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Abstract— Continuous trajectory control of fixed-wing un-
manned aerial vehicles (UAVs) is complicated when consider-
ing hidden dynamics. Due to UAV multi degrees of freedom,
tracking methodologies based on conventional control theory,
such as Proportional-Integral-Derivative (PID) has limitations in
response time and adjustment robustness, while a model based
approach that calculates the force and torques based on UAV’s
current status is complicated and rigid. We present an actor-critic
reinforcement learning framework that controls UAV trajectory
through a set of desired waypoints. A deep neural network is con-
structed to learn the optimal tracking policy and reinforcement
learning is developed to optimize the resulting tracking scheme.
The experimental results show that our proposed approach can
achieve 58.14% less position error, 21.77% less system power
consumption and 9.23% faster attainment than the baseline. The
actor network consists of only linear operations, hence Field
Programmable Gate Arrays (FPGA) based hardware acceleration
can easily be designed for energy efficient real-time control.

Index Terms—deep reinforcement learning, continuous trajec-
tory tracking, actor-critic algorithm, unmanned aerial vehicles

I. INTRODUCTION

Recently the applications of UAVs have been widely used
in numerous real world applications where human operations
are limited. With the increasing of data volume and accuracy
requirements for practical applications, the reliable operations
of UAV, i.e. the stable autonomous guidance and control,
have been considered as one of the most critical. Efficient
tracking algorithms enable a smooth trajectory and hence
a lower system power/energy dissipation during the flight.
Traditionally, the PID control mechanism is the state-of-the-
art choice for industrial UAV trajectory tracking system. PID
controllers are easy to be implemented on FPGA and sufficient
for many control problems. They work well when process
dynamics are benign and the performance requirements are
modest [1] [2]. However, the PID controller cannot treat
processes with large time delay efficiently and it shows poor
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performance for tracking problems requiring aggressive dy-
namic configurations, including uncertain internal disturbance
compensation and imbalances retrieval [3] [4]. For some
applications, modified PID models implemented have been
explored to improve the performance [5] [6].

Meanwhile, it is a big challenge to control UAVs stability
in general using low power cost platforms, especially under
uncertain disturbance from environments. The main reason
is that it is hard to obtain a high fidelity mathematical
model of a UAV which has an under-actuated system with
nonlinear dynamics [7]. To improve the stability and real-time
control, deep neural networks (DNN) embedded on different
hardware platforms are introduced [8] [9]. Through large data
training, the DNN-based control system achieves adaptability
and robustness that guarantee the stability of the flight [10].
Additionally, the controllers are able to follow the desired tra-
jectory with the tolerance of unexpected disturbance. Similar
to PID controllers, the DNN based controller estimates the
control actions based on past flight experience to reduce the
instantaneous tracking imperfections. None of them considers
how the chosen action will affect the subsequent rewards.
Hence, they are likely to generate suboptimal solutions.

Reinforcement learning (RL) provides a mathematical
framework for learning or deriving policies that map situa-
tions (i.e. states) into actions with the goal of maximizing
an accumulative reward [11]. Unlike supervised learning, in
RL the agent (i.e. learner) learns the policy for decision
making through interactions with the environment. The aim
of the agent is to maximize the cumulative long-term reward
by taking the proper action at each time step according to
the current state of the environment while considering the
trade-off between explorations and exploitations. Q-learning
is one of model-free RL strategies storing finite state-action
pairs and corresponding Q-values in a look-up table and it
has been applied for thermal and energy management in
autonomous computing systems [12] [13]. The combination of
conventional Q-learning and deep neural network, i.e. Deep
Q-network [14], provides a breakthrough in deep reinforce-



ment learning (DRL). The neural network in DQN needs to
accumulate enough samples of values and the data needed for
its training can either come from a model-based simulation
or from actual measurement [15]. Originally developed by
DeepMind, the DRL provides a promising data-drive, adap-
tive technique in handling large state space of complicated
control problems [16]. The actor-critic deep reinforcement
learning [17] has overcome difficulties in learning control
policies of systems with continuous state and action space,
which provides a potential solution for effective real-time
mission control of autonomous UAVs.

