
Optimal Communication Topology and Static Output Feedback of
Networked Collocated Actuator/Sensor Pairs in Distributed Parameter

Systems

Michael A. Demetriou1 and Christoforos N. Hadjicostis2

Abstract— This paper is motivated by economic aspects
of fixed initial and operating costs for control of spatially
distributed systems. In particular, the paper investigates the
possibility of a large number of inexpensive actuating and
sensing devices, as an alternative to (a reduced number of)
expensive high capacity devices. While such an alternative
reduces the fixed initial costs associated with actuators and
sensors, it may also lead to increased operating costs resulting
from communication requirements between the now-networked
actuator-sensor-control units. To simplify the controller archi-
tecture, a proportional controller is assumed that amounts to
a static output feedback controller. In a network of n actuator-
sensor pairs, an all-to-all communication topology results in
a fully populated static output feedback matrix with as much
as n(n− 1) communication links. In addition to a traditional
performance index used to obtain the static output feedback
gain matrix, this paper proposes a mixed index wherein
both the traditional performance index and the number of
communication links (representing operating costs associated
with information exchange links), are taken into account. As an
example, the proposed scheme is applied to a parabolic partial
differential equation having four actuator-sensor pairs. The
resulting optimization produces a sparse static gain matrix with
a communication topology that has half the graph edges of the
fully connected case and with essentially the same performance.

I. INTRODUCTION

Traditional approaches to control design paid little or
no attention to economic factors. In particular, the use of
multiple inexpensive actuating and sensing devices over
fewer more expensive actuating and sensing devices is still an
open problem. In spatially distributed systems, the economic
aspects of the hardware (fixed costs) and the implementation
(operating costs) go beyond the problem of centralized vs
distributed control design and implementation for large scale
systems. A centralized design provides controller efficiency
and performance, whereas a distributed one provides reduced
controller complexity and robustness with respect to failures.

A centralized scheme with a reduced number of high
capacity actuating and sensing devices will provide superb
controller performance at the expense of a large initial
fixed cost. On the other hand, a possibly distributed design
utilizing a large number of inexpensive actuating and sensing
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devices can provide adequate controller performance with a
significantly reduced initial fixed cost. The challenge may
come at the operating costs for either controller approach.
The distributed scheme employs a larger (and cheaper)
number of actuating and sensing devices, but may have
to rely on a rather large connectivity of the networked
actuating and sensing devices to produce comparable con-
troller performance. One strategy to defray the operating
costs emanating from a large connectivity amongst the
control units is to optimize the communication topology.
This problem in the context of sparsity promoting control
design has been extensively considered by Jovanović and
co-workers in [1], [2] for the finite dimensional case. A
somewhat similar optimization was considered in [3] in
the context of communication optimization of multi agent
systems. Thus, a distributed scheme with a large number of
networked actuating and sensing devices utilizing a carefully
chosen sparse interconnection topology can prove to have
an economic advantage over a centralized scheme with a
small number of expensive actuating and sensing devices,
both in terms of fixed and operating costs. In addition, a
distributed scheme will likely exhibit several advantages in
terms of fault tolerance and reconfigurability (in case some
of the actuating/sensing devices malfunction or some of the
network links cease to exist); robustness is also a typical
advantage of distributed/decentralized schemes.

This paper considers large systems, such as those rep-
resenting spatially distributed processes and described by
partial differential equations (PDEs). It assumes that a large
number of inexpensive actuating and sensing devices are
employed. To simplify the controller architecture, it assumes
that the actuating devices are collocated with the sensing
devices. This has the advantage of having the control unit
(processor, actuator and sensor) reside at the same physical
location. Then, the paper assumes that the control signals
generated by each actuating device are scalar multiples
of the measured outputs, which in essence implements a
proportional controller. Since each actuating device can
obtain the different scalar multiples of all networked sen-
sor measurements, the resulting controller becomes a static
output feedback controller. To minimize the operating costs
caused by a large number of interconnections amongst the
control units, the paper proposes an optimization scheme to
promote sparsity of the static feedback gain thus reducing
the communication links between the networked control units
and thereby minimizing the operating costs. To achieve this,
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a traditional control performance index, represented by the
total energy over a time interval, whose solution is given
by the associated coupled Riccati-Lyapunov equations of the
closed-loop system, is combined with a sparsity measure rep-
resented by the number of nonzero entries of the adjacency
matrix associated with a given communication topology.

