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Abstract— This paper extends earlier results on the adaptive
estimation of nonlinear terms in finite dimensional systems
utilizing a reproducing kernel Hilbert space to a class of positive
real infinite dimensional systems. The simplest class of strictly
positive real infinite dimensional systems has collocated input
and output operators with the state operator being the genera-
tor of an exponentially stable C0 semigroup on the state space
X . The parametrization of the nonlinear term is considered in
a reproducing kernel Hilbert space Q and together with the
adaptive observer, results in an evolution system considered in
X ×Q. Using Lyapunov-redesign methods, the adaptive laws
for the parameter estimates are derived and the well-posedness
of the resulting evolution error system is summarized. The
adaptive estimate of the unknown nonlinearity is subsequently
used to compensate for the nonlinearity. A special case of finite
dimensional systems with an embedded reproducing kernel
Hilbert space to handle the nonlinear term is also considered
and the convergence results are summarized. A numerical
example on a one-dimensional diffusion equation is considered.

I. INTRODUCTION

The use of functional estimation of nonlinear terms in
finite dimensional linear systems with online approximators
was a well-studied topic in the late 80’s and early 90’s
as can be observed in the inaugural and first issues of the
IEEE Tr. on Neural Networks. Neural networks were used
to approximate the nonlinear terms and the weights were
trained (updated) using Lyapunov redesign methods.

More recently, [1] considered a class of MIMO nonlinear
systems and formulated the adaptive parameter estimation of
the assumed expansion of the nonlinear terms in a Euclidean
space. This was subsequently extended to a functional space
[2], [3], wherein the estimate of the unknown nonlinear
function was embedded in a reproducing kernel Hilbert
space (RKHS). The adaptive estimation scheme was then
considered not in the cross product of Euclidean spaces but
the cross product of the Euclidean space associated with the
process dynamics and a Hilbert space associated with the
functional estimate of the unknown nonlinear function.

The theory of RKHS was detailed in [4] and found its way
to estimation and control of dynamical systems. In the work
[5], [6], they utilized RKHS in order to adapt the centers
of the radial basis functions (RBFs) used for the adaptive
estimation of nonlinear terms.

The use of adaptive estimation techniques in infinite
dimensional systems and in particular strictly positive real
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infinite dimensional systems has been addressed in [7] for
systems with collocated input and output operators. The
enabling assumption for using available signals, such as the
process outputs and inputs, is that for the system under
consideration to have a strictly positive real transfer function,
[8]. In the time domain, this translates to the coupling of the
solution to the Lyapunov equation to the input and output
matrices (operators), [9]. It was subsequently extended to
general strictly positive real infinite dimensional systems
[10], [11], [12], [13]. An extension to the estimation of
nonlinear terms was considered in [14] but it assumed that
the nonlinear term admitted a series expansion.

This paper extends the earlier work on the use of RKHS
for functional estimation of finite dimensional systems to
a class of infinite dimensional systems. Two representative
partial differential equations (PDEs) are used to illustrate
the use of RKHS for functional estimation. The adaptive
laws along with the conditions for parameter convergence are
established and the well-posedenss of the resulting adaptive
system are summarized. A numerical example of a diffusion
PDE is provided in order to demonstrate the proposed
adaptive functional estimation scheme used for the controller
design of PDEs with nonlinear terms.

II. MOTIVATING EXAMPLES: MODELING AND

UNCERTAINTY PARAMETRIZATION

Two representative examples of a PDE in 1D are consid-
ered here, one with in-domain actuation and sensing

∂x(t,ξ)
∂t

=
∂2x(t,ξ)

∂ξ2 +b(ξ;ξs)
(

u(t)+w(t)+ γy(t)
)
,

x(t,0) = x(t, ℓ) = 0, x(0,ξ) = x0(ξ), 0 ≤ ξ ≤ ℓ,

y(t) =
∫ ℓ

0
b(ξ;ξs)x(t,ξ)dξ,

(1)

and the other one with boundary actuation and sensing

∂x(t,ξ)
∂t

=
∂2x(t,ξ)

∂ξ2 , x(0,ξ) = x0(ξ), 0 ≤ ξ ≤ ℓ,

x(t,0) = 0, xξ(t, ℓ) = u(t)+ γy(t)+w(t),

y(t) = x(t, ℓ).

