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Abstract

Effective analysis of hyperspectral imagery is essential
for gathering fast and actionable information of large areas
affected by atmospheric and green house gases. EXxisting
methods, which process hyperspectral data to detect amor-
phous gases such as CHy4 require manual inspection from
domain experts and annotation of massive datasets. These
methods do not scale well and are prone to human errors
due to the plumes’ small pixel-footprint signature. The pro-
posed Hyperspectral Mask-RCNN (H-mrcnn) uses princi-
pled statistics, signal processing, and deep neural networks
to address these limitations. H-mrcnn introduces fast al-
gorithms to analyze large-area hyper-spectral information
and methods to autonomously represent and detect CHy
plumes. H-mrcnn processes information by match-filtering
sliding windows of hyperspectral data across the spectral
bands. This process produces information-rich features that
are both effective plume representations and gas concen-
tration analogs. The optimized matched-filtering stage pro-
cesses spectral data, which is spatially sampled to train an
ensemble of gas detectors. The ensemble outputs are fused
to estimate a natural and accurate plume mask. Thorough
evaluation demonstrates that H-mrcnn matches the manual
and experience-dependent annotation process of experts by
85% (I0OU). H-mrcnn scales to larger datasets, reduces the
manual data processing and labeling time (x12), and pro-
duces rapid actionable information about gas plumes.

1. Introduction

The presence of methane gas (CHy) in the atmosphere
is understood to be a chief contributor to global climate
change. CHy is a greenhouse gas with a Global Warm-
ing Potential (GWP) 86 times that of carbon dioxide
(CO2) [25]. CHy4 accounts for 20% of global warming in-
duced by greenhouse gases [19]. Although CH4 has many
sources, oil and natural gas are of particular interest. Emis-
sions from this sector tend to emanate from specific loca-
tions, like natural gas storage tank leaks or pipelines leaks.
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Figure 1: Overview of proposed method. From left-to-right: the hy-
perspectral image input (left), in sets of bands, are processed by multiple
matched filters (blue block). A bank of detectors is trained on outputs
from multiple matched filters (green block). The bank outputs are fused
by 2-layer perceptron (red block) to give the final prediction of the plume
red-overlay (right most).

These emissions exhibit plume-like morphology, which
makes distinguishing them from the background both fea-
sible and challenging. The Jet Propulsion Laboratory (JPL)
collected data using the Airborne Visible/Infrared Imaging
Spectrometer Next Generation (AVIRIS-NG) [13] to mon-
itor and investigate such emissions. AVIRIS-NG captures
information at wavelengths ranging from the visible spec-
trum to short-infrared spectrum (i.e., 380nm — 2510nm).
Information about CH, is present as a small signal in the
2100nm to 2400nm range. Recent work produced algo-
rithms that detect the CHy signal in the AVIRIS-NG im-
ages [22, 28]. However, the outputs from these detection
algorithms can be noisy and have spurious signals. Exten-
sive manual labor is still required to identify and delineate
the methane plumes. This work proposes a hybrid technique
that combines core concepts of conventional signal process-
ing and machine learning with deep learning. This tech-
nique addresses the limitations of existing methods, such
as computational complexity, speed, and manual process-
ing bottlenecks by harnessing the spatial information (i.e.,
plume shape) and spectral information to automatically de-
tect and delineate CH,4 plumes in overhead imagery.

Aerial imagery is commonly used to identify sources of
CHy i.e., point source region and estimate CH,4 concentra-
tion in large areas [9, 10, 28, 30, 31]. Remote sensing in-
struments such as AVIRIS-NG have high spectral resolution
and are capable of detecting point sources of CHy.

Methane Detection. Retrieval of CH,4 emission sources
from hyperspectral imagery is a recent topic of study in re-
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mote sensing [9, 10, 28, 30, 31]. Hyperspectral sensors, like
AVIRIS-NG, are not originally designed for gas detection
but are effective tools to observe gases due to their spectral
range. There are two existing methods to estimate column-
wise concentration of methane from AVIRIS-NG data. The
IMAP-DOAS algorithm [9] was adapted for AVIRIS-NG
[30]. This method uses Beer-Lambert law, where Differ-
ential Optical Absorption Spectroscopy (DOAS) describes
the relationship between incident intensity for vertical col-
umn and measured intensity after passing through a light
path containing an absorber [17]. CHy4 retrievals are per-
formed between 2215nm and 2410nm. Other methods in-
volve matched filter approaches to estimate column concen-
tration of CHy4 [10, 28, 31, 30]. The matched filter tests the
null hypothesis Hy (spectrum generated by the background)
against the alternative hypothesis H; (spectrum including
the perturbation due to gas). The Cluster-Tuned Matched
Filter algorithm [31] is used to detect the presence of CHy
or strength of presence of CHy signal. This method is com-
monly applied to data acquired by AVIRIS-NG but the re-
sults are noisy and prone to false positives.