The problem at hand is motivated in Section II and the
formulation of the mixed optimization and its solution are
summarized in Section III. Numerical results for a diffusion
PDE employing four actuator-sensor pairs is presented in
Section IV. Conclusions follow in Section V.

II. PROBLEM MOTIVATION

The class of systems under consideration is described by
the following evolution equation

ẋ(t) = Ax(t)+Bu(t), x(0) = x0 ∈ D(A), (1)
defined over the Hilbert space {H,〈·, ·〉H , | · |H}. The state
operator A and the input operator B must be defined in
appropriate spaces. Towards that, define the reflexive Banach
space (interpolating space) {V,‖ · ‖V} that is densely and
continuously embedded in H with V →֒ H →֒V ∗ where the
embeddings are dense and continuous, [4]. The space V ∗

denotes the continuous dual of V . Then, the operator A ∈
L(V,V ∗). Assuming, for simplicity, a single input, then the
input operator B ∈ L(R1,V ∗). The input operator represents
an actuating device with high capacity and bandwidth capa-
ble of delivering large control signals to the process. It also
represents a prohibitively expensive option for controlling
the infinite dimensional process (1). Assuming access to full
state, a feedback controller of the form

u(t) =−K x(t) (2)
where the feedback operator K ∈ L(V,R1) can be designed
to optimize a performance index, such as LQR or H2/H∞,
[5]. However, the control law (2) requires:

(A.1) access to the full infinite dimensional state x(t),
(A.2) an expensive actuator represented by the input operator

B , required to deliver the control signal to the process.

Relaxing requirement (A.1) typically involves the use of
process measurements employed by a state estimator to
provide the estimate x̂(t) of x(t). The control law becomes

u(t) =−K x̂(t). (3)
The control law (3) requires:

(B.1) an expensive sensing device to obtain measurements,
(B.2) an expensive actuator represented by the input operator

B , required to deliver the control signal to the process,
(B.3) a state estimator to reconstruct the state x(t).

Requirement (B.1) is realized via the measurement
y(t) = Cx(t) (4)

where the output operator C ∈ L(V,R1) represents a single
expensive sensing device. Requirement (B.3) is satisfied by

˙̂x(t) = A x̂(t)+Bu(t)+F (y(t)−C x̂(t)) , (5)
with x̂(0) = x̂0 ∈ D(A), where F ∈ L(R1,V ∗) denotes the
filter operator gain. The filter gain design can be based on a
Kalman filter of a Luenberger observer, [5].

A possible solution that enables one to reduce the com-
putational and design complexity of implementing the state
estimator (5) in real-time, is to use a static output feedback
controller, whenever applicable. In this case, the controller
(3) is replaced by the static controller

u(t) =−Γy(t), Γ : R1 → R
1, (6)

where Γ is the static output feedback gain, which requires:

(C.1) an expensive sensing device, represented by the output
operator C , to obtain process measurements,

(C.2) an expensive actuator represented by the input operator
B , required to deliver the control signal to the process,

(C.3) the additional condition of static stabilizability for the
triple (A ,B ,C ) which guarantees the existence of the
gain Γ such that the closed-loop operator A −BΓC
generates an exponentially stable C0 semigroup, [6].

All three controllers, (2), (3) and (6), presented in decreas-
ing controller complexity, require expensive actuating and
sensing devices. To avoid the use of expensive hardware,
one considers the use of inexpensive sensing and actuating
devices. In its general form, the system in (1) is re-written

ẋ(t) = Ax(t)+
na

∑
i=1

Biui(t), x(0) = x0 ∈ D(A),

y(t) =




y1(t)
...

yns(t)


=




C1(xt)

...

Cnsx(t)


 ,

(7)

where na denotes the number of actuating devices and ns the
number of sensing devices. Both the actuating devices, rep-
resented by the input operators Bi ∈ L(R1,V ∗), i = 1, . . . ,na,
and the sensing devices, represented by the output operators
C j ∈ L(V,R1), j = 1, . . . ,ns, represent inexpensive devices
with possibly reduced capacities and bandwidths.