(2)

The spatially distributed state is denoted by x(t,ξ), ξ ∈ [0, ℓ].
The in-domain uncertainty term γ in (1) and the boundary
uncertainty term γ in (2) may be an unknown constant that
is desired to be identified. The source term w may be a
constant term, a linear function of the output y, or, a nonlinear
function of the output y. The first two choices for w can be
incorporated into an affine function of the output y and this
in turn can be absorbed by w being a nonlinear function of
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the output y. Thus, (1) and (2) are re-written to reflect this

∂x(t,ξ)
∂t

=
∂2x(t,ξ)

∂ξ2 +b(ξ;ξs)
(

u(t)+g(y(t))
)
,

x(t,0) = x(t, ℓ) = 0, x(0,ξ) = x0(ξ), 0 ≤ ξ ≤ ℓ,

y(t) =
∫ ℓ

0
b(ξ;ξs)x(t,ξ)dξ,

(1 ′)

and
∂x(t,ξ)

∂t
=

∂2x(t,ξ)
∂ξ2 , x(0,ξ) = x0(ξ), 0 ≤ ξ ≤ ℓ,

x(t,0) = 0, xξ(t, ℓ) = u(t)+g(y(t)),

y(t) = x(t, ℓ),

(2 ′)

where

g(y) = a1 +a2y+ f (y), (3)

with a1,a2 some unknown constants. The term b(ξ;ξs) in (1)
and (1 ′) represents the spatial distribution of the collocated
actuator-sensor, parameterized by the spatial location ξs. In
the event that this distribution is the Dirac delta function, then
b(ξ;ξs) = δ(ξ−ξs). The system in (2) first considered in [7]
in the context of adaptive estimation of collocated infinite
dimensional systems was subsequently examined in detail
in [15] in the context of non-square positive real infinite
dimensional systems. It was presented as Example #1 in [15],
and which had a symmetric version given by

∂x(t,ξ)
∂t

=
∂2x(t,ξ)

∂ξ2 , 0 ≤ ξ ≤ ℓ,

xξ(t,0) = u(t)− γx(t,0)+w(t), x(t, ℓ) = 0,

y(t) = x(t,0).

Both (1 ′) and (2 ′) can be placed in an abstract form, writ-
ten as evolution equations in an appropriate Hilbert space.
The definition of their state operator will differ and their
input and output operators will have different representations;
symbolically, they will be identical and both be members of
a class of positive real infinite dimensional systems. This
abstract representation for both (1 ′) and (2 ′) is

ẋ(t) = Ax(t)+B(u(t)+g(y(t)))

y(t) = B∗x(t), x(0) ∈ D(A),
(4)

where the state operator A will be defined over an appro-
priate Hilbert/Sobolev space, the input operator B provides
information how the control signal u(t) and the uncer-
tainty/unmodelled dynamics g(y(t)) affect the state, and B∗,
the adjoint of B, is the output operator and details the manner
in which the sensing device obtains process measurements.

III. ADAPTIVE ESTIMATION

Following the classification in [16], the state operator A
is the infinitesimal generator of an exponentially stable C0

semigroup T0(t), t ≥ 0 on the Hilbert space X , [17]. The rank
1 operator B ∈ L(R,X) is the control input operator and the
output operator is taken to be collocated to the input operator
with B∗ ∈L(X ,R). Following the notation in [16], the system
in (4) is represented by the operator triple Σ = (A,B,B∗).

The collocated system Σ is part of a special class of
infinite dimensional systems termed strictly positive real

(SPR). Following the definition of SPR systems in [14] with
general output operators denoted by C, we can make the
following assumption for Σ = (A,B,C).