Related Technical Work. Existing machine learning-
based hyperspectral image analysis methods mostly focus
on classification with a small portion dedicated to target de-
tection as reported in [11]. For instance, logistic regres-
sion is commonly used for land cover classification in re-
mote sensing application using pixel-wise classification [8].
However, this method is prone to false positives. The multi-
nomial logistic regression (MLR) [18], is a discriminative
approach that directly models posterior class distributions.
This type of classifier is specifically designed for the lin-
ear spectral unmixing process applications. Support vector
machines (SVMs) are the most used algorithms for hyper-
spectral data analysis [4]. SVM generates a decision bound-
ary with the maximum margin of separation between the
data samples belonging to different classes. Target detec-
tion have been performed using a SVM related algorithm
called support vector data description [26, 23]. This method
generates a minimum enclosing hypersphere containing the
targets. The main limitation of the method is that it does
not account any underlying distribution of the scene data
and fails to distinguish target from underlying background
distribution. Gaussian mixture models (GMMs) represent
the probability density of the data with a weighted summa-
tion of a finite number of Gaussian densities with different
means and standard deviations. GMMs cluster the hyper-
spectral data with connected component analysis to segment
the image into homogeneous areas [24].

Latent linear models find a latent representation of the
data by performing a linear transform. The most common in
hyperspectral imagery is PCA (Principle Component Anal-
ysis). The PCA linearly projects the data onto an orthog-
onal set of axes such that the projections onto each axis

are uncorrelated. It is widely used as a preprocessing tool
for hyperspectral analysis [7, 21, 32]. Ensemble Learning
is a supervised learning technique of merging the results
from multiple base predictors to produce a more accurate
result. It is applied successfully for hyperspectral classifica-
tion [16]. Kernelized PCA to reduce dimension followed by
deep learning methods is a potential solution to target detec-
tion [6, 33, 34]. The authors from [5] introduce a three di-
mensional end-to-end convolutional neural network (CNN)
to predict material class from the image patches (i.e., tile)
around the test pixel. Three dimensional CNN outperforms
the two dimensional CNN by directly learning the spatial-
spectral features as their filters span over both spatial and
spectral axes; however, it requires large training datasets.

Proposed H-mrcnn solution. The single-band CH, array
is combined with the ground terrain information to train a
Deep Neural Network (DNN) based detector. The naive
DNN detector leverages the standard Mask-RCNN (Region
Convolution Neural Network) [14] to produce a binary seg-
mentation mask of CHy plumes. Mask-RCNN is suited
for this problem as it looks for specific patterns in the un-
derlying distribution. The naive DNN detector method is
the basis of H-mrcnn. The raw data (432 bands) are pro-
cessed in sets of bands, where H-mrcnn generates a seg-
mentation mask (plume) for each set of bands. This ensem-
ble of detectors (H-mrcnn) captures different distribution
information from each set of bands. The detectors with in-
put from visible and near infrared wavelength range capture
the distribution of the underlying terrain. These detectors
learn to eliminate the potential confusers (same signature as
methane) such as hydrocarbon paints on large warehouses
or asphalt roads. The detectors trained on bands with wave-
length in short infrared regions capture the distribution of
the CHy signature. The output mask candidates from the
detectors are fused by a simple 2-layer perceptron network
to decide a weight for each mask and its overlay. Learn-
ing methane signatures, confuser signatures, and plume and
confusers shapes helps to simultaneously predict reliable
plume shapes and eliminate the false positives.
Experimental results indicate that the ensemble and fu-
sion methods are effective representations and detectors of
CH4 plumes and their shapes. The decision mechanism
weights the contribution of each weak detector and pro-
duces an estimate of the gas presence or absence (overlap-
ping the CH, detections from each detector in the ensem-
ble). Thorough literature search indicates that H-mrcnn is
the first solution that addresses the large-area hyperspectral
data analysis problem. It introduces new methods to de-
lineate and detect amorphous gas plumes using principled
statistics, signal processing, and deep neural networks.

1766

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 30,2020 at 04:42:54 UTC from IEEE Xplore. Restrictions apply.



