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Abstract

Following the occurrence of an extreme natural or man-made event, community recovery
management should aim at providing optimal restoration policies for a community over a planning
horizon. Calculating such optimal restoration policies in the presence of uncertainty poses
significant challenges for community leaders. Stochastic scheduling for several interdependent
infrastructure systems is a difficult control problem with huge decision spaces. The Markov
decision process (MDP)-based optimization approach proposed in this study incorporates different
sources of uncertainties to compute the restoration policies. The computation of optimal
scheduling presented herein employs the rollout algorithm, which provides an effective
computational tool for optimization problems dealing with real-world large-scale networks and
communities. The proposed methodology is applied to a realistic community recovery problem,
where different decision-making objectives are considered. The approach accommodates current
restoration strategies employed in recovery management; computational results indicate that the
restoration policies identified herein significantly outperform the current recovery strategies.
Finally, the applicability of the method to address different risk attitudes of policymakers, which
include risk-neutral and risk-averse attitudes in the community recovery management, is
examined.

Keywords: Approximate Dynamic Programming, Community-level Decision Making,
Community Recovery Management, Markov Decision Process, Optimization, Rollout

1 Introduction

Natural and man-made hazards pose significant challenges to civil infrastructure systems.
Although proactive mitigation planning may lessen catastrophic effects, efficacious recovery
scheduling can yield significant post-event benefits to restore functionality of critical systems to a
level of normalcy in a timely fashion, thereby minimizing wastage of limited resources and
disaster-related societal disorders. During the recovery process, the decision maker (also called the
“agent”) must select recovery actions sequentially to optimize the objectives of the community.
There are several characteristics of a rational agent; the most important include:
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The agent must balance the desire for low present cost with the undesirability of high future
costs [1] (in the sequel, this is referred to as “non-myopic agent” or look-ahead property);
The agent must consider different sources of uncertainties;

The agent must make decisions periodically to not only take advantage of information that
becomes available when recovery actions are in progress but also to adapt to disturbances
during the recovery process. Periodic decisions need not be taken at fixed intervals; rather,
they may occur at arbitrary decision epochs, as required in the recovery process.

The agent must be able to handle a large decision-making space, which is typical for the
problems at the community level. This decision-making space can cause an agent to suffer
from decision fatigue. Decision fatigue refers to the diminished quality of decisions made by
a human decision maker after a prolonged spell of decision making. Thus, no matter how
rational and high-minded an agent tries to be, one cannot make decision after decision without
paying a cost [2].

The agent must consider different types of dependencies and interdependencies among
networks, because a single decision can trigger cascading effects in multiple networks at the
community level.

The agent must be able to handle multi-objective tasks, which are common in real-world
domains. The interconnectedness among networks and probable conflicts among competing
objectives complicate the decision-making procedure.

The agent must consider different constraints, such as time constraints, limited budget and
repair crew, and current regional entities’ policies.

External factors, like the available resources and the type of community and hazard, shape the
risk attitude of the agent. The different risk behaviors must be considered.

Community-level decision makers would benefit from an algorithmic framework that
empowers them to take rational decisions and that accounts for the characteristics above. Markov
Decision Processes (MDPs) address stochastic dynamic decision-making problems efficiently and
offer an agent the means to identify optimal sequential post-event restoration policies.

In the realm of civil infrastructure management, several studies have used MDPs to optimize
the repair and maintenance of infrastructure [3-5]. Papakonstantinou and Shinozuka [6] reviewed
the literature on optimal maintenance planning using Dynamic Programming (DP) and MDPs.
Memarzadeh and Pozzi [7] introduced a model-free reinforcement learning technique for
infrastructure recovery planning. Smilowitz and Madanat [8] applied MDP to system-level
maintenance scheduling, where they considered condition state and budgetary constraints.
Medury and Madanat [9] used Approximate Dynamic Programming (ADP) with MDP for
pavement management systems. Meidani and Ghanem [10] studied the problem of maintenance
of pavement using DP and MDP with random transitions. Memarzadeh and Pozzi [11] proposed
an approach for adaptive maintenance planning based on Partially Observable Markov Decision
Process (POMDP) by solving independently the component-level POMDPs. Gomez and Baker
[12] utilized a stochastic programming approach in transportation networks to minimize the cost
of retrofit actions on bridges and the expected cost of post-hazard outcomes. Typically, real-time
scheduling techniques, like mixed-criticality scheduling [13-15], have been proposed in the past
to address related problems.



The above studies have focused on individual facilities or infrastructure systems. Community-
level decision makers would benefit from an algorithmic framework that allows them to consider
the interdependent systems within a community as a whole and empowers them to take rational
decisions and that accounts for the characteristics above. Markov Decision Processes (MDPs)
address stochastic dynamic decision-making problems efficiently and offer an agent the means to
identify optimal sequential post-event restoration policies.

This study introduces a stochastic scheduling formulation based on MDP to identify near-
optimal recovery actions following extreme natural hazards. This approach possesses all the above
mentioned properties (i-viii) and can support rational risk-informed decision making at the
community level. To this end, we leverage the ADP paradigm to address large-scale scheduling
problems in a way that overcomes the notorious curse of dimensionality that challenges the
practical use of Bellman’s equation [16]. To this end, a promising class of approximation
techniques called rollout algorithms is used. The application of ADP and rollout algorithms, along
with the MDP formulation, provides not only a robust and computationally tractable approach but
also the flexibility of incorporating current organizational recovery policies. In addition, current
restoration policies can be treated as heuristics in the rollout mechanism.