Assumption 1 (SPR system, [14]): Assume that the state
operator A is the generator of an exponentially stable C0

semigroup on X , B ∈ L(R,X) and C ∈ L(X ,R) such that
there exist a nonnegative constant µ, a self-adjoint, nonneg-
ative definite operator P ∈ L(X), and Q ∈ L(D(A),X) or
Q ∈ L(D(A),R) such that for ϕ ∈ D(A)

(A+µI)∗Pϕ+P(A+µI)ϕ =−Q∗Qϕ (5a)

B∗Pϕ =Cϕ. (5b)
The Lur’e equation in (5) is required for a more general class
of SPR systems as it accounts for a general output operator
not necessarily collocated with the input operator. An infinite
dimensional system that satisfies (3) is then termed as an
SPR (infinite dimensional) system. In the current class of
systems considered, namely Σ = (A,B,B∗), the collocated
input output assumption with C = B∗ and A a dissipative
operator satisfies (5a), (5b) with P = I. To formally state
this, we make the following (relaxed) assumption for the
class Σ = (A,B,B∗), which satisfies the general assumption
of SPR systems.

Assumption 2 (collocated SPR system): The system in
(4), as represented by Σ = (A,B,B∗), is assumed to have:

• The dissipative state operator A is the generator of an
exponentially stable C0 semigroup on X .

• The pair (A,B) is approximately controllable.
It should be noted that if (A,B) is approximately controllable,
then (B∗,A∗) is approximately observable, [18]. The latter
enables the design of an operator filter gain L such that A−
LC generates an exponentially stable C0 semigroup.

For the remainder of the paper, Assumption 2 is considered
to be satisfied. This assumption also applies to the case where
the input operator is unbounded, as is the case in (2 ′), and
in (1 ′) with b(ξ;ξs) = δ(ξ− ξs). In other words, a collo-
cated input-output operator with the state operator being the
generator of an exponentially stable C0 semigroup satisfies
the Lur’e equation (5a) which simplifies to A+A∗ < 0. To
accommodate for unbounded input and output operators, the
spaces where they are defined must be enlarged. The Gelfand
triple is considered V →֒ X →֒V ∗ with the embeddings dense
and continuous. The state space X is the pivot space and V is
a reflexive Banach space with V ∗ denoting its conjugate dual,
[19]. To include the case where the process measurement
is an m-dimensional vector, the output space is denoted by
Y ∈ R

m. Since we assume a square system, then the input
space U coincides with the output space. Then we have that
the rank m input and output operators B ∈ L(Y ,V ∗) and
B∗ ∈ L(V,Y ), and the state operator A ∈ L(V,V ∗). However,
in view of the two representative examples (1 ′), (2 ′), we
assume that the input and output operators are rank 1; i.e.
m = 1. The control space U for square systems is identical
to the output space Y with U = Y = R

1.
Assumption 3: The class of systems represented by (4) is

a square system where the input operator B ∈ L(Y ,V ∗) is a
rank 1 operator with Y ∈R

1. Similarly, the output operator,
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taken to be the adjoint of the input operator, is a rank 1
output operator with B∗ ∈ L(V,Y ).
Finally, an assumption on the boundedness of the system (4)
is required.

Assumption 4: The input signal u and the nonlinear func-
tion g(y) are such that ‖x(t)‖ ≤ γ, a.e. t > 0 for some γ > 0.

A. Parameter estimation

One way to estimate the unknown constant parameters a1

and a2 in (3), is to employ an adaptive observer. When g(y)
admits the particular series expansion

g(y(t)) =
N

∑
i=1

aiφi(y(t)) (6)

then one can set φ1 = 1 and φ2(y) = y to arrive at a
parametrization of g(y) that absorbs (3). The functions φi

can be polynomials of the output y or any other nonlinear
functions of y but with the property that the semilinear
dynamics ẋ = Ax+Bg(B∗x) yield a well-posed system; for
example a global Lipschitz continuity condition on g(y) with
x0 ∈ D(A) can provide such a desired property, [20].

Following the parametrization (6), we can define the
parameter space Θ ∈ R

N associated with the unknown co-
efficients ai, as the space of N-dimensional constant vectors
with inner product and norm

〈θ,χ〉Θ = θT χ, ‖θ‖2
Θ = θT θ, θ,χ ∈ Θ.

