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Abstract— The work provides a general model of commu-
nication attacks on a networked infinite dimensional system.
The system employs a network of inexpensive control units
consisting of actuators, sensors and control processors. In
an effort to replace a reduced number of expensive high-
end actuating and sensing devices implementing an observer-
based feedback, the alternate is to use multiple inexpensive
actuators/sensors with static output feedback. In order to
emulate the performance of the high-end devices, the controllers
for the multiple actuator/sensors implement controllers which
render the system networked. In doing so, they become prone
to communication attacks either as accidental or deliberate
actions on the connectivity of the control nodes. A single attack
function is proposed which models all types of communication
attacks and an adaptive detection scheme is proposed in order
to (i) detect the presence of an attack, (ii) diagnose the attack
and (iii) accommodate the attack via an appropriate control
reconfiguration. The reconfiguration employs the adaptive es-
timates of the controller gains and restructure the controller
adaptively in order to minimize the detrimental effects of the
attack on closed-loop performance. Numerical studies on a 1D
diffusion PDE employing networked actuator/sensor pairs are
included in order to further convey the special architecture
of detection and accommodation of networked systems under
communication attacks.

I. INTRODUCTION

This paper examines the vulnerability of networked sys-
tems under communication attacks and the manner in which
the attacks can be handled. The communication attack affects
the inter-agent (controller) connectivity and takes the form of
sign reversal of a network gain in a given link or nullification
of a gain in a given link. Separate from the attack modelling
of cyber-physical systems, see [1], [2], [3] and references
therein, the attack model here cannot be viewed as either an
additive or multiplicative actuator or sensor fault, [4].

The premise is that an infinite dimensional system, often
representing partial differential equations, is using a set of
inexpensive actuating and sensing devices in place of a small
number of high-end/high-capacity actuators and sensors. In
opting for the inexpensive devices that render the closed-loop
system a networked one by the use of static output feedback
controllers that use the weighted sum of the measurements
of a subset of the sensors, the networked system becomes
vulnerable to communication attacks. In the case of the
nullification of a communication link, which corresponds to
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the zeroing of a gain multiplying a specific sensor output, the
attack is viewed as benign. When the sign of a feedback gain
of an output corresponding to a given controller is reversed,
the attack is viewed as malicious and is classified as an
adversarial action whose goal is to destabilize the system.

The modelling and detection of a communication attack
in the earlier work [5] is generalized and expanded to
include more than one gain (nullified or sign-reversed) in
a given control signal. Additionally, a diagnostic observer is
proposed whose role is to detect the presence of an attack in
the networked system, and to diagnose the type of the attack.
Such a diagnosis is made possible via the use of adaptive
estimates of the static feedback gains. By the appropriate
use of the residual signals and their corresponding time-
varying thresholds, an attack is detected the instant any of the
residuals exceed their corresponding time-varying thresholds.
The use of time-varying thresholds ensures that the detection
time, i.e. time between the occurrence of an attack and
the declaration of its presence, is minimized. The adaptive
estimates of the static gains serve also to accommodate the
effects of the attack via the adaptive control reconfiguration.

The proposed infinite dimensional system is summarized
in Section II and the static feedback controller is presented
in Section III. The attack modelling along with the gain
parametrization are given in Section IV. The attack detection,
diagnosis and accommodation are presented in Section V and
numerical studies are summarized in Section VI.

II. MATHEMATICAL FRAMEWORK AND MOTIVATION

The infinite dimensional system under consideration
evolves in a Hilbert space X and given by

ẋ(t) = Ax(t)+Bu(t), y(t) = Cx(t) (1)

Associated with the state space X is the additional space V
and its conjugate dual V ∗, which is the space of continuous
conjugate linear functionals on V . The space V is a reflexive
Banach space with norm ‖·‖, and assume that it is embedded
densely and continuously in X . Let the usual uniform oper-
ator norm on V ∗ be denoted by ‖ · ‖∗. We then have V →֒
X →֒V ∗ with the embeddings dense and continuous, [6]. The
state operator A∈L(V,V ∗) and the (single) input and (single)
output operators are B ∈ L(R1,V ∗) and C ∈ L(V,R1). The
state operator is self adjoint and generates an exponentially
stable C0 semigroup [7], and x(0) = x0 ∈ dom(A).