As an illustrative example, critical interdependent infrastructure systems within a community
modeled after Gilroy, California, which is susceptible to severe earthquakes emanating from the
San Andreas Fault, are considered. These systems include the Electrical Power Network (EPN),
Water Network (WN), and main food retailers, including interconnectedness within and between
networks. The EPN is particularly critical because the restoration and operation of most other vital
systems need electricity. Additionally, the WN and food retailers supply water, food (e.g., ready-
to-eat meals), and prescription medications that are essential for human survival following
disasters. The functionality of the WN not only depends on its physical performance but also on
the operation of the EPN, where a working EPN provides electricity for pumping station and water
tanks. The serviceability of food retailers depends heavily on the WN and EPN. Two decision-
making objective functions for optimization are considered: to minimize the number of days
needed to restore networks to an arbitrary level of service and to maximize number of people who
have utilities per unit of time. The proposed approach enables the agent (decision maker) to
compute near-optimal recovery strategies to provide the three essential services — electricity,
potable water, and food — to urban inhabitants and food retailers following a severe earthquake.
We discuss the integrated recovery policies that consider multiple networks and objectives
simultaneously, which can remarkably outperform the conventional isolated policies. Finally, we
also discuss how risk-averse decision makers can utilize the proposed method. Below a systematic
list of our salient is provided, novel contributions in this work:

1. This study addresses large-scale real-world community recovery post-hazard. We
also consider interdependencies between and within networks and model the cascading
effects.

2.  The research not only considers the current policies of the decision-makers and
entities but also addresses the risk-preferences of the decision makers.



3. The methodology leverages the powerful theory of Markov decision processes (MDPs)
at the community level. Different sources of uncertainties such as the source of uncertainty
in the outcome of repair decisions are considered.

4. QOur decision framework is a closed-loop approach, which incorporates feedback
from the temporal evolution of the state of the community into the decision making.

2 Technical Preliminaries

This section presents the mathematical setting for the MDP. A detailed treatment of the
subject is available in [16, 17].

2.1 MDP Framework

A Markov decision process (MDP) is defined by the six-tuple (X, 4, .°/(.), P, R, y), where X
denotes the state space, 4 denotes the action space, . ~/(x) € 4 is the set of admissible actions in
state x, P(y| x, a) is the probability of transitioning from state x € X to state y € X when action a €
-Ax) is taken, R(x, a) is the reward obtained when action a € . “/(x) is taken in state x € X, and y is
the discount factor. Let /7 be the set of Markovian policies (x), where 7. X — A is a function such
that 7(x) € . “A(x) for each x € X. The objective is to compute a policy x that optimizes the expected
total discounted reward given by

V™ (x) ::E[i ¥'R(x,, m(x,))|x, =x J (1)

The optimal value function for a given state x € X is denoted as V™ X >R given by

y* (x) =max V" (x). 2)
rell

The optimal policy is given by

7" =argmax V" (x). (3)

el

This form of the optimal policy is due to Bellman [47]. Note that the optimal policy is
independent of the initial state xo. Also, note that we maximize over policies x, where at each
time ¢ the action taken is a; = m(x;).
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Figure 1. Decision graph of a Markov Decision Process

The optimal policy 7* can be computed using different methods, which include linear
programming and dynamic programing. The methods of value iteration, policy iteration, policy
search, etc., can find a strict optimal policy. We briefly discuss the Bellman’s optimality principle
[17], useful for defining the O-value function, which plays a pivotal role in the description of the

rollout algorithm. The Bellman’s optimality principle states that V™ (x) satisfies

V7 (x)=max  R(x.a)+y 3 Pyl x.a)V™ (3) 1. 4)

in which the Q-value function associated with the optimal policy 7" is defined as

0™ (x,a) =R(x,a)+ 7Y . P(y | x,a)V" (»), (3)

yeX
which is the term within the curly braces in (4). Similarly, we can define Q" (x,a) associated
with any policy 7.

2.2 Simulation-based MDP

For large-scale problems, it is essential to represent the state, action, or outcome space in the
framework defined in Section 2.1 in a compact form. Such a compact representation is possible in
the simulation-based representation [18]. A simulation-based representation of an MDP is a 7-
tuple (X, 4, - 1), P, R, y, 1), where |X] or |4] (|-| = the cardinality of the argument set ““:”) is usually
large, and the matrix representation of P and R is infeasible because of the large dimensions of a
typical community recovery problem. P, R, and [ are presented as functions implemented in an
arbitrary programming language. R returns a real-valued reward, given the current state, current
action, and future state (R: X x 4 x X ->R). [is a stochastic function that provides state according
to the initial state distribution. P is a function that returns the new state given the current state and
action. Essentially, the underlying MDP model is implemented as a simulator.



2.3 Approximate Dynamic Programming

Calculating an optimal policy using the methods above is usually infeasible owing to the
dimensions of the state and/or action spaces. The size of the state/action space grows exponentially
with the number of state/action variables, a phenomenon referred to by Bellman as the curse of
dimensionality. The computational costs of running a single iteration of the value iteration and
policy iteration algorithm, for the MDPs defined in Section 2.1, are O(|X]*|4|) and O(IX]*|4| + |X]),
respectively. The computational cost of finding the optimal policy by directly solving the linear
system provided by the Bellman equation is O(|X]* |4]*). Additionally, the computational cost of
an exhaustive direct policy search algorithm, for a single trajectory consisting of K simulation

K
steps, 1s 3[Z| X[ j| A[*'| X| [19], which is prohibitive for even small-sized problems.
k=1

These computationally intractable algorithms cannot be used for large problems involving
resilience assessment or recovery of a real-size community and approximate solutions are
necessary. To this end, several algorithms have been developed in the realm of Approximate
Dynamic Programming (ADP) that result in tractable computations for finding the near-optimal
restoration policies. One popular class of algorithms involves approximating the Q-value function
in (5). However, it often is difficult in practice to approximate the O-value function for practical,
large-scale problems. In the following, a promising class of ADP algorithms known as rollout are
pursued, which sidestep these difficulties by avoiding an explicit representation of the Q-value
function.