Technical Contributions and Innovations

1. A novel approach optimized for binary plume detec-
tion via ensembles, which better describe gas shapes.

2. Large-area data inspection and visualization tools.

3. A new and improved method to effectively use all the
432-bands (hyperspectral) data for rapid processing
and analysis of hyperspectral information.

4. An autonomous plume detector that estimates bi-
nary plume masks (methane plume vs. no methane
plume) and a ensemble method that estimates relative
plume enhancements representations (i.e., analog) us-
ing higher resolution per-band window information.

5. An effective template for an end-to-end method to an-
alyze and process “RAW” hyperspectral data for a spe-
cific gas signature. This study uses CHy4 as an example
that is generalizable to other gas signatures.

The proposed H-mrcnn is a combination of an optimized
matched filter and Mask-RCNN that identifies the correla-
tion both in spectral and spatial domains respectively and
detects the presence and shape CH,4 plume.

Extensive experimentation shows the performance of H-
mrcnn compared to traditional machine learning algorithms
such as logistic regression, SVM, meanshift with watershed
and linear latent models and state of the art deep learn-
ing based segmentation model Learn to Segment Every-
thing [15]. The proposed solution outperforms the compet-
ing methods in terms of detection accuracy and/or speed.

Collection of CH, Data. Although the AVIRIS [12] and
AVIRIS-NG [13] sensors are not designed for detecting
CH, emissions, and are used for high resolution map-
ping of natural CH,4 seeps [22] and fugitive C'H4 emis-
sions [28, 31, 2]. The quantification of gas presence in a
certain location is based on its atomic and molecular prop-
erties. The gases absorb a certain wavelength of light (an
absorption line spectrum). CH, gas absorbs light in the
wavelength range 2200nm to 2400nm. The detection of
CHy signal strength is based on its detected absorption (i.e.,
more methane yields a stronger signature).

Major challenges of plume representation and detection
is their rarity and the small-pixel footprint compared to
the large observed area. The occurrence frequency of the
plumes in this dataset relative to the image dimensions is
shown in Figure 2. This histogram shows that the highest
ratio in this dataset is only 1.12 percent. The most common
image-plume portion is less than 0.28% found in 36 images.

The proposed methods are developed and tested on two
datasets derived from AVIRIS-NG instrument: Dataset A is
a rectified 4-band dataset defined in [29]. The data contains
4-band datum with three bands comprising red, green, and
blue reflectance intensities and a fourth band comprising

Image to plume area portions

Value Count (number of images)

028 0.56 0.84 112 112
Percent Plume Portion of Image (pixel/pixel)
Figure 2: Frequency count plot of the percent ratio of plume-pixels

to hyperspectral-pixels (rows and columns). The plot indicates that the
plumes are a very small portion of the image(i.e., small pixel foot-print).
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Figure 3: Relation between dataset A (x 4) and dataset B (xg). The
432-bands data from dataset B are processed through a matched filter
to yield dataset A. Detecting plumes using this information poor dataset
(Dataset A) is challenging. H-mrcnn addresses this challenge by modeling
terrain absorption using ensemble and decision fusion methods.

CHy relative concentration in ppm per meter (parts per mil-
lion per meter); Dataset B is an unrectified, 432-band (i.e.,
raw data) dataset. It is acquired in VSWIR(Visible Short-
wave Infrared) range, measuring over 432 spectra of color
channels ranging from ultraviolet (380nm) to shortwave in-
frared (2510nm). The images are taken over large areas,
creating a three-dimensional data cube of radiance, where
two dimensions are the spatial domain (i.e., 2D-image) and
the third one is in the spectral domain (i.e., wavelength)
as shown in Figure 3, which visualizes the relationship be-
tween the two datasets. This data is collected in “Four Cor-
ner Area” (FCA), the geographical US-Mexico border.

The terrain types include plains, mountain regions,
large warehouses, vegetation, water bodies, deeply irrigated
fields, livestock farms, coal mines, and other CH,4 emitting
areas. The aircraft with AVIRIS-NG instrument flies at a
height of 3km above the ground. There are multiple CHy
leakage candidate regions. The ground terrain also contains
a large number of confusers in CH,4 detection, for example,
paints of hydrocarbons on the roof of warehouses. Paint ex-
hibits similar characteristics to CH,4 and cause strong false
positives.