In this paper, we propose an actor-critic DRL model to
track trajectories of UAVs through sets of desired waypoints,
and its implementation using FPGA. The detailed framework
is discussed in Section IV. Based on the model provided
by [18], we aim at actuating one degree of translation motion
and three degrees of rotation motion for quadrotor body-
fixed UAVs. We construct a fully-connected neural network to
learn the optimal tracking policy based on DRL. We choose
different sets of desired waypoints as test benchmarks. The
experimental results in Section V show that compared to
the baseline, our proposed approach can achieve 58.14% less
position tracking error and 9.23% faster attainment. The effi-
cient tracking leads to 21.77% power saving during the flight
time. In addition, our actor network can easily be mapped
to FPGAs for hardware acceleration and the input/output size
of network is constrained because of limited dimensions of
state/action that an agent/environment can physically process.
With a low-cost FPGA, one single decision can be made
within 0.0002 second at only 0.03mW power consumption in
a decision epoch. The speed and power consumption allows
the proposed actor-critic framework to be used for real-time
on-board control of autonomous systems.

II. RELATED WORKS

Due to the wide utilization and increasing stringent con-
straints on the size and energy dissipation of UAV control
system, many researchers have put extensive efforts recently
on trajectory tracking system using different processing plat-
forms. However, conventional high-performance computing
systems (mainly GPUs) either consume significant amounts
of power or are too bulky to be placed on small UAVs. FPGA
currently serves as the main cost saving platform in terms
of less volume, efficient control response and configurable
to allow new features and different approaches [19] [20].
Preliminary FPGA designs were combined with an eight bit
microprocessor for a fixed wing aircraft with GPS in [21].
In order to get rid of large and heavy external computers or
sensors, Ryo Konomura et al. developed a FPGA-based self-
position estimation system which included an ARM 9 dual-
core CPU and FPGA in one-chip [22].

With the development of machine learning techniques in
the last decade, neural networks have been introduced during
the control processing of UAV. Meanwhile, requirements for
greater task complexity and higher flight performance tend to

increase on-board processing. In 2012, [9] presented a FPGA-
based artificial neural network to implement autonomous
landing system, which demonstrated to prove the limited data
requirements and applicability to low-power implementation.
Li et al. developed a combination of a convolution neural
network and a conventional feedback PID controller to learn
UAV control for tracking a moving target in [23]. They
trained the network by reinforcement learning from games
of self-play. In order to ensure the stability, they proposed
a hierarchical approach which combines a model-free policy
gradient method with a conventional feedback PID controller
and trained the neural network by a combination of supervised
learning from raw images and reinforcement learning from
games of self-play. In [24], Wang et al. designed a scalable
accelerator architecture with three pipelined processing units
for large-scale deep learning networks using FPGA as the
hardware prototype. Moreover, an ultra-low power and high-
performance DNNs using the circulant weight matrix with
FPGA implementation has been proposed in [25]. The work
performed the forward pass of the AlexNet in 7.54ms with
less than 1W on-chip power, which accelerated the speed
of closing the control loop of autonomous UAV. In [26], Su
et al. proposed an FPGA accelerator for DQN algorithms
which provided high throughput compared to CPU and GPU
platforms. In order to support run-time parameterization to
the neural network topology, it increased the flexibility by
taking advantages of high on-chip memory bandwidth and
customizable hardware resource.

III. PRELIMINARIES

A. Actuation Model of UAV

In this work, a vertical take-off and landing (VTOL)
quadrotor/quadcopter UAV model with four identical actuators
(propellers), each separated by a scalar distance D from the
axis of rotation of the actuators to the center of the UAV [18],

Fig. 1: Guidance through a set of finite waypoints between
initial and final configurations on SE(3).