When the functional form of the uncertain term g(y)
is known, meaning that the nonlinear functions φi(·), i =
1, . . . ,N are known, then the adaptive observer for (4) with
the parametrization (6) takes the form of the adaptive esti-
mator in [14] and given by

˙̂x(t) = Ax̂(t)+L(y(t)−Cx̂(t))+Bu(t)+B
N

∑
i=1

âi(t)φi(y)

˙̂ai = δiε(t)φi(y(t)), âi(0) = âi0, i = 1, . . . ,N,

(7)

where ε(t), y(t)−Cx̂(t) is the output estimation error, âi(t)
is the adaptive estimate of each ai, i = 1, . . . ,N, x̂(t) is the
estimated state for (4), and L∈L(Y ,V ∗) is the filter operator
chosen so that A−LC generates an exponentially stable C0

semigroup on X . The constants δi > 0, i= 1, . . . ,N are termed
the adaptive gains, [9]. It should be noted that the estimate
of the unknown g(y(t)) is denoted by ĝ(t,y(t)) and is given
by the expansion (cf. (6))

ĝ(t,y(t)) =
N

∑
i=1

âi(t)φi(y(t)). (8)

Setting the state error as e(t) = x(t)− x̂(t), the parameter
errors as ãi(t) = âi(t)−ai and bringing them in vector form

θ̃(t) = θ̂(t)−θ =




â1(t)−a1

...

âN(t)−aN


 , Φ(y) =




φ1(y)
...

φN(y)


 ,

the state and parameter error dynamics resulting from (4)
and (7) are considered in X ×R

N and are governed by

ė(t) = (A−LC)e(t)+Bθ̃T (t)Φ(y(t))
˙̃Θ(t) =−∆Φ(y(t))ε(t),

(9)

where ∆ > 0 is the diagonal matrix of adaptive gains with
{∆}ii = δi, i = 1, . . . ,N.

Similarly, one can define the function estimate error

g̃(t,y(t)) = g(y(t))− ĝ(t,y(t))

=
N

∑
i=1

(ai(t)− âi(t))φi(y(t)) = θ̃T (t)Φ(y(t)).
(10)

In terms of the representative PDE in (1 ′), the adaptive
observer takes the specific form

∂x̂(t,ξ)
∂t

=
∂2x̂(t,ξ)

∂ξ2 +b(ξ;ξs)u(t)+b(ξ;ξs)
N

∑
i=0

âi(t)φi(y(t))

+µ(ξ)
(

y(t)−
∫ ℓ

0
b(ξ;ξs)x̂(t,ξ)dξ

)

x̂(t,0) = x̂(t, ℓ) = 0, x̂(0,ξ) = x0(ξ), 0 ≤ ξ ≤ ℓ,

˙̂ai(t) = δi

(
y(t)−

∫ ℓ

0
b(ξ;ξs)e(t,ξ)dξ

)
φi(y(t))

(11)
where µ(ξ) is the kernel representation of the adjoint of the
filter operator L in (7). The error equations resulting from
(1 ′) and (11) and associated with the formulation (9) are

∂e(t,ξ)
∂t

=
∂2e(t,ξ)

∂ξ2 +b(ξ;ξs)θ̃T (t)Φ(y(t))

−µ(ξ)
∫ ℓ

0
b(ξ;ξs)e(t,ξ)dξ

e(t,0) = e(t, ℓ) = 0, e(0,ξ) = e0(ξ), 0 ≤ ξ ≤ ℓ,

˙̃θ(t) =
(∫ ℓ

0
b(ξ;ξs)e(t,ξ)dξ

)
∆Φ(y(t)).

(12)

The adaptive observer (7) corresponding to (2 ′) is given by

∂x̂(t,ξ)
∂t

=
∂2x̂(t,ξ)

∂ξ2 , x̂(0,ξ) = x̂0(ξ), 0 ≤ ξ ≤ ℓ,

x̂(t,0) = 0,

x̂ξ(t, ℓ) = u(t)+
N

∑
i=0

α̂i(t)φi(y(t))+µ(ℓ)(y(t)− x̂(t, ℓ)) ,

˙̂ai(t) = δi (y(t)− x̂(t, ℓ))φi(y(t)), âi(0) = âi0,
(13)

and the associated error equations are given by

∂e(t,ξ)
∂t

=
∂2e(t,ξ)

∂ξ2 , e(0,ξ) = e0(ξ), 0 ≤ ξ ≤ ℓ,

e(t,0) = 0,

eξ(t, ℓ) = θ̃T (t)Φ(y(t))−µ(ℓ)e(t, ℓ),
˙̃θ(t) = e(t, ℓ)∆Φ(y(t)).

