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SUMMARY

Odor perception in humans is initiated by activation of odorant receptors (ORs) in
the nose. However, the ORs linked to specific olfactory percepts are unknown,
unlike in vision or taste where receptors are linked to perception of different
colors and tastes. The large family of ORs (~400) and multiple receptors activated
by an odorant present serious challenges. Here, we first use machine learning to
screen ~0.5 million compounds for new ligands and identify enriched structural
motifs for ligands of 34 human ORs. We next demonstrate that the activity of
ORs successfully predicts many of the 146 different perceptual qualities of chem-
icals. Although chemical features have been used to model odor percepts, we
show that biologically relevant OR activity is often superior. Interestingly, each
odor percept could be predicted with very few ORs, implying they contribute
more to each olfactory percept. A similar model is observed in Drosophila where
comprehensive OR-neuron data are available.

INTRODUCTION

In humans a single odorant molecule might be described by different perceptual descriptions, influenced
by culture, language, and experience (Majid and Kruspe, 2018). Such complexities suggest that, although
olfactory circuitry is structurally similar across species, language or experience, which is dynamic and
constantly evolving, could be a strong determinant of perceptual experience for humans. But even though
the implication is that odor perception should be highly subjective, studies have shown that genetic vari-
ability in odorant receptors (ORs) contributes to odor perception. Equally, machine learning has accurately
predicted perceptual descriptors of odorants from chemical features, suggesting that physicochemical
properties influence perception (Debnath et al., 2019; Gutiérrez et al., 2018; Keller et al., 2017; Khan
et al., 2007; Licon et al., 2019; Nozaki and Nakamoto, 2016; Sanchez-Lengeling et al., 2019). Moreover,
modeling human odor perception using a large semantic similarity space has shown that accurate predic-
tions of perceptual ratings are possible even when training and prediction are done on completely different
study samples. That is, in aggregate human perceptual descriptors do not appear to be arbitrarily used and
are generalizable (Gutiérrez et al., 2018).

The connection between odorant receptor activity and perception is not as well defined. It is unclear that
the activity of specific ORs confers odor identity. For instance, although the human odorant receptor
OR5ANT1 is highly selective to musk-smelling chemicals, less selective ORs also respond to these chemicals
(Ahmed et al., 2018). In simpler systems like insects, there is some evidence that activation or inhibition of
certain odorant receptors is sufficient to drive behaviors from attraction and aversion to courtship, support-
ing the possibility of an underlying olfactory receptor code for perception (Chihara et al., 2014; Dweck et al., nterdepartmental
2013; Kurtovic et al., 2007; MacWilliam et al., 2018; Stensmyr et al., 2012; Suh et al., 2004). Since these ge- Neuroscience Program,
netic studies are not feasible in humans, it is not yet clear how an olfactory receptor code can be generaliz- LRJ_”'VG”_Z‘W Z;C(fz'ggqmﬁ'%
. . . . . . . . versiae, '

able, or whether it exists. It is, however, becoming increasingly plausible that there is indeed a perceptual
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code in humans. A few key odorant receptors have been reported for perceptual attributes other than musk Cell and Systems Biology,
(Shirasu et al., 2014) such as onion (Noe et al., 2017), general food-related volatiles (Geithe et al., 2017), and University of California, 3401
steroids (Keller et al., 2007). Sequence variation in the OR7D4 receptor has been shown to alter the percep- g\éastzlj”tg;"e' Riverside, CA
tion of androstenone from a “sweaty,” unpleasant smell to one that is mildly “sweet” and pleasant (Keller 2L dlc et

ea ontac

et al., 2007). More recently, the specific amino acid residues of OR5AN1 that are responsible for its high
selectivity to musk-smelling chemicals have also been confirmed (Ahmed et al., 2018). These studies
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were possible owing to three types of information: (1) perceptual responses of humans, (2) the odorant re- https://doi.org/10.1016/].isci.
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et al., 2019). Obtaining this information is not trivial for reasons that include the difficulty of receptor deor-
phanization and that behavioral responses are known for only a fraction of the purported volatile space,
owing to low throughput data collection with human volunteers.

Although some of these limitations are not easily overcome, we reasoned that it would be of interest to
leverage machine learning/artificial intelligence to better understand the ligands of odorant receptors
and clarify the role of odorant receptor activity on human perceptual coding. Most prior machine learning
efforts have focused on modeling odor perception according to the chemical features of odorants.
Although these studies have shown promise and provide evidence for the physicochemical basis of
odor perception, chemical features alone do not offer clear insight into biological coding, as this would
require additional information about the olfactory receptors that odorants activate. Moreover, it is an
extremely challenging task to isolate the olfactory receptors that are relevant to a percept.

Here, we tested if human odorant receptor responses from heterologous assays could be used in lieu of
chemical features for modeling human odor perception and also developed models incorporating both
approaches. We first created machine learning models to predict ligands for 34 human ORs. We could
then use these models to evaluate how OR activity predicted perceptual descriptors. To start, we focused
on hundreds of chemicals that human volunteers previously evaluated (Keller and Vosshall, 2016) and
selected ORs that best predicted perceptual descriptors on a portion of training chemicals. Surprisingly,
the prediction accuracy for models of only a few top scoring ORs compared favorably with large physico-
chemical feature models on 69 test chemicals (Keller et al., 2017), emphasizing that a small percentage of
the OR pool is particularly useful for a given percept. This also suggested that specific subsets of ORs may
be highly tuned to certain perceptual qualities, as implied in a prior network analysis of odorant receptors
and perceptual descriptors (Bak et al., 2019).

RESULTS
Modeling OR Responses Using Chemical Features

Each odorant receptor is activated by a unique set of chemicals, and together the large olfactory receptor
family can detect a vast chemical space. We compiled a database of 84 deorphanized human ORs and 54
allelic variants that have been tested with multiple odorants, altogether adding up to ~170 odorants (Adi-
pietro et al., 2012; Braun et al., 2007; Charlier et al., 2012; Cook et al., 2009; Fujita et al., 2007; Gonzalez-
Kristeller et al., 2015; Jacquier et al., 2006; Jaeger et al., 2013; Keller et al., 2007; Mainland et al., 2014; Ma-
shukova et al., 2006; MaBberg et al., 2015; Matarazzo et al., 2005; McRae et al., 2012; Menashe et al., 2007,
Neuhaus et al., 2006; Saito et al., 2009; Sanz et al., 2005; Schmiedeberg et al., 2007; Shirasu et al., 2014;
Spehr et al., 2003; Topin et al., 2014). In order to generate more comprehensive odor response profiles
of these ORs, we used machine learning to model structure-activity relationships. Among the 138 ORs,
only 34 have a sufficient number of known ligands for machine learning models. For each of the 34 ORs,
predictive chemical features were identified from the known ligands (Figure 1A). We validated the models
by predicting ligands on a subset of odorants that were randomly left out of the training dataset, repeating
this several times. The prediction success was high for the 34 models (average AUC = 0.88; shuffled chem-
ical features average, AUC = 0.51, p < 10739 (Figures 1B, STA, and S1B; Table S1).

The OR-ligand predictive models also gave us an opportunity to identify new ligands for the 34 ORs from a
large chemical library (~450,000). In doing so, we developed a theoretical space that expands the existing
data by a factor of 10 (Figure 1C). Enriched structural features were identifiable among the top predicted
ligands for each OR, illustrating simple 2D features that are presumably important for activating each re-
ceptor (Figure 1D; Table S2).