is considered. A conceptual diagram of guidance on special
Euclidean group of rigid body motions, SE(3), through a set
of waypoints is shown in Fig. 1. Based on this SE(3) model,
waypoints are generated considering the actuator locations
on the body of the UAV, as well as obstacles and potential
collision hazards detected in the field of view of the onboard
sensors. Since a quadrotor or multi-rotor UAV with all rotors
in one body-fixed plane can only generated a body-fixed
thrust perpendicular to that plane, we need control the attitude
simultaneously with the position tracking. After waypoints are
selected, a C2 (i.e. continuous and twice differentiable with
respect to time) trajectory is generated for the desired inertial
position in time, denoted pdt, connecting these waypoints.
According to the pdt, the desired translational velocity ṗdt
and the desired translational acceleration p̈dt, i.e. velocity and
acceleration of UAV mass center moving from one position to
the other, can be obtained. The desired UAV control thrust fdt
depends on the current location pt, velocity ṗt, acceleration
p̈t, and the desired values of these quantities pdt, ṗdt, and
p̈dt.

B. Deep Reinforcement Learning

Deep Q-learning [14] (DQL) adopts an offline-built DNN to
derive the correlation between each state-action pair (s, a) of
the system under control and its value function Q(s, a). The
Q-value is the expected cumulative (with discounts) reward
function when system starts at state s, and follows action a
(and certain policy thereafter). To be more specific, at each
decision epoch tk of an execution sequence, the system under
control is at state sk. The DRL agent performs inference using
DNN to select action ak, which is either the one with the
highest estimated Q-value, or selected with certain degree of
randomness using the ε-greedy policy. At the next decision
epoch tk+1, the DRL agent stores the newly estimated Q-
value calculated based on the total reward rk(sk, ak) observed
in time slot k. At the end of the execution sequence, The DRL
agent performs mini-batch updating [16] [15] that updates the
DNN using the new Q-value estimates. Q(s, a) is given in (1).

Q(s, a) = E(Σ∞
k=0λ

krk(sk, ak)|s0 = s, a0 = a)) (1)

where rk is the reward achieved in time slot k, and λ < 1
is the future reward discount factor. The DQL is restricted
when the number of actions you can take any time is infinite.
The actor-critic reinforcement learning framework [27] learns
policy and state-value function by containing two interacting
models, i.e. actor and critic, and is fundamentally premised on
solving problems with continuous output space. To accelerate
learning and avoid oscillations or divergence in the parameters,
an experience replay is deployed [17] and it updates the target
network weights θ′ based on learned network weights θ by:

θ′ = τθ + (1− τ)θ′, τ � 1 (2)

IV. SYSTEM ARCHITECTURE AND HARDWARE DESIGN

A. Problem Definition

In this work, we consider the trajectory tracking for under-
actuated aerial vehicles through a set of given desired way-

TABLE I: Variables Summary

pdt : desired position pt : achieved position
vdt : desired velocity vt : achieved velocity
dvdt : desired acceleration dvt : achieved acceleration
Rdt : desired attitude Rt : achieved attitude
sdt : desired state st : achieved state
fmt : applied force τt : applied torques
At : applied action St = {sdt, st} : agent state
E : environment simulation

points. To state the problem without losing generality, we
aim at quadrotor fixed-wing UAVs with four control inputs,
one degree of translation motion and three degrees of ro-
tation motion (i.e. pitch, roll and yaw.) The directions of
four motions are illustrated in Fig. 2 using different colors
(yellow: translational freedom; green: rotation freedom). It is
extremely difficult to integrate detailed mechanistic model of
complicated dynamics with classic control theory, a model-free
solution for the control problem is preferred. Because actions
of the tracking problem are continuous variables (e.g. turning
force, thrust etc.), the actor-critic reinforcement learning is
adopted, which learns to find the optimal set of actuations
that move the UAV towards desired trajectory. The technique
presented in [18] is used to generate C2 trajectory based on
a given set of predefined waypoints Td where each waypoint
gives the desired position of the UAV at time t. Meanwhile,
desired velocity vdt, desired acceleration dvdt and desired
attitude Rdt are extracted from Td based on kinematics.
The positions and attitudes together form the pose of the
UAV. The goal of our model is to minimize the differences
between desired poses and actual poses during tracking. We
define sdt = {pdt, vdt, dvdt, Rdt} as desired state and st =
{pt, vt, dvt, Rt} as actual state of UAV at time step t. Each
of first three variables in the sdt and st are 3-dimensional
vectors and the last one in the sdt and st is 3× 3-dimension,
hence the desired state and the actual state are variables in 18-
dimensional space. All variables used at time t are summarized
in Table I.