The assumption is that the control devices-(actuator and
sensor)-are high capacity and performance devices. It is also
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implicitly assumed that both are high end devices with high
costs (fixed and operating) associated with them. To design
a controller, one may use LQR/H2 methods [8] to arrive at

u(t) =−Kx(t), K ∈ L(R1
,V ∗). (2)

The enabling condition imposed is that the operator pair
(A,B) be approximately controllable, [8]. However, even
when the controllability condition is satisfied and the opera-
tor gain K is computed, the control law cannot be realized as
it requires the infinite dimensional state x(t). This is resolved
by implementing a state observer and then replacing x(t) in
(2) by its estimate x̂(t). The state estimate is generated by

˙̂x(t) =Ax̂(t)+Bu(t)+L(y(t)−Cx̂(t)) , x̂(0) = x̂0 6= x0, (3)

where the filter gain operator L ∈ L(R1,V ∗). In parallel to
the above condition for controller design, one requires that
the operator pair (A,C) be approximately observable, [8].
The filter gain can be obtained by the Kalman filter or the
Luenberger observer design. This implementation requires
the simultaneous propagation of the observer (3) and possibly
its covariance operator in order to implement the controller

u(t) =−Kx̂(t), K ∈ L(R1
,V ∗). (4)

Summarizing, (4) requires the following for implementation

• expensive actuating device with input operator B,
• expensive sensing device with output operator C,
• computation of controller gain K,
• computation of filter gain L,
• real time generation of the finite dimensional approxi-

mation of (3) and possibly its covariance equation.

In response to the high cost (computational and operat-
ing/fixed) requirements associated with the controller (4), one
may consider the following inexpensive alternative

• use inexpensive actuating devices with associated input
operators Bi, i = 1, . . . ,N,

• use inexpensive sensing devices with associated output
operators Ci, i = 1, . . . ,N,

• use simplified controller architecture based on static
feedback.

The economic advantages with the use of inexpensive
sensing and actuating devices is straightforward. However,
one must take into account their reliability. The computa-
tional and algorithmic advantages are seen in the controller
architecture where a simple static output feedback controller
can be implemented in place of (4).

Using the above considerations, (1) is revisited and is now

ẋ(t) = Ax(t)+
N

∑
i=1

Biui(t),

y(t) =




y1(t)
...

yN(t)


=




C1x(t)
...

CNx(t)


 .

(5)

The N input operators Bi ∈ L(R1,V ∗), describe the manner
in which the control signals ui(t), i = 1, . . . ,N are injected
in the system via the inexpensive actuators. Similarly, the
N output operators C j ∈ L(V,R1), j = 1, . . . ,N describe the

manner the state is obtained by the inexpensive sensors. For
the regulation case, the static output feedback is given by

ui(t) =−
N

∑
j=1

fi jy j(t) (6)

where fi j are the gains, resulting in the closed-loop system

ẋ(t) = Ax(t)−
N

∑
i=1

Bi

N

∑
j=1

fi jy j(t). (7)

Closer examination of (7) reveals that the closed loop system
requires each control unit to communicate with all other con-
trol units via fi j; the ith control unit is comprised of the ith ac-
tuator, the ith sensor and the control gains fi j, i, j = 1, . . . ,N.
While the alternate solution (6) results in reduced fixed costs,
reduced computational costs and reduced complexity, it also
results in increased communication costs, as it requires an
all-to-all communication amongst the N control units. To
reduce this cost, one must consider a networked controller,
namely a controller in which a subset of the feedback gains
fi j are nonzero. This selection of the nonzero entries is
described by an appropriate communication topology which
defines the information exchange between the sensing de-
vices and the control units. An undirected connected graph
G = (V ,E) is assumed to define the connectivity of the
sensors and control units. The graph nodes V = {1,2, . . . ,N}
represent the N control units in (5). The edges E ⊂ V ×V
depict the communication links between the control units.
For a given control unit, we define the set of neighbors it
communicates with by Ni = { j : (i, j) ∈ E}. Finally we use
L to denote the nominal graph Laplacian associated with the
graph G ; it is given by L = D −A , where D denotes the
degree matrix and A the adjacency matrix, [9].