Many open problems arise from the formulation in (7)
regarding the architecture of each controller signal ui(t),
i = 1, . . . ,na. However, we will limit ourselves to the special
case of a simple proportional controller (or static output
feedback). In this case, the control signals are given by

ui(t) =−
ns

∑
j=1

γi jy j(t), i = 1, . . . ,na, j = 1, . . . ,ns, (8)

where γi j are the proportional gains. Careful examination
of (8) reveals the underlined complexity vis-à-vis the infor-
mation exchange between each actuator Bi, i = 1, . . . ,na and
each sensor C j, j = 1, . . . ,ns. For the specific choice of equal
number of actuating and sensing devices with na = ns that
are collocated Ci = B∗

i , i = 1, . . . ,na, then
ui(t) =−γiiyi(t), i = 1, . . . ,na, (9)

represent completely disconnected actuators-sensors (referred
to as a decentralized control architecture), whereas

ui(t) =−
na

∑
j=1

γi jy j(t), i = 1, . . . ,na, (10)

represents an actuator-sensor network with full connectivity
and is depicted in Figure 1. In other words, each control
unit has access to all sensor outputs and uses them to
generate the control signals (10). This paper considers the
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case between (9) and (10), namely between noninteracting
and fully connected control units.

Before continuing with the proposed controller that will
result in reduced network complexity, we provide the frame-
work for the information exchange between the actuators
and sensors. A directed graph (digraph) G = (V ,E) is
used to describe the information exchange between each
actuator-sensor pair. The nodes V = {1,2, . . . ,na} represent
the control units (actuator-sensor pairs) and the edges E ⊆
V × V represent the communication links between these
networked control units. In particular, edge (i, j) indicates
that node j can send information to node i. The set of in-
neighbors that a given ith control unit receives information
from, is defined as N −

i = { j : (i, j)∈ E}, whereas the set of
out-neighbors that a given ith control unit sends information
to, is defined as N +

i = {l : ( j, i) ∈ E}.

A digraph forms an undirected graph if whenever (i, j) ∈
E , we also have ( j, i) ∈ E . In such case, the set of in-
neighbors and out-neighbors of node i are the same with
N −

i = N +
i = N i. The graph Laplacian matrix associated

with an undirected graph G is denoted by L and is given
by L = D−A, where D is the degree matrix and A is the
adjacency matrix, [7].

We can now define the proposed control laws
ui(t) =− ∑

j∈N i

γi jy j(t), i = 1, . . . ,na. (11)

The realization and implementation of the control laws in
(11) lead to many optimization problems. To demonstrate
aspects of the optimization involving the optimal placement
of the actuating and sensing devices (actuator and sensor
locations), and to provide an appreciation of the spatial
effects hidden in the abstract representation (7), we consider
the diffusion PDE in one spatial dimension

∂x
∂t
(t,ξ) = α

∂2x
∂ξ2 (t,ξ)+

na

∑
i=1

bi(ξ)ui(t)

x(t,0) = x(t, ℓ) = 0, x(0,ξ) = x0(ξ) ∈ L2(Ω),

y(t) =




y1(t)
...

yna(t)


=




∫ ℓ

0
c1(ξ)x(t,ξ)dξ

...∫ ℓ

0
cna(ξ)x(t,ξ)dξ



,

(12)

where [0, ℓ] = Ω denotes the spatial domain, bi(ξ), i =
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Fig. 1. Spatially distributed process with interconnected actuator-sensors.

1 . . . ,na denote the spatial distributions associated with the
input operators Bi, i = 1 . . . ,na, in (7), and ci(ξ), i = 1 . . . ,na

denote the spatial distributions associated with the output
operators Ci, i = 1 . . . ,na in (7). The state space H = L2(Ω)
with V = H1

0 (Ω) and V ∗ = H−1(Ω), [5]. In particular, one
defines the input and output operators in weak form via

〈Biui(t),φ〉=
∫ ℓ

0
bi(ξ)ui(t)φ(ξ)dξ, i = 1, . . . ,na,

C jφ =
∫ ℓ

0
c j(ξ)φ(ξ)dξ, j = 1, . . . ,na,

for all test functions φ ∈ H1
0 (Ω). The state operator is

〈Aφ,ψ〉=
∫ ℓ

0
α

d2φ(ξ)
dξ2 ψ(ξ)dξ =−

∫ ℓ

0
α

dφ(ξ)
dξ

dψ(ξ)
dξ

dξ.