The concatenation of sdt and st forms the agent state St.
Furthermore, we define action at time t as At = {fmt, τt},
where the translational force fmt and torques τt are applied
to UAV. The translational force fmt is a force perpendicular
to the top surface of UAV and the three components in τt
are applied to roll, pitch and yaw directions respectively. The
reward Reward(∆t) at time t is defined as the Manhattan
distance between the desired pose and the actual pose, i.e.
Reward(∆t) = f(|pt − pdt|+ |vt − vdt|+ |Rt −Rdt|).

B. Network Structure

Since the control variables (i.e. fmt, τt) of UAV are in a
continuous space which are infinitely large, we build an actor-
critic reinforcement learning model instead of discretizing the
action space. The actor model is a feed-forward deep neural
network of three fully-connected hidden layers with rectified
linear units (ReLU) as the activation function. It is used to



predict the optimal action based on current state St. The
number of neurons in fully-connected hidden layers are 64,
128 and 128 respectively. The size of output layer is 4 and
LeakyReLU activation function is used in the output layer.
The critic model is another feed-forward neural network that
computes an evaluation of the action and that evaluation is
used by actor model to update its control policy in particular
gradient direction. The critic model has two hidden layers,
where the first layer contains two separate fully-connected
structures and the number of hidden neurons in each is 32.
The addition of outputs from the first hidden layer is fed
into the second layer which has 64 hidden neurons. The
inputs of critic model are St and At and the output is a
single value Q(St,At). The size of the critic and actor is
optimized as hyper-parameters through cross-validation. The
detailed networks of actor model and critic model are shown in
Fig. 3a and Fig. 3b. The overall framework is shown in Fig. 3c.
During training, the actor model is pre-trained using labeled
pair data (St,At) generated from simulation [18] to predict
the optimal action At based on current agent state St. Next
agent state St+1 is calculated through environment simulation
based on At and is used to predict optimal At+1 by actor
model. The critic model evaluates the resulting {St+1,At+1}
pair by predicting a Q-value to fine-tune action prediction.
Therefore, the weights in actor model are updated by the
gradient between actor and critic model, using chain rule
dQ/dWactor = dQ/dWcritic × dWcritic/dWactor. Wactor

and Wcritic indicate the weights of actor and critic models
respectively.

C. Reward Definition

Our goal is to actuate the UAV to be closer to desired pose
Td along the desired trajectory, i.e. minimizing the value of
∆Pt = |pt − pdt|. Besides position error, the stability of
the UAV should also be taken into consideration. Therefore
the values of velocity errors (i.e. ∆Vt = |vt − vdt|) and
attitude errors (∆Rt = |Rt − Rdt|) must also be minimized.
However, our experiments show that simply using a linear
combination of ∆Pt, ∆Vt, and ∆Rt as the reward function
will make convergence difficult in learning process. According
to [28], using geometrically discounted reward will prevent the
accumulated reward to become infinite and make the model

Fig. 2: Illustration of UAV control inputs

(a) actor model structure (b) critic model structure

(c) overall framework

Fig. 3: Architecture details of actor model and critic model,
and overall framework of proposed framework.

more tractable. Therefore, we define the reward at each time
step following a standard normal distribution, guaranteeing
the largest reward is accepted when the total differences
between desired trajectory and actual trajectory at time t (i.e.
∆t = ∆Pt + ∆Vt + ∆Rt) reaches zero and closing to zero
reward is obtained when ∆t increases. The total discounted
reward is denoted as R.

Reward( ∆t) =
1√
2π
exp(−∆2

t

2
)

R =

∞∑
t=0

γtReward( ∆t)

(3)

where ∆t = ∆Pt + ∆Vt + ∆Rt.