Modeling Odorant Percepts from OR Responses

A key question in olfaction is how activities of ORs contribute to different perceptual qualities. Specific re-
ceptors contribute to androstenone perception (Keller et al., 2007); however, little is known about odorants
commonly perceived as flavors and fragrances. One possibility is that their perception depends on a model
similar to androstenone and one or few receptors contribute to perception. Alternatively, a model involving
a combinatorial code of a large number of ORs is also possible, particularly since unlike androstenone,
most odorants activate multiple ORs. In order to test these possibilities, we performed a series of analyses
on a large dataset of human odor perception (Keller and Vosshall, 2016). Not only were a large number of
chemicals tested by volunteers in this study, but computational studies have successfully demonstrated
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Figure 1. Features of Human Odorant Receptor Ligands Can Be Learned and New Ligands Predicted

(A) Pipeline for generating probability scores for chemicals with perceptual data. Starting with lists of ligands from
heterologous assay data SVM models learn predictive physicochemical features for a subset of human ORs and OR
variants with >2 ligands (34 total). These trained models in turn predict new chemicals such as those with known
perceptual profiles.

(B) Average performance of 34 OR models using repeated 10-fold cross-validation.

(C) Number of ligands predicted for each of the 34 ORS in ~400,000 eMolecules library after filtering based on optimal
probability score cutoffs and structural similarity to known ligands.

(D) Sample of enriched substructures among the top 10 predicted chemicals for indicated ORs. Only substructures that
were non-trivial and present in at least half of the 10 highest scoring chemical ligands are shown. A comprehensive table
of substructures for other receptors is provided in Table S2.
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structure-percept relationships (Gutiérrez et al., 2018; Keller et al., 2017; Kepple and Koulakov, 2017; San-
chez-Lengeling etal., 2019). However, several odorants used in the behavior study have not been tested for
OR activities. We therefore used the OR-ligand models in the previous section to estimate activity for
chemicals (Data S1), designating similar training and testing chemicals as described before (Keller et al.,
2017) (407 training; 69 testing chemicals) (Figure S2A). Models containing only a few optimal ORs success-
fully predicted the perceptual descriptors for test chemicals (average test AUC = 0.78) (Figure S2B), partic-
ularly when compared with a similar approach based on different physicochemical feature encodings
rather than ORs (Figure S2C). Lastly, because the activity on the 34 ORs was known for some chemicals
in the (Keller and Vosshall, 2016) study, and it was unclear if this might affect the results, we revisited the
analysis with these chemicals removed (326 train; 54 test chemicals). Test performance was not significantly
reduced, compared with the earlier analysis (p = 0.234).

We next turned to another psychophysical study (ATLAS) that evaluated 146 perceptual descriptors for
~150 odorants. As before, most perceptual descriptors were well predicted from a small subset of ORs,
despite the larger, more diverse descriptor pool in this study (Figure 2) (top 50 best performing: 10 ORs:
avg. AUC = 0.84). When we compared the performance of the OR activity with the optimal chemical fea-
tures, 47/146 perceptual descriptors were better predicted using the ORs. In light of this excellent perfor-
mance, we further investigated ORs whose contributions to percept predictions are highest. Interestingly,
only a few select ORs contributed strongly to the prediction of some perceptual descriptors (Figure 3).

In order to expand the scope and utilize activity information from the 104 ORs with few known ligands, we
computed 3D similarity between chemicals in the ATLAS study and the OR ligands (Mahé et al., 2006) and
identified the most likely active compound for each of the 104 ORs (materials and methods). When incor-
porating these additional ORs into the pipeline, predictions improved slightly for some perceptual descrip-
tors. Among the top 50 best predicted descriptors, smaller OR models were significantly better than all 138
ORs on the test data (10 ORs AUC = 0.84; 138 OR AUC = 0.80, t = 2.76, p = 0.007), suggesting that the addi-
tional information was not often useful (Figure S3A). These 138 ORs still represent just a third of the human
OR repertoire, and we anticipate our approach will help identify even better sets of ORs that are tuned to
specific perceptual qualities as more human ORs get deorphanized.

Modeling Odorant Percepts from OR Responses and Chemical Features

Because many previous efforts have focused on predicting odor perception with chemical features (Keller
et al., 2017), we tested if adding ORs could improve the predictions. We selected OR6P1, an OR ranked
highly for “Cinnamon,” as a test case and added it to 34 optimal chemical features. Interestingly, we found
a notable increase in predictive success on test chemicals (mean AUC chemical features: 0.77, mean AUC
chemical features + OR6P1 = 0.81) (Figure S4A).

To determine if ORs could improve predictive models in an unbiased manner across the 146 perceptual
descriptors, we combined the odor response information of the 138 ORs and the chemical features, select-
ing a small subset of important ORs and chemical features to create machine learning models (Figure 4A).
We found that removing the top-ranked ORs and replacing them with those of lesser importance negatively
impacted predictions for some descriptors (Figure 4B). If we permuted the activities of the optimal or top-
ranked ORs for a given descriptor, the overall test performance significantly dropped (p < 1077), with 82%
of descriptors better predicted with non-permuted ORs (Table S3). Collectively, these results indicate that
specific ORs appear to contribute more than others and perceptual predictions are generally improved by
including ORs (Table S4)

In order to visualize relationships among the perceptual descriptors based on predictive ORs and chemical
features, we next performed a cluster analysis. When examining the clustering based only on perceptual
ratings of chemicals (Figure 5A), we found the top five predictive ORs grouped the perceptual descriptors
similarly (Figure 5B). Notably, randomly selecting five ORs failed to produce any meaningful groups or clus-
ters of perceptual descriptors (Figure 5C). Combining the most predictive ORs and chemical features
improved the clustering of perceptual descriptors (Figure 5D). Overall, the descriptors that were best clus-
tered in Figure 5A (silhouette width > 0.3) matched completely or partially with Figures 5B and 5D, with the
exception of “Fishy” and “Kippery.” This indicates that relationships among perceptual descriptors in the
ATLAS training set are somewhat preserved in OR activity or chemical feature models, even when only a
small amount of chemical or information is included in each model.
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Figure 2. OR Activity Can Model Diverse Olfactory Percepts in Human Studies

Performance of RBF SVM models trained with 10 ORs for ATLAS study data. The top 10% usage chemicals are predicted
for all 146 perceptual descriptors in the study. Successful classification of these chemicals is reported as the mean Area
Under the Curve (AUC) over repeated 10-fold cross-validation (10-fold repeated 5 times; 50 folds total). To limit biased
validation, the procedure was run twice, setting aside different test chemicals, determining important OR subsets to
predict the descriptors with these chemicals excluded, then ensuring that the cross-validated AUC comprised 60%
completely hidden chemicals. The variability in the plot is the standard deviation over these two distinct runs. High
variability may arise as the top 10% usage is computed from the training data. SVM, Support Vector Machine; RBF, Radial
Basis Function; additional algorithm details in methods.

iScience 23, 101361, August 21, 2020 5




¢? CellPress

OPEN ACCESS

CHALKY
DRY.POWDERY | .