Equipped with the background on data and information
exchange, we can define the networked version of (6)

ui(t) =− ∑
j∈Ni

gi j(yi(t)− y j(t)), i = 1, . . . ,N. (8)

An equivalent expression involving the graph Laplacian L is

ui(t) =−
N

∑
j=1

Li jki jy j(t), i = 1, . . . ,N, (9)

where ki j, i, j = 1 . . . ,N are the feedback gains. To reduce
the parametrization of the feedback gains, one may consider
weighted graph Laplacians, as they provide both the memory
of the connectivity between the sensors and the control units,
and also absorb the value of the proportional gain. However,
when considering the stability of the closed loop system
and possible adaptation of the gains during an attack, it
is better to consider a separate matrix that will keep track
of the connectivity. Different from the earlier work in [5],
the matrix to keep track of the “memory” of connectivity
amongst the agents/control units is given by

M , IN +A . (10)

Using this memory matrix, the controller in (9) is re-written

ui(t) =−
N

∑
j=1

(M ◦K)i j y j(t), i = 1, . . . ,N, (11)
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where ◦ denotes the Hadamard (entrywise) product [10]
between matrices and thus (M ◦K)i j represents the (i j)th

element of the result of the Hadamard product M ◦K.
On a first inspection, (9) appears to address all concerns:

(i) reduced operating and fixed costs for the controller
equipment (actuators and sensors), (ii) simplified controller
architecture (proportional controllers via static feedback vs
concurrent propagation of state estimator (3), (4)). However,
the problem comes at the vulnerability of the proposed
controller (5); the connectivity defined by the memory matrix
M in (10) is prone to communication failures, either due to
adversarial actions or due to accidental disruptions.

Due to the above, one is faced with the following dilemma

1) Keep the attack-immune controller (3), (4) and incur
the high costs associated with it (fixed and operating)
and computational demands for running in real-time
the (finite dimensional approximation of) estimator (3)

2) Keep the low cost and minimal complexity networked
controller (9) and consider a scheme to monitor the
networked system for possible attacks; subsequently
detect, diagnose and accommodate the attacks via an
appropriate control reconfiguration.

III. CONTROL DESIGN

In the face of prohibitively expensive actuating and sensing
devices, the second option appears financially appealing.
In order to provide a framework for the detection and
accommodation of the network attacks, we must first provide
the control objective. Then the model for the network attacks
must be provided before a monitoring scheme is presented.

A. Control problem formulation

In order to generalize the control objective and include
tracking instead of simple regulation, we consider an ide-
alized behavior of the infinite dimensional system (5) also
governed by another infinite dimensional system. Since the
alternative to a single controller with reliable sensor and
actuator device is a networked controller of the form (9), it is
then befitting to view the reference model as a virtual leader.
Thus one is interested in designing a networked controller
similar to (9), so that the state of (5) follows the state of

ẋm(t) = Amxm(t)+
N

∑
i=1

Biri(t), xm(0) = xm0, (12)

where ri ∈ L2(0,∞), i = 1 . . . ,N denote the scalar reference
signals and the state operator Am generates an exponentially
stable C0 semigroup Tm(t) in X with ‖Tm(t)‖X ≤ µe−αt , [7].

In the ideal case (no attacks), one must make some
admissibility conditions that enable one to find a controller
for (5) so that the resulting closed loop system can track
the state of (12). In essence, one must make the feasibility
condition for the proposed networked controllers

ui(t) =−
N

∑
j=1

(M ◦K)i j y j(t)+ ri(t). (13)

This is stated in the result below.