2.4 Rollout

While computing an optimal policy for an MDP is often quite difficult because of the curse of
dimensionality, policies based on heuristics (termed as base policies) can be readily designed in
many cases. The principal idea behind the rollout technique is to improve upon the performance
of the base policy through various means. Therefore, the base policy does not have to be close to
optimal. In this study, we focus on improvement of the base policy through simulation. The base
policy is generally some heuristic, and the rollout policy is computed based on the repeated
application of this heuristic. The base policy can be defined in various ways: experts' judgments,
importance analyses, greedy algorithms, etc. [20]. We will discuss base policies in more detail
later in Section 5.

The concept of rollout was first proposed for stochastic scheduling problems by Bertsekas
and Castanon [21]. Instead of the classical DP scheme [1], the agent “rolls out” or simulates the
available policy over a selected finite horizon H< oo; thereafter, the agent implements the most
“promising” action in an on-/ine fashion. In on-line methods, unlike classical off-line techniques,
optimal decisions are computed only for the states encountered in the real-world (reached states);
the idea is to eliminate unnecessary computational effort on the unreached states. Conversely, in
off-line computations the policy is pre-computed for all the states and then stored; then, the agent
selects an optimal action from the stored policy corresponding to the observed evolution of the
system [20]. The present study focuses on the application of the proposed rollout algorithm



following a disaster, where recovery actions are calculated in an on-line manner. The rollout
algorithm incorporates a series of “virtual experiments” in the form of Monte Carlo simulations to
select an action at each decision epoch to be applied to the system in the real world, and
information collected in-field in the form of measuring the actual completion times of tasks and
actual resulting damage states.

Monte Carlo (MC) simulations assess the Q-value function on demand. To estimate the Q-
value function ( Q" (x,a) represents the estimate) of a given state-action pair (x, a), a set of Numc

trajectories are simulated, where each trajectory is generated using the policy z, has length A, and
starts from the pair (x, a). The assessed O-value function is typically taken as the average of the
sample returns obtained along these trajectories:

At 1 R < k
Q (X, a) =N_ Z |:R(x7 a, xi0,1) + Zy R(xio,k ’ E(Xio,k)a xio,k+l) . (6)

MC ip=1 k=1
For each trajectory io, the first state-action pair to (x, @) is fixed; the simulator provides the next
state x, | when the current action a in state x is completed. Actions are chosen using the base

policy. Note that if the simulator is deterministic, a single trajectory suffices, while in the
stochastic case, a sufficient number of trajectories (Nwvc) should be pursued to approximate the O-
value function. This study focuses on the application of the proposed rollout algorithm following
a disaster. In an on-line manner, all possible actions are tried Nmc times, and only the best action
in each time slot is selected based on (6). This procedure is repeated until the end of recovery.
Therefore, one recovery trajectory is the outcome of Nvic simulation trajectories. In this study, the
rollout policy is computed with single-step look-ahead. An agent can consider multistep look-
ahead, at an added computational cost, to extract maximum performance out of our solution
technique. The number of look-ahead steps mainly depends on the scale of the problem,
computational budget, real-time constraints, and agent’s preferences.

An important property of the rollout algorithm is that it improves upon the performance of
the underlying base policy, if the base policy is not strictly optimal. The rollout policy computed
above is not necessarily strict-optimal, but it is guaranteed that it would never perform worse than
the underlying base policy. For a rigorous discussion on this property of the rollout algorithm, the
reader is directed to [22]. Our simulation results present significant improvements (e.g., about 26%
for the first objective) over the base policy in providing utilities (electricity and water) to household
units and food retailers in the minimum amount of time. Our framework offers the agent the
flexibility of incorporating the current regional entities’ policy as the base policy. To properly
tailor the MDP and rollout formulations for our problem, we describe the real test-bed community
and infrastructure systems in the next section and the proposed formulation in Section 4.

3 Community Testbed

To evaluate the applicability and efficiency of the proposed methodology on real
communities, we model the community of Gilroy, California, USA, which is susceptible to severe
earthquakes on the San Andreas Fault. The City of Gilroy is a moderately-sized growing city and
located approximately 50 kilometers (km) south of the city of San Jose. It had a population of
48,821 at the time of the 2010 census. The availability of reasonable information about EPN, WN,
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population density, main food retailers, as well as the high level of seismic exposure of the area
makes it an interesting case study. The study area is divided into 36 rectangular regions organized
as a grid to define the properties of community, with an area of 41.9 km? and with a population of
47,905 as shown in Fig. 2. In this section, we provide the general information about the studied
networks and facilities of the community. Detailed information of the community is provided in
[23, 24].

3.1 Electrical Power and Water Networks

Figs. 3 and 4 show, respectively, the EPN and WN of Gilroy community. A 115 kV
transmission line supplies the Llagas power substation, which provides electricity to the
distribution system. The distribution line components are placed at intervals of 100 m and modeled
from the power substation to the main facilities of WN, food retailers, and the centers of urban
grids. The EPN and WN in this study are described as networks that contain nodes (vertices) and
links (edges). The dependencies within and between networks are modeled through an adjacency
matrix A = [x;], where x;; € [0, 1] indicates the magnitude of dependency between components i
and j [25]. If a component is damaged following a hazard, it becomes non-functional and all
dependent components in the same or other networks would also be non-functional. The adjacency
matrix A captures these cascading effects.