2. Approach

The proposed approach tackles two versions of CHy
plume dataset. Dataset A is the data pre-processed by
Jet Propulsion Laboratory (JPL)[29], where 432-band mea-
surements are processed into one single-channel array using
conventional match-filtering techniques with the CHy sig-
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Figure 4: Sample terrain image (dimensions: 850x 1300 pixels) from a
flightline (ang20150419t163741). The image has an area of approximately
8 x 10%km?. Tt is reconstructed using the radiance values from the visible
spectra (400nm — 700nm) from Raw data (x g).

nature as the target. The conventional match-filtering tech-
nique takes 180 minutes per datapoint to process 432bands
into 1 single channel output. The optimized implementation
has reduced this processing time to 15 minutes per data-
point. The single channel array is stacked with three other
bands, each selected from the visual red, blue, and green
wavelengths. The proposed naive single-band solution uses
dataset A to evaluate and validate the initial findings and
tune a binary plume detector. Dataset B is the original 432-
band raw dataset. This dataset is used to design, develop,
and evaluate the proposed H-mrcnn solution, which is the
formalized naive single-band detector.

Methane Detection as a Segmentation Problem. Gas
emitting from a point source has a specific shape texture
as it moves through the atmosphere and differs from the un-
derlying terrain. The shape indicates the source or origin
of gas, as the gas emitting from a point source has spe-
cific plume-like morphology. Mask-RCNN is suited for
this problem as it looks for specific patterns in the under-
lying distribution. In this application it learns the terrain
and plume shape, which serves to enhance the detection and
eliminate ground terrain confusers(false positives).

2.1. JPL Dataset A (x 4)

In dataset A, each data array represents a flightline of the
aircraft with the AVIRIS-NG instrument. Visualization of
sample image (3-bands, RGB) is shown in Figure 4. The
gas plume information is available in the fourth band in the
form of ppmxm (part per million per meter) values. The
value at each pixel represents the enhancement in CH4 con-
centration at that location. The ratio of plume to image pixel
counts is very small (i.e., small-pixel footprint).

Data Processing Pipeline. There are only 46 data points
(22000 x 1400 x 4) available to train. The neural network is
trained to generate segmentation map of the methane plume
and eliminate the false positives. The pre-process converts
the single band with CH, information into two - the first
band is data point level normalization (local normalization)
and second band is whole dataset (46 data points) level nor-
malization (global normalization). The data is appended
to ground terrain information (greyscale) as the third band.

The local normalized band provides precise plume bound-
aries, see Figure 5(a). The white pixels represent plume and
black pixels are background. The global normalized band
provides the network with information about the range of
methane signal strength across the whole dataset, see Fig-
ure 5(b). The greyscale image provides terrain information
to the neural network, see Figure 5(c). Each processed data
point dimension is 22000 (rows) x 1400 (cols) x3 (chan-
nels). The processed data points are tiled with sliding win-
dow in the spatial domain following sizes:

1. 1024 x 1024 x 3 with stride 512
2. 512 x 512 x 3 with stride 256
3. 256 x 256 x 3 with stride 128
4. 128 x 128 x 3 with stride 64

The sample tiles of size 512x512 are shown in Figure 5 for
band-1 (a), band-2 (b), and band-3 (c).

(a) (b)

Figure 5: Components of the input 3-channel images to train and test the
naive single-band methane plume detector, where (a) Visualization of lo-
cally normalized pixel-intensities, (b) Visualization of globally normalized
pixel-intensities, and (c) Visualization of greyscale terrain.

Annotation Generation and Data Augmentation. The
annotation is available in dataset A. Training is only done
on image tiles, which have plume (the original image only
has a very small plume, as shown in Figure 2). The fine-
tuning process leverages the built-in data augmentation.
Fine-Tuning Mask R-CNN. The Naive Mask-RCNN is
a binary and fine-tuned plume detector. Its output is a seg-
mentation mask of CH,. The Mask-RCNN detector uses
ResNet-101 as the backbone. It builds a feature pyramid
and then a region proposal network (RPN) proposes regions
of objects (plume). Then, these proposals along with the
feature pyramid are used by another neural network that
produce mask (plume shape), class point), bounding boxes
for each instance of objects (plume). For more details on
the architecture, please refer to paper [14]. The default con-
fidence value for each predicted plume is 0.7 [1]. One mask
is predicted for each class. A sample prediction of plume
and its shape are shown in Figure 7 (a) & (c) for the pre-
dicted mask (red:black) and (b) & (d) (red:terrain) for the
prediction of methane overlayed on the terrain.