Lemma 1: Assume that there exists a communication
topology with graph Laplacian matrix L and associated static
gains ki j = {K}i j, with i, j = 1, . . . ,N, such that

A−
N

∑
i=1

Bi

N

∑
j=1

(M ◦K)i j C j = Am. (14)

Then the networked controllers (13) ensure that

lim
t→∞

|x(t)− xm(t)|= 0. (15)

Proof: Using the fact that Am generates an exponen-
tially stable semigroup and ri ∈ L2(0,∞), then we have that
the model (12) is well-posed. Now define the tracking error
z(t) = x(t)−xm(t). Using (5) with (13) and (12) we arrive at

ż(t) = Ax(t)+
N

∑
i=1

Bi

(
−

N

∑
i=1

(M ◦K)i j y j(t)+ ri(t)
)

−Amxm(t)−
N

∑
i=1

Biri(t) = Amz(t)

with z(0) = x0−xm0 and z(t) = Tm(t)z(0). Since ‖Tm(t)‖X ≤
µe−αt , then (15) is satisfied with |z(t)| ≤ µe−αt |z(0)|.

Remark 1: For the controller description above, one usu-
ally ensures first that static stabilizability is feasible and
subsequently finds simultaneously the best communication
topology and the optimal gains associated with the optimal
topology. This then defines the closed-loop operator Am

The condition in (14) falls under the system-theoretic
property of static stabilizability, which an infinite dimen-
sional system must satisfy in order to argue for the existence
of an appropriate topology. Define the matrix operators

B=
[

B1 . . . BN
]
, C=




C1
...

CN




The results in [11] on static stabilizability of (5) define the
static stabilizability of a bounded linear system in terms
on the existence of G ∈ L(Y ,U) such that the triple (A−
BGC,B,C) is a strongly stable bounded linear system, where
Y and U denote the output and input spaces, respectively.
In this case, A−BGC is the generator of a strongly stable
semigroup TG(t), i.e. limt→∞ ‖TG(t)x‖= 0, for all x ∈ X .

The above result immediately define the class of infinite
dimensional systems for which the alternate networked con-
troller design in (13) is applicable. If one is only interested
in the tracking problem in Lemma 1, then the condition
of the state operator generating an exponentially stable C0

semigroup can be relaxed to the case of generating a C0

semigroup on X . However, this comes at the condition that
B ∈ L(U,X) and C ∈ L(X ,Y ). If one is simply interested
in designing a static output feedback controller of the form
(13) without any considerations for attack detection and
accommodation, then Lemma 1 can be used with the re-
laxed conditions on the state operator A. However, when an
attack detection and accommodation is considered, then the
conditions on the state operator must be strengthened to that
of generating an exponentially stable C0 semigroup on X .

Remark 2: The different controller parameterizations have
different structures. Using the parametrization in [5], use the
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Fig. 1. An example of a connected graph with 5 vertices.

N ×N gain matrix G with {G}i j = gi j in the controller (8).
Then the graph-weighted gain matrix G is defined via

{G}i j =−
(
A ◦G

)
i j, i, j = 1, . . . ,N, j 6= i,

{G}ii =− ∑
j∈Ni, j 6=i

{G}i j, i = 1, . . . ,N,

and the closed-loop system is written as

ẋ(t) = Ax(t)−BGCx(t)+Br(t), x(0) ∈ dom(A). (16)

Using the proposed controller in (13), with K, M ◦K, then
the closed-loop system is

ẋ(t) = Ax(t)−BKCx(t)+Br(t), x(0) ∈ dom(A). (17)

In the graph of Figure 1, G with 10 gains gi j has the form



g12 −g12 0 0 0

−g21 g21 +g23 +g25 −g23 0 −g25

0 −g32 g32 +g34 +g35 −g34 −g35

0 0 −g43 g43 0

0 −g52 −g53 0 g52 +g53




whereas K with 15 gains Ki j has the form



K11 K12 0 0 0

K21 K22 K23 0 K25

0 K32 K33 K34 K35

0 0 K43 K44 0

0 K52 K53 0 K55



.