The EPN does not depend on any other network; hence, we only need to consider the
dependency within the network. The probability that a critical facility like a water pump or a food
retailer G has electricity is

P(EG) ::P(rﬁ] EE,] : (7)

where EG is the event that G has electricity, EE; is the event that the /" EPN component is
functional, and 7 is the minimum number of EPN components required to supply electricity to G.
The sample space is a singleton set that has the outcome, “is functional.” The / EPN component
is functional when it is undamaged or completely repaired, and all the EPN components serving
that EPN component are functional.  Fig. 3 shows the interdependence between the EPN
components.
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Figure 2: Map of Gilroy’s population over the defined grids

The municipal water network of Gilroy is supplied by the Llgas sub-basin, which is
recharged by Llagas and Uvas Creeks [23]. We have considered the main potable water pipelines,
wells, water tanks, and booster pump stations (BPS) of the WN, as shown in Fig. 4. The
functionality of the WN depends on not only the functionality of its components but also the
availability of electricity following the extreme hazard for water pump operation. Therefore, we
consider the dependency between WN and EPN. The probability that a critical facility like an
urban grid rectangle or a food retailer G has potable water is

PWG) :=P(ﬁ EWIJ , (®)

where WG is the event that G has water, k is the minimum number of WN components (which
could be BPS, wells, water tanks, or pipelines) required to supply water to G, and EW; is the event
that the /” WN component is functional. Again, the sample space here is a singleton set that has
the outcome, “is functional.” If the /" WN component is a pipeline, then it is said to be functional
when it is undamaged or completely repaired, and all the WN components serving that pipeline
are functional.

In addition, if the /” WN component is a BPS, well, or water tank, then it is said to be
functional when it is undamaged or completely repaired and all the EPN components serving the
™ WN component are functional. While the pipelines are not directly dependent on the EPN, they
are indirectly dependent on the EPN through the other WN components. The variables 7 and k
accommodate any potential redundancy in the EPN and WN.



Figure 3: Gilroy electrical power network

3.2. Food Retailers

Food retailers play a wvital role in the well-being of households in
Gilroy. Fig. 5 shows the locations of the six main food retailers of Gilroy (each of which has more
than 100 employees) that provide services to the community. Electricity and water are two
essential elements that play crucial role in the functionality of retailers following hazards.
Policymakers are always concerned about the adequate supply of these critical utilities for retailers.
Hence, we consider food retailers and their dependencies to EPN and WN during restoration
analysis and optimization. To capture the effects of the restoration of each food retailer on
different households over the community, we use a gravity model [26, 20], which assigns the
shopping probabilities based on the food retailers’ capacities and locations so that bigger and closer
retailers have greater impacts on household units.
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Figure 5: Gilroy’s main food retailers

3.3. Hazard Modeling

Gilroy is susceptible to the effects of severe earthquakes from the nearby San Andreas
Fault (SAF). The event simulated for this study is an earthquake of magnitude M,,=6.9 that
occurs at one of the closest points on the SAF projection to downtown Gilroy with an epicentral
distance of roughly 12 km, which is similar to the 1989 Loma Prieta earthquake, one of the most
devastating events that Gilroy has experienced. We use the Abrahamson et al. [27] Ground
Motion Prediction Equation (GMPE) to estimate the median seismic demands (Intensity
Measures) on infrastructure facilities: Peak Ground Acceleration (PGA) for the EPN components
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and above-ground WN facilities and Peak Ground Velocity (PGV) for buried pipelines. We
assess the physical damage to components with seismic fragility curves [28-33].

Available repair crews, replacement components, and required tools for restoration are
designated as Resources Units (RU). The number of RUs depends on the capacities and policy of
the regional entities following disasters. Restoration times are synthesized based on exponential
distributions from studies [20, 28-32], as summarized in Table 1. The proposed framework,
nevertheless, allows one to use any arbitrary distribution.

Table 1: The expected repair times (Unit: days)

Damage states

Component Minor Moderate Extensive Complete
Electric Sub-station 1 3 7 30
Transmission line component 0.5 1 1 2
Distribution line component 0.5 1 1 1

Water tanks 1.2 3.1 93 155
Wells 0.8 1.5 10.5 26
Pumping plants 0.9 3.1 13.5 35

4  Post-hazard Recovery Formulation

Following an earthquake, the EPN and WN components either remain undamaged or
exhibit a level of damage, which is determined from the seismic fragility curves. Suppose that an
agent must restore a community that includes several networks, which function as a System of
Systems (SoS). Let L be the total number of damaged components at time ¢, and let 7. denote the
decision time at which all the damaged components are repaired (L'=0). The agent has only a
limited number of RUs that can be assigned, usually much less than L', especially in severe
disasters that impact large communities. The RUs differ from network to network because of the
skill of repair crews and qualities of the required tools.
The problem is to assign the available RUs to L damaged components in a manner that best
achieves the community objectives and policymakers’ preferences.