2.2. Raw Hyperspectral Dataset B (x5)
Matched filtering is a technique to differentiate between
the regions of interest and background pixels. In this case,
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the signal of interest is CHy and the background is the
ground terrain. Let xp € R? be a sample from dataset
X B representing the background terrain pixel, where (Xp is
a signal vector in the spectral domain and where each pixel
intensity value is the radiance value at a particular wave-
length). The spectrum is represented by £(xp), when the
gas is present. The linear matched filter is modeled as addi-
tive perturbation:

E(XB) =Xp + €t,

where t is the gas spectrum or target signature and e repre-
sents the chemical properties of the gas.

The matched filter is a vector v € R? and the output of the
matched filter is the scalar o’ x. The objective is to find a
filter o such that a”'¢(xp) is different from a”'x.

The methane gas spectrum, represented by t and a’'t,
is the matched filter output. The terrain pixel vector and
matched filter output are represented by xp and a”xp, re-
spectively. The average Gas-to-Terrain-Ratio (GTR) is:
oTt)?
GIR = Var(aTxpg)’

where Var is the variance given by:
Var(aTxp) = ((aTxp — aTp)?) = o’ Ka,

with covariance K and mean .

The magnitude of a does not affect GTR; therefore, opti-
mizing GTR means maximizing o t subject to the constant
constraint a” Ko = 1. The Lagrangian multiplier ) is added
to loss function [:

;M\ t,K) = —aTt+ ANaTKa — 1).

Minimizing loss function / means maximizing GTR !. The
loss is simplified by assuming u is:

u=2\K"20 - K '/2¢.
Then the loss function [ is re-written as:

la; M\ t,K) = %(uTu —tTK1t) — \.
The GTR is maximized when u = 0 [27], which yields:
K 't
VKT
Intuitively, the methane gas retrieval exploits the lin-

earized matched filter, where the background terrain radi-
ance is modeled as a multivariate Gaussian with mean p

I'see appendix B for more details

and covariance K. The matched filter tests the terrain with-
out gas (Hy) against the alternative (H ), where the terrain
undergoes a linear perturbation by a gas signature t via:

Hy :xp ~ N(u, K), Hy : x5 ~ N(u+ at, K).

In the CH,4 case, a is a matched filter vector. The
column-wise background estimation assumes that most
background pixels do not contain the CH, gas plume.
Therefore, the optimal discriminant matched filter [27] is:

(XB - ,U,)TK_lt
VEITK ™'t

The target signal t represents the change in radiance units of
the background caused by adding a unit mixing ratio length
of CHy absorption. This method uses one uniform t and
does not require computing one for each data point. It is ap-
plied to dataset B along with the matched filter and neural
network detector modules. The main benefits of this ap-
proach include the ability to obtain maximum information
about the terrain, omit false positives, and achieve accurate
plume contours and shapes as demonstrated in § 3.

The sliding-window approach is used to sample the spec-
tral domain. This approach extracts maximum available
information about both the plume and the ground terrain
across the available wavelength range (380nm to 2510nm).

a(xp) =

Data Processing Pipeline. Added benefits of using a
matched filter along with a neural network architecture is
the ability to process the data in its raw form. Each data
point is of size 22000 (rows) x598 (cols) x432 (band-
s/wavelength). This means that the files are massive in stor-
age size ranging from 45GB ~ 55GB per file, which be-
comes a challenge. The raw data is not ortho-rectified, but
it is processed using an in-house optimized matched filter
over a set of bands. A sample data point Xxg; € xp with
single-band matched filter output given by:

(XBi — M)TK_lt

VITK 't

The data is processed by sliding a window along the
spectral domain with various window sizes and 50% stride.
The input data to the matched filter stage is 22000 x
598 xwindow-size. This yields 22000 x 598 x 1 (i.e.,
&(xp;)). This output is processed as described in § 2.1. The
3-band output (1-band: local normalized, 2-band: global
normalized and 3-band: greyscale terrain) is tiled using a
sliding along the spatial domain, which is the input to Mask-
RCNN. The solution is evaluated using the following:

1. window-size of 200 bands
2. window-size of 100 bands
3. window-size of 50 band

OAZ(XBZ‘) =
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2.3. Ensemble Processing Methods

This section describes the algorithms for match filtering,
spatial and spectral sliding-window, and fine-tuning DNN
detectors using hyperspectral data for plume representation
and detection. The multi-band match filtering process of the
432-band hyperspectral data is detailed in Algorithm 1.

