 
Figure 12: Performance of rollout vs. base policy in the worst-case optimization for the 

second objective function 
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Figure 13: The performance of policies in different cases for the worse -case optimization 

 
In summary, the results presented in this section advocate the desirable performance of the 

rollout algorithm in the face of a risk-averse attitude on the part of the decision maker. The 
individual attitudes toward risk can be dependent on the personalities of policymakers and 
stakeholders of a community and be influenced by many factors, such as the community properties, 
type of hazard, available resources and time, and existing information about the uncertainties to 
name a few. Because of the stochastic approximation involved in the computation of the estimated 
Q-values, it is not possible to compare the performance of the mean-based and worst-case 
optimization methods proposed above.  

Although in standard approaches of Minimax and Maximin in treating risk aversion, 
there is no notion of “controlling” the amount of risk aversion, in the literature, there are also 
methods to treat risk aversion that incorporate some means of adjusting the level of risk aversion 
in stochastic programming [47]. These techniques are beyond the scope of this study. 
 

6  Conclusion  
 

Community-level recovery was formulated as an MDP that accounts for different sources of 
uncertainties in the entire restoration process. Stochastic scheduling of community recovery that 
embeds several interconnected networks is a difficult stochastic control problem with huge 
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decision spaces.  As the computation of exact solutions for MDP is intractable for large problems, 
rollout algorithms were utilized, which fall under the broad umbrella of approximate dynamic 
programming techniques, for scheduling community-level recovery actions. The proposed 
methodology considers interdependent electrical and water networks in the community and treats 
them as one complex system.  The feasibility of the proposed method was tested through a case 
study involving a real community susceptible to severe earthquakes with respect to different 
objective functions that are popular for policymakers in the community resilience problems.  The 
performance of the method for policymakers with different risk attitudes was also considered.  The 
performance of the rollout policies appears to be near-optimal and is substantially better than the 
performance of their underlying base policies. 

The proposed rollout approach has the all characteristics of a comprehensive framework, 
mentioned in Section 1. Furthermore, the rollout policy treats the community as a system of 
systems and provides the optimal strategies for the whole community. These strategies are not 
necessarily optimal for the individual networks and surely outperforms their underlying base 
policies.  
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