(14)

The stability of the two error equations (12) and (14)
can be established by equivalently examining their abstract
representation (9). Using the Lyapunov candidate functional

V = |e(t)|2X + 〈θ̃(t),∆−1θ̃(t)〉Θ, (15)

its derivative along (9) produces

V̇ = 〈e,(A−LC)e〉+ 〈(A−LC)e,e〉 ≤ −κ|e|2X ≤ 0.

The convergence of the state error to zero can easily be
established by applying the Bellman-Gronwall Lemma to
(15). Most of the arguments follow the analysis in [14].
Similarly, the well-posedness follows the analysis presented
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in [21] when one applies the specific expression BΘT Φ(y)
for the nonlinear term. The error system (9) is examined in
the space X ×Θ with the augmented state given by z = (e, θ̃)
and the semilinear evolution operator A(t) on X ×Θ by

A(t) =

[
Ao 0

0 0

]
+

[
0 B[·]T Φ(y)

−∆Φ(y)(B∗[·]) 0

]
, (16)

where Ao = A−LC, resulting in (9) compactly written as the
evolution system over the space X ×Θ

ż(t) = A(t)z(t), z(0) = (e0, θ̃(0)). (17)

The remaining arguments use Galerkin approximation on a
fixed point iterate along with the Lyapunov functional (15)
to establish well-posedness, see [14] for details.

Remark 1: The matrix operator (16) has the skew adjoint
structure that is characteristic of adaptive systems that first
appeared in [22] for finite dimensional systems. Such a struc-
ture was first adapted to the infinite dimensional case [23],
[21] and subsequently in the context of adaptive estimation
of positive real infinite dimensional systems in [13]. The
advantage of this skew adjoint structure is that it readily
provides the condition for persistence of excitation. The term
−∆Φ(y)(B∗[ · ]) in (17) can be replaced by

−∆Φ(y)(B∗P[ · ])←−−∆Φ(y)(B∗[ · ]) ,
when the general version of the positive real systems Σ =
(A,B,C) is considered as per Assumption 1. Following (5b),
in this case the operator product B∗P can be replaced by the
output operator C. This condition is of course the one that
renders the adaptive laws (9) feasible since the update laws
for Θ̃ utilize the available signals ε and Φ(y).

Similarly, one can express the condition for persistence
of excitation needed to establish the parameter convergence
limt→∞ θ̂(t)= θ. It requires the existence of T0,δ0 and ε0 such
that for each admissible ψ∈Θ with |ψ|Θ = 1 and sufficiently
large t > 0, there exists t̃ ∈ [t, t +T0] such that∥∥∥∥

∫ t̃+δ0

t̃
BψT Φ(y(τ))dτ

∥∥∥∥
V ∗

≥ ε0. (18)

Paving the way for the functional estimation and the subse-
quent norm-convergence of the functional learning presented
in Section III-B below, one can consider a weak version
of persistence of excitation as first presented in [24]. This
entails the definition of the set

Θ =
{

ψ ∈ Θ :

lim
t→∞

∣∣∣
∫ t+β

t
〈BψT Φ(y(τ)),ϕ〉dτ

∣∣∣= 0, ϕ ∈V,β > 0
} (19)

and the ball Bρ = {ψ ∈ Θ : |ψ|Θ ≤√ρ}. Then from (15) we
have limt→∞ |e(t)|= 0 and

lim
t→∞

dist(θ̃(t),Θ∩Bρ) = 0. (20)

Additionally, one has

weak− lim
t→∞

θ̂(t) = θ+ΠΘ(θ̂(0)−θ), (21)

where ΠΘ denotes the orthogonal projection of Θ onto Θ.