Data: x5
Result: ortho-corrected matched filter output
(&ore(xB1)); i=0 initialization;
for xp in Xp do
create memory map xg;
while i less then Bands do
read(x p;) from band i to i+window-size;
for cols in xg; do
Compute K and p of x5;;

) = B
end
Gort(XBi) =
mapping_to_ortho-corrected _values(&(X;));
i =1i-stride;
end
end

Algorithm 1: Band-wise matched filter.

The output from the matched filter is tiled to deal with
the small-pixel footprint nature of the gas plumes in large-
area hyperspectral overhead imagery using Algorithm 2 to
produce sliding spatial and spectral data tiles.

Data: Gort(XB:), dimension : 22000 x 1500 x 1
Result: input_image;;
initialization;
for each file in Gort(x i) do
Gort(XBi) ;1 = local normalization(jL)
Gort(XB:) jo = global normalization(jG)
gray(xp;);r = greyscale terrain(j7);
Stack (L, jG, jT) together and create tiles of size
tilesize X tilesize x 3,
end
Algorithm 2: Data pre-processing.

The spatial and spectral tiles are used to train and fine-
tune an ensemble of weak detectors using Algorithm 3.

Ensemble Mask-RCNN. The processed output for each
set of bands is used to train a set of neural networks, we call
it Ensemble Mask-RCNN. Each neural network is learning
about different set of features, for example: bands sets in
the short infrared wavelength region (2200nm to 2500nm)
have more information about the presence of CHy. Recall
that the initial spectral band (400nm to 700nm) sets have
more information about terrain and that the matched filter
output is pixel-wise independent; therefore, Mask-RCNN
learns about the correlation between pixels that contain gas

Data: input_image;;

Result: binary mask of plume shape

initialization;

for i in sets(0-50, 25-75, 50-100.....) do

batch_size = 1;

learning rate = 0.0001;

epochs = 50;

image_per_gpu = 1;

detection_min_confidence = 0.7;

load_ground_truth(*.png) refer [ 2.1];

load_images(input_image;;);

trained_weights = model.train(weights, images,
ground_truth);

end
binary_mask = model.predict(trained_weights, image;;);
Algorithm 3: Mask-RCNN training and fine-tuning.

information. This information is used to fine-tune one de-
tector (Mask-RCNN) for each set of bands. The output from
each detector produces a prediction about the plume shape.
The weak decisions are fed to a simple 2-layer perceptron
network to learn the contribution of each detector in the en-
semble and output a final estimate (as a weighted average
sum) of the plumes.

3. Experimental Results

The data is pre-processed on a machine with 16GB RAM
and 12 CPU cores. Each image in dataset A is 1~2 GB in
size and processing all of the 46 data points in the dataset
takes approximately 45 minutes. The neural network fine-
tuning is using one Nvidia GTX 1080Ti GPU. The Mask-
RCNN is initialized with MS-COCO [20] weights. The
fine-tuning process takes about two hours. A sample mea-
surement of the terrain and the manually generated CHy
mask (ground truth data) are shown in Figure 6.

(b)

Figure 6: Visualization of a randomly selected datapoint. From left-to-
right the images are: the terrain (a), the manually created CH4 mask (b),
and the mask overlayed on the terrain (c).

The ground truth data file is generated by an expert an-
alyst who inspects each CHy4 flightline and manually delin-
eates plumes and separates them from any non-plume arti-
facts. The manual approach is effective but does not scale,
since processing time and human work-hours are significant
performance bottlenecks.
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The following experiment compares the naive plume de-
tector with the ensemble detector. Qualitative results of the
ensemble based plume detection are shown in Figure 7 for
the observations collected from terrain shown in (a), with
the ensemble predictions shown in (c).

() (b) (© (d)

Figure 7: CH,4 detection output. The naive single-band mask-rcnn de-
tector is shown in (a) as a binary mask (plume vs. no plume) and the
detection overlayed on the terrain is shown in (b). The ensemble H-mrcnn
detector showing the contour mask of the predicted CH4 presence is shown
in (c). The mask overlayed weight is a concentration analog and the pre-
dicted mask overlayed on the overhead terrain image is shown in (d).

Baseline methods. Multiple traditional machine learning
approaches that are known to work well with target detec-
tion problems [11] and state of the art deep learning image
segmentation method [15] are tested on the same dataset
as the proposed methods. Logistic regression is commonly
used for land cover classification, multinomial logistic re-
gression (MLR) [18] is trained on dataset A, the model per-
formed poorly with IOU of just 5%. Support Vector Ma-
chines (SVM) have been successfully applied to hyperspec-
tral data analysis for target detection task. We trained a
SVM classifier inspired by [23, 26] on dataset B. For de-
tecting such tiny plumes, SVM performed with 25% higher
IOU than logistic regression. The poor performance of
SVM is due to the high rate of false positives detection.
Gaussian mixture models (GMMs) are also highly infected
by false positives. The evaluation is done in using the com-
plete 432 bands data. PCA on raw data followed by logistic
regression. This results in poor plume detection, which is
caused by the target to image ratio. Capturing 0.80, 0.85,
and 0.90 variance did not result in fully getting the target
variance into account. Meanshift with watershed algorithm
is highly influenced by the terrain and ignores the target.

