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SUMMARY

Odor perception in humans is initiated by activation of odorant receptors (ORs) in
the nose. However, the ORs linked to specific olfactory percepts are unknown,
unlike in vision or taste where receptors are linked to perception of different
colors and tastes. The large family of ORs (~400) andmultiple receptors activated
by an odorant present serious challenges. Here, we first use machine learning to
screen ~0.5 million compounds for new ligands and identify enriched structural
motifs for ligands of 34 human ORs. We next demonstrate that the activity of
ORs successfully predicts many of the 146 different perceptual qualities of chem-
icals. Although chemical features have been used to model odor percepts, we
show that biologically relevant OR activity is often superior. Interestingly, each
odor percept could be predicted with very few ORs, implying they contribute
more to each olfactory percept. A similar model is observed in Drosophilawhere
comprehensive OR-neuron data are available.

INTRODUCTION

In humans a single odorant molecule might be described by different perceptual descriptions, influenced

by culture, language, and experience (Majid and Kruspe, 2018). Such complexities suggest that, although

olfactory circuitry is structurally similar across species, language or experience, which is dynamic and

constantly evolving, could be a strong determinant of perceptual experience for humans. But even though

the implication is that odor perception should be highly subjective, studies have shown that genetic vari-

ability in odorant receptors (ORs) contributes to odor perception. Equally, machine learning has accurately

predicted perceptual descriptors of odorants from chemical features, suggesting that physicochemical

properties influence perception (Debnath et al., 2019; Gutiérrez et al., 2018; Keller et al., 2017; Khan

et al., 2007; Licon et al., 2019; Nozaki and Nakamoto, 2016; Sanchez-Lengeling et al., 2019). Moreover,

modeling human odor perception using a large semantic similarity space has shown that accurate predic-

tions of perceptual ratings are possible even when training and prediction are done on completely different

study samples. That is, in aggregate human perceptual descriptors do not appear to be arbitrarily used and

are generalizable (Gutiérrez et al., 2018).

The connection between odorant receptor activity and perception is not as well defined. It is unclear that

the activity of specific ORs confers odor identity. For instance, although the human odorant receptor

OR5AN1 is highly selective to musk-smelling chemicals, less selective ORs also respond to these chemicals

(Ahmed et al., 2018). In simpler systems like insects, there is some evidence that activation or inhibition of

certain odorant receptors is sufficient to drive behaviors from attraction and aversion to courtship, support-

ing the possibility of an underlying olfactory receptor code for perception (Chihara et al., 2014; Dweck et al.,

2013; Kurtovic et al., 2007; MacWilliam et al., 2018; Stensmyr et al., 2012; Suh et al., 2004). Since these ge-

netic studies are not feasible in humans, it is not yet clear how an olfactory receptor code can be generaliz-

able, or whether it exists. It is, however, becoming increasingly plausible that there is indeed a perceptual

code in humans. A few key odorant receptors have been reported for perceptual attributes other thanmusk

(Shirasu et al., 2014) such as onion (Noe et al., 2017), general food-related volatiles (Geithe et al., 2017), and

steroids (Keller et al., 2007). Sequence variation in the OR7D4 receptor has been shown to alter the percep-

tion of androstenone from a ‘‘sweaty,’’ unpleasant smell to one that is mildly ‘‘sweet’’ and pleasant (Keller

et al., 2007). More recently, the specific amino acid residues of OR5AN1 that are responsible for its high

selectivity to musk-smelling chemicals have also been confirmed (Ahmed et al., 2018). These studies

were possible owing to three types of information: (1) perceptual responses of humans, (2) the odorant re-

ceptors that detect the chemicals from heterologous expression systems, and (3) genetic studies (Trimmer
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et al., 2019). Obtaining this information is not trivial for reasons that include the difficulty of receptor deor-

phanization and that behavioral responses are known for only a fraction of the purported volatile space,

owing to low throughput data collection with human volunteers.

Although some of these limitations are not easily overcome, we reasoned that it would be of interest to

leverage machine learning/artificial intelligence to better understand the ligands of odorant receptors

and clarify the role of odorant receptor activity on human perceptual coding. Most prior machine learning

efforts have focused on modeling odor perception according to the chemical features of odorants.

Although these studies have shown promise and provide evidence for the physicochemical basis of

odor perception, chemical features alone do not offer clear insight into biological coding, as this would

require additional information about the olfactory receptors that odorants activate. Moreover, it is an

extremely challenging task to isolate the olfactory receptors that are relevant to a percept.

Here, we tested if human odorant receptor responses from heterologous assays could be used in lieu of

chemical features for modeling human odor perception and also developed models incorporating both

approaches. We first created machine learning models to predict ligands for 34 human ORs. We could

then use these models to evaluate how OR activity predicted perceptual descriptors. To start, we focused

on hundreds of chemicals that human volunteers previously evaluated (Keller and Vosshall, 2016) and

selected ORs that best predicted perceptual descriptors on a portion of training chemicals. Surprisingly,

the prediction accuracy for models of only a few top scoring ORs compared favorably with large physico-

chemical feature models on 69 test chemicals (Keller et al., 2017), emphasizing that a small percentage of

the OR pool is particularly useful for a given percept. This also suggested that specific subsets of ORs may

be highly tuned to certain perceptual qualities, as implied in a prior network analysis of odorant receptors

and perceptual descriptors (Bak et al., 2019).

RESULTS

Modeling OR Responses Using Chemical Features

Each odorant receptor is activated by a unique set of chemicals, and together the large olfactory receptor

family can detect a vast chemical space. We compiled a database of 84 deorphanized human ORs and 54

allelic variants that have been tested with multiple odorants, altogether adding up to ~170 odorants (Adi-

pietro et al., 2012; Braun et al., 2007; Charlier et al., 2012; Cook et al., 2009; Fujita et al., 2007; Gonzalez-

Kristeller et al., 2015; Jacquier et al., 2006; Jaeger et al., 2013; Keller et al., 2007; Mainland et al., 2014; Ma-

shukova et al., 2006; Mabberg et al., 2015; Matarazzo et al., 2005; McRae et al., 2012; Menashe et al., 2007;

Neuhaus et al., 2006; Saito et al., 2009; Sanz et al., 2005; Schmiedeberg et al., 2007; Shirasu et al., 2014;

Spehr et al., 2003; Topin et al., 2014). In order to generate more comprehensive odor response profiles

of these ORs, we used machine learning to model structure-activity relationships. Among the 138 ORs,

only 34 have a sufficient number of known ligands for machine learning models. For each of the 34 ORs,

predictive chemical features were identified from the known ligands (Figure 1A). We validated the models

by predicting ligands on a subset of odorants that were randomly left out of the training dataset, repeating

this several times. The prediction success was high for the 34 models (average AUC = 0.88; shuffled chem-

ical features average, AUC = 0.51, p < 10�32) (Figures 1B, S1A, and S1B; Table S1).