METALLIC
KIPPERY.SMOKED.FISH

FISHY'
SEMINAL.SPERM.LIKE
CAT.URINE

URINE

AMMONIA

SHARP.PUNGENTACID
GARLIC.ONION
Sul

LFIDIC
HOUSEHOLD.GAS
BURNT.RUBBER

LIII .

BURNT.PAPER
STALE.TOBACCO.SMOKE
NT.CANI
EGGY.FRESH.EGGS |l
COOKED.VEGETABLES
SICKENING
CADAVEROUS DEAD.ANIMAL
PUTRID.FOUL.DECAYED
SEWER
BLOOD.RAW.MEAT
SAUERKRAUT

0
=
O
=
&3

FRIED.CHICKEN
OILY.FATTY

STALE

CORK
WET.PAPER

CARDBOARD

NEW.RUBBER
CREOSOTE

LEATHER

SOAPY

BEERY

SOUR.VINEGAR
FERMENTED.ROTTEN.FRUIT
SOURMILK

POPCORN
BUTTERY.FRESH.BUTTER
BAKERY.FRESH.BREAD
FECAL LIKE.MANURE
ANIMAL

SWEATY

RANCID

DIRTY.LINEN
WETWOOL.WET.DOG
MUSTY.EARTHY.MOLDY

CELERY
VARNISH
PAINT
KEROSENE
TURPENTINE.PINE.OIL
GASOLINE.SOLVENT
CHEMICAL

MEDICINAL
DISINFECTANT.CARBOLIC
ING.FLUID
ETHERISH ANAESTHETI?

NU
FRESH.TOBACCO.SMOKE
RAISINS

C MEL
MAPLE.SYRUP
VANILLA
CHOCOLATE
EUCALIPTUS
MOTHBALLS
BARK.BIRCH.BARK
CEDARWOOD
WOODY.RESINOUS
'OAK.WOOD.COGNAC
CHEESY
ANISE.LICORICE
CARAWAY
MUSHROD(I)IM

RAW.POTAT(
RAW.CUCUMBER
CRUSHED.GRASS
CRUSHED.WEEDS
FRESH.GREEN.VEGETABLES
GREEN.PEPPER
MEATY.COOKED.GOOD
.PEPPER
SEASONING.FOR MEAT
.COOLING
MINTY.PEPPERMINT
LEAVES

HERBAL.GREEN.CUT.GRASS
GERANIUM.LEAVES

LAUREL LEAVES
CINNAMON

or—

R

i

I‘I.”

: Ii"'

PINEAPPLE

FRUITY.OTHER. THAN.CITRUS
GRAPEFRUIT

FRUITY.CITRUS

i

Al

I,.'J.
e

i L

||I:". .'I:I
. I L 4

f
I#1

|
i's

III Ihlllll.h

F
i

t

[ B

'I'Iu;u' v 11
L

et
/
i

llll |

-y |';|'I-|'."

I.

£y ]

OR2J3.1228V.M2611
OR1A1

‘OR2J3.R226Q.1228V.M2611

6 iScience 23, 101361, August 21, 2020

- =
-
- [ -
T30 0:3 L2328 08Y0860z2%z-8¢805%5
SN 9SNN8 oreencr2888Ixy8
xox re 0520038 ¢% Ex5sB88&c P
6685080663 °2g2°000090480228858°0g5
N PR < - 25 o S
j:4 § 3 it 2o o
° zs > g 50 o
O g < OE;-
< - @©
e o 22
x E 25
S T <]
< = 0
~ o ©
el )
S o <
Q
o
6 &
o

Importance
100

75
50
25

iScience



iScience

Figure 3. Contribution of ORs to Perceptual Models

Importance of individual ORs for machine learning models of each of the 146 ATLAS perceptual descriptors. The heatmap
is generated by fitting models for each OR separately and scaling relative to maximum AUC (100). Importance is shown
with the most important ORs in blue. Labels for the perceptual descriptors (yaxis) and ORs (xaxis) are arranged relative to
similar importance values.

Modeling with In Vivo OR Response Data from Drosophila

One of the interesting observations we have is that only a few ORs are picked and are sufficient to create
predictive models of odor perception. However, the perceptual descriptor—to—OR mapping we analyzed
here represents data from only ~20% of the human OR repertoire and one possibility is that when more ORs
are available to pick from, a larger number will be selected computationally as optimal. In order to under-
stand the contribution of specific olfactory receptors to behavior in a system where a large fraction of
odorant receptors have been deorphanized, we turned to the Drosophila melanogaster model system.
In vivo odor-response spectra are known for several odorants for the majority of odorant receptors (Ors)
and olfactory receptor neurons (ORNs) in the adults, as well as the behavioral valence (attraction versus
aversion) to these odorants (MacWilliam et al., 2018; Hallem and Carlson, 2006).

We adapted our approach to predict behavioral valence of flies (Figure 6A), and we could do so with sig-
nificant success using a small number of important chemical features and electrophysiologically measured
responses from sensory neurons. Similar to what we observed with human ORs, a subset of the in vivo
Drosophila Or activities was favored for odor valence predictions, beyond collections of numerous chem-
ical features (Figure 6B). Evaluating the best valence predictors for test chemicals from a combined set of
Or/ORN activities and chemical features indicated that the Or/ORNs significantly contributed to odor
valence predictions, consistent with the in vitro human data (R? = 0.66; Shuffle ORs + Chemical Features:
0.51, p = 0.007) (Figure 6C). These results also suggested that a small number of Drosophila Or/ORN ac-
tivities is highly predictive on the same set of test chemicals. Interestingly, additional Ors/ORNs failed
to improve predictions (Or/ORN subset: R? = 0.53; all other ORs: R? = 0.40, p =0.015) (Table S5). Although
this type of analysis remains to be done in humans, the results from flies suggest that even when a more
comprehensive receptor or neuron array is added, only a small subset of the available receptors appears
information rich as far as behavioral predictions are concerned (Figure 6D).

DISCUSSION

Although previous machine learning pipelines have found some success using chemical features, selecting
the optimal feature sets for predictions of perception is not well defined. We found that human odorant
responses from heterologous assays could be used with comparable and sometimes better predictive suc-
cess. In part, the result is anticipated by the fact that each OR is presumably selective to very specific phys-
icochemical features themselves. Both the human perceptual descriptor and fly valence predictions sug-
gest that a substantive portion of odor identity arises early in the processing stream, at the olfactory
receptors, based on high predictive success rates (~76%-91%). It is likely that the remaining portion de-
pends on experience-dependent modulation, supporting a downstream model with reliance on distrib-
uted neuronal networks for human perceptual coding. Our findings support a “primacy model” that holds
that a small number of distinct and overlapping olfactory receptor activity profiles encode odor identity
(Wilson et al., 2017). Although increasing concentration activates more receptors, the highest sensitivity re-
ceptors start responding first as an animal approaches an odor source and presumably continue to convey
the identity. Such a model is consistent with the findings reported here and by others (Weiss et al., 2012)
because it appears that only a few ORs contribute to a perceptual descriptor and it is therefore also trac-
table to predict how a chemical smells from specific physicochemical properties.