The performance of H-mrcnn is compared against the in-
housed implementation of “Learn to Segment Everything”
image segmentation algorithm [15]. This method outper-
forms the classical machine learning algorithms by overall
19% IOU. Results indicate that the method is capable of
eliminating more false positives than the classical methods.
However, the method is limited by number of training sam-
ples. Unlike in the H-mrcnn solutions, which uses the lim-
ited training samples to effectively detect gas plume shape
with an average 0.87 IOU.

Evaluation Metrics. The performance metrics for plume
detection are designed with the unbalanced and rarity nature
of small-pixel footprint plumes in large-area overhead hy-

PERFORMANCE COMPARISON WITH EXISTING METHODS

Time
Category Method Precision | Recall | IOU F1 to
Train
LogReg 30hrs
Classical [18] 0-52 0.06 1 0.05 | 0111 cpyy
Machine SVM 39%hrs
Learning (23.26] 0.92 0.3 0.29 45 CPU
GMMs 20hrs
[10] 0.83 0.27 0.4 0.4 CPU
Watershed 21hrs
3] 0.52 0.23 0.18 0.31 CPU
PCA (.85) 40hrs
B:::’fi . +LogReg 0.44 0.07 0.06 | 0.12 CPU
PCA (.85) 70hrs
+SVM 0.84 0.33 0.31 0.47 CPU
Segment
Deep Everything 0.8 055 | 048 | 065 | 20
i GPU
Learning [15]
H-mrcnn 30hrs
(proposed) 0.96 091 0.87 0.94 GPU

Table 1: Performance comparison of the proposed H-mrcnn method

perspectral imagery. The metrics include intersection-over-
union (IOU), which measures how predicted masks match
the manual mask; the euclidean distance between plume
centroids which represents how well the plume core is pre-
dicted; and the F1-score. The results include data sizes (in
number of tiles or detectors) to provide contrast between
accuracy and complexity. The overall processing time of
(180+7)minutes each datapoint: Dataset B processed by
(JPL) conventional matched filter to Dataset A and then
Mask-RCNN training, is reduced to (15+7) minutes by H-
mrcnn with an IOU increase from 0.832 to 0.879.

Plume Overlap. The performance of the proposed solu-
tion is evaluated based on the ratio of predicted plume area
overlapping with the human generated ground truth plume
area. The plume overlap provides a quantitative measure of
how well the proposed naive single-band method performs
on predicting the plume shape and location. The higher the
plume overlap, the better the prediction. The results sum-
marized in Table 2 show that the naive single-band detector
achieves maximum overlap at spatial pixel dimensions of
256 x 256 with a stride of 128.

Distance between Centroids. The second metric is the
Euclidean distance between the centroid of the human gen-
erated ground truth plume and the predicted plume. The
centroid coordinates are the arithmetic mean position of all
the points in the plume shape. The smaller the distance bet-
ter the prediction. As show in Table 2 the predicted plumes
and ground truth coincide best with spatial dimension are
256 x 256 with a stride of 128.

Plume Detection and Overlap. The following experi-
ments validate the use and design of the DNN-based naive
and ensemble detectors. The performance of the naive
single-band detector is shown in Table 2. The best perfor-
mance is achieved at spatial dimensions of 256 x 256 pixels
a stride of 128 pixels. At this resolution, the network is ca-
pable of properly representing the mask. The performance
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decreases with spatial dimension 128 x 128 pixels and stride
of 64, this is because the whole tile is a plume/mask. At this
ratio there is not enough information to effectively repre-
sent and learn the background. This results serves to design
the individual elements of the ensemble of detectors, where
each detector is tuned for specific spectral region using spa-
tial 256 x 256 pixels tiles and 128 stride.