B. Functional estimation

Now, the nonlinear term g(y) in (4) is no longer assumed
to admit the expansion (6). We denote by Q the Hilbert

space of functions defined on Y , i.e. f : Y → R
1, with the

evaluation functional over Q which evaluates each function
at a point y ∈ Y by

λy : f → f (y), ∀ f ∈ Q, (22)

i.e. f (y) = λy( f ). The argument of f (y) can be “viewed”
as the spatial variable as considered in the adaptive esti-
mation of spatially varying parameters in PDEs. Through
the appropriate construction of the kernels, defined below,
one has that the evaluation functional λy is bounded and
thus the Hilbert (parameter) space Q is a RKHS. Using the
Riesz representation theorem [25] we have that for all y∈Y ,
there is an element κ(·, ·) : Y ×Y → R

1 with κy = κ(y, ·)
(reproducing kernel) that has the reproducing property

f (y)= λy( f )= 〈 f ,κ(y, ·)〉Q = 〈 f ,κy〉Q,∀ f ∈Q∀y∈Y , (23)

Following [26], the inner product enables the evaluation of
the kernel function at “spatial” points of the data space Y .
For “spatial” points yi,y j ∈ Y and corresponding elements
in the feature space f (yi), f (y j) ∈ Q, then

〈 f (yi), f (y j)〉Q = 〈κ(yi, ·),κ(y j, ·)〉Q = κ(yi,y j).

This is known as the kernel trick [26], and reduces the
calculations in high-dimensional spaces.

Essential to the derivation of the update laws via
Lyapunov-redesign method, is the definition of the adjoint
of the evaluation functional λ∗

y : Y → Q given by

〈ε,λy( f )〉Y = 〈εκy, f 〉Q = 〈λ∗
y(ε), f 〉Q. (24)

Using (23), we detail the steps used for the extraction of the
update laws. Consider the term Bλy( f ) in weak form

〈ϕ,Bλy( f )〉V,V ∗ = 〈B∗ϕ,λy( f )〉Y

= 〈λ∗
y(B

∗ϕ), f 〉Q
, ϕ ∈V, f ∈ Q. (25)

Consider now the abstract representation (4) where we no
longer assume the expansion (6)

ẋ(t) = Ax(t)+Bu(t)+Bλy(t)(g), in V ∗. (26)

The expression for the adaptive observer (7) is now given by
˙̂x(t) = Ax̂(t)+L(y(t)−Cx̂(t))+Bu(t)+Bλy(t)(ĝ), (27)

where ĝ denotes the time varying (adaptive) estimate of g.
Using (26) and (27), the evolution equation of the state
estimation error is given by

ė(t) = (A−LC)e(t)+Bλy(t)(g̃). (28)

In order to extract the adaptation for ĝ, we consider the
Lyapunov functional (cf. (15))

V (e, f̃ ) = |e(t)|2X + 〈G−1g̃, g̃〉Q (29)

where G ∈L(Q,Q) is the positive definite, self-adjoint linear
operator 1, taking the role of the adaptive gain matrix ∆ in
(15). Taking the derivative along the error equation (28) then

V̇ = 〈e,Aoe〉+〈Aoe,e〉+2〈e,Bλy(t)(g̃)〉+2〈G−1 ˙̃g, g̃〉Q. (30)

Using (25), the term 2〈e,Bλy(t)(g̃)〉 is equivalent to

2〈e,Bλy(t)(g̃)〉V,V ∗ = 2〈λ∗
y(t)(ε), g̃〉Q,

where ε(t) = B∗e(t) is the output estimation error. Using the

1One can ignore G since 〈p,Gq〉Q, p,q ∈ Q can be viewed as a
redefinition of the inner product in Q and thus 〈p,Gq〉Q ≃ 〈p,q〉Q
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above, the derivative of V simplifies to

V̇ = 〈e,Aoe〉+ 〈Aoe,e〉+2〈λ∗
y(t)(ε), g̃〉Q +2〈G−1 ˙̃g, g̃〉Q.

The adaptive laws for g̃ can now be extracted and given by
˙̃g =−Gλ∗

y(t)(ε(t)) (31)

or in weak form

〈 ˙̃g, p〉Q =−〈Gλ∗
y(t)(ε(t)), p〉Q =−〈ε(t),λy(t)(G p)〉Q (32)

for all test functions p ∈ Q.

The counterpart of the abstract operator A in (16), defined
now over X ×Q is given by

A(t) =

[
Ao 0

0 0

]
+

[
0 Bλy(t)([ · ])

−Gλ∗
y(t) (B

∗[ · ]) 0

]
(33)

The extension of the adaptive functional estimation using
RKHS’s can be summarized in the following lemma.