Nevertheless, it is unclear how information arising early in the olfactory pathway is preserved along the
complex circuits and can in fact lead to generalizable perceptual features. The spatial organization of
the olfactory receptor neurons and glomeruli are for one not well preserved in the piriform cortex. Unlike
the retinotopic and tonotopic patterning observed in the visual and auditory cortices, representing spatio-
temporal properties of visual and auditory stimuli as they are processed at sensory neurons, piriform activ-
ity appears randomly distributed, without a clear mapping of physicochemical features (Stettler and Axel,
2009). A combination of computational models and calcium imaging has, however, shown piriform circuits,
although they are qualitatively different, can support perceptual invariance amid changes in concentration
and across different odorants (Roland et al., 2017; Schaffer et al., 2018). Similarly, neural tracing
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Figure 4. Few Odorant Receptors Are Needed to Predict Perceptual Descriptors

(A) Schematic of the approach to selecting a small number of important chemical features and ORs, followed by model-
fitting. Two methods, including replacing top-ranking ORs with those of lesser importance and permuting (shuffling) the
OR activities, help identify perceptual descriptors where ORs contribute relative to chemical features. To standardize the
analysis, the training and validation are as outlined in Figure 2.

(B) Combined chemical feature-OR models predict the top 10% usage of ATLAS perceptual descriptors. The (*) symbol
signifies a notable decrease in performance occurred if the ORs were replaced with ones of lesser importance (one-tailed
independent samples t test, p < 0.05). For the comparison with permuted or shuffled OR activities, other metrics, and
benchmarking relative to chemical features, see Tables S3 and S4.

experiments in mice support that, although olfactory circuitry differs from other sensory modalities, odor-
related information is represented along equally structured neuroanatomical pathways, as in the piriform
output projecting to the orbitofrontal cortex (Chen et al., 2014).

One possibility is that only one or few receptors of the many that detect an odorant actually convey
percept. The evolutionary landscape should accordingly be coupled to biologically relevant or frequently
encountered features of the chemical space, as has been implied by characterizations of receptors highly
tuned for musk and onion-related compounds (Ahmed et al., 2018; Noe et al., 2017), in addition to the
highly conserved trace amine-associated receptors (TAARs) and theirimportance in modulating behavioral
output in mice (Dewan et al., 2018). In our analyses, the OR specialized for musk was not a top candidate for
musk predictions but contributed strongly to predictions of “sweaty.” Since methods for selecting and
ranking ORs depend on characteristics of the available data, interpretations should be cautious, acknowl-
edging that the human OR data are sparse and the participants and chemical sets from the ATLAS and
Keller studies are not exhaustive. Yet from these same considerations the positive results achieved are
unexpected, especially when compared with predictions of odor perception using chemical features.

Odorant receptors (ORs) are also expressed in non-olfactory tissues. Ligands for certain ORs have been
shown to modify the function and proliferation of multiple cell types. Although the precise mechanisms
are not well defined, ORs represent promising therapeutic targets. Ligands for ORs such as OR51E1,
OR10G7, and OR1D2, which were included in this study, are candidate treatments for conditions ranging
from prostate cancer and chronic obstructive pulmonary disease (COPD) to atopic dermatitis (Kalbe et al.,
2016; MaBberg et al., 2016; Tham et al., 2019). We therefore anticipate that the predictions and the analysis
of known and candidate OR ligands from this study will also have value in non-olfactory studies.
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Figure 5. A Few Key ORs or Chemical Features Sensibly Cluster the Perceptual Descriptors
(A) Dendrogram representation of the Euclidean distances among perceptual descriptors based on overlap of perceptual response data (% Usage) from

chemicals in the ATLAS study.
(B) Dendrogram from the top five ORs picked per perceptual descriptor.

(C) Dendrogram created from five randomly chosen ORs per perceptual descriptor.
(D) Dendrogram from the five best overall predictors including OR and chemical features per perceptual descriptor. Clustering is hierarchical and based on

Euclidean distance (A) or the Jaccard distance (B-D). Cluster number (colored branches) inferred from gap statistic across bootstrap samples.

Limitations of the Study
The computational approach presented in the study is restricted by training sets from previously deorphan-

ized human odorant receptors (OR) determined by in vitro assays. Only a small fraction of the human OR
family has been deorphanized in vitro, thereby limiting the identification of the optimally predictive ORs
in this study. Moreover, the number of chemicals with well-defined perceptual profiles determined behav-
iorally is small relative to the space of chemicals that are likely to have odorant properties. Since the

iScience 23, 101361, August 21, 2020 9



¢? CellPress

OPEN ACCESS

iScience

Val " Combine . Best Combined Set Evaluate on Test
alence o ORs and Chemical for Odor Valence i
od t o Chemicals
_ orants Features Prediction
" Permute the ORs, leaving chemical
;_‘*@5 ‘;» . + - - 5 ‘ _ features intact (Figure 6C)
= Behavior In vivo OR Chemical Compare best OR to all
activity to features of (Table S5)
odorants odorants
Cc
B
0.6
AATSC4m
AATSC2c
sict
Oré7c 04
Or22a E:
ic1
GATS1se 0.2
ab1C
0 25 50 75 100
Selection Rate (%)
0.0
Chem Features + Shuffle ORs
ORs
D

Olfactory Response
Neurons (ORNs)
expressing cognate

ORs

Glomeruli

Higher Order Processing
piriform cortex (mammals)
lateral horn, mushroom body
(insects)

oF ?
25
n<

Figure 6. Few Odorant Receptor Activities in Drosophila Are Highly Predictive of Valence

(A) Schematic for applying machine learning to identify optimal predictors of odor valence in Drosophila from in vivo

neural activity and chemical features. The best

combined model is evaluated on test chemicals. OR contributions to

Drosophila odor valence are assessed by shuffling the OR activities in the combined model as well as comparing the best

OR versus all (Table S5).

(B) Selecting chemical features and in vivo OR activities that optimally predict odor valence. Recursive feature elimination

(RFE) is run twice to accomplish this. Selection in the top 10 over these runs is plotted as a percent. Additional details on

selecting optimal models in methods.

(C) The best combined model is evaluated on test chemicals, with and without the OR activities shuffled. Error bars are the SEM.
(D) Generic model displaying a many-to-one mapping between ORNs and glomeruli. Although there are >1 responding

units (ORs), information that confers perceptua
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computational approach we outlined depends on the size and complexity of OR and perceptual datasets,
our results should be interpreted alongside these limitations.
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Keller 2016 Study 1 Select important ORs
Data from 34 for predicting
% Perceptual ~ perceptual descriptor

2. Train several radial basis
function support
vector machines (RBF SVM)

3. Computational validation
using ROC curves for 69 test
chemicals and 20 perceptual
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Figure S2. Human OR activity or chemical features predict perceptual data from Keller 2016 study
participants. (Related to Figure 2). A) Pipeline for making predictive models for odor perception from ORs for
the Keller 2016 perceptual data. Classification cutoffs for the 69 test chemicals are determined from 407
training chemicals. B) Classifying the top 10% of usage for 69 hidden test set chemicals; performance is
reported as the area under the ROC curve (AUC). Prediction of the % usage is an aggregate of 5 SVM
models, each sampling 5 ORs from the top 10. The OR ranking is determined by recursive feature elimination
over cross validation (10-fold repeated 10 times) with 407 training chemicals. C) Prediction of the 69 test
chemicals with models trained on various chemical feature representations. Left, physicochemical features are
computed for optimized 3D structures and 5 SVM models sample 35 top ranked chemicals features. Plotted
performance is the aggregated prediction. Middle, predictions from an SVM model trained on Morgan circular
fingerprints. During training, low variance bit positions are dropped to improve the fit. Right, predictions from an
SVM model trained on topological torsion fingerprints, dropping low variance bit positions during training. All
plots display the standard deviation over 100 bootstrap samples of the 69 test chemicals.
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Figure S3. Small subsets of ORs optimize predictions of most perceptual descriptors. (Related to Figure 2). A)
Comparison between models fit with 10 or 138 ORs on ATLAS study data. Black colored dots show the performance
using all ORs while blue dots show the performance using 10 ORs.
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Figure S4. Adding an OR to a chemical feature model improves odor perception predictions.
(Related to Figure 4). A) An OR (OR6P1) that was selected for predicting the % usage of the
descriptor “Cinnamon” in the ATLAS study is validated with and without physicochemical features