The OR-ligand predictive models also gave us an opportunity to identify new ligands for the 34 ORs from a

large chemical library (~450,000). In doing so, we developed a theoretical space that expands the existing

data by a factor of 10 (Figure 1C). Enriched structural features were identifiable among the top predicted

ligands for each OR, illustrating simple 2D features that are presumably important for activating each re-

ceptor (Figure 1D; Table S2).

Modeling Odorant Percepts from OR Responses

A key question in olfaction is how activities of ORs contribute to different perceptual qualities. Specific re-

ceptors contribute to androstenone perception (Keller et al., 2007); however, little is known about odorants

commonly perceived as flavors and fragrances. One possibility is that their perception depends on amodel

similar to androstenone and one or few receptors contribute to perception. Alternatively, a model involving

a combinatorial code of a large number of ORs is also possible, particularly since unlike androstenone,

most odorants activate multiple ORs. In order to test these possibilities, we performed a series of analyses

on a large dataset of human odor perception (Keller and Vosshall, 2016). Not only were a large number of

chemicals tested by volunteers in this study, but computational studies have successfully demonstrated
2 iScience 23, 101361, August 21, 2020
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Figure 1. Features of Human Odorant Receptor Ligands Can Be Learned and New Ligands Predicted

(A) Pipeline for generating probability scores for chemicals with perceptual data. Starting with lists of ligands from

heterologous assay data SVM models learn predictive physicochemical features for a subset of human ORs and OR

variants with >2 ligands (34 total). These trained models in turn predict new chemicals such as those with known

perceptual profiles.

(B) Average performance of 34 OR models using repeated 10-fold cross-validation.

(C) Number of ligands predicted for each of the 34 ORS in ~400,000 eMolecules library after filtering based on optimal

probability score cutoffs and structural similarity to known ligands.

(D) Sample of enriched substructures among the top 10 predicted chemicals for indicated ORs. Only substructures that

were non-trivial and present in at least half of the 10 highest scoring chemical ligands are shown. A comprehensive table

of substructures for other receptors is provided in Table S2.
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structure-percept relationships (Gutiérrez et al., 2018; Keller et al., 2017; Kepple and Koulakov, 2017; San-

chez-Lengeling et al., 2019). However, several odorants used in the behavior study have not been tested for

OR activities. We therefore used the OR-ligand models in the previous section to estimate activity for

chemicals (Data S1), designating similar training and testing chemicals as described before (Keller et al.,

2017) (407 training; 69 testing chemicals) (Figure S2A). Models containing only a few optimal ORs success-

fully predicted the perceptual descriptors for test chemicals (average test AUC = 0.78) (Figure S2B), partic-

ularly when compared with a similar approach based on different physicochemical feature encodings

rather than ORs (Figure S2C). Lastly, because the activity on the 34 ORs was known for some chemicals

in the (Keller and Vosshall, 2016) study, and it was unclear if this might affect the results, we revisited the

analysis with these chemicals removed (326 train; 54 test chemicals). Test performance was not significantly

reduced, compared with the earlier analysis (p = 0.234).

We next turned to another psychophysical study (ATLAS) that evaluated 146 perceptual descriptors for

~150 odorants. As before, most perceptual descriptors were well predicted from a small subset of ORs,

despite the larger, more diverse descriptor pool in this study (Figure 2) (top 50 best performing: 10 ORs:

avg. AUC = 0.84). When we compared the performance of the OR activity with the optimal chemical fea-

tures, 47/146 perceptual descriptors were better predicted using the ORs. In light of this excellent perfor-

mance, we further investigated ORs whose contributions to percept predictions are highest. Interestingly,

only a few select ORs contributed strongly to the prediction of some perceptual descriptors (Figure 3).

In order to expand the scope and utilize activity information from the 104 ORs with few known ligands, we

computed 3D similarity between chemicals in the ATLAS study and the OR ligands (Mahé et al., 2006) and

identified the most likely active compound for each of the 104 ORs (materials and methods). When incor-

porating these additional ORs into the pipeline, predictions improved slightly for some perceptual descrip-

tors. Among the top 50 best predicted descriptors, smaller ORmodels were significantly better than all 138

ORs on the test data (10 ORs AUC = 0.84; 138 OR AUC = 0.80, t = 2.76, p = 0.007), suggesting that the addi-

tional information was not often useful (Figure S3A). These 138 ORs still represent just a third of the human

OR repertoire, and we anticipate our approach will help identify even better sets of ORs that are tuned to

specific perceptual qualities as more human ORs get deorphanized.
Modeling Odorant Percepts from OR Responses and Chemical Features

Because many previous efforts have focused on predicting odor perception with chemical features (Keller

et al., 2017), we tested if adding ORs could improve the predictions. We selected OR6P1, an OR ranked

highly for ‘‘Cinnamon,’’ as a test case and added it to 34 optimal chemical features. Interestingly, we found

a notable increase in predictive success on test chemicals (mean AUC chemical features: 0.77, mean AUC

chemical features + OR6P1 = 0.81) (Figure S4A).

To determine if ORs could improve predictive models in an unbiased manner across the 146 perceptual

descriptors, we combined the odor response information of the 138 ORs and the chemical features, select-

ing a small subset of important ORs and chemical features to create machine learning models (Figure 4A).

We found that removing the top-rankedORs and replacing themwith those of lesser importance negatively

impacted predictions for some descriptors (Figure 4B). If we permuted the activities of the optimal or top-

ranked ORs for a given descriptor, the overall test performance significantly dropped (p < 10�7), with 82%

of descriptors better predicted with non-permuted ORs (Table S3). Collectively, these results indicate that

specific ORs appear to contribute more than others and perceptual predictions are generally improved by

including ORs (Table S4)

In order to visualize relationships among the perceptual descriptors based on predictive ORs and chemical

features, we next performed a cluster analysis. When examining the clustering based only on perceptual

ratings of chemicals (Figure 5A), we found the top five predictive ORs grouped the perceptual descriptors

similarly (Figure 5B). Notably, randomly selecting five ORs failed to produce any meaningful groups or clus-

ters of perceptual descriptors (Figure 5C). Combining the most predictive ORs and chemical features

improved the clustering of perceptual descriptors (Figure 5D). Overall, the descriptors that were best clus-

tered in Figure 5A (silhouette width > 0.3) matched completely or partially with Figures 5B and 5D, with the

exception of ‘‘Fishy’’ and ‘‘Kippery.’’ This indicates that relationships among perceptual descriptors in the

ATLAS training set are somewhat preserved in OR activity or chemical feature models, even when only a

small amount of chemical or information is included in each model.
4 iScience 23, 101361, August 21, 2020
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Figure 2. OR Activity Can Model Diverse Olfactory Percepts in Human Studies

Performance of RBF SVM models trained with 10 ORs for ATLAS study data. The top 10% usage chemicals are predicted

for all 146 perceptual descriptors in the study. Successful classification of these chemicals is reported as the mean Area