The following assumptions are made: (1) The agent has access to all the damaged
component for repair purposes; (2) A damaged component only needs one RU to be repaired and
assigning more than one RU would not reduce the repair time [34]; (3) The agent has limited RUs
for each network and cannot assign a RU of one network to another (e.g., a WN RU cannot be
assigned to the EPN); (4) The agent can preempt the assigned RUs from completing their work
and reassign them at different locations to maximize the beneficial outcomes. (5) Once a damaged
component is repaired, all assigned RUs are available for re-assignment even if their assigned
components are not fully repaired. It is also possible to let the RU continue the repair work at the
same location in the next time slot according to the objectives of the agent. Such assignments are
referred to as preemptive scheduling, which allows the agent to be flexible in planning and is
particularly useful when a central stakeholder manages an infrastructure system; see [35] for a
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discussion on non-preemptive scheduling. (6) The agent can deal with stochastic scheduling, where
the outcome of the repair actions is not fully predictable and can be quantified probabilistically.
The unpredictability mainly arises from the randomness in the repair times (see Table 1). The MDP
simulator exhibits stochastic behavior owing to the random repair times. On the other hand, the
alternative perspective, where the outcome of actions is fully predictable, is also an active research
topic [20].

Markov Decision Process Formulation

Suppose that x” and x!" , respectively, represent the damage state of the EPN and WN at time
t. x!is a vector of length ", where L is the number of damaged components in the EPN. Each
element of the vector x is in one of the five damaged states (counting no damage as one state) in

Table 1. Similarly, we define x!” of length L’ , where L) is the number of damaged components

in the WN at time slot z. Let Ng and N, denote the available RUs for the EPN and WN,
respectively, with N, <L’ and N, <L’ . The tuples of our MDP framework are defined as

follows:
e States X: x; denotes the state of the damaged components in the community at time slot ¢ as the
stack of two vectors, x“andx)”, as follows:

= (xE x ) s.t. |x |=LF+L. 9)

t 27

e Actions A: a; denotes the repair actions to be carried out on the damaged components at time
slot ¢, as the stack of two vectors, a”anda ,

(. E W _yE | W
a, .—(at .4, ) s.t. la, =L +L/, (10)
where both a’ anda” are binary vectors of length L and L’ , respectively, where a value of
zero means no repair and one means carry out repair action. a and a, represent the actions

(no repair, repair) to be performed on the damaged components of the EPN and WN.

o Set of Admissible Actions, .~/(x;): The set of admissible repair actions . ~/(x;) for the state x; is
the set of all possible binary combinations of integers one and zero such that each element of
this set is of size L” + L, and each element has Nz number of ones in the first L” locations

and N,, number of ones at the remaining locations. The interdependence between networks
increases the size of the set of admissible actions as follows:

Let D/ be the set of all damaged components of the EPN before a repair action a; is
performed. P(Df) denotes the powerset of D”;

B, (DF)={CeP(Df)|C=N,|, an
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where ‘PNE (Df) represents the size of the set of admissible actions for the EPN. We can

also define PNW (DtW) similarly. The size of the set of admissible actions, at any time ¢, is

the product of the size of set of admissible actions for EPN and WN:
G| =|, (D7) 42, (21 ] - (12)

Therefore, when multiple networks are considered simultaneously, the size of . */{x;) grows

very quickly. Searching exhaustively over the entire set . ~/(x;) for calculating the optimal

solution is not possible; therefore, the rollout technique is employed, as described in

Section 2.4.
Simulator P: Given, x; and a;, the simulator P provides the new state x;+;. P is a generative
model that can be implemented as a simulator, without any explicit knowledge of the actual
transitions. It considers the interconnectedness within and between networks to compute the
cascading effects of a; through the whole community and recovery process. As we alluded to
before, a compact representation of P is important for large-scale problems.

In our problem formulation, as soon as at least one of the damaged components is repaired,
the repair action a; is considered complete. Define this completion time at every 7 by . Recall

that the repair time is exponentially distributed. The completion time is the minimum of the
repair time at one or more damaged locations, where a repair action is being performed. The
minimum of exponential random variables is exponentially distributed; therefore, the
completion time is also exponentially distributed [38]. The sojourn time (a.k.a. the holding
time) is the amount of time that the system spends in a specific state. For an MDP, the sojourn
time, #;, 1s exponentially distributed [1, 38, 39]. Note that for our MDP formulation, t, is equal

to .

A natural question that arises is “does this formulation work when the repair times are non-
exponential?” In that case, the completion time is not exponentially distributed. However, in
the present problem formulation, the completion time is the same as the sojourn time. Thus,
the sojourn time would not be exponentially distributed, which is inconsistent with the
Markovian assumption. This can be remedied simply by incorporating the lifetime of the
damaged component into the state definition. The lifetime of the damaged component is the
time required for the damaged component to be repaired after the occurrence of hazard. With

this new definition of the state space, the sojourn time is different from the completion time 7,
, and the sojourn time is exponentially distributed. Here the completion time ¢, is still the
minimum of the repair time at one or more damaged locations but with any underlying
distribution of the repair times; 7,(¢) = mjln(fj (t)) where f ;(#) is the generated random repair
time for the components under the repair action (j=1,...,Ng+Nw). Thus, our framework is
sufficiently flexible to accommodate repair times with any underlying distribution.

Instead of the “memoryless” distribution to model the repair times if any other type of

distributions is used, the corresponding increase in the computational effort is nominal. The
modification needed to accommodate a non-exponential distribution is not in the
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computational complexity but in the specification of the state. Indeed, the increase in the
computational effort and complexity is insignificant compared to other aspects of the problem
because we deal with only the encountered (reached) state at any decision epoch. Suppose that
there are “y” number of damaged components in the system; then, the state vector size will
increase by “y” (the lifetimes associated with each damaged component), which is a relatively
small increase. Different studies in the literature have used different distributions, and we
would like to alert the reader regarding the correct state definition and respect the Markovian

property under possible variations in the assumptions.