Finally, the infinite dimensional state x(t) in (7) is identified
as the solution to the PDE in (12) via x(t) = x(t, ·).

To further reveal some aspects of the optimization not
found in the finite dimensional case, we consider the place-
ment of the actuating and sensing devices as another level
of optimization. Towards that we assume that each of these
devices is modelled by a Dirac delta spatial function with
the interpretation of a pointwise-in-space actuation for bi(ξ)
and pointwise-in-space measurement for ci(ξ); thus∫ ℓ

0
bi(ξi)ui(t)φ(ξ)dξ =

∫ ℓ

0
δ(ξ−ξi)ui(t)φ(ξ)dξ

= φ(ξi)ui(t)

(13)

for i = 1 . . . ,na, and∫ ℓ

0
c j(ξ j)φ(ξ)dξ =

∫ ℓ

0
δ(ξ−ξ j)φ(ξ)dξ = φ(ξ j) (14)

for j = 1 . . . ,na. The actuator locations ξi, i= 1, . . . ,na in (13)
and the sensor locations ξ j, j = 1, . . . ,na in (14) are termed
the actuator and sensor centroids. They can be arbitrary
and their location can be selected via the optimization of
an appropriate performance metric, or a priori selected.

III. PROBLEM FORMULATION

To formulate the various optimization problems arising
from the implementation of the distributed controllers (11),
we formally make the following assumptions.

Assumption 1 (Actuator and sensor devices): The num-
ber na of actuators and ns of sensors in (7) are equal.

Assumption 2 (Identical devices): The spatial distribu-
tions of the actuating devices are identical, in the sense
bi(ξk) = b j(ξk), i, j = 1 . . . ,na, and only differ in their loca-
tion. Similarly the sensing devices are identical with ci(ξk) =
c j(ξk), i, j = 1 . . . ,na, and only differ in their location.

Assumption 3 (Collocated actuators and sensors): The
actuating devices bi(ξ) in (12) are collocated to the sensing
devices c j(ξ) with bi(ξ) = ci(ξ), i = 1, . . . ,na.

Remark 1: Assumption 2 implies that the input and output
operators in (7) are related via Bi = C ∗

i , i = 1 . . . ,na.
In view of Assumptions 1, 2, 3 and Remark 1, the system

(7) with the proposed controllers (11) can be written as

ẋ(t) = Ax(t)+
[

B1 . . . Bna

]
Γ




B∗
1 x(t)

...

B∗
na

x(t)


 , (15)
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where the na ×na matrix Γ has {Γ}i j = γi j. In terms of the
specific PDE (12), it is given by
∂x
∂t
(t,ξ) = α

∂2x
∂ξ2 (t,ξ)−

na

∑
i=1

bi(ξ) ∑
j∈Ni

γi jy j(t)

= α
∂2x
∂ξ2 (t,ξ)

−
[

b1(ξ) . . . bna(ξ)
]

Γ




∫ ℓ

0
b1(ξ)x(t,ξ)dξ

...
∫ ℓ

0
bna(ξ)x(t,ξ)dξ



.

(16)

The various optimization problems associated with (16),
or its abstract representation (15), can now be presented in
increasing complexity. These involve the physical location of
the collocated actuating/sensing devices via the centroids ξi,
the connectivity of the control units as given by the nonzero
entries of Γ, and the numerical value of the gains γi j in (11).
These optimizations echo the ones presented in [8].

(O1) Given a number na of actuating-sensing devices in fixed
locations and a priori selected information exchange
channels described by the graph topology G , which
immediately defines the nonzero entries of Γ, find

1) the numerical values of the nonzero entries of Γ,

by minimizing a suitable performance metric.
(O2) Given an a priori selected information exchange de-

scribed by the graph topology G , which immediately
defines the nonzero entries of the gain matrix Γ, find

1) the location of the na actuating-sensing devices,
2) the numerical values of the nonzero entries of Γ,

by minimizing a suitable performance metric.
(O3) Given a fixed location of the na actuating-sensing de-

vices, find

1) the optimal connectivity as described by the
nonzero entries of Γ (i.e. which entries of Γ are to
be nonzero),

2) the numerical values of the nonzero entries of Γ,

by minimizing a suitable performance metric.
(O4) Given a number na of the actuating-sensing devices, find

1) the location of the na actuating-sensing devices,
2) the optimal connectivity as described by the

nonzero entries of Γ (i.e. which entries of Γ are to
be nonzero),

3) the numerical values of the nonzero entries of Γ,

by minimizing a suitable performance metric.