Under the Curve (AUC) over repeated 10-fold cross-validation (10-fold repeated 5 times; 50 folds total). To limit biased

validation, the procedure was run twice, setting aside different test chemicals, determining important OR subsets to

predict the descriptors with these chemicals excluded, then ensuring that the cross-validated AUC comprised 60%

completely hidden chemicals. The variability in the plot is the standard deviation over these two distinct runs. High

variability may arise as the top 10% usage is computed from the training data. SVM, Support Vector Machine; RBF, Radial

Basis Function; additional algorithm details in methods.
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Figure 3. Contribution of ORs to Perceptual Models

Importance of individual ORs for machine learningmodels of each of the 146 ATLAS perceptual descriptors. The heatmap

is generated by fitting models for each OR separately and scaling relative to maximum AUC (100). Importance is shown

with the most important ORs in blue. Labels for the perceptual descriptors (yaxis) and ORs (xaxis) are arranged relative to

similar importance values.
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Modeling with In Vivo OR Response Data from Drosophila

One of the interesting observations we have is that only a few ORs are picked and are sufficient to create

predictive models of odor perception. However, the perceptual descriptor—to—ORmapping we analyzed

here represents data from only ~20% of the humanOR repertoire and one possibility is that whenmoreORs

are available to pick from, a larger number will be selected computationally as optimal. In order to under-

stand the contribution of specific olfactory receptors to behavior in a system where a large fraction of

odorant receptors have been deorphanized, we turned to the Drosophila melanogaster model system.

In vivo odor-response spectra are known for several odorants for the majority of odorant receptors (Ors)

and olfactory receptor neurons (ORNs) in the adults, as well as the behavioral valence (attraction versus

aversion) to these odorants (MacWilliam et al., 2018; Hallem and Carlson, 2006).

We adapted our approach to predict behavioral valence of flies (Figure 6A), and we could do so with sig-

nificant success using a small number of important chemical features and electrophysiologically measured

responses from sensory neurons. Similar to what we observed with human ORs, a subset of the in vivo

Drosophila Or activities was favored for odor valence predictions, beyond collections of numerous chem-

ical features (Figure 6B). Evaluating the best valence predictors for test chemicals from a combined set of

Or/ORN activities and chemical features indicated that the Or/ORNs significantly contributed to odor

valence predictions, consistent with the in vitro human data (R2 = 0.66; Shuffle ORs + Chemical Features:

0.51, p = 0.007) (Figure 6C). These results also suggested that a small number of Drosophila Or/ORN ac-

tivities is highly predictive on the same set of test chemicals. Interestingly, additional Ors/ORNs failed

to improve predictions (Or/ORN subset: R2 = 0.53; all other ORs: R2 = 0.40, p = 0.015) (Table S5). Although

this type of analysis remains to be done in humans, the results from flies suggest that even when a more

comprehensive receptor or neuron array is added, only a small subset of the available receptors appears

information rich as far as behavioral predictions are concerned (Figure 6D).

DISCUSSION

Although previous machine learning pipelines have found some success using chemical features, selecting

the optimal feature sets for predictions of perception is not well defined. We found that human odorant

responses from heterologous assays could be used with comparable and sometimes better predictive suc-

cess. In part, the result is anticipated by the fact that each OR is presumably selective to very specific phys-

icochemical features themselves. Both the human perceptual descriptor and fly valence predictions sug-

gest that a substantive portion of odor identity arises early in the processing stream, at the olfactory

receptors, based on high predictive success rates (~76%–91%). It is likely that the remaining portion de-

pends on experience-dependent modulation, supporting a downstream model with reliance on distrib-

uted neuronal networks for human perceptual coding. Our findings support a ‘‘primacy model’’ that holds

that a small number of distinct and overlapping olfactory receptor activity profiles encode odor identity

(Wilson et al., 2017). Although increasing concentration activates more receptors, the highest sensitivity re-

ceptors start responding first as an animal approaches an odor source and presumably continue to convey

the identity. Such a model is consistent with the findings reported here and by others (Weiss et al., 2012)

because it appears that only a few ORs contribute to a perceptual descriptor and it is therefore also trac-

table to predict how a chemical smells from specific physicochemical properties.

Nevertheless, it is unclear how information arising early in the olfactory pathway is preserved along the

complex circuits and can in fact lead to generalizable perceptual features. The spatial organization of

the olfactory receptor neurons and glomeruli are for one not well preserved in the piriform cortex. Unlike

the retinotopic and tonotopic patterning observed in the visual and auditory cortices, representing spatio-

temporal properties of visual and auditory stimuli as they are processed at sensory neurons, piriform activ-

ity appears randomly distributed, without a clear mapping of physicochemical features (Stettler and Axel,

2009). A combination of computational models and calcium imaging has, however, shown piriform circuits,

although they are qualitatively different, can support perceptual invariance amid changes in concentration

and across different odorants (Roland et al., 2017; Schaffer et al., 2018). Similarly, neural tracing
iScience 23, 101361, August 21, 2020 7
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Figure 4. Few Odorant Receptors Are Needed to Predict Perceptual Descriptors

(A) Schematic of the approach to selecting a small number of important chemical features and ORs, followed by model-

fitting. Two methods, including replacing top-ranking ORs with those of lesser importance and permuting (shuffling) the

OR activities, help identify perceptual descriptors where ORs contribute relative to chemical features. To standardize the

analysis, the training and validation are as outlined in Figure 2.

(B) Combined chemical feature-OR models predict the top 10% usage of ATLAS perceptual descriptors. The (*) symbol

signifies a notable decrease in performance occurred if the ORs were replaced with ones of lesser importance (one-tailed

independent samples t test, p % 0.05). For the comparison with permuted or shuffled OR activities, other metrics, and

benchmarking relative to chemical features, see Tables S3 and S4.
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experiments in mice support that, although olfactory circuitry differs from other sensory modalities, odor-

related information is represented along equally structured neuroanatomical pathways, as in the piriform

output projecting to the orbitofrontal cortex (Chen et al., 2014).

One possibility is that only one or few receptors of the many that detect an odorant actually convey

percept. The evolutionary landscape should accordingly be coupled to biologically relevant or frequently

encountered features of the chemical space, as has been implied by characterizations of receptors highly

tuned for musk and onion-related compounds (Ahmed et al., 2018; Noe et al., 2017), in addition to the

highly conserved trace amine-associated receptors (TAARs) and their importance in modulating behavioral

output in mice (Dewan et al., 2018). In our analyses, the OR specialized for musk was not a top candidate for

musk predictions but contributed strongly to predictions of ‘‘sweaty.’’ Since methods for selecting and

ranking ORs depend on characteristics of the available data, interpretations should be cautious, acknowl-

edging that the human OR data are sparse and the participants and chemical sets from the ATLAS and

Keller studies are not exhaustive. Yet from these same considerations the positive results achieved are

unexpected, especially when compared with predictions of odor perception using chemical features.