Lemma 1: Assume that the PDEs under consideration can
be represented in the form (4) where Assumptions 2, 3 and
4 are satisfied. Then the adaptive observer of the system in
the form (26) is given by (27) with the adaptive rules for g
given in weak form by (32). Additionally, the resulting error
system, written as an evolution system in X ×Q

d
dt

[
e(t)

g̃(t)

]
= A(t)

[
e(t)

g̃(t)

]
(34)

with A(t) given by (33), is well-posed and limt→∞ |e(t)|X =
0. Furthermore, if there exist T0,δ0 and ε0 such that for each
admissible element q∈Q with |q|Q = 1 and sufficiently large
t > 0, there exists t̃ ∈ [t, t +T0] such that∥∥∥∥

∫ t̃+δ0

t̃
Bλy(τ)(q)dτ

∥∥∥∥
V ∗

≥ ε0. (35)

then limt→∞ ‖ĝ(t)−g‖Q = 0.

Proof: Assumption 4 ensures that (26) coincides with
the definition of a plant in [23]. Using (34) where the time-
dependent evolution operator A(t) is given by (33) one can
immediately use Theorem 3.2 and Theorem 3.4 in [23] to
establish well-posedness and convergence.

One can use the adaptive estimate of the nonlinear term to
improve controller performance. Denote by u0(t) the nominal
control signal that in the absence of the nonlinear term g(y),
provides the requisite performance; such a controller can be
based on full state feedback given by u0(t) =−Kx(t) where
K ∈ L(V,U) is the full state feedback operator design to
provide a certain performance. In the absence of full state
measurements, one must use the state estimate to implement
such a nominal controller. The state of the adaptive observer
can serve as such and the adaptive controller that includes
the nonlinear compensation is given by

u(t) =−ĝ(y)−Kx̂(t) (36)

The resulting closed-loop system is given by

ẋ(t) = (A−BK)x(t)+BKe(t)+Bg̃(y). (37)

When examining the stability and well-posedness of (37), all
three equations must be considered in the space X ×X ×Q

with aggregate state ζ(t) = (e(t),x(t), g̃(t)))

ζ̇ =




Ao 0 Bλy(t)([ · ])
BK A−KC Bλy(t)([ · ])

−Gλ∗
y(t) (B

∗[ · ]) 0 0


ζ (38)

Lemma 2 (CL system): Assume that the square infinite
dimensional system (26) satisfies Assumptions 2–4. Then the
adaptive compensator given by (27), (32) and (36) results in
a well-posed system described by (38) with

lim
t→∞

|x(t)|X = 0 and lim
t→∞

|e(t)|X = 0.

Proof: The aggregate system (38) is in the form of
Theorem 2.9 in [21] and therefore the well-posedness of (38)
can be established using implicit function theorem. Similarly,
Theorems 3.4 and 3.6 in [21] provide the convergence.

C. Special case: process dynamics in R
n

When the process dynamics (4) is now governed by a finite
dimensional system in R

n with the Gelfand triple collapsing
and thus V = X = V ∗ = R

n, the conditions for persistence
of excitation are simplified and the convergence of the state
estimation error can be easily established. Thus the finite
dimensional counterpart of (26) is now given by

ẋ(t) = Ax(t)+Bu(t)+Bλy(t)(g), in R
n,

y(t) =Cx(t)
(39)

where A∈R
n×n, B∈R

n×1 and C ∈R
1×n. We can impose the

general condition for SPR systems, thus requiring the triple
Σ = (A,B,C) satisfy the Lur’e matrix equations (cf. (5))

AT P+PA =−QT Q, BT P =C. (40)

The associated adaptive observer is symbolically identical to
the infinite dimensional counterpart in (27) and given by

˙̂x(t) = Ax̂(t)+L(y(t)−Cx̂(t))+Bu(t)+Bλy(t)(ĝ), (41)

where x̂(t) ∈ R
n is the adaptive estimate of the state vector

x(t) and ĝ is still the adaptive estimate of g. The associated
error equation is given by

ė(t) = (A−LC)e(t)+Bλy(t)(g̃). (42)

The Lyapunov functional needed to extract the adaptive laws
is given by

V (e, f̃ ) = eT (t)Pe(t)+ 〈G−1g̃(t), g̃(t)〉Q (43)

with G ∈ L(Q,Q) the adaptive gain operator. Its derivative
along the trajectories of the state estimation error is