Table S1
OR

OR10G3
OR10G7

OR11H7P

OR1A2

OR1C1

OR1D2

OR1G1

OR2B11

OR2G2

OR2J2

OR2J3

OR2M4

OR2T10

OR2T34

OR2W1

OR4Q3

OR51E1

OR51L1

OR52D1

OR5AC2

OR5K1

ORS5P3
OR10A6.V140G.L287P
OR2B11.V198M
OR2B11.V198M.T2931.D300G
OR2C1.C149W
OR2C1.G16S.C149W.C169Y.R229H
OR2J2.T111A
OR2J2.Y74H.T111A.V146A.T218A
OR2J3.1228V.M2611
OR2J3.1228V
OR2J3.R226Q.1228V.M2611
OR1A1

OR2C1

OR10G3

OR10G7

OR11H7P

OR1A2

OR1C1

OR1D2

OR1G1

OR2B11

OR2G2

OR2J2

Metric
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
AUC
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens

Sens

Value
0.9764246
0.9571523
0.8438965
0.8741326
0.7959467
0.9958090
0.7593999
0.9649722
0.9473866
0.7880475
0.8525910
0.8861412
0.9438511
0.8784901
0.7741072
0.9717862
0.9142729
0.8378983
0.7448325
0.9059954
0.7841736
0.8616590
0.8566833
0.9949333
0.9946667
0.9331333
0.8975333
0.8400286
0.8713667
0.8373600
0.8386250
0.8731667
0.7773069
0.9636074
0.8283333
0.9080000
0.7196667
0.8520000
0.7533333
0.9516667
0.6909206
0.9042286
0.9150000
0.7081444



OR2J3
OR2M4

OR2T10

OR2T34

OR2W1

OR4Q3

OR51E1

OR51L1

OR52D1

OR5AC2

OR5K1

OR5P3
OR10A6.V140G.L287P
OR2B11.V198M
OR2B11.V198M.T2931.D300G
OR2C1.C149W
OR2C1.G16S.C149W.C169Y.R229H
OR2J2.T111A
OR2J2.Y74H.T111A.V146A.T218A
OR2J3.1228V.M2611
OR2J3.1228V
OR2J3.R226Q.1228V.M2611
OR1A1

OR2C1

OR10G3

OR10G7

OR11H7P

OR1A2

OR1C1

OR1D2

OR1G1

OR2B11

OR2G2

OR2J2

OR2J3

OR2M4

OR2T10

OR2T34

OR2W1

OR4Q3

OR51E1

OR51L1

OR52D1

OR5AC2

OR5K1

Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Sens
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec
Spec

0.7126667
0.8422222
0.9150000
0.7876190
0.7489190
0.9450000
0.7851667
0.7000000
0.7425333
0.8422222
0.6816667
0.7321667
0.7173333
0.8626667
0.8493333
0.6066667
0.6680000
0.7034286
0.7613333
0.6864000
0.6120000
0.6893333
0.6514000
0.6520000
0.8646471
0.9032486
0.7610861
0.7966139
0.7823186
0.9231667
0.7163778
0.8521181
0.8702770
0.7565145
0.8094917
0.7900806
0.8730319
0.7994472
0.6918247
0.8771373
0.8272121
0.7352230
0.6525470
0.8433472
0.7919028



OR5P3 Spec 0.8127833

OR10A6.V140G.L287P Spec 0.7745800
OR2B11.V198M Spec 0.8317600
OR2B11.V198M.T2931.D300G Spec 0.8378600
OR2(C1.C149W Spec 0.8425800
OR2C1.G16S.C149W.C169Y.R229H Spec 0.7978600
OR2J2.T111A Spec 0.8063800
OR2J2.Y74H.T111A.V146A.T218A  Spec 0.7627000
OR2J3.1228V.M2611 Spec 0.7053000
OR2]3.1228V Spec 0.8181000
OR2J3.R226Q.1228V.M2611 Spec 0.7882000
OR1A1 Spec 0.7249889
OR2C1 Spec 0.8959733

Table $1. Summary of ROC analysis for models predicting activity on
34 human ORs. (Related to Figure 1)

Averages for the prediction performance of Figure 1 models over valida-
tion, including the sensitivity (true positive rate), specificity (false positive
rate = 1-speciifcity), and overall AUC.
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IDs

608374

631771

486255

479671

540140

481045

516498

478561

478221

OR
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OR1G1

OR2B11
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OR51L1



Image

\/®

/\ ° N———p

IDs

477085

494660

479790

631730

535081

483236

509362

481575

492074

OR

OR52D1

OR5KA1

OR5P3

OR10A6.V140G.L287P

OR2B11.V198M

OR2B11.V198M.T2931.D300G

OR2C1.C149W

OR2C1.G16S.C149W.C169Y.R229H
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Image IDs OR

591602 OR2J2.Y74H.T111A.V146A.T218A

490819 OR2J3.1228V

596094 OR2J3.1228V.M261I

474648 OR2J3.R226Q.1228V.M261I

Table S2. Enriched substructures among predicted ligands for 34
human ORs (Related to Figure 1). Additional enriched cores/substruc-
tures for the labeled ORs, highlighting the core on an exemplar chemical
from the eMolecules predictions (related to Figure 1D). The ID is the
eMolecules identifier for the representative chemical, which is among the
top 10 predictions for the labeled OR. Bonds and atoms are colored black.
The enriched substructure is in red.



Perc.Descriptor AUC.Actual.ORs

ALCOHOLIC 0.68
ALMOND 0.94
AMMONIA 0.82
ANIMAL 0.62
ANISE LICORICE 0.78
APPLE FRUIT 0.56
AROMATIC 0.71
BAKERY FRESH BREAD 0.57
BANANA 0.85
BARK BIRCH BARK 0.57
BEANY 0.67
BEERY 0.61
BITTER 0.76
BLACK PEPPER 0.69
BLOOD RAW MEAT 0.75
BURNT CANDLE 0.64
BURNT MILK 0.61
BURNT PAPER 0.86
BURNT RUBBER 0.76
BURNT SMOKY 0.84
BUTTERY FRESH BUTTER 0.68
CADAVEROUS DEAD ANIMAL 0.92
CAMPHOR 0.63
CANTALOUPE HONEY DEW MELON 0.79
CARAMEL 0.89
CARAWAY 0.82
CARDBOARD 0.63
CAT URINE 0.55
CEDARWOOD 0.78
CELERY 0.61
CHALKY 0.60
CHEESY 0.79
CHEMICAL 0.80
CHERRY BERRY 0.82
CHOCOLATE 0.65
CINNAMON 0.86
CLEANING FLUID 0.76
CLOVE 0.88
COCONUT 0.61
COFFEE 0.74
COLOGNE 0.82
COOKED VEGETABLES 0.79
COOL COOLING 0.77
CORK 0.70
CREOSOTE 0.80
CRUSHED GRASS 0.69
CRUSHED WEEDS 0.74
DILL 0.57
DIRTY LINEN 0.73
DISINFECTANT CARBOLIC 0.79
DRY POWDERY 0.64
EGGY FRESH EGGS 0.59
ETHERISH ANAESTHETIC 0.96
EUCALIPTUS 0.69
FECAL LIKE MANURE 0.70