As mentioned in [8], one can also consider another level
of optimization by finding the minimum number of the
actuating-sensing devices na necessary to render the triple
(A ,B ,B∗) a statically stabilizable triple and the minimum
number of communication links, also necessary for ensuring
that the closed-loop operator A − BΓB∗ generates an ex-
ponentially stable C0 semigroup, [6]. These two additional
levels of optimization will not be considered here; however,

their influence trickles down to the definition of an admissi-
ble parameter space. The set of admissible gain matrices Γ
that define the parameter space, couples the requirement of
static stabilizability and graph connectivity.

The parameter space Θ consists of all na × na constant
matrices with nonzero entries at the same locations as the
graph adjacency matrix A (along with nonzero entries on
the main diagonal). However, for a prescribed topology,
one must ensure that the resulting closed-loop operator
A −BΓB∗ generates an exponentially stable C0 semigroup.
As the number of links between the control units decreases,
then the set of admissible gain matrices Γ that render the
triple (A ,B ,B∗) statically stabilizable decreases. The graph-
dependent parameter space Θ(G) is defined as the space of
na × na constant matrices that have nonzero entries at the
same locations as the matrix Ina +A and ensure that the re-
sulting operator A −BΓB∗ generates an exponentially stable
C0 semigroup. The requirement of having nonzero entries at
the same location as matrix Ina +A can be expressed in terms
of setting the gain matrix admit the expansion

Γ = (Ina +A)◦M,

where ◦ denotes the Hadamard (entrywise) product [9] and
M is any na×na fully populated matrix. The Boolean matrix
(Ina +A) has 1’s at the same locations as the nonzero entries
of the graph Laplacian L and provides a “memory” of the
connectivity amongst the networked control units; if the i jth

entry of (Ina +A) is equal to 1, it means that the ith actuator
receives information from the jth sensor. Equivalently, it
means that γi j is nonzero. Similarly, if the i jth entry of
(Ina +A) is equal to 0, it means that the jth sensor does
not transmit its output y j(t) to the ith actuator. Formally, the
parameter space is defined as

Θ(G) =

{
Γ ∈ R

na×na : Γ = (Ina +A)◦M,M ∈ R
na×na

A −BΓB∗ generates an e.s. C0 semigroup

}
(17)

In this paper, we will be concerned with the optimization
problem (O3), namely finding the optimal connectivity (i.e.
which entries of Γ should be nonzero) and subsequently
finding their numerical values. Note that there are two
(possibly conflicting) objectives associated this problem. We
discuss these two objectives in more detail below.

Objective 1: Finding an appropriate performance index
for the computation of Γ: Assume (for now) that the
given na actuator/sensor units are associated with a fixed
(pre-determined) interconnection topology. In general, this
interconnection topology can be captured by a digraph G =
(V ,E), where V = {1,2, ...,na} is the set of vertices (each
corresponding to an actuator/sensor unit) and E ⊆ V ×V is
the set of (directed, pairwise) communication links between
them. Under these assumptions, the set of possible Γ is given
by (17) (where A is the adjacency matrix of G); by defining
an appropriate performance index we can obtain optimal
numerical values for the nonzero entries of the gain matrix
Γ. For instance, related work in [8] proposed as performance
index the energy of the closed-loop system (15) over the
infinite horizon, which is given by the L1(0,∞;E(t)) norm
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of the closed-loop state with E(t) = 〈x(t),Q x(t)〉H , namely

J =
∫ ∞

0
〈x(τ),Q x(τ)〉H dτ . (18)

The operator Q is a coercive operator chosen to reflect certain
performance criteria. In its simplest choice, Q = I and the
above index simply becomes the L1(0,∞; |x(t)|2H) norm.