[ Naive Mask-RCNN (Dataset A) |

Disnl: ;tli;:m ‘ 10U Fl-score | Distance Time ‘ #Tiles ‘
(;362:1‘;; (;Zé) 0.590 0.742 23.96 90 ( 41 ?06)
(ojelrﬁs 12%56) 0.769 0.869 13.24 150 (155(:)020)
(03;?:13251628) 0.832 0.923 5.83 270 3 52(:)040)
(Olviff;:)zg 1) 0.762 0.865 22.36 420 a 030:0?25)

Table 2: Naive Mask-RCNN detection. Performance metrics for the
tile spatial dimensions for various pixel (window size) combinations with
50% overlap (stride). The metrics include IOU: intersection-over-union for
mask and ground-truth overlap; Fl-score: plume detection performance
for unbalanced plume vs. no-plume datapoints; Distance: the estimated
centroid euclidean distance (plume’s first geometric moment); Time: is the
approximate processing time in minutes; the number of tiles generated by
each configuration is shown in # Tiles and (background:plume) ratio. Time
excludes processing time by JPL from Dataset B to Dataset A

Ensemble of Detectors. A bank of detectors predicts
plume shape. As shown in Table 3. The model best per-
forms when the set size in spectral domain is 50 bands in
a set with stride 25. The spatial dimensions are 256 X 256
with stride 128, which were learned from the naive detec-
tor. Using a spectral set of 50 allows the network to cover
the visible spectrum, i.e., 380nm to 650nm and learn about
the terrain. This information is used to reduce false posi-
tives. In addition, the ensemble uses individual wavelength
neighborhoods. The balance is critical as the number of de-
tectors and processing time increases exponentially making
the system inefficient. The final plume estimated is pro-
duced by 2-layer perceptron, which decides the weights for

[ H-MRCNN (Dataset B) |

S}’““?' ‘ 10U ‘ Fl-score | Distance Time ‘ Bank ‘
Dimension

200 bands */907F
(overlap 100) | 0645 0.772 16.71 90*/90 4

100 bands 0.706 0.814 4.24 810*/90T 9
(overlap 50)

30 bands 0.854 | 0.921 412 | 15007907 | 17
(overlap 25)

Table 3: Bank of Detectors showing performance metrics for the tile
spectral dimensions for various band (window size) combinations with
50% overlap (stride). The metrics include IOU: intersection-over-union for
mask and ground-truth overlap; Fl-score: plume detection performance
for unbalanced plume vs. no-plume datapoints; Distance: the estimated
centroid euclidean distance (plume’s first geometric moment); Time: is
the approximate processing time in minutes(includes processing of Raw
data), where the symbols * and + represent not-prarallelized and paral-
lelized processes, respectively; Bank is the number of detectors generated
by each configuration.

[ H-MRCNN with & without Ensemble Network |

Ensemble
Detection
Uniform Weight

for all 0.854 0.920 4.120
Predictions
2-Layer
Perceptron 0.880 0.945 4.120
(range: -1to 1)

10U F1-score Distance

Table 4: Ensemble Detection Performance based on decision fusion
mechanism (Uniform vs. 2-layer perceptron). The metrics reported
include Intersection-over-Union between the true-labeled and predicted
masks (IOU); Fl-score for binary incidence and detection of plumes; and
Distance: Euclidean distance between the centroids of true plume mask
and the predicted plume mask in pixels.)

each detector in detector bank. As shown in Table 3 row 1,
on assigning equal weights to all the detectors, the final pre-
dicted plumes have smaller IOU values. Using a network to
learn and estimate decision weights for each member in the
ensemble produces an accurate plume prediction.

4. Summary

This work introduces techniques that leverage pre-
existing deep neural network based detectors to formulate
a naive single-band detector. Also, this work further devel-
ops the findings from the design and evaluation of the naive
detector (i.e., data sampling parameters). It integrates spec-
tral sampling along with a newly improved and optimized
match-filtering algorithm to process large-area hyperspec-
tral data. The processed hyperspectral data is used to fine-
tune and construct an ensemble of detectors. Thorough ex-
perimental results indicate that the naive detector matches
the performance of human annotations by 83.2% for binary
detections. The ensemble approach outperforms the detec-
tion of the naive detector by 87.95% and better represents
the plume using the ensemble detections. The presented
solutions will enable the rapid processing and analysis of
gas plumes, removes the confusers (false positives), which
produces actionable information and response plans about
greenhouse gases in the atmosphere.

Future Work. Future work includes extensions of the H-
mrcnn to other gases. In addition, potential future direc-
tions include online learning and tuning for methane point
sources and diffused sources. As more data becomes avail-
able, the study will focus on time-series analysis of plumes
(e.g., plume dispersion, gas flux, life-span, and evolution).
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