The general steps of modeling and using the simulator P are as follows: 1- Assign
components fragilities as described in Section 3.3. 2- Find the damage level per each
hazard intensity; the damage level will be characterized as one among the following:
Undamaged, Minor, Moderate, Extensive, and Complete. 3- Compute the
functionality of each component, with due consideration to the interdependencies
between and within networks as described in Section 3.1 and Section 3.2. 4- Generate
samples of repair times for nonfunctional components based on the distributions in
Table 1 depending on the type of the component. Assign a mean repair time based on
the level of damage to each component. 5- Determine a base policy for the rollout
method. 6- Apply rollout to create a recovery sequence list with the consideration of
limited RUs.

Owing to the randomness in the response of the networks to the hazard intensity as
well as the repair times, there is stochasticity in the generative model. Therefore,
Monte-Carlo simulations are employed. The reader interested in different
applications and details of the aforementioned generative model in post-disaster
community recovery should refer to Refs. [32, 40-42].

Rewards R: Two different objectives for the agent are considered.

The first objective (hereinafter Obj. 1) is to optimally plan decisions so that a certain percentage
of the total inhabitants (denoted by threshold «) are benefitted from the recovery of utilities in
the shortest period of time, implying that household units not only have electricity and water
but also have access to a functional retailer that has electricity and water. Conversely, even if
a household unit has electricity and water and has access to a retailer that has electricity but
not water, the household unit does not benefit from the recovery actions. The mapping of
people in the gridded rectangle to a food retailer is determined by the gravity model. Repair
actions are optimally planned to minimize the time it takes to achieve the benefit from utilities
to a percent of people. The reward function for the first objective is defined as:

Rl(xtbat’xwl):_ft’ (13)
In the definition of Ry, note the use of a negative sign before the completion time.
Maximizing the reward function is equivalent to minimizing the completion time.

The second objective (hereinafter Obj. 2) is to optimally plan decisions so that maximum
number of inhabitants are benefited from recovery of utilities per unit of time (days, in our
case). Therefore, in the second case, there are two objectives embedded in the reward as
follows:
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rep

where 7 is the number of people deriving benefit from utilities after the completion of a;, and

Irep 18 the total repair time to reach x.+; from any initial state xo (i.e., 7, = th ). Note that the

reward function is stochastic because the outcome of the repair action is stochastic.

e [Initial State /: As mentioned in Section 3, the stochastic damage model of the EPN and WN
components can be obtained by the fragility curves. The initial damage states associated with
the components will be provided by these models.

e Discount factor y: In this study, the discount factor is set to equal 0.99 [43]. This is a measure
of how “far-sighted” the agent is in considering its decisions. The discount factor weighs the
future stochastic rewards at each discrete time ¢. Stationary optimal policies are guaranteed to
exist for discounted infinite-horizon optimization criteria [43].

In summary, the total N number of RUs are assigned to the N number of the damaged
components in both networks. Based on Table 1, the repair times for each component related

to the level of damages are generated. The minimum of these repair times (t:(t)) determines

the holding time that the community will stay in the current state before transiting to the
new state. This process repeats until the end of recovery.

5 Results and Discussion

The results of optimizing objectives 1 and 2 are presented in two sections. The first section
caters to risk-neutral decision makers, and the second section caters to risk-averse decision makers.
Each of these sections is further divided into two sub-sections to demonstrate the performance of
our method on two separate objectives functions. When Objective I is considered, the reward
function in the MDP is given by (13), while for Objective 2, the reward function of our MDP is
given by (14). For all the simulation results presented henceforth, Ny in (6) and (15) were selected

so that the standard deviation of the estimated Q-value O” (x,a) is below 0.05.

As mentioned in Section 2.4, the most feasible base policy for community recovery
planning often is the current recovery strategy of regional responsible companies or organizations.
However, there is no restriction on the selection of a policy as a base policy. We proposed the
alternatives for the definition of base policies for recovery management problems in [20]. In this
study, the base policy is defined based on expert judgment and importance analyses that prioritize
the importance of components owing to their contribution to the overall risk. Specifically, the
restoration sequence defined by our base policy for EPN is transmission line, power substation,
and distribution lines to downtown and water pumps; similarly, the base policy for WN involves
water wells, water tanks, BPS, and pipelines to downtown and food retailers.
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5.1 Mean-based Stochastic Optimization

The mean-based optimization is suited to risk-neutral decision makers [10]. In this
approach, the optimal policy is determined based on the optimization of the Q-value function,

where the estimate of the Q-value function Q7 (x,a) is based on the mean of Nic trajectories, as

demonstrated in (6). Calculating the O-value based on the expected O-value of Ny trajectories
may not always be appropriate, especially in the case of risk-averse decision makers. However, it
has been shown that the mean-based stochastic optimization approach can be appropriate when the
objective function properly encodes the risk preferences of policymakers [1]. the performance of
the method when the decision maker has a risk-averse attitude to planning is illustrated in Section
5.2.

5.1.1 Implementation of Rollout Algorithm for Objective 1

The rollout algorithm with respect to Obj. 1 identifies recovery strategies to minimize the
time it takes to provide the utilities to a percent of people in the community. In this formulation,
the selection of a depends on the preferences of policymakers. In this illustration, a was selected
to equal 0.8, implying that the benefit of the utility recoveries to 80% of people in Gilroy is to be
provided in a minimum amount of time.