FERMENTED ROTTEN FRUIT 0.83

AUC.Perm.ORs
0.62
0.93
0.76
0.62
0.63
0.61
0.61
0.62
0.64
0.63
0.67
0.60
0.61
0.63
0.57
0.59
0.60
0.67
0.64
0.69
0.76
0.83
0.57
0.73
0.81
0.57
0.60
0.62
0.66
0.70
0.59
0.58
0.72
0.65
0.79
0.78
0.75
0.60
0.59
0.57
0.74
0.60
0.64
0.61
0.81
0.62
0.61
0.73
0.61
0.90
0.63
0.56
0.90
0.57
0.77

0.64

P (Actual v. Perm)
6.624121e-03
2.487726e-01
7.437701e-02
4.653889e-01
9.318801e-03
6.724894e-01
7.262549e-02
9.059523e-01
9.809746e-03
8.966433e-01
5.570947e-01
3.367454e-01
4.906788e-03
3.041965e-02
3.027819e-04
1.217738e-01
4.026164e-01
3.743915e-03
1.367015e-03
1.459191e-02
9.155957e-01
1.386069e-04
4.832609e-02
3.018547e-02
8.795053e-04
9.910237e-07
1.545006e-01
9.862892e-01
7.725876e-02
9.874586e-01
4.697072e-01
5.814025e-04
5.454888e-04
1.870925e-03
9.961704e-01
3.247772e-02
2.907639e-01
1.088595e-04
2.942493e-01
1.325299e-04
4.557177e-02
5.312181e-04
5.920177e-03
5.878820e-02
6.339020e-01
1.174218e-02
4.921776e-03
9.992697e-01
7.730652e-04
9.958961e-01
4.372117e-01
7.667215e-02
2.183660e-03
1.904247e-03
9.765591e-01

1.552895e-04

AUC.Random.ORs
0.72
0.91
0.81
0.70
0.76
0.66
0.73
0.58
0.87
0.59
0.61
0.59
0.72
0.61
0.69
0.62
0.62
0.84
0.68
0.81
0.66
0.92
0.70
0.82
0.86
0.82
0.65
0.59
0.76
0.66
0.58
0.85
0.76
0.82
0.74
0.73
0.81
0.85
0.60
0.76
0.75
0.79
0.80
0.61
0.83
0.64
0.66
0.59
0.67
0.89
0.62
0.59
0.93
0.76
0.71

0.73

P (Actual v. Random)
0.723178607
0.034877069
0.411008447
0.964195584
0.361514077
0.800616700
0.689074811
0.719289158
0.708005236
0.615803346
0.156366133
0.288927182
0.274457885
0.060708625
0.131544847
0.299863633
0.554476157
0.304135032
0.006654245
0.130453646
0.366338507
0.368750235
0.945089522
0.767234025
0.175338953
0.467041687
0.643885830
0.887941827
0.392239690
0.861059602
0.362309551
0.969998448
0.187394329
0.400904651
0.953634802
0.003079151
0.921645505
0.264212595
0.373755189
0.689137219
0.034619751
0.539445780
0.795019055
0.022596784
0.893222941
0.143682506
0.013566817
0.781535873
0.044159634
0.998115114
0.342789968
0.461463704
0.027905360
0.981148786
0.546529155

0.068225780



Perc.Descriptor AUC.Actual.ORs
FISHY 0.76
FLORAL 0.75
FRAGRANT 0.67
FRESH GREEN VEGETABLES 0.74
FRESH TOBACCO SMOKE 0.63
FRIED CHICKEN 0.64
FRUITY CITRUS 0.77
FRUITY OTHER THAN CITRUS 0.75
GARLIC ONION 0.97
GASOLINE SOLVENT 0.92
GERANIUM LEAVES 0.62
GRAINY AS GRAIN 0.65
GRAPE JUICE 0.60
GRAPEFRUIT 0.73
HAY 0.63
HEAVY 0.75
HERBAL GREEN CUT GRASS 0.66
HONEY 0.86
HOUSEHOLD GAS 0.91
INCENSE 0.74
KEROSENE 0.94
KIPPERY SMOKED FISH 0.57
LAUREL LEAVES 0.63
LAVENDER 0.73
LEATHER 0.68
LEMON 0.87
LIGHT 0.77
MALTY 0.66
MAPLE SYRUP 0.81
MEATY COOKED GOOD 0.68
MEDICINAL 0.81
METALLIC 0.62
MINTY PEPPERMINT 0.75
MOTHBALLS 0.76
MOUSE 0.85
MUSHROOM 0.67
MUSK 0.64
MUSTY EARTHY MOLDY 0.54
NAIL POLISH REMOVER 0.93
NEW RUBBER 0.69
NUTTY WALNUT ETC 0.79
OAK WOOD COGNAC 0.71
OILY FATTY 0.75
ORANGE 0.70
PAINT 0.91
PEACH FRUIT 0.79
PEANUT BUTTER 0.83
PEAR 0.86
PERFUMERY 0.82
PINEAPPLE 0.83
POPCORN 0.59
PUTRID FOUL DECAYED 0.87
RAISINS 0.57
RANCID 0.80
RAW CUCUMBER 0.84
RAW POTATO 0.63

ROPE 0.60

AUC.Perm.ORs
0.58
0.81
0.54
0.61
0.57
0.62
0.74
0.54
0.63
0.85
0.54
0.68
0.63
0.69
0.58
0.52
0.57
0.72
0.81
0.75
0.76
0.59
0.56
0.71
0.61
0.87
0.73
0.70
0.62
0.55
0.70
0.59
0.59
0.75
0.69
0.61
0.61
0.59
0.93
0.60
0.80
0.60
0.68
0.63
0.79
0.58
0.78
0.80
0.78
0.83
0.68
0.80
0.59
0.69
0.61
0.56

0.58

P (Actual v. Perm)
4.824185e-04
8.525523e-01
5.315367e-02
8.271564e-04
5.314839e-02
2.208670e-01
1.227108e-01
2.031716e-04
2.531550e-05
2.795957e-03
8.120492e-02
7.357469e-01
8.148000e-01
6.902408e-02
2.191222e-01
8.808084e-03
2.178443e-02
6.441975e-03
1.735901e-05
5.484723e-01
1.013985e-05
7.332818e-01
8.699926e-02
2.760870e-01
1.345040e-02
2.979404e-01
1.434928e-01
7.085725e-01
6.505141e-04
1.619274e-03
2.199711e-02
3.428863e-01
4.713820e-04
4.015789e-01
6.052005e-05
5.507031e-02
2.600264e-01
8.496130e-01
4.717329e-01
1.422405e-02
6.001993e-01
5.334112e-02
5.442055e-02
4.857428e-02
8.734811e-05
5.484548e-05
1.108906e-01
1.820044e-02
1.393034e-02
4.383805e-01
9.254312e-01
2.422996e-03
7.519006e-01
1.046710e-02
5.236949e-04
8.758358e-03