Odorant receptors (ORs) are also expressed in non-olfactory tissues. Ligands for certain ORs have been

shown to modify the function and proliferation of multiple cell types. Although the precise mechanisms

are not well defined, ORs represent promising therapeutic targets. Ligands for ORs such as OR51E1,

OR10G7, and OR1D2, which were included in this study, are candidate treatments for conditions ranging

from prostate cancer and chronic obstructive pulmonary disease (COPD) to atopic dermatitis (Kalbe et al.,

2016; Mabberg et al., 2016; Tham et al., 2019). We therefore anticipate that the predictions and the analysis

of known and candidate OR ligands from this study will also have value in non-olfactory studies.
8 iScience 23, 101361, August 21, 2020
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Figure 5. A Few Key ORs or Chemical Features Sensibly Cluster the Perceptual Descriptors

(A) Dendrogram representation of the Euclidean distances among perceptual descriptors based on overlap of perceptual response data (% Usage) from

chemicals in the ATLAS study.

(B) Dendrogram from the top five ORs picked per perceptual descriptor.

(C) Dendrogram created from five randomly chosen ORs per perceptual descriptor.

(D) Dendrogram from the five best overall predictors including OR and chemical features per perceptual descriptor. Clustering is hierarchical and based on

Euclidean distance (A) or the Jaccard distance (B–D). Cluster number (colored branches) inferred from gap statistic across bootstrap samples.
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Limitations of the Study

The computational approach presented in the study is restricted by training sets from previously deorphan-

ized human odorant receptors (OR) determined by in vitro assays. Only a small fraction of the human OR

family has been deorphanized in vitro, thereby limiting the identification of the optimally predictive ORs

in this study. Moreover, the number of chemicals with well-defined perceptual profiles determined behav-

iorally is small relative to the space of chemicals that are likely to have odorant properties. Since the
iScience 23, 101361, August 21, 2020 9
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Drosophila odor valence are assessed by shuffling the OR activities in the combined model as well as comparing the best

OR versus all (Table S5).

(B) Selecting chemical features and in vivoOR activities that optimally predict odor valence. Recursive feature elimination
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selecting optimal models in methods.

(C) The best combinedmodel is evaluated on test chemicals, with and without the OR activities shuffled. Error bars are the SEM.

(D) Generic model displaying a many-to-one mapping between ORNs and glomeruli. Although there are >1 responding

units (ORs), information that confers perceptual character is restricted to a smaller subset of the input.
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computational approach we outlined depends on the size and complexity of OR and perceptual datasets,

our results should be interpreted alongside these limitations.
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Figure S1. Detailed performance of models predicting activity on 34 human ORs. (Related to 
Figure 1 and Table S1). A) The average sensitivity of the 34 OR models and B) average specificity 
over repeated cross validation folds (10-fold CV repeated 10 times).
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Figure S2. Human OR activity or chemical features predict perceptual data from Keller 2016 study 
participants. (Related to Figure 2). A) Pipeline for making predictive models for odor perception from ORs for 
the Keller 2016 perceptual data. Classification cutoffs for the 69 test chemicals are determined from 407 
training chemicals. B) Classifying the top 10% of usage for 69 hidden test set chemicals; performance is 
reported as the area under the ROC curve (AUC). Prediction of the % usage is an aggregate of 5 SVM 
models, each sampling 5 ORs from the top 10. The OR ranking is determined by recursive feature elimination 
over cross validation (10-fold repeated 10 times) with 407 training chemicals. C) Prediction of the 69 test 
chemicals with models trained on various chemical feature representations. Left, physicochemical features are 
computed for optimized 3D structures and 5 SVM models sample 35 top ranked chemicals features. Plotted 
performance is the aggregated prediction. Middle, predictions from an SVM model trained on Morgan circular 
fingerprints. During training, low variance bit positions are dropped to improve the fit. Right, predictions from an 
SVM model trained on topological torsion fingerprints, dropping low variance bit positions during training. All 
plots display the standard deviation over 100 bootstrap samples of the 69 test chemicals. 
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Table S1 