Figure 6 shows the performance of the rollout and base polices for Objective 1. The rollout
algorithm optimizes the restoration of two networks, EPN and WN, simultaneously to provide
utilities for 80% of people in 19.3 days following the earthquake, while the base policy completes
this task in 26.1 days. This 35% improvement over the entire recovery period represents the
performance of rollout at the community level. Figure 6 also highlights the look-ahead property
of rollout. Although the base policy showed a better performance during the first 15 days following
the earthquake, the rollout algorithm outperformed the base policy in the whole recovery. By
selecting conservative repair decisions initially, rollout can balance the desire for low present cost
with the undesirability of high future costs.

The performance of rollout on the individual food retailers is summarized in Table 2. Note
that the base policy restored EPN and WN to Safeway, Nob Hill Foods, and Mi Pueblo Food faster
than the rollout policy; however, the base policy is incapable of determining the recovery actions
to balance the rewards so that 80% of the population benefits from restoration of utilities ( the true
objective).

Table 2: Performance of rollout vs. base policy for the first objective function for the
individual retailers

Policy Recovery time Costco Walmart Target Safeway Nob Hill Foods Mi Pueblo Food
Base 26.06 0.31 0.31 21.02 591 591 2.76
Rollout 19.23 0.31 0.31 15.95 18.33 18.33 8.01
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Figure 6: Performance of rollout vs. base policy for the first objective function

After 80% of the people have benefitted from utility restoration, the progress in restoration
of the EPN and WN is evaluated further. Even though the objective of providing the benefit of
utilities to 80% of the population has been met, 25% of the EPN components remain unrepaired.
This interesting result shows the importance of prioritizing the repair of the components of the
network so that the objectives of the decision maker are met. Because the objective here was to
restore utilities so that 80% of people would benefit owing to the restoration in minimum amount
of time, the algorithm prioritized repair of only those components that would have maximum effect
on our objective without wasting resources on the repair of the remaining 25% of EPN
components.

5.1.2 Implementation of Rollout Algorithm for Objective 2

The rollout algorithm applied to Objective 2 identifies recovery strategies that maximize
the number of inhabitants per day that benefit from the strategy selected. In other words, the
algorithm must maximize the area under the restoration curve normalized by the total recovery
time. This objective function is specifically defined to match the definition of the common
resilience index, which is proportional to the area under the restoration curve [20]. Fig. 7 depicts
the performance of base policy and the corresponding rollout policy. The mean number of people
that benefit from utility restoration based on the base policy is 22,395 per day, whereas that for the
rollout policy is 24,224. These values are calculated by dividing the area under the curves in Fig.
7 by the total number of days for the recovery, which is our Obj. 2. Analogous to Fig. 6, Fig. 7
highlights the look-ahead property of the rollout algorithm for Ob;. 2.

Note that the recovery in Fig. 6 appears to be faster than that in Fig. 7 (the slope appears
steeper). This is because Fig. 6 shows the recovery for only 80% of the population (in accordance
with optimizing Objective 1), whereas Fig. 7 shows the recovery for the entire population (in
accordance with optimizing Objective 2).
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As in Section 5.1.1, the performance of the rollout algorithm for the individual networks
was analyzed. One of the main reasons for this analysis is that these networks are restored and
maintained by different public or private entities that would like to know how rollout would
perform for their individual systems. Recovery actions a;, are determined using the rollout policy
for the combined network that considers all the interdependencies (for Obj. 2), and check impact
of performance of these repair actions on individual networks is checked.

First, the performance of the repair actions on the EPN is checked by calculating the effect
of EPN restoration on only the household units. The results are depicted in Fig. 8. The base policy
leads to EPN recovery so that the mean number of people with electricity is 24,229 per day, while
the rollout policy provides the electricity for 27,689 people on average. Second, we check the
performance of the repair actions on the EPN, but considering the effect of EPN restoration on
both household units and retailers. In this analysis, summarized in Fig. 9, people derive benefit of
EPN recovery when their household unit has electricity and they go to a retailer that has electricity.
In this case, the mean number of people who benefit from the EPN recovery owing to the base
policy is 23,155/day, whereas that owing to the rollout policy is 25,906/day. Third, we check the
performance of the repair actions on the WN, calculating the effect of WN restoration on only the
household units, as illustrated in Fig. 10. In this case, the mean number of people with potable
water under the base and rollout policies is 31,346/day and 25,688/day, respectively. Finally, we
check the performance of the repair action on the WN, but where the effect of WN restoration on
both household units and retailers is considered. In this case, people benefit from WN recovery
when their household unit has water, and they go to a retailer that has water. In this case, the mean
number of people with potable water under the base and rollout policies is 31,346/day and
25,688/day, as shown in Fig. 11.
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Figure 7: Performance of rollout vs. base policy for the second objective function
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It is interesting to note that the rollout policy need not outperform the individual base policy
when the recovery of each individual network is considered separately because in our framework,
the calculation of recovery actions due to rollout considers the combined network and
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corresponding interdependencies that outperforms the base policy as shown in Figs. 6-9. Our
objective considers two networks as one complex system (or), which is captured in the definition
of the benefit, and is not reflected in the restoration of a single network alone. Figs. 10 and 11
indicate that it is necessary to alleviate the concerns of individual stakeholders when recovery is
performed based on interdependencies in the network. Refs. [20, 29] provide a thorough
examination of the performance of rollout when the EPN and WN are considered separately.
Furthermore, the number of days required to restore the WN is less than what is required to restore
EPN, even when the optimized recovery actions for the combined network are used to evaluate the
performance of the individual network restoration (see Figs. 8-11). This behavior can be attributed
to a lesser number of WN components being restored compared to the number of EPN components.
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5.2 Worst-case Stochastic Optimization

The mean-based stochastic optimization seeks to identify the most cost-efficient repair
actions in the face of uncertainty under the assumption that the decision maker has a risk-neutral
attitude. This assumption has been criticized on several counts [44-47]. Research on risk attitudes
has revealed that most decision makers are not risk-neutral in the face of a low-probability threat
or hazard. Moreover, policymakers and community stakeholders are not risk-neutral, especially
when engaging large systems at the community level that influence public safety [44]. Finally, a
stochastic model of uncertainty may not be possible in many practical problems in which only
limited data exist and, accordingly, policy-makers tend to be more risk-averse [1]. These
observations lead us to study the performance of the proposed rollout algorithm for risk-averse
policymakers.