IV. COMMUNICATION ATTACK MODELING

As was highlighted in [5] an attack on the networked con-
trol units takes the form of a compromised communication
link. Such a model is specific to networked systems and
cannot be modeled as an actuator or a sensor fault. If the
attack (or fault), on a link is intended to cause disruption
of the normal operation, then it is classified as a malicious
attack; this can be associated with an adversarial action on
the network. Its goal is to maximize damage to the networked
system by possibly destabilizing it. This is realized through
the sign reversal of a subset of the signals to a given node
by negating the signals to a given control unit. If the fault
is attributed to normal wear and equipment aging, then it is
classified as a benign attack. This is modeled by a severed
communication link by removing a graph edge. In the former
case (malicious attack), this is equivalent to changing

Ki j ←−−Ki j, for some j,

and in the latter case (benign attack), it is equivalent to setting

Ki j ←− 0, for some j.

Another feature of the attack is its time profile, as was
considered in [5]. The time profile is defined as abrupt
thereby designating an abrupt action which may be acci-
dental or deliberate. The time profile is defined as incipient

designating a slowly evolving action. It turns out that the
abrupt case is a limiting case of the incipient case. Thus,
a single expression can capture both time profiles. For the
severed communication link, the time profile is given by

β(τ) =

{
1 if τ < 0

e−λτ if τ ≥ 0
= 1−

(
1− e−λτ)H (τ), (18)

where H (t) denotes the Heaviside step function, i.e. it
nullifies an entry of the gain matrix K since limt→∞ β(t) = 0.
For the sign reversal of signals case, the time profile is

β(τ) =

{
1 if τ < 0

−1+ e−λτ if τ ≥ 0
= 1−

(
2− e−λτ)H (τ) (19)

and limt→∞ β(t) = −1. In both cases, when the time profile
rate λ → ∞, then the incipient profile becomes abrupt since
β(t) = 1−H (t) or β(t) = 1−2H (t). This was used in [5] to
model a single fault, i.e. a single element of Ki j, j = 1, . . . ,N
was either nullified or had its sign reversed. To account for
more than one entries of the ith row of K, define the sets

S a
i = { j : βi j 6= 0}, S h

i = Si \S a
i , Si = { j : Mi j 6= 0}

where Si denotes the set of all non-zero entries of the matrix
M, i.e. the set of nonzero entries of the ith row of K. Thus
S a

i denotes the set of elements of the ith row of K that are
attacked and its complement S h

i denotes the set of elements
of the ith row of K that are healthy. Denote the time that
the attack occurs, i.e. the attack instance, by ta. Then the
closed-loop system resulting from (5), (13) with attacks is

ẋ(t) = Ax(t)+
N

∑
i=1

Biri

−
N

∑
i=1

Bi
(

∑
j∈Sh

i

Ki jy j(t)+ ∑
j∈Sa

i

βi j(t − ta)Ki jy j(t)
)
.

(20)

V. ATTACK DETECTION, DIAGNOSIS AND

ACCOMMODATION

If only the presence of an attack in the networked system
(20) is desired to be detected, then a detection observer
suffices and its architecture is simple. In fact, the virtual
leader can serve as a detection observer. This was presented
in [5] and it simply summarized here. Prior to the occurrence
of an attack, the expression for the closed-loop system (20)
is modified to include disturbances and is

ẋ(t) = Ax(t)+Ew(t)+
N

∑
i=1

Biri −
N

∑
i=1

Bi ∑
j∈Sh

i

Ki jy j(t)

−
N

∑
i=1

Bi ∑
j∈Sa

i

βi j(t − ta)Ki jy j(t),

(21)

with E ∈ L(R1,V ∗) the disturbance operator and w ∈
L2(0,∞;R1) the disturbance signal. In this case the error
between (21) and (12), denoted by υ(t) = x(t)− xm(t), is

υ̇(t) = Amυ(t)+Ew(t), υ(0) 6= 0 t ∈ [0, ta). (22)

Its solution is given by

υ(t) = Tm(t)υ(0)+
∫ t

0
Tm(t − τ)Ew(τ)dτ, t ∈ [0, ta).
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Since Tm(t) is an exponentially stable semigroup and w is
square integrable, then limt→∞ |υ(t)|= 0. The scalar residuals

πi(t) =CiTm(t)υ(0)+
∫ t

0
CiTm(t − τ)Ew(τ)dτ,

provide the time varying thresholds

ρi(t) = |Ci|µ

(
|υ(0)|e−αt + |E||w|∞

e−αt −1
α

)
.