OR Metric Value 

OR10G3 AUC 0.9764246 

OR10G7 AUC 0.9571523 

OR11H7P AUC 0.8438965 

OR1A2 AUC 0.8741326 

OR1C1 AUC 0.7959467 

OR1D2 AUC 0.9958090 

OR1G1 AUC 0.7593999 

OR2B11 AUC 0.9649722 

OR2G2 AUC 0.9473866 

OR2J2 AUC 0.7880475 

OR2J3 AUC 0.8525910 

OR2M4 AUC 0.8861412 

OR2T10 AUC 0.9438511 

OR2T34 AUC 0.8784901 

OR2W1 AUC 0.7741072 

OR4Q3 AUC 0.9717862 

OR51E1 AUC 0.9142729 

OR51L1 AUC 0.8378983 

OR52D1 AUC 0.7448325 

OR5AC2 AUC 0.9059954 

OR5K1 AUC 0.7841736 

OR5P3 AUC 0.8616590 

OR10A6.V140G.L287P AUC 0.8566833 

OR2B11.V198M AUC 0.9949333 

OR2B11.V198M.T293I.D300G AUC 0.9946667 

OR2C1.C149W AUC 0.9331333 

OR2C1.G16S.C149W.C169Y.R229H AUC 0.8975333 

OR2J2.T111A AUC 0.8400286 

OR2J2.Y74H.T111A.V146A.T218A AUC 0.8713667 

OR2J3.I228V.M261I AUC 0.8373600 

OR2J3.I228V AUC 0.8386250 

OR2J3.R226Q.I228V.M261I AUC 0.8731667 

OR1A1 AUC 0.7773069 

OR2C1 AUC 0.9636074 

OR10G3 Sens 0.8283333 

OR10G7 Sens 0.9080000 

OR11H7P Sens 0.7196667 

OR1A2 Sens 0.8520000 

OR1C1 Sens 0.7533333 

OR1D2 Sens 0.9516667 

OR1G1 Sens 0.6909206 

OR2B11 Sens 0.9042286 

OR2G2 Sens 0.9150000 

OR2J2 Sens 0.7081444 



OR2J3 Sens 0.7126667 

OR2M4 Sens 0.8422222 

OR2T10 Sens 0.9150000 

OR2T34 Sens 0.7876190 

OR2W1 Sens 0.7489190 

OR4Q3 Sens 0.9450000 

OR51E1 Sens 0.7851667 

OR51L1 Sens 0.7000000 

OR52D1 Sens 0.7425333 

OR5AC2 Sens 0.8422222 

OR5K1 Sens 0.6816667 

OR5P3 Sens 0.7321667 

OR10A6.V140G.L287P Sens 0.7173333 

OR2B11.V198M Sens 0.8626667 

OR2B11.V198M.T293I.D300G Sens 0.8493333 

OR2C1.C149W Sens 0.6066667 

OR2C1.G16S.C149W.C169Y.R229H Sens 0.6680000 

OR2J2.T111A Sens 0.7034286 

OR2J2.Y74H.T111A.V146A.T218A Sens 0.7613333 

OR2J3.I228V.M261I Sens 0.6864000 

OR2J3.I228V Sens 0.6120000 

OR2J3.R226Q.I228V.M261I Sens 0.6893333 

OR1A1 Sens 0.6514000 

OR2C1 Sens 0.6520000 

OR10G3 Spec 0.8646471 

OR10G7 Spec 0.9032486 

OR11H7P Spec 0.7610861 

OR1A2 Spec 0.7966139 

OR1C1 Spec 0.7823186 

OR1D2 Spec 0.9231667 

OR1G1 Spec 0.7163778 

OR2B11 Spec 0.8521181 

OR2G2 Spec 0.8702770 

OR2J2 Spec 0.7565145 

OR2J3 Spec 0.8094917 

OR2M4 Spec 0.7900806 

OR2T10 Spec 0.8730319 

OR2T34 Spec 0.7994472 

OR2W1 Spec 0.6918247 

OR4Q3 Spec 0.8771373 

OR51E1 Spec 0.8272121 

OR51L1 Spec 0.7352230 

OR52D1 Spec 0.6525470 

OR5AC2 Spec 0.8433472 

OR5K1 Spec 0.7919028 



Table S1. Summary of ROC analysis for models predicting activity on 
34 human ORs. (Related to Figure 1)
Averages for the prediction performance of Figure 1 models over valida-
tion, including the sensitivity (true positive rate), specificity (false positive 
rate = 1-speciifcity), and overall AUC.



Image IDs OR

608374 OR10G7

631771 OR1G1

486255 OR2B11

479671 OR2G2

540140 OR2M4

481045 OR2T10

516498 OR2W1

478561 OR51E1

478221 OR51L1



Image IDs OR

477085 OR52D1

494660 OR5K1

479790 OR5P3

631730 OR10A6.V140G.L287P

535081 OR2B11.V198M

483236 OR2B11.V198M.T293I.D300G

509362 OR2C1.C149W

481575 OR2C1.G16S.C149W.C169Y.R229H

492074 OR2J2.T111A



Image IDs OR

591602 OR2J2.Y74H.T111A.V146A.T218A

490819 OR2J3.I228V

596094 OR2J3.I228V.M261I

474648 OR2J3.R226Q.I228V.M261I

Table S2. Enriched substructures among predicted ligands for 34 
human ORs (Related to Figure 1). Additional enriched cores/substruc-
tures for the labeled ORs, highlighting the core on an exemplar chemical 
from the eMolecules predictions (related to Figure 1D). The ID is the 
eMolecules identifier for the representative chemical, which is among the 
top 10 predictions for the labeled OR. Bonds and atoms are colored black. 
The enriched substructure is in red. 



Perc.Descriptor AUC.Actual.ORs AUC.Perm.ORs P (Actual v. Perm) AUC.Random.ORs P (Actual v. Random) 