3.075816e-01

AUC.Random.ORs
0.77
0.76
0.57
0.72
0.64
0.64
0.77
0.76
0.96
0.90
0.65
0.61
0.58
0.76
0.64
0.70
0.61
0.84
0.93
0.77
0.93
0.58
0.67
0.74
0.79
0.85
0.85
0.65
0.78
0.69
0.72
0.63
0.67
0.80
0.74
0.68
0.65
0.56
0.87
0.69
0.79
0.70
0.78
0.70
0.91
0.76
0.86
0.84
0.81
0.82
0.65
0.92
0.60
0.80
0.76
0.66

0.61

P (Actual v. Random)
0.584032635
0.571314301
0.002180182
0.251533345
0.612188603
0.503480983
0.415384866
0.545991914
0.231282678
0.129023122
0.748064731
0.241183239
0.249827462
0.832562571
0.635096113
0.180959523
0.135613486
0.105893090
0.730659466
0.716919634
0.327626884
0.577061232
0.838973837
0.619993047
0.992360918
0.136759987
0.917788531
0.398116520
0.196660862
0.532624907
0.094122938
0.625422059
0.005963238
0.939709284
0.001296670
0.612807182
0.641149881
0.726368591
0.008637722
0.488580423
0.541252697
0.449304705
0.703181219
0.487048230
0.461934408
0.266667783
0.826427173
0.381644634
0.429208350
0.400655067
0.890432139
0.971155085
0.789009023
0.573930524
0.027564181
0.714216712

0.668058005



Perc.Descriptor AUC Actual.ORs AUC.Perm.ORs P (Actual v. Perm) AUC.Random.ORs P (Actual v. Random)

ROSE 0.67 0.59 1.072022e-01 0.65 0.330191386
SAUERKRAUT 0.86 0.88 8.345338e-01 0.83 0.187159140
SEASONING FOR MEAT 0.61 0.58 1.750854e-01 0.59 0.258163703
SEMINAL SPERM LIKE 0.68 0.59 2.868288e-02 0.75 0.911515570
SEWER 0.97 0.85 1.684756e-03 0.97 0.404678453
SHARP PUNGENT ACID 0.89 0.84 7.879184e-03 0.87 0.285085817
SICKENING 0.97 0.86 9.330160e-04 0.96 0.173703843
SOAPY 0.81 0.78 2.807849e-01 0.77 0.176364339
SOOTY 0.64 0.57 6.044304e-02 0.68 0.830745272
SOuPY 0.65 0.61 2.153393e-01 0.57 0.201392365
SOUR MILK 0.98 0.88 1.311887e-03 0.97 0.395627632
SOUR VINEGAR 0.86 0.78 2.440581e-02 0.88 0.781798703
SPICY 0.91 0.73 1.473271e-04 0.85 0.044485570
STALE 0.81 0.71 3.902490e-03 0.80 0.384288452
STALE TOBACCO SMOKE 0.68 0.65 1.798344e-01 0.71 0.741998826
STRAWBERRY 0.88 0.56 1.729606e-04 0.85 0.273525575
SULFIDIC 0.94 0.75 8.166529e-04 0.93 0.298005800
SWEATY 0.68 0.61 6.619308e-02 0.70 0.661394584
SWEET 0.73 0.65 3.036319e-02 0.72 0.397528666
TAR 0.67 0.66 3.736882e-01 0.66 0.451093414
TEA LEAVES 0.61 0.62 5.105959e-01 0.57 0.113352387
TURPENTINE PINE OIL 0.83 0.72 3.150109e-04 0.80 0.237355229
URINE 0.74 0.62 1.306574e-03 0.76 0.694702395
VANILLA 0.75 0.72 9.793389e-02 0.69 0.180342803
VARNISH 0.97 0.83 6.922921e-04 0.94 0.017280947
VIOLETS 0.71 0.74 7.678331e-01 0.71 0.449119936
WARM 0.72 0.57 1.437458e-03 0.70 0.319931645
WET PAPER 0.60 0.69 9.795118e-01 0.62 0.673009454
WET WOOL WET DOG 0.78 0.59 1.104795e-03 0.74 0.098478406
WOODY RESINOUS 0.65 0.60 1.157541e-01 0.68 0.734801220
YEASTY 0.86 0.84 2.672057e-01 0.89 0.690830166

Table S3. Detailed analysis of odor perception predictions using
chemical features and ORs (Related to Figure 4). Combined OR and
chemical feature model performance using the ATLAS study data. In one
condition, ORs are replaced with those of lesser importance (“Random”). In
the second condition, OR activities for the best combined set are permuted
(shuffled). The chemical features are intact in both conditions. Training and
testing chemicals are equivalent.



Best Predicted

Top 5
Top 10
Top 20
Top 25
Top 50

Top 5
Top 10
Top 20
Top 25

Top 50

Metric
AUC
AUC
AUC
AUC
AUC

A X XU A0 X

Chem Features

0.9502134
0.9210808
0.8969860
0.8822129
0.8314386
0.6559822
0.5977552
0.5818210
0.5734141

0.5271159

Chem Features + ORs

0.9708750
0.9565362
0.9253587
0.9117761
0.8558157
0.7265567
0.6949485
0.6447922
0.6267827

0.5474018

Table S4. Comparing predictions of odor perception with chemical features or
chemical features and ORs. (Related to Figures 2 and 4). Summary table containing
the average test performance for the best predicted perceptual descriptors in the ATLAS
study across two metrics (R and AUC) and using different predictor sets (e.g. OR vs chemical
features). R is the correlation between the predicted and observed % usage of the perceptual
descriptors. The AUC is the classification success for chemicals in the top 10% of usage.



SUPPLEMENTAL INFORMATION

Transparent Methods

Modeling OR ligands from chemical features (Figure 1)

We trained SVM models to learn physicochemical features of the confirmed ligands for a subset
of ORs whose response profiles are currently better characterized (34 total). Different chemical
features were encoded as binary fingerprints (1,0) (Klekota-Roth (Klekota and Roth, 2008),
Morgan/Circular (Morgan, 1965), MACCs, Shortest Path, and Hybridization (Steinbeck et al.,
2003). Chemical fingerprints can encode up to ~1000 bits and many are possibly uninformative.
Kullback—Leibler (KL) divergence (Nisius and Bajorath, 2010) was used to select only those bits
that maximized the distance between active and inactive compounds in the heterologous assay
data. Predictions from these models provided probability scores for each OR-chemical pair for
the ATLAS chemicals. This work relied on the chemistry development kit (CDK) (Steinbeck et
al., 2003) as well as its R interface (Guha, 2007). The structural similarity filter to count the
number of predicted ligands used functions in the ChemmineR package in R (Cao et al., 2008).

Enriched Substructures/Cores (Figure 1)

Enriched cores were analyzed using RDKit through Python (Landrum, 2006). The algorithm is
an exhaustive search for the maximum common substructure among chemicals. In practice,
larger chemical sets often yield less substantive cores. To remedy this, the algorithm includes a
threshold parameter that relaxes the proportion of chemicals containing the core. We used a
threshold of .5, requiring that half of the top predicted chemicals contained the core.