Clearly, for a fixed interconnection topology G , the opti-
mization problem can be stated as
(O3 (fixed topology)):{

Find Γ ∈ Θ(G) to minimize J in (18).
}

It should be clear from the above optimization that if the
topology changes from G = (V ,E) to G ′ = (V ,E ′) such
that E ′ ⊆E then JG ′ ≥ JG (since an entry of Γ that is allowed
to be nonzero can also assume the zero value).

Remark 2: It is worth pointing out that if G is the fully
connected topology (i.e., (Ina +A) = 11T , where 1 is the
vector of 1’s), the optimal Γ can be found using techniques
from [10]; for the case when G is not the connected topology
(i.e., certain entries of Γ are restricted to be zero), we propose
(see example in Section IV) a heuristic approach (inspired
from [10]) to obtain a Γ that satisfies the constraints (i.e.,
Γ ∈ Θ(G)) and minimizes J.
Objective 2: Finding an appropriate connectivity (in-
terconnection topology) among the na actuator/control
units: A straightforward way to quantify optimality for the
interconnection topology G = (V ,E) is via the total number
of edges involved, which we denote by qG = |E |. Note that
qG can also be obtained as

qG = 1T AG 1, (19)
where AG is the adjacency matrix associated with the given
digraph G . More generally, if different communication links
have different costs, we can talk about the weighted cost of
interconnection topology G , which we can define as

qw,G = ∑
e∈E

we ,

where we ≥ 0 is the cost associated with edge e ∈ E .
Clearly, the number qG (or qw,G ) can be used as a

performance index for the optimization (O3). For instance,
if all we are interested in is to ensure that G admits a Γ
that generates an exponentially stable C0 semigroup, then
our goal can be stated as follows.
(O3 (variable topology)):{

Find G ∈ Ψ so that (i) qG (or qw,G ) is minimized and
(ii) Θ(G) is non-empty

}

where Ψ = {G = (V ,E) | V = {1,2, ...,na}} is the set of all
possible directed topologies among na nodes. Note that there
are 2na(na−1) different digraphs in Ψ, since we can potentially
have na(na − 1) directed edges between the na nodes (self-
edges excluded).
Mixing Objective 1 and Objective 2: More generally, we
may be interested in mixing the two objectives described
above. There are many interesting ways in which we may
attempt to optimize these two (conflicting) objectives. For
example, we may want to optimize J over all topologies G
for which qG is below a certain threshold Tq. In such case,
we have the following optimization.

0 ℓ = 1

×

b1(ξ)

×

b2(ξ)

×

b3(ξ)

×

b4(ξ)

Fig. 2. Deployment of pointwise actuator-sensor pairs in Ω = [0,1].

(O3 (minimize performance over all topologies under a
maximum number of edges)):{

Find G ∈ ΨTq so that JG is minimized
}
,

where ΨTq = {G = (V ,E) | V = {1,2, ...,na}, |E | ≤ Tq} is
the set of all possible directed topologies among na nodes
that have Tq or less edges, and where, for a given G , we use
JG to denote the best performance J corresponding to the
optimal Γ ∈ Θ(G).

The above approach was used in our analysis for the
example in the next section (in the example, we also vary
the threshold Tq to obtain a better picture of the tradeoffs
involved). Note, however, that there are many other ways to
formulate a meaningful optimization. For example, we can
have the following optimization:
(O3 (minimize weighted combination of performance and
maximum number of edges over all topologies):{

Find G ∈ Ψ so that (c jJG + cqqG ) is minimized
}
,

where the coefficients c j and cq are given weights that
represent the relative importance of the performance (JG )
and the number of connections (qG ) in our application.

IV. NUMERICAL RESULTS

The PDE in (16) was considered in the spatial interval
[0, ℓ] = [0,1] with a = 10−2 and na = 4. The four collocated
actuator-sensors were a priori selected

b1(ξ) = δ(ξ−0.166), b2(ξ) = δ(ξ−0.233),

b3(ξ) = δ(ξ−0.367), b4(ξ) = δ(ξ−0.734),
(20)

and are depicted in Figure 2. For simplicity, we study the
case of undirected communication topologies; the number
of possible undirected communication graphs over the four
nodes formed by the four actuator-sensor pairs (control units)
given by b1(ξ),b2(ξ),b3(ξ),b4(ξ) is 64 with

• (6
1) = 6 combinations representing q = 1 edge,

• (6
2) = 15 combinations representing q = 2 edges,

• (6
3) = 20 combinations representing q = 3 edges,

• (6
4) = 15 combinations representing q = 4 edges,

• (6
5) = 6 combinations representing q = 5 edges,

• 1 combination representing q = 6 edges,
• 1 combination representing q = 0 edges.