D. Proposed Hardware Configuration

Fig. 4 shows an overview of hardware design of the
proposed UAV controller and its connections. Intel (Altera)
Cyclone V 5CGX FPGA is selected as our processing platform
and all massive parallel computations are implemented on it.
We select this FPGA because of its light weight as the UAV
payload, relatively high compute capability, and its low energy
cost.

Although there are only linear computations (i.e. multi-
plications and additions) are need in actor model and the
mapping to FPGA is straightforward, two issues need to be
addressed. Firstly, all computations cannot be done at once
due to resource limitation of FPGA, time-multiplexing is
essentially required. Secondly, computation latency introduced
by time-multiplexing conflicts with the real-time response
requirement for UAV control. Our proposed design aims
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Fig. 4: Hardware configuration of the UAV controller

at exploiting the hardware resource to improve parallelism
and to minimize latency, taking two issues mentioned above
into consideration. In our design, DSP blocks are used as
multiplier. Layer-wise computation is done by computation
array, which consists of multiple parallel computation units
for multiplication and accumulation performance. Results of
intermediate layers are buffered in register array and will feed
back to the input of computation array for the computation of
next layer. DNN controller builds the communication between
FPGA and ARM processor. Resource allocator schedules the
time-multiplexed computation. The FPGA is connected to the
on-board ARM Cortex-A9 processor. ARM Cortex-A9 takes
control commands from FPGA as input, calculates actuations
in each freedom, and then sends actuations to UAV controller.
In addition, UART handles the communication between ARM
Cortex-A9 and UAV. It accepts flight state and sensor data
from UAV and sends data to FPGA after preprocessing.

V. EXPERIMENTAL RESULTS

A. Environment Setup

We trained the actor-critic network and implemented the
simulation on Nvidia GeForce GTX1070 using Keras [29].
The data that we use to train and test our model is generated
using simulator described in [18]. Our dataset consists one
thousand different 3-D trajectories of four different shapes, in-
cluding straight lines, z-shape curves, spiral curves and circles.
Each desired trajectory has one thousand desired waypoints,
giving enough time for UAV to track it. All desired waypoints
are defined by mathematical equations parameterized by time.
Eight hundred different trajectories of four different shapes
are evaluated in total. The mass of UAV used is 4.34kg,
and its inertial properties J is a 3 × 3 diagonal matrix
(i.e. diag[0.820 0.0845 0.1377]kgm2) which determines

the required magnitude of force to accelerate the UAV in each
rotation direction respectively. The goal is to minimize the
power consumption and time used from trajectory deviated to
tracked.

B. PID Implementation

As a baseline approach, we also implement control scheme
based on PID theory because it has been widely used in
industrial applications and real-time control situations. We
define desired position pdt as observable variables (OV ) and
actual position pt as measurable variables (MV ). Velocities
are regarded as controllable variable (CA). The data of pdt
is gathered from simulator in [18] and is used to derivate
desired velocity vdt of UAV at time t. Three PID controllers
are used for each component of velocity respectively, which
are indicated by green blocks in Fig. 5. The inner structure of
each PID is the same as conventional structure. PID controllers
calculate errors of each component between desired velocity
and achieved velocity by the UAV, i.e. errors between vdx and
vx, vdy and vy and vdz and vz , continuously as references to
give velocity corrections. Furthermore, the achieved position
pt is calculated through Environment simulation (i.e. orange
block) and used as feedback based on current velocity vt.
As a consequence, the difference between desired position
pdt and actual position pt is used to update the velocity of
UAV through Kinematics block (i.e. purple block). The overall
structure of PID-based controller forms a feedback loop and
is shown in Fig. 5

C. Results Comparison

All test samples of desired trajectories are generated the
same way as mentioned in Section V-A. Fig. 6 shows sample
testing achieved trajectories (blue curves) using proposed DRL
learning approach and corresponding desired trajectories (red
curves). We report the results from four aspects: (1) L1-
norm of position tracking error; (2) L1-norm of velocity
tracking error; (3) Time used to complete tracking; (4) Power
consumption.

Fig. 7 shows the L1-norm of position tracking error, where
the first four columns are comparison results of trajectories
with different shapes respectively and the fifth column is
average L1-norm of position error of all testing trajectories.
According to the figure, our approach has lower average posi-
tion error especially when the trajectory is more complicated.