ALCOHOLIC 0.68 0.62 6.624121e-03 0.72 0.723178607

ALMOND 0.94 0.93 2.487726e-01 0.91 0.034877069

AMMONIA 0.82 0.76 7.437701e-02 0.81 0.411008447

ANIMAL 0.62 0.62 4.653889e-01 0.70 0.964195584

ANISE LICORICE 0.78 0.63 9.318801e-03 0.76 0.361514077

APPLE FRUIT 0.56 0.61 6.724894e-01 0.66 0.800616700

AROMATIC 0.71 0.61 7.262549e-02 0.73 0.689074811

BAKERY FRESH BREAD 0.57 0.62 9.059523e-01 0.58 0.719289158

BANANA 0.85 0.64 9.809746e-03 0.87 0.708005236

BARK BIRCH BARK 0.57 0.63 8.966433e-01 0.59 0.615803346

BEANY 0.67 0.67 5.570947e-01 0.61 0.156366133

BEERY 0.61 0.60 3.367454e-01 0.59 0.288927182

BITTER 0.76 0.61 4.906788e-03 0.72 0.274457885

BLACK PEPPER 0.69 0.63 3.041965e-02 0.61 0.060708625

BLOOD RAW MEAT 0.75 0.57 3.027819e-04 0.69 0.131544847

BURNT CANDLE 0.64 0.59 1.217738e-01 0.62 0.299863633

BURNT MILK 0.61 0.60 4.026164e-01 0.62 0.554476157

BURNT PAPER 0.86 0.67 3.743915e-03 0.84 0.304135032

BURNT RUBBER 0.76 0.64 1.367015e-03 0.68 0.006654245

BURNT SMOKY 0.84 0.69 1.459191e-02 0.81 0.130453646

BUTTERY FRESH BUTTER 0.68 0.76 9.155957e-01 0.66 0.366338507

CADAVEROUS DEAD ANIMAL 0.92 0.83 1.386069e-04 0.92 0.368750235

CAMPHOR 0.63 0.57 4.832609e-02 0.70 0.945089522

CANTALOUPE HONEY DEW MELON 0.79 0.73 3.018547e-02 0.82 0.767234025

CARAMEL 0.89 0.81 8.795053e-04 0.86 0.175338953

CARAWAY 0.82 0.57 9.910237e-07 0.82 0.467041687

CARDBOARD 0.63 0.60 1.545006e-01 0.65 0.643885830

CAT URINE 0.55 0.62 9.862892e-01 0.59 0.887941827

CEDARWOOD 0.78 0.66 7.725876e-02 0.76 0.392239690

CELERY 0.61 0.70 9.874586e-01 0.66 0.861059602

CHALKY 0.60 0.59 4.697072e-01 0.58 0.362309551

CHEESY 0.79 0.58 5.814025e-04 0.85 0.969998448

CHEMICAL 0.80 0.72 5.454888e-04 0.76 0.187394329

CHERRY BERRY 0.82 0.65 1.870925e-03 0.82 0.400904651

CHOCOLATE 0.65 0.79 9.961704e-01 0.74 0.953634802

CINNAMON 0.86 0.78 3.247772e-02 0.73 0.003079151

CLEANING FLUID 0.76 0.75 2.907639e-01 0.81 0.921645505

CLOVE 0.88 0.60 1.088595e-04 0.85 0.264212595

COCONUT 0.61 0.59 2.942493e-01 0.60 0.373755189

COFFEE 0.74 0.57 1.325299e-04 0.76 0.689137219

COLOGNE 0.82 0.74 4.557177e-02 0.75 0.034619751

COOKED VEGETABLES 0.79 0.60 5.312181e-04 0.79 0.539445780

COOL COOLING 0.77 0.64 5.920177e-03 0.80 0.795019055

CORK 0.70 0.61 5.878820e-02 0.61 0.022596784

CREOSOTE 0.80 0.81 6.339020e-01 0.83 0.893222941

CRUSHED GRASS 0.69 0.62 1.174218e-02 0.64 0.143682506

CRUSHED WEEDS 0.74 0.61 4.921776e-03 0.66 0.013566817

DILL 0.57 0.73 9.992697e-01 0.59 0.781535873

DIRTY LINEN 0.73 0.61 7.730652e-04 0.67 0.044159634

DISINFECTANT CARBOLIC 0.79 0.90 9.958961e-01 0.89 0.998115114

DRY POWDERY 0.64 0.63 4.372117e-01 0.62 0.342789968

EGGY FRESH EGGS 0.59 0.56 7.667215e-02 0.59 0.461463704

ETHERISH ANAESTHETIC 0.96 0.90 2.183660e-03 0.93 0.027905360

EUCALIPTUS 0.69 0.57 1.904247e-03 0.76 0.981148786

FECAL LIKE MANURE 0.70 0.77 9.765591e-01 0.71 0.546529155

FERMENTED ROTTEN FRUIT 0.83 0.64 1.552895e-04 0.73 0.068225780



Perc.Descriptor AUC.Actual.ORs AUC.Perm.ORs P (Actual v. Perm) AUC.Random.ORs P (Actual v. Random) 

FISHY 0.76 0.58 4.824185e-04 0.77 0.584032635

FLORAL 0.75 0.81 8.525523e-01 0.76 0.571314301

FRAGRANT 0.67 0.54 5.315367e-02 0.57 0.002180182

FRESH GREEN VEGETABLES 0.74 0.61 8.271564e-04 0.72 0.251533345

FRESH TOBACCO SMOKE 0.63 0.57 5.314839e-02 0.64 0.612188603

FRIED CHICKEN 0.64 0.62 2.208670e-01 0.64 0.503480983

FRUITY CITRUS 0.77 0.74 1.227108e-01 0.77 0.415384866

FRUITY OTHER THAN CITRUS 0.75 0.54 2.031716e-04 0.76 0.545991914

GARLIC ONION 0.97 0.63 2.531550e-05 0.96 0.231282678

GASOLINE SOLVENT 0.92 0.85 2.795957e-03 0.90 0.129023122

GERANIUM LEAVES 0.62 0.54 8.120492e-02 0.65 0.748064731

GRAINY AS GRAIN 0.65 0.68 7.357469e-01 0.61 0.241183239

GRAPE JUICE 0.60 0.63 8.148000e-01 0.58 0.249827462

GRAPEFRUIT 0.73 0.69 6.902408e-02 0.76 0.832562571

HAY 0.63 0.58 2.191222e-01 0.64 0.635096113

HEAVY 0.75 0.52 8.808084e-03 0.70 0.180959523

HERBAL GREEN CUT GRASS 0.66 0.57 2.178443e-02 0.61 0.135613486

HONEY 0.86 0.72 6.441975e-03 0.84 0.105893090

HOUSEHOLD GAS 0.91 0.81 1.735901e-05 0.93 0.730659466

INCENSE 0.74 0.75 5.484723e-01 0.77 0.716919634

KEROSENE 0.94 0.76 1.013985e-05 0.93 0.327626884

KIPPERY SMOKED FISH 0.57 0.59 7.332818e-01 0.58 0.577061232

LAUREL LEAVES 0.63 0.56 8.699926e-02 0.67 0.838973837

LAVENDER 0.73 0.71 2.760870e-01 0.74 0.619993047

LEATHER 0.68 0.61 1.345040e-02 0.79 0.992360918

LEMON 0.87 0.87 2.979404e-01 0.85 0.136759987

LIGHT 0.77 0.73 1.434928e-01 0.85 0.917788531

MALTY 0.66 0.70 7.085725e-01 0.65 0.398116520

MAPLE SYRUP 0.81 0.62 6.505141e-04 0.78 0.196660862

MEATY COOKED GOOD 0.68 0.55 1.619274e-03 0.69 0.532624907

MEDICINAL 0.81 0.70 2.199711e-02 0.72 0.094122938

METALLIC 0.62 0.59 3.428863e-01 0.63 0.625422059

MINTY PEPPERMINT 0.75 0.59 4.713820e-04 0.67 0.005963238

MOTHBALLS 0.76 0.75 4.015789e-01 0.80 0.939709284

MOUSE 0.85 0.69 6.052005e-05 0.74 0.001296670

MUSHROOM 0.67 0.61 5.507031e-02 0.68 0.612807182

MUSK 0.64 0.61 2.600264e-01 0.65 0.641149881

MUSTY EARTHY MOLDY 0.54 0.59 8.496130e-01 0.56 0.726368591

NAIL POLISH REMOVER 0.93 0.93 4.717329e-01 0.87 0.008637722

NEW RUBBER 0.69 0.60 1.422405e-02 0.69 0.488580423

NUTTY WALNUT ETC 0.79 0.80 6.001993e-01 0.79 0.541252697

OAK WOOD COGNAC 0.71 0.60 5.334112e-02 0.70 0.449304705

OILY FATTY 0.75 0.68 5.442055e-02 0.78 0.703181219

ORANGE 0.70 0.63 4.857428e-02 0.70 0.487048230

PAINT 0.91 0.79 8.734811e-05 0.91 0.461934408

PEACH FRUIT 0.79 0.58 5.484548e-05 0.76 0.266667783

PEANUT BUTTER 0.83 0.78 1.108906e-01 0.86 0.826427173

PEAR 0.86 0.80 1.820044e-02 0.84 0.381644634

PERFUMERY 0.82 0.78 1.393034e-02 0.81 0.429208350

PINEAPPLE 0.83 0.83 4.383805e-01 0.82 0.400655067

POPCORN 0.59 0.68 9.254312e-01 0.65 0.890432139

PUTRID FOUL DECAYED 0.87 0.80 2.422996e-03 0.92 0.971155085

RAISINS 0.57 0.59 7.519006e-01 0.60 0.789009023

RANCID 0.80 0.69 1.046710e-02 0.80 0.573930524

RAW CUCUMBER 0.84 0.61 5.236949e-04 0.76 0.027564181

RAW POTATO 0.63 0.56 8.758358e-03 0.66 0.714216712

ROPE 0.60 0.58 3.075816e-01 0.61 0.668058005



Perc.Descriptor AUC.Actual.ORs AUC.Perm.ORs P (Actual v. Perm) AUC.Random.ORs P (Actual v. Random) 