The initial condition for the state is x(0,ξ) = 20 sin(π(ℓ−
ξ)/ℓ)e−7(ξ−ℓ)2

. To implement the proposed optimization
scheme, a Galerkin-based finite element scheme with 100
linear splines modified to account for the Dirichlet boundary
conditions was employed to obtain the finite dimensional
approximation of (16). The matrix representation of the
semidiscretization (spatial discretization) of (16) employed
a composite two-point Gauss-Legendre quadrature rule. The
resulting finite dimensional state space representation of (16)
was subsequently integrated numerically over the time inter-
val [0,4]s using the Matlabr stiff ODE solver ode23s based
on a 4th order Runge-Kutta scheme. The finite dimensional
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Fig. 3. Undirected graphs representing optimal communication topologies.

approximation of the plant (16) is given by
ẋ(t) = Ax(t)+Bu(t), y(t) = BT x(t) (21)

where B =
[

B1 B2 B3 B4
]
. The controller has the

form u(t) =−Γy(t), and is chosen to minimize the cost

J =
∫ ∞

0
xT (τ)Qx(τ)+ xT (τ)BΓT RΓBT x(τ)dτ, (22)

where R = RT > 0 is an additional matrix weight used to
penalize the control effort. The optimal cost is given by

J = trace [ P ], (23)
and the optimal feedback control is

Γ =−R−1BT PLB
[
BT LB

]−1
(24)

where P is the positive semi-definite solution to the ARE
PAcl +AT

clP+BΓT RΓBT +Q = 0, (25)
with Acl = A−BΓBT , and L is the positive-definite solution
of the Lyapunov equation

LAT
c +AcL+ I = 0. (26)

Two different cases were considered. The first one assumes
an all-to-all connectivity resulting in a fully populated gain
matrix Γ with q = 6 edges. The optimal full matrix Γ was
computed using the scheme in [11], and which was in
turn based on the scheme developed for finite dimensional
systems in [10] and summarized in Algorithm 1.

Algorithm 1 Optimal static output feedback

1: initialize: Determine a matrix Γ0 so that it is a stabilizing
feedback gain; i.e., the finite dimensional representa-
tion of the plant (21) is statically output stabilizable.
Either Γ0 = 0 giving Acl = A or Γ0 = BT B giving
Acl = A−B(BT B)BT are good choices since the matrix
representation A of A is a Hurwitz symmetric matrix.

2: iterate: k = 0
3: loop
4: set Ak

cl = A−BΓkBT

5: solve PkAk
cl +(Ak

cl)
T Pk +Q+B(Γk)T RΓkBT = 0

6: solve Lk(Ak
cl)

T +Ak
clL

k + I = 0

7: set Γk+1 =−R−1BT PkLkB
(

BT LkB
)−1

8: set Jk = trace
[

Pk
]

9: use a gradient-based optimization update rule to de-
termine the k+1 iterate

10: if stopping criterion is met then
11: set Pk+1 = Pk and Jk+1 = Jk

12: goto 17
13: else
14: k ← k+1
15: goto 3
16: end if
17: end loop

The fully populated gain matrix in this case is given by

Γfull =




2.8886 0.3658 0.0341 0.0350

0.3669 2.4839 0.5255 0.0158

−0.0599 0.3914 4.5266 0.5961

−0.0354 −0.1131 1.0180 4.7620



. (27)

The other case assumes that up to Tq = 3 edges are allowed
in the graph and searches for all candidate Γ ∈ {Θ(G) |G ∈
ΩTq} to find the one that minimizes (23). Restricting our-
selves to a topology that has at most 3 edges (i.e. we allow
0,1,2 and 3 edges), then we need to modify Algorithm 1 to
enforce the sparsity condition as defined via the adjacency
matrix A. This is presented in Algorithm 2 as modified from
[12]. The optimization scheme produced two solutions with

Algorithm 2 Sparsity enforcement of static output feedback

1: initialize: Determine a matrix Γ0 ∈ Θ(G) so that it is
a stabilizing feedback gain; i.e., the finite dimensional
representation (21) is statically output stabilizable. The
choice Γ0 = I giving Acl = A−BBT is a good choice.