Fig. 5: Structure of PID-based baseline controller



(a) Line trajectory (b) Z–shape trajectory

(c) Spiral trajectory (d) Circle trajectory

Fig. 6: Examples of achieved trajectories and desired trajecto-
ries in terms of four different shapes. (red: desired trajectories.
blue: achieved trajectories using proposed DRL-based learning
approach.)
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Fig. 7: Tracking result comparison between proposed DRL-
based framework and PID-based baseline in terms of L1-norm
of position error

Compared to PID based baseline control, 22.94% less position
error is achieved for straight line trajectory tracking and
25.07% less position error is achieved for circular trajectory
tracking. The position tracking error reduction increases to
85.32% for spiral shape tracking and 87.81% for z-shape
trajectories tracking respectively. On average, our approach
outperforms 58.14% better than PID based control in position
tracking of different shapes of trajectories.

Fig. 8 shows the average of L1-norm of velocity tracking
error. Similar to Fig. 7, the first four columns are comparison

results of each type of trajectory with different shapes, and
the last column shows overall L1-norm of velocity tracking
error averaged over all testing trajectories. It shows 29.79%
error reduction is achieved for line trajectory and 67.22% error
reduction is achieved for circle trajectory. Up to 91.64% and
93.17% error reductions are achieved for z-shape and spiral
trajectories. On average, our approach outperforms 58.15%
than PID control with respect to velocity tracking error. Again
our learning based approach performs better for the more
complicated trajectories.

Fig. 9 compares the total time steps used for UAV to follow
each shape of desired trajectory and the average time steps
used in total to reach stability. We report the number of time
steps used for UAV to completely track the desired trajectory.
The total time steps for each testing trajectory is one thousand.
The time step when trajectory is tracked is regarded as the
time tc after which the L1-norm of position error between
pdt and pt is less than 0.0001. The average tracking time
for different types of trajectories, and the average tracking
time over all testing trajectories are reported. Our approach
is 9.23% faster than PID-based control to achieve stable pose
on average. It is especially 13.86% faster for line trajectory
and up to 15.58% faster for z-shape trajectory. Moreover, PID
has lags in responding current dynamics in all three directions
of velocity. Therefore, PID-based controller is not optimally
adapted for non-linearity situations, especially not robust in
fast dynamic control. It trades off the control performance and
time.

Fig. 10 reports average total power consumption after one
trajectory is completely tracked using our approach and base-
line PID controller. As indicated in the figure, our approach
achieves 11.04% less power consumption when tracking z-
shape trajectory and consumes 18.64% less power for line
trajectory tracking. Furthermore, up to 21.63% and 29.11%
power consumption improvements have been achieved for
circle and spiral trajectories tracking respectively. An aver-
age of 21.77% less power is consumed using our approach
for tracking all different trajectories. The noticeable result
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Fig. 8: Tracking result comparison between proposed DRL-
based framework and PID-based baseline in terms of L1-norm
of velocity error
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Fig. 9: Tracking result comparison between proposed DRL-
based framework and PID-based baseline in terms of used
tracking time steps

explains that PID control consumes more power because of
oscillations of controllable variables during tracking process.

D. Tracking in a Noisy Environment

To test the robustness of the learning based trajectory
tracking, we also add different levels of random Gaussian noise
and see if the tracking algorithm can adapt to the changing
environment. Our model free DRL approach is compared to
the Matlab model based trajectory tracking approach, which
calculates the force and torque of the UAV using a 3-
dimensional Euclidean space mechanics model in the form
of Lie Group Variational Integrator (LGVI) given in [18]. The
random noise is a deviation added on the UAV position at
same random time step with a duration of 5 time steps. Such
noise could be used to model the effect of wind gust, which
may deviate the UAV away from its current position. Fig. 11
compares the tracking results in an environment with random
noises.