ROSE 0.67 0.59 1.072022e-01 0.65 0.330191386

SAUERKRAUT 0.86 0.88 8.345338e-01 0.83 0.187159140

SEASONING FOR MEAT 0.61 0.58 1.750854e-01 0.59 0.258163703

SEMINAL SPERM LIKE 0.68 0.59 2.868288e-02 0.75 0.911515570

SEWER 0.97 0.85 1.684756e-03 0.97 0.404678453

SHARP PUNGENT ACID 0.89 0.84 7.879184e-03 0.87 0.285085817

SICKENING 0.97 0.86 9.330160e-04 0.96 0.173703843

SOAPY 0.81 0.78 2.807849e-01 0.77 0.176364339

SOOTY 0.64 0.57 6.044304e-02 0.68 0.830745272

SOUPY 0.65 0.61 2.153393e-01 0.57 0.201392365

SOUR MILK 0.98 0.88 1.311887e-03 0.97 0.395627632

SOUR VINEGAR 0.86 0.78 2.440581e-02 0.88 0.781798703

SPICY 0.91 0.73 1.473271e-04 0.85 0.044485570

STALE 0.81 0.71 3.902490e-03 0.80 0.384288452

STALE TOBACCO SMOKE 0.68 0.65 1.798344e-01 0.71 0.741998826

STRAWBERRY 0.88 0.56 1.729606e-04 0.85 0.273525575

SULFIDIC 0.94 0.75 8.166529e-04 0.93 0.298005800

SWEATY 0.68 0.61 6.619308e-02 0.70 0.661394584

SWEET 0.73 0.65 3.036319e-02 0.72 0.397528666

TAR 0.67 0.66 3.736882e-01 0.66 0.451093414

TEA LEAVES 0.61 0.62 5.105959e-01 0.57 0.113352387

TURPENTINE PINE OIL 0.83 0.72 3.150109e-04 0.80 0.237355229

URINE 0.74 0.62 1.306574e-03 0.76 0.694702395

VANILLA 0.75 0.72 9.793389e-02 0.69 0.180342803

VARNISH 0.97 0.83 6.922921e-04 0.94 0.017280947

VIOLETS 0.71 0.74 7.678331e-01 0.71 0.449119936

WARM 0.72 0.57 1.437458e-03 0.70 0.319931645

WET PAPER 0.60 0.69 9.795118e-01 0.62 0.673009454

WET WOOL WET DOG 0.78 0.59 1.104795e-03 0.74 0.098478406

WOODY RESINOUS 0.65 0.60 1.157541e-01 0.68 0.734801220

YEASTY 0.86 0.84 2.672057e-01 0.89 0.690830166

Table S3. Detailed analysis of odor perception predictions using 
chemical features and ORs (Related to Figure 4). Combined OR and 
chemical feature model performance using the ATLAS study data. In one 
condition, ORs are replaced with those of lesser importance (“Random”). In 
the second condition, OR activities for the best combined set are permuted 
(shuffled). The chemical features are intact in both conditions. Training and 
testing chemicals are equivalent. 



Best Predicted Metric Chem Features Chem Features + ORs 

Top 5 AUC 0.9502134 0.9708750 

Top 10 AUC 0.9210808 0.9565362 

Top 20 AUC 0.8969860 0.9253587 

Top 25 AUC 0.8822129 0.9117761 

Top 50 AUC 0.8314386 0.8558157 

Top 5 R 0.6559822 0.7265567 

Top 10 R 0.5977552 0.6949485 

Top 20 R 0.5818210 0.6447922 

Top 25 R 0.5734141 0.6267827 

Top 50 R 0.5271159 0.5474018 

Table S4. Comparing predictions of odor perception with chemical features or 
chemical features and ORs. (Related to Figures 2 and 4). Summary table containing 
the average test performance for the best predicted perceptual descriptors in the ATLAS 
study across two metrics (R and AUC) and using different predictor sets (e.g. OR vs chemical 
features). R is the correlation between the predicted and observed % usage of the perceptual 
descriptors. The AUC is the classification success for chemicals in the top 10% of usage.



SUPPLEMENTAL INFORMATION 

Transparent Methods  
Modeling OR ligands from chemical features (Figure 1) 
We trained SVM models to learn physicochemical features of the confirmed ligands for a subset 
of ORs whose response profiles are currently better characterized (34 total). Different chemical 
features were encoded as binary fingerprints (1,0) (Klekota-Roth (Klekota and Roth, 2008), 
Morgan/Circular (Morgan, 1965), MACCs, Shortest Path, and Hybridization (Steinbeck et al., 
2003). Chemical fingerprints can encode up to ~1000 bits and many are possibly uninformative. 
Kullback–Leibler (KL) divergence (Nisius and Bajorath, 2010) was used to select only those bits 
that maximized the distance between active and inactive compounds in the heterologous assay 
data. Predictions from these models provided probability scores for each OR-chemical pair for 
the ATLAS chemicals. This work relied on the chemistry development kit (CDK) (Steinbeck et 
al., 2003) as well as its R interface (Guha, 2007). The structural similarity filter to count the 
number of predicted ligands used functions in the ChemmineR package in R (Cao et al., 2008).

Enriched Substructures/Cores (Figure 1) 
Enriched cores were analyzed using RDKit through Python (Landrum, 2006). The algorithm is 
an exhaustive search for the maximum common substructure among chemicals. In practice, 
larger chemical sets often yield less substantive cores. To remedy this, the algorithm includes a 
threshold parameter that relaxes the proportion of chemicals containing the core. We used a 
threshold of .5, requiring that half of the top predicted chemicals contained the core. 

ORs as predictors of perception (Figures 2-4)  
Despite several available data sources, most in vitro assays typically report a handful of ORs 
with multiple ligands and many others with few ligands (1 or 2 compounds that pass statistical 
thresholds). To incorporate the more narrowly tuned receptors, we computed an approximation 
of the 3D pharmacophore kernel (Mahé et al., 2006). Pharmacophore kernels are a versatile 
method for computing pairwise similarities among chemicals according to a set of standard 
features that are related to biological activity. Namely, similarity between ATLAS chemicals and 
known OR ligands was defined by the three-point Tanimoto coefficient, which is scaled to 0-1, 
with 1 being maximally similar. In cases where there were > 1 ligands for an OR the maximally 
similar ligand was used.  

To incorporate the ORs with more ligands, we trained SVM models on physicochemical 
features of odorants with known activity. There were 34 ORs with sufficient training data for this 
approach. These models assigned probability scores for the 34 ORs to the perceptual study 
chemicals (ATLAS and Keller 2016). The Keller 2016 perceptual ratings were converted to the 
% usage, or the % of participants using a perceptual descriptor; that is, supplying a rating 
(0-100) for a given descriptor. The ATLAS study provides this metric.

The receiver operating characteristic (ROC) analysis or, in particular, the area under the curve 
(AUC) is based on transforming the rating that had been assigned to a perceptual descriptor by 
study participants into a classification label (active/inactive). The active chemicals are those 
within the top 10% of the ratings (% usage). However, as this cutoff is arbitrary, other metrics 
are supplied in supplementary materials for comparison. These, in addition to the classification-
based metric (ROC analysis), are explained in detail in the metrics section alongside their 
strengths and weaknesses for this specific problem. Unless noted in the figure legends the 
importance of an OR is not based on classification. Specific methods for evaluating importance 
are discussed below.  