2: iterate: k = 0
3: loop
4: set Ak

cl = A−BΓkBT

5: solve PkAk
cl +(Ak

cl)
T Pk +Q+B(Γk)T RΓkBT = 0

6: solve Lk(Ak
cl)

T +Ak
clL

k + I = 0

7: set Γk+1 =−R−1BT PkLkB
(

BT LkB
)−1

8: enforce sparsity Γk+1 ← Γk+1 ◦ (Ina +A)
9: set Jk = trace

[
Pk

]

10: use a gradient-based optimization update rule to de-
termine the k+1 iterate

11: if stopping criterion is met then
12: set Pk+1 = Pk and Jk+1 = Jk

13: goto 18
14: else
15: k ← k+1
16: goto 3
17: end if
18: end loop

q ≤ 3 edges and corresponding adjacency matrices

A1 =




0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0



, A2 =




0 0 0 1

0 0 1 1

0 1 0 0

1 1 0 0



, (28)

as shown by the graphs in Figure 3a and 3b. The sparse
matrix Γ for each of the two sparse topologies is given by

Γsparse,1 =




2.8889 0.3577 0 0

0.3769 1.7968 −0.7385 −1.4771

0 1.6650 4.1946 0

0 1.4168 0 4.2759



, (29)
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case # of edges q
optimal full matrix Γfull 6
optimal sparse matrix Γsparse,1 3
optimal sparse matrix Γsparse,2 3

TABLE I

NUMBER OF EDGES (CONNECTIONS) q.

case 2

√∫ 4

0
|x(t)|2L2(0,ℓ)

dt

optimal full matrix Γfull 2.81471
optimal sparse matrix Γsparse,1 2.81043
optimal sparse matrix Γsparse,2 2.81043

TABLE II

COMPUTATION OF L2(0,4;L2(0, ℓ)) STATE NORM.

and

Γsparse,2 =




2.8142 0 0 −0.6176

0 1.7529 −0.7524 −1.5278

0 1.6723 4.1830 0

0.6564 1.4692 0 4.1414



. (30)

To properly compare the two cases (Γfull and Γsparse,1, Γsparse,2),
we consider the number of edges q as well as the L1(0,4)
norm (Table I). The sparse case requires half the connections
of the fully populated Γ which translates to significant com-
munication savings. The L1(0,4) norm (presented in Table II)
indicates that no noticeable difference exists between the
two cases. However, as observed above, one requires half
the number of edges. The same observation can be made in
Figure 4. Since no significant differences can be observed
in the controller performance, then the proposed sparse
gain matrix provides a significantly cheaper communication
option for controlling spatially distributed processes with
networked actuator/sensor pairs.

Remark 3: It should be emphasized that actuator-sensor
locations, different than those in (20), will lead to a fully
populated gain matrix different than (27). Similarly, they
will produce an adjacency matrix different than (28), with
a sparse gain matrix different than (29).
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Fig. 4. Evolution of state norms.

V. CONCLUSIONS

An optimization scheme that takes into account the num-
ber of communication links between networked actuator-
sensor pairs in spatially distributed processes was proposed
as an inexpensive alternative to existing (centralized) ap-
proaches. More specifically, instead of using a centralized
scheme utilizing a single or a small number of expensive
actuating and sensing devices, a distributed alternative that
employs a large number of networked actuator-sensor pairs
was considered to provide the first level of cost reduction.
To further reduce operating costs generated by expensive
communication amongst the networked actuator-sensor pairs,
the proposed optimization scheme penalized both the tra-
ditional controller performance index and the number of
communication links.

A numerical example of a spatially distributed process
modelled by the 1D diffusion PDE with four actuator-sensor
pairs was considered to obtain an insight on the reduction
in operating costs as represented by the communication
links of the actuator-sensor pairs. Compared to the fully
populated optimal static output feedback gain which required
6 communication links, the proposed scheme required half
that and provided an almost identical controller performance.
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