ORs as predictors of perception (Figures 2-4)

Despite several available data sources, most in vitro assays typically report a handful of ORs
with multiple ligands and many others with few ligands (1 or 2 compounds that pass statistical
thresholds). To incorporate the more narrowly tuned receptors, we computed an approximation
of the 3D pharmacophore kernel (Mahé et al., 2006). Pharmacophore kernels are a versatile
method for computing pairwise similarities among chemicals according to a set of standard
features that are related to biological activity. Namely, similarity between ATLAS chemicals and
known OR ligands was defined by the three-point Tanimoto coefficient, which is scaled to 0-1,
with 1 being maximally similar. In cases where there were > 1 ligands for an OR the maximally
similar ligand was used.

To incorporate the ORs with more ligands, we trained SVM models on physicochemical
features of odorants with known activity. There were 34 ORs with sufficient training data for this
approach. These models assigned probability scores for the 34 ORs to the perceptual study
chemicals (ATLAS and Keller 2016). The Keller 2016 perceptual ratings were converted to the
% usage, or the % of participants using a perceptual descriptor; that is, supplying a rating
(0-100) for a given descriptor. The ATLAS study provides this metric.

The receiver operating characteristic (ROC) analysis or, in particular, the area under the curve
(AUC) is based on transforming the rating that had been assigned to a perceptual descriptor by
study participants into a classification label (active/inactive). The active chemicals are those
within the top 10% of the ratings (% usage). However, as this cutoff is arbitrary, other metrics
are supplied in supplementary materials for comparison. These, in addition to the classification-
based metric (ROC analysis), are explained in detail in the metrics section alongside their
strengths and weaknesses for this specific problem. Unless noted in the figure legends the
importance of an OR is not based on classification. Specific methods for evaluating importance
are discussed below.



Computing chemical features to predict perceptual descriptors (Figures 4, 6, S2, S4)

We computed chemical features using the Python wrapper for the open source RDKit software
(Landrum, 2006). This included chemicals features that were raw values, pertaining to features
such as functional group counts and 3D geometries, which closely resemble the proprietary
DRAGON software; the whole library is accessible through the mordred module (Moriwaki et al.,
2018). We also computed Morgan/circular (radius =2) and topological torsion fingerprints.
These use a hash function to encode different chemical features as fixed length binary strings
(1024 bits).

Selecting important ORs in prediction of human perception (Figures 2-4, S2-S3)
Important ORs were selected using a cross validated recursive feature elimination (10-fold,
repeated 10 times), with the random forest (RF) algorithm or the support vector machine (SVM)
algorithm. Random forest defines importance by permuting predictors and reporting the %
increase in error. Random forest fits multiple decision trees on different bootstrap samples and
supplies a consensus vote over the trees as the prediction. Bootstrap sampling leads to a
portion of data being left out; the “out of bag” sample which is used to estimate the prediction
performance. When a model is fit, the predictor importance (% increase in error) is computed.
The support vector machine, however, does not include an ‘out of bag’ sample and therefore the
OR/chemical feature importance is computed externally by fitting non-linear regression models
for each predictor.

By including the model-fitting inside a cross validation loop the importance is computed over
multiple folds or portions of the training data rather than on the complete training set, which
reduces bias in the predictors that are selected. The importance is in this context redefined as a
selection rate (e.g. the rate the predictor was highly ranked).

Clustering (Figure 5)

Clustering was performed with the hcust function in R using the Ward D2 method and the
Euclidean distance for numerical matrices such as the perceptual ratings (Figure 5A) or 1-
Jaccard distances for binary matrices (Figure 5B-D). 1000 bootstrap samples were used to
select the optimal number of clusters, according to the gap statistic (1-standard error (SE) rule).

Quantification and statistical analysis
Support Vector Machine

Training the support vector machine (SVM) involves identifying a set of parameters that
optimize a cost function, where cost 1 and cost 0 correspond to training chemicals labeled as
“Active” and “Inactive,” respectively.

m n
SVM Cost = minC Zy(i) cost; (8TfD) + (1 — yD)costy(87fD) + % Z 67

i=1 j=1
Additionally, a kernel determines the shape of the decision boundary between the active and
inactive chemicals from the training set. The radial basis function (RBF) or Gaussian kernel
enables the learning of more complex, non-linear boundaries. It is therefore well suited for
problems in which the physicochemical properties vary among the biologically active chemicals.
This kernel computes the similarity for each chemical (x) and a set of landmarks (1), where o2 is
a tunable parameter determined by the problem and data. The similarity with respect to these
landmarks is used to predict new chemicals (“Active” vs. “Inactive”).



| - @]
Gaussian Kernel = exp T o0z

Metrics

The area under the roc curve (AUC) assesses the true positive rate (TPR or sensitivity) as a
function of the false positive rate (FPR or 1-specificity) while varying the probability threshold (T)
for a label (Active/lnactive). If the computed probability score (x) is greater than the threshold
(T), the observation is assigned to the active class. Integrating the curve provides an estimate of
classifier performance, with the top left corner giving an AUC of 1.0 denoting maximum
sensitivity to detect all targets or actives in the data without any false positives. The theoretical
random classifier is reported at AUC = 0.5.

TPR(T) = foofl(x) dx
T

FPR(T) = joofo(x) dx
T

Where T is a variable threshold and x is a probability score

However, we generated classifiers that are more authentic than theoretical random
classification, shuffling the chemical feature (or OR) values in the models and statistically
comparing the mean AUCs across multiple partitions of the data. This controls against optimally
tuned algorithms predicting well simply because of specific predictor attributes (e.g. range,
mean, median, and variance) or models that are of a specific size (number of predictors)
performing well even with shuffled values. Additionally, biological data sets are often small, with
stimuli or chemicals that—rather than random selection—reflect research biases, possibly
leading to optimistic validation estimates without the proper controls. We used the AUC with
classification-based training, such as to predict binary labels (Active/lnactive). For classification-
based training we initially converted the % usage into a binary label (Active/Inactive) using the
top 10% of the distribution as the cutoff. The basis for a classification-based performance metric
was the often top-heavy distribution of the % usage. It is for instance possibly not as relevant for
models to accurately predict chemicals with minimal % usage. Rather, it is preferable for models
to accurately predict whether a chemical will smell “Sweet” or not.

To provide further clarity we also reported multiple performance metrics including the correlation
between the predicted and observed % usage, the root mean squared error (RMSE), and mean
absolute error (MAE): RMSE: Root mean squared error is the square root of the mean
difference between predicted values and those observed. It is the average prediction error on
the same scale as the target or outcome being predicted. We supplied this metric because the
correlation coefficient (R) is not always an accurate representation of model performance and
classification of exemplar chemicals required an arbitrary cutoff (e.g. 90" percentile). We
reported the correlation coefficient, R, between the predicted and observed % usage due to its
previous use with human perceptual data. MAE: Mean absolute error is the mean of the
absolute difference between predicted and observed. It thus assigns equal weight to all
prediction errors, whether large or small.



RMSE = ’Z?=1(13]’_37)2

MAE = % Yie1ly — 91, where, y = predicted and y = observed

Sensitivity = %; where, TP = True Positive and FN = False Negative

T

Specificity = TNiVFP ; where, TN = True Negative and FP = False Positive
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