After the occurrence of the attack, the error υ(t) attains a dif-
ferent structure and the residuals deviate/exceed the thresh-
olds, thus declaring the presence of an attack. In order to
diagnose and accommodate the attack, an adaptive detection
and diagnostic observer is required. Prior to the presence of
an attack, it resembles the aforementioned detection observer.
However, after the attack on the networked system (21) is
declared, the adaptive estimates of the static gains Ki j are
activated and subsequently used to accommodate the attack.

A. Adaptive detection and diagnostic observer

The adaptive detection/diagnostic observer is given by
˙̂x(t) = Ax̂(t)−H(y(t)−Cx̂(t))+Br(t)

−
N

∑
i=1

Bi

N

∑
j=1

K̂i j(t)y j(t)
(23)

where K̂i j(t) denote the adaptive estimates of Ki j, and H ∈
L(RN ,V ∗) denotes the observer gain selected so that A−HC

is the generator of an exponentially stable C0 semigroup To(t)
on X with ‖To(t)‖X ≤ κe−ζt . To help with the derivation of
the adaptive laws, consider the control terms in (21)

N

∑
i=1

Bi
(

∑
j∈Sh

i

Ki jy j(t)+ ∑
j∈Sa

i

βi j(t − ta)Ki jy j(t)
)
=

N

∑
i=1

Bi
(

∑
j∈Si

Ki jy j(t)+ ∑
j∈Sa

i

(βi j(t − ta)−1)Ki jy j(t)
)
.

(24)

Using the above, it is easily seen that the detection error
e(t) = x(t)− x̂(t) for t < ta is governed by

ė(t) =
(
A−HC

)
e(t)+Ew(t)−

N

∑
i=1

Bi

N

∑
j=1

K̃i j(t)y j(t)

e(0) = e0, K̃i j(0) = 0, K̃i j(t) =Ki j − K̃i j(t).

(25)

The above error is complemented with the update laws of the
adaptive estimates K̂i j(t). However, it must be ensured that
they do not adapt till after the presence of an attack. In the
presence of a nonzero disturbance w(t), the choice K̂i j(0) =
Ki j does not guarantee that K̂i j(t) =Ki j for t < ta. Nonzero
values of the parameter errors K̃i j(t) will immediately force
the residuals to exceed the thresholds and thus falsely declare
the presence of an attack. This is achieved with a projection
scheme [12] applied on the standard adaptive law

˙̃
Ki j(t) = γi j

(
εi(t)y j(t)− K̃i j(t)

)
, K̂i j(0) =Ki j,

and modifying it to
˙̃
Ki j(t) = Pr

{
γi j

(
εi(t)y j(t)− K̃i j(t)

)}
, K̂i j(0) =Ki j. (26)

The projection modification[13] ensures that no adaptation
of the adaptive gains K̂i j(t) takes place prior to t < ta for

any values of the residuals

εi(t) =Cie(t) =CiTo(t)e(0)+
∫ t

0
CiTo(t − τ)Ew(τ)dτ, (27)

for i = 1, . . . ,N, in a given set. Prior to the presence of
an attack, the residuals fall below their corresponding time
varying thresholds

σi(t) = |Ci|κ
(
|e(0)|X e−ζt + |E|X‖w‖∞

e−ζt −1
ζ

)
. (28)

In other words, prior to the instance where any of the
residuals εi(t) exceed their corresponding residuals σi(t),
the adaptive gains satisfy K̂i j(t) = Ki j, ∀t ≤ τa where τa

denotes the attack declaration time, defined below. The
attack declaration time τa ≥ ta is the time when the presence
of an attack in the networked system is declared.