Computing chemical features to predict perceptual descriptors (Figures 4, 6, S2, S4) 
We computed chemical features using the Python wrapper for the open source RDKit software 
(Landrum, 2006). This included chemicals features that were raw values, pertaining to features 
such as functional group counts and 3D geometries, which closely resemble the proprietary 
DRAGON software; the whole library is accessible through the mordred module (Moriwaki et al., 
2018).  We also computed Morgan/circular (radius =2) and topological torsion fingerprints. 
These use a hash function to encode different chemical features as fixed length binary strings 
(1024 bits). 

Selecting important ORs in prediction of human perception (Figures 2-4, S2-S3) 
Important ORs were selected using a cross validated recursive feature elimination (10-fold, 
repeated 10 times), with the random forest (RF) algorithm or the support vector machine (SVM) 
algorithm. Random forest defines importance by permuting predictors and reporting the % 
increase in error. Random forest fits multiple decision trees on different bootstrap samples and 
supplies a consensus vote over the trees as the prediction. Bootstrap sampling leads to a 
portion of data being left out; the “out of bag” sample which is used to estimate the prediction 
performance. When a model is fit, the predictor importance (% increase in error) is computed. 
The support vector machine, however, does not include an ‘out of bag’ sample and therefore the 
OR/chemical feature importance is computed externally by fitting non-linear regression models 
for each predictor.  

By including the model-fitting inside a cross validation loop the importance is computed over 
multiple folds or portions of the training data rather than on the complete training set, which 
reduces bias in the predictors that are selected. The importance is in this context redefined as a 
selection rate (e.g. the rate the predictor was highly ranked). 

Clustering (Figure 5) 
Clustering was performed with the hcust function in R using the Ward D2 method and the 
Euclidean distance for numerical matrices such as the perceptual ratings (Figure 5A) or 1-
Jaccard distances for binary matrices (Figure 5B-D). 1000 bootstrap samples were used to 
select the optimal number of clusters, according to the gap statistic (1-standard error (SE) rule). 

Quantification and statistical analysis 

Support Vector Machine 

Training the support vector machine (SVM) involves identifying a set of parameters that 
optimize a cost function, where cost 1 and cost 0 correspond to training chemicals labeled as 
“Active” and “Inactive,” respectively.  

𝑆𝑉𝑀 𝐶𝑜𝑠𝑡 =  min
𝜃

𝐶  ∑ 𝑦(𝑖)

𝑚

𝑖=1

𝑐𝑜𝑠𝑡1(𝜃𝑇𝑓(𝑖)) + (1 −  𝑦(𝑖))𝑐𝑜𝑠𝑡0(𝜃𝑇𝑓(𝑖)) +  
1

2
∑ 𝜃𝑗

2

𝑛

𝑗=1

Additionally, a kernel determines the shape of the decision boundary between the active and 
inactive chemicals from the training set. The radial basis function (RBF) or Gaussian kernel 
enables the learning of more complex, non-linear boundaries. It is therefore well suited for 
problems in which the physicochemical properties vary among the biologically active chemicals. 
This kernel computes the similarity for each chemical (𝑥) and a set of landmarks (𝑙), where σ2 is 
a tunable parameter determined by the problem and data. The similarity with respect to these 
landmarks is used to predict new chemicals (“Active” vs. “Inactive”). 



𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐾𝑒𝑟𝑛𝑒𝑙 =  𝑒𝑥𝑝 (−
‖𝑥 − 𝑙(1)‖

2

2𝜎2
) 

Metrics 

The area under the roc curve (AUC) assesses the true positive rate (TPR or sensitivity) as a 
function of the false positive rate (FPR or 1-specificity) while varying the probability threshold (T) 
for a label (Active/Inactive). If the computed probability score (x) is greater than the threshold 
(T), the observation is assigned to the active class. Integrating the curve provides an estimate of 
classifier performance, with the top left corner giving an AUC of 1.0 denoting maximum 
sensitivity to detect all targets or actives in the data without any false positives. The theoretical 
random classifier is reported at AUC = 0.5.  

𝑻𝑷𝑹(𝑻) = ∫ 𝒇𝟏(𝒙) 𝒅𝒙
∞

𝑻

𝑭𝑷𝑹(𝑻) = ∫ 𝒇𝟎(𝒙) 𝒅𝒙
∞

𝑻

Where 𝑻 is a variable threshold and 𝒙 is a probability score 

However, we generated classifiers that are more authentic than theoretical random 
classification, shuffling the chemical feature (or OR) values in the models and statistically 
comparing the mean AUCs across multiple partitions of the data. This controls against optimally 
tuned algorithms predicting well simply because of specific predictor attributes (e.g. range, 
mean, median, and variance) or models that are of a specific size (number of predictors) 
performing well even with shuffled values. Additionally, biological data sets are often small, with 
stimuli or chemicals that—rather than random selection—reflect research biases, possibly 
leading to optimistic validation estimates without the proper controls. We used the AUC with 
classification-based training, such as to predict binary labels (Active/Inactive). For classification-
based training we initially converted the % usage into a binary label (Active/Inactive) using the 
top 10% of the distribution as the cutoff. The basis for a classification-based performance metric 
was the often top-heavy distribution of the % usage. It is for instance possibly not as relevant for 
models to accurately predict chemicals with minimal % usage. Rather, it is preferable for models 
to accurately predict whether a chemical will smell “Sweet” or not. 

To provide further clarity we also reported multiple performance metrics including the correlation 
between the predicted and observed % usage, the root mean squared error (RMSE), and mean 
absolute error (MAE): RMSE: Root mean squared error is the square root of the mean 
difference between predicted values and those observed. It is the average prediction error on
the same scale as the target or outcome being predicted. We supplied this metric because the 
correlation coefficient (R) is not always an accurate representation of model performance and 
classification of exemplar chemicals required an arbitrary cutoff (e.g. 90th percentile). We 
reported the correlation coefficient, R, between the predicted and observed % usage due to its 
previous use with human perceptual data. MAE: Mean absolute error is the mean of the 
absolute difference between predicted and observed. It thus assigns equal weight to all 
prediction errors, whether large or small.  



RMSE = √∑ (𝑦−𝑦̂𝑛
𝑖=1 )2

𝑁

MAE = 1

𝑛
 ∑ |𝑦 −  𝑦̂|𝑛

𝑖=1 ; where, 𝑦̂ = predicted and 𝑦 = observed 

Sensitivity = 𝑇𝑃

𝑇𝑃+𝐹𝑁
; where, TP = True Positive and FN = False Negative 

Specificity = 𝑇𝑁

𝑇𝑁+𝐹𝑃
 ; where, TN = True Negative and FP = False Positive 
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