In the first experiment, a relatively small noise is added
to the environment. The left figure in Fig. 11a shows the
desired and actual trajectories generated by Matlab simulator
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Fig. 10: Tracking result comparison between proposed DRL-
based framework and PID-based baseline in terms of power
consumption

for the UAV using model based tracking in [18], while the
right one shows the similar information for the UAV using our
proposed DRL-based tracking model. As we can see, the UAV
using the DRL based tracking follows the desired trajectory
more closely. After adding small random Gaussian noise, DRL
based system is more stable and achieves smaller position
tracking error under considerable error precision. The left
figure in Fig. 11b shows the L1-norm of position tracking error
for model based tracking (Dmatlab) and DRL based tracking
(DDRL). The right figure in Fig. 11b shows the difference
between these two (i.e. Dmatlab−DDRL). It shows that after
deviating from the original trajectory due to random noise,
the model based approach will not correct itself right away.
Only after the deviation becomes large, it will gradually track
back the original trajectory. While the DRL has a relatively
more stable position error during all the time. In the second
experiment, we add relatively larger noise to the environment.
The left and right figures in Fig. 11c give the original and
actual trajectories of the model based and DRL based tracking.
As indicated, the model based approach is not able to keep
the given trajectory, while the learning based approach can.

E. Hardware Performance on FPGA

A truly autonomous UAV has three components, sensing,
detection and control. One of the benefits of adopting DRL
based trajectory tracking is that it solves the control problem
using a deep neural network, which is known to be efficient
for detection and sensor signal processing. Using a unified
computation model (i.e. DNN) for different tasks allows us
to design highly optimized application specific hardware for
that computation model, instead of relying on flexible general
purpose processor, which is either too bulky or cannot provide
enough computation power.

While the training of the DRL framework requires both the
actor and critic networks, only the actor network needs to be
implemented on the UAV during the runtime and run in real-
time. To evaluate the cost, payload and energy impact that
the actor network may bring to the UAV, we implement our
actor model on the FPGA platform to validate our method on
the real-world devices. We choose Intel (Altera) Cyclone V
5CGX FPGA as our evaluation platform. The platform’s SoC
(System-on-Chip) has the maximum CPU clock frequency of
925MHz and embedded DDR3 SDRAM with the memory
bandwidth pf around 4, 500MB/s. The actor network has
25, 196 connections, which correspond to 25, 196 multiplica-
tion/addition operations. We have to time multiplex the hard-

TABLE II: FPGA performance analysis for actor model in
proposed DRL-based framework

Frequency 373.02 MHz
Throughput 204.96 Action/s
Total Power 33.57 µW

Logic Utilization in ALM 10.03 %
RAM Utilization 20.94 %



(a) Comparison of achieved trajectories with a relatively small noise
(red: desired trajectory, blue: achieved trajectory)

(b) Comparison of tracking position error

(c) Comparison of achieved trajectories with larger noise (red:
desired trajectory, blue: achieved trajectory)

Fig. 11: Experimental results of trajectories tracking in noisy
environment comparisons between using model-based tracking
[18] and using proposed DRL-based tracking scheme

ware resource in FPGA in order to evaluate the whole network.
The amount of computations that can offload to the FPGA is
constrained by the size of the on-chip RAM, which will be
used to store the weight parameters and intermediate results.
With up to 21% utilization of the RAM resources, we use 10%
utilization of the programmable logic resource to achieve 200
actions/s throughput. We present the performance and energy
consumption of our FPGA implementation in Table II. In this
implementation 16-bit wide fixed-point data precision is used.
The results show that, the power consumption of the actor
network is very low, hence enables the model to run on the
UAV devices, which usually have stringent energy resources.
Please note we include the static power in the total power. The
real computation power should be much lower.

VI. CONCLUSION

We have introduced a framework for UAV trajectory track-
ing based on deep reinforcement learning using FPGA. The
system structure, processing algorithm and software/hardware
performance are presented. In our approach, the UAV tracks
a desired trajectory through a set of given waypoints, toler-
ating random Gaussian noise within considerable range. The
hardware consumption of the implementation of this scheme is
also provided. The proposed scheme is general and applicable
to be applied in real UAVs for fast and accurate trajectory
tracking system.
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