B. Attack accommodation

The accommodation is achieved via control reconfigura-
tion using the estimates of Ki j. Two similar control reconfig-
uration policies are considered. In the first one, the controller
for the kth unit is allowed to establish new connections with
all controllers, even those not previously connected, and thus

uk(t)←−
N

∑
j=1

K̂k j(t)y j(t). (29)

If new connections are not allowed, the original connections
to the kth controller are preserved and the reconfiguration is

uk(t)←−
N

∑
j=1

(
Mk jK̂k j(t)

)
y j(t). (30)

This is presented in the lemma below.

Lemma 2: Assume that the state operator A in (21) gener-
ates an exponentially stable C0 semigroup. For a prescribed
communication topology defined by the graph G with mem-
ory matrix given by (10), assume that the triple (A,B,C) is
statically stabilizable guaranteeing the existence of a static
gain K such that the operator defined in (14) generates an
exponentially stable C0 semigroup on X . Further assume
that the attack, representing a compromised communication
link either due to an accidental (18) or a malicious (19)
action, is described by (21). Then the observer (23) and the
adaptive gains (26) ensure that prior to the presence of an
attack, the N residuals defined by (27) are always below their
corresponding thresholds (28). At the presence of an attack,
the residuals march toward the boundary of the thresholds
and eventually exceed them thereby detecting and declaring
the presence of an attack at the attack declaration time τa

τa = min
{

argt≥ta{t : |εi(t)| ≥ σi(t), i = 1, . . . ,N}
}
. (31)

Furthermore, the compromised link is diagnosed via

ak = argi=1,...,N {|εi(t)| ≥ σi(t)} . (32)

Once the compromised controller is diagnosed, then either
(29) or (30) can be used for accommodation and thus ensure
that lim

τa<t→∞
|x(t)− x̂(t)|= 0 and lim

τa<t→∞
|x(t)− xm(t)|= 0.
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Consider the PDE with N = 5 collocated actuators/sensors
∂x(t,ξ)

∂t
= 0.1

∂x2(t,ξ)
∂ξ2 +

5

∑
i=1

bi(ξ)ui(t)

x(t,0) = x(t,1) = 0, x(0,ξ) = x0(ξ),

y(t) =
[

y1(t) . . . y5(t)
]
, yi(t) =

∫ 1

0
bi(ξ)x(t,ξ)dξ

The input distribution functions bi(ξ) were taken to be
the same as in [5] and with initial condition x0(ξ) =

39.4sin(1.3πξ)e−7ξ2
. Using the graph Laplacian

L =




1 −1 0 0 0

−1 3 −1 0 −1

0 −1 3 −1 −1

0 0 −1 1 0

0 −1 −1 0 2




the matrix K was set as K = L. To demonstrate the effec-
tiveness of the monitoring scheme, the attack was assumed
an adversarial action taking place at ta = 0.7s negating the
gains K32 and K35 resulting in the post-attack gain matrix

K=




1 −1 0 0 0

−1 3 −1 0 −1

0 1 −1 −1 1

0 0 −1 1 0

0 −1 −1 0 2



.

Before the attack one has λmax(A−BKC) = −1.3443 and
after the attack λmax(A − BKC) = 1.6447, where λmax(·)
denotes the largest eigenvalue.

The time varying thresholds (28) are used to detect the
presence of an attack in the networked system. The presence
of an attack is detected at τa = 1.048s resulting in an attack
delay time of 0.348s. At the onset of the attack detection, the
controller of the compromised control unit is reconfigured to

u3(t)=−K̂32(t)y2(t)−K̂33(t)y3(t)−K̂34(t)y4(t)−K̂35(t)y5(t)

Figure 2 depicts the norm of the output error and it is
observed that it falls below the time varying threshold before
the attack. When it exceeds the threshold, the presence of the
attack is declared. When the accommodation is not activated,
then the system becomes unstable and ε → ∞. The same is
also observed in Figure 3, which depicts the evolution of
the state L2 norm. That also exhibits the same behavior with
regards to the presence of an attack and also the negative
effects of the attack when it is not accommodated.
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