Risk-averse policymakers are more worried about extrema, rather than expected
consequences of uncertainty. Worst-case optimization (a.k.a. robust optimization) is employed for
MDPs to allow for risk-averse behavior [10, 46]. Note that when Obj. 1 is under consideration, we
are solving a minimization problem, whereas when Obj. 2 is under consideration, we deal with a
maximization problem. As in Section 5.1, we make use of Ny trajectories. But unlike (6), we do
not take mean of the Ny estimated Q-values to approximate the original O-value function in (4)
and (5). Instead, we use the maximum or minimum value among the Nuyc trajectories as a
representation of worst-case behavior, depending on whether Obj. 1 or Obj. 2, respectively, is

considered. If ig maximizes (6), where ig € {l,...,N MC}, then, for Obj. 1, the worst-case O-value

estimation is represented in (15). It is this estimated Q-value that is used in (4). Conversely, for
Obj. 2, i; minimizes (6), where i) €{1,..., N},
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In the worst-case optimization simulations, when Obj. 1 is considered, the number of days
required to reach the threshold of 0=0.8 under the base policy is 26.1 days whereas under rollout,
it is 19.7 days, a 32% improvement that signifies a desirable performance of the proposed
methodology for the risk-averse policymakers. Fig. 12 shows the performance of rollout for Ob;.
2, where the number of people deriving benefit from utilities per day because of recovery actions
under the base and rollout policies is 22,395/day and 24,478/day. Fig. 12 also illustrates the look-
ahead property, which is characteristic of the rollout algorithms. Finally, the performance of rollout
for the individual networks is summarized in Table 3 and Fig. 13. As in Section 5.1.2, the results
indicate that risk-averse policymakers should not presume that rollout will outperform the base
policy when the EPN and WN are considered separately.

Table 3: The performance of policies in different cases for the worse-case optimization
(Unit: average No. of people per day)

Case Base policy Rollout policy
EPN restoration for household units 24229 27897
EPN restoration for household units and retailers 23155 26159
WN restoration for household units 31346 25966
WN restoration for household units and retailers 30099 23535
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Figure 12: Performance of rollout vs. base policy in the worst-case optimization for the
second objective function

23



EPN restoration for household units o EPN restoration for household units and retailers

30

w
o

[\S]
o

= Base Policy
—Rollout

= Base Policy
=Rollout

—_
o

Number of people with electricity
# of people benefited with EPN recovery

0 5 10 15 20 25 30 35 5 5 1 15 20 25 30 35
Time (days) Time (days)
5 WN restoration for household units , WN restoration for household units and retailers
x10 x10
507 T T 250

7}
3

G45] 545

@ - =

z r z

540 ! 240]

E : s

235/ o 335

g ] g

230 ) ©30F

5} - c

E L= g

a25 === === amTT 025F _

g 1 - Base Policy Q| eemeeeaa= —

z20. ! —Rollout §20 : - gaie ':DHCY
5 ollou

15 #15 - - - - )
0 2 4 [ 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Time (days) Time (days)

Figure 13: The performance of policies in different cases for the worse-case optimization

In summary, the results presented in this section advocate the desirable performance of the
rollout algorithm in the face of a risk-averse attitude on the part of the decision maker. The
individual attitudes toward risk can be dependent on the personalities of policymakers and
stakeholders of a community and be influenced by many factors, such as the community properties,
type of hazard, available resources and time, and existing information about the uncertainties to
name a few. Because of the stochastic approximation involved in the computation of the estimated
Q-values, it is not possible to compare the performance of the mean-based and worst-case
optimization methods proposed above.

Although in standard approaches of Minimax and Maximin in treating risk aversion,
there is no notion of “controlling” the amount of risk aversion, in the literature, there are also
methods to treat risk aversion that incorporate some means of adjusting the level of risk aversion
in stochastic programming [47]. These techniques are beyond the scope of this study.

6 Conclusion

Community-level recovery was formulated as an MDP that accounts for different sources of
uncertainties in the entire restoration process. Stochastic scheduling of community recovery that
embeds several interconnected networks is a difficult stochastic control problem with huge
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decision spaces. As the computation of exact solutions for MDP is intractable for large problems,
rollout algorithms were utilized, which fall under the broad umbrella of approximate dynamic
programming techniques, for scheduling community-level recovery actions. The proposed
methodology considers interdependent electrical and water networks in the community and treats
them as one complex system. The feasibility of the proposed method was tested through a case
study involving a real community susceptible to severe earthquakes with respect to different
objective functions that are popular for policymakers in the community resilience problems. The
performance of the method for policymakers with different risk attitudes was also considered. The
performance of the rollout policies appears to be near-optimal and is substantially better than the
performance of their underlying base policies.

The proposed rollout approach has the all characteristics of a comprehensive framework,
mentioned in Section 1. Furthermore, the rollout policy treats the community as a system of
systems and provides the optimal strategies for the whole community. These strategies are not
necessarily optimal for the individual networks and surely outperforms their underlying base
policies.
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