V̇ = eT PAoe+ eT AT
o Pe+2eT PBλy(t)(g̃+2〈G−1 ˙̃g, g̃〉Q

=−eT QT Qe+2εT λy(t)(g̃)+2〈G−1 ˙̃g, g̃〉Q
(44)

Using (24), (25), the third term is

εT λy(t)(g̃) = 〈ε,λy(t)(g̃)〉Y

= 〈εκy(t), g̃〉Q = 〈λ∗
y(t)(ε), g̃〉Q

which immediately yields the same adaptive laws as in (32).
Similar to the infinite dimensional case, the adaptive

controller can be used to minimize/reject the effects of
the unknown nonlinear term. The controller has the same
structure as the infinite dimensional one (35).

Lemma 3: Assume that the triple Σ = (A,B,C) in (39)
satisfies the Lur’e equations (40). Then the compensator (41),
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Fig. 1. Evolution of state and functional norms.

(32) and (36) results in a well-posed system in R
N ×R

N ×Q
with boundedness of all signals and asymptotic convergence
of the plant state x(t) and estimation error e(t) to zero.
The proof is based on the proofs of Lemmas 1, 2 adjusted
for V = X =V ∗ = R

N .

IV. NUMERICAL EXAMPLE AND CONCLUSIONS

The PDE in (1 ′), modified to include a thermal diffusivity
parameter, is considered in [0, ℓ] = [0,1]

xt(t,ξ) = axξξ(t,ξ)+δ(ξ−ξs)(u(t)+g(y(t)))

with a = 0.01 and the actuator location ξs = 0.215ℓ. The
nonlinear term was set as g(y) = 2×10−4y3. The controller
(36) used an operator gain K based on LQR design with
penalties given by ‖x(t)‖2 and 100u2(t) and the adaptive es-
timate of g(y). The filter used µ(ξ) = 0.001δ(ξ−ξs). Radial
basis functions (RBFs) were selected for the functional esti-
mation, with κy(q) = exp{− |y−q|2

2σ2 }. The standard deviation
was selected as σ = 100

2
√

log(2)
and the means were evenly

distributed in the interval [−10,20]. For the approximation
of g(y), using finite dimensional subspaces QN ⊂ Q, a total
number N = 31 of RBFs were used g(y)≈ ∑N

i=1 θiκyi(·) and
for the approximation of (1 ′) a Galerkin-based scheme was
used to approximate with a total of 50 linear elements.

Figure 1a depicts the evolution of the state norm with
the accommodating controller (36) and with only using the
nominal controller u0(t) = −Kx̂(t). When the functional
estimation is used in (36) the controller performance is
significantly improved. Figure 1b depicts the evolution of
the functional error g(y(t))− ĝ(y(t), t) where it is observed
that it also converges to zero.

The earlier work on the use of RKHS for functional
estimation of finite dimensional systems has been extended to
a class of infinite dimensional systems. The well-posedness
and convergence of the adaptive observer was summarized
and its use as a compensator was demonstrated in a 1D PDE.
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differential equations ẋ = [A + B(t)]x, with skew symmetric matrix
B(t),” SIAM J. Control Optimization, vol. 15(1), pp. 163–176, 1977.

[23] J. Baumeister, W. Scondo, M. A. Demetriou, and I. G. Rosen, “On-
line parameter estimation for infinite-dimensional dynamical systems,”
SIAM J. Control Optim., vol. 35, no. 2, pp. 678–713, 1997.

[24] M. A. Demetriou and I. G. Rosen, “On the persistence of excitation in
the adaptive estimation of distributed parameter systems,” IEEE Trans.
on Automatic Control, vol. 39, no. 5, pp. 1117–1123, May 1994.

[25] M. Reed and B. Simon, Methods of modern mathematical physics. I.
Functional analysis. Academic Press, New York-London, 1972.

[26] K. Slavakis, S. Theodoridis, and I. Yamada, “Adaptive constrained
learning in reproducing kernel hilbert spaces: The robust beamforming
case,” IEEE Trans. Signal Process., vol. 57(12), Dec 2009.

1587


