Autonomous UAV with Learned Trajectory Generation
and Control

Yilan Li', Mingyang Li', Amit Sanyal', Yanzhi Wang?, Qinru Qiu'
"Department of Electrical Engineering and Computer Science, Syracuse University, NY 13244, USA
{yli41, mli170, aksanyal, qiqiu} @syr.edu
2Department of Electrical and Computer Engineering, Northeastern University, MA 02115, USA
yanz.wang@northeastern.edu

Abstract—Unmanned aerial vehicle (UAV) technology is a
rapidly growing field with tremendous opportunities for
research and applications. To achieve true autonomy for UAVs
in the absence of remote control, external navigation aids like
global navigation satellite systems and radar systems, a
minimum energy trajectory planning that considers obstacle
avoidance and stability control will be the key. Although this can
be formulated as a constrained optimization problem, due to the
complicated non-linear relationships between UAV trajectory
and thrust control, it is almost impossible to be solved
analytically. While deep reinforcement learning is known for its
ability to provide model free optimization for complex system
through learning, its state space, actions and reward functions
must be designed carefully. This paper presents our vision of
different layers of autonomy in a UAV system, and our effort in
generating and tracking the trajectory both using deep
reinforcement learning (DRL). The experimental results show
that compared to conventional approaches, the learned
trajectory will need 20% less control thrust and 18% less time to
reach the target. Furthermore, using the control policy learning
by DRL, the UAV will achieve 58.14% less position error and
21.77% less system power.

Index Terms--Deep reinforcement learning, continuous trajecto-
ry tracking, actor-critic algorithm, unmanned aerial vehicles.

I. INTRODUCTION

Unmanned aerial vehicle (UAV) technology is a rapidly
growing field with tremendous opportunities for research and
applications. According to PricewaterhouseCoopers LLP con-
sulting group, the global market for commercial applications
of the UAV technology will rise to as much as $127 billion by
2020 with more than 6,000% increase by the end of the decade
[1]. Currently, there is no technology that integrates UAV in
the National Airspace System (NAS) with complete airworthi-
ness. According to Mark Bathrick, Director of the Office of
Aviation Services (OAS) in the Department of the Interior
(DOI), “The biggest challenge to safely integrating UAV into
the national airspace — with the ability to fly beyond the line of
sight of the operator — is developing a system that enables
UAYV to “sense and avoid” other stationary or moving objects.
Sense and avoid systems rely on radar, onboard transponders,
or other active means. They suffer the same vulnerabilities as
the two—way radio links used to control most drones” [2]. This
calls for true onboard autonomy in real time for UAVs in the

This work is partially supported by the National Science Foundation un-
der Grant CNS-1739748

absence of remote control, external navigation aids like global
navigation satellite systems (GNSS) and radar systems. The
nonlinearly stable guidance, navigation and control will solely
rely on vision and other inputs from low cost and low power
onboard sensors, and be achieved through real-time detection,
perception and control algorithms running on onboard hard-
ware.

The term “UAV” refers to wide range of systems, from
airplane-sized combat drones to insect-sized micro-drones. In
this project, we will focus on small UAVs with take-off
weights 2~20 Ibs. This is not only because such small UAVs
are commercially available and have the most civilian usage,
but also because they impose more stringent constraints on the
size and energy dissipation of the onboard system. Without
loss of generality, motivating applications are remote monitor-
ing and observation of a species in the wild, possibly under
forest cover, reconnaissance missions, and search and rescue
operations.

From autonomous obstacle avoidance to mission planning
incorporating machine intelligence, we divide the autonomy of
a UAV into four levels shown in Fig. 1. The lowest level is the
reactive control (RC), which monitors the gyroscope and ac-
celerometer data, and dynamically adjusts the motor to react to
the changing airflow. The reactive control is important to sta-
bilize the drone in a changing environment. The second level
is trajectory generation (TG), where the drone dynamically
calculates a sequence of waypoints and the trajectory that
leads to a (changing) destination with the consideration of its
current speed, acceleration, flight condition and potential ob-
stacles. The third level is context aware adaptation (CAA),
where the drone perceives its environment and adapts to a
flight pattern or operation mode that gives the highest efficien-
cy and safety. Image/video processing algorithms are usually
employed in this layer across multiple modalities to accurately
detect targets, objects of interest or obstacles. Based on the
detection results, optimal decisions on flight and sensor con-
trol are searched and forwarded to the TG layer. The top level
is strategic mission planning (SMP). At this level, the long-
term mission goal is considered together with the availability
of local resources, such as the remaining battery energy, to
calculate a sequence of short term objectives and constraints
that guide the lower level optimization and lead to best return.
The local resources may include the status of neighbor drones
if in a swarm environment.



e 5 trategic Missiol
Mission related objectives and ccr;trmntf planning

ontext Aware ) o8 Mission command,
Destination and obstacles [JNEENEHEN resource availability,
neighbaorinformation

Sensor
control

Flyd t
y direction Multimodal

sensor
information of
surroundings

Location
Reactive
Control
Motor contral!

i Resource &
mission info,

Gyroscope, GPS
accelerometer

Figure 1. The four nested control loops in an autonomous UAV.

As shown in Fig. 1, the four layers of autonomy form four
nested control loops. From RC to SMP, the layers process
different sensory signals with an increasing complexity. The
goal of each control layer is to generate a set of objective and
constraint functions for the lower layer based on its sensor
inputs with the consideration of the objectives and constraints
that itself receives from the upper layer. For instance, given
the image of an occluded object, the CAA controller will de-
cide whether to move to a different angle to have a better view
or to continue in the current direction depending on overall
mission being searching specifically for a certain target and
tracking its behavior or performing general surveillance. The
decision and new destination will be sent to the TG layer and
the new trajectory will be generated accordingly.

The two lower layers (i.e. RC and TG layers) work at the
highest abstraction level (i.e. altitude, speed, etc.) with the least
amount of information, however require the fastest response. The
two upper layers (CAA and SMP) of system have relatively more
relaxed constraints with respect to response time. Yet, they operate
at the lowest abstraction level and deal with the most complex
inputs and very large amounts of data (i.e. images, videos or IR
scan images). Being able to process multiple channels of sensor
inputs at higher granularity at each layer of the control loop, means
safer and more efficient operation. The key enabling factor of the
autonomous UAV is the capability to perform optimization,
information fusion, detection and decision making rapidly in real
time. In addition to computing hardware, new computing models
and software framework need to be developed to enable
multimodal sensor fusion, hierarchical perception, decision
making and optimization.

The existing hardware and software solutions are not adequate
to meet the requirements of fully autonomous UAV with real-
time performance. First of all, the overall control optimization
problem, especially the upper two layers in Fig. 1, has an
extremely large solution space. A UAV needs to decide when to
be at which location, and what type of sensing to perform and
which data to collect in order to maximize the return of a particular
mission while satisfying the resource and safety constraints. The
typical mission duration is around 20 minutes and the range is up
to 4~5 miles. There is no immediate rewards or penalties for the
actions taken by the UAV. A final (delayed) reward/penalty is
usually received at the end when the mission goal is
accomplished/failed. Therefore, traditional reactive or predictive
control cannot be applied to solve this problem. On the other hand,
the emerging deep reinforcement leamning (DRL) technique is

data-driven and can potentially solve complicated control
problems with extremely large state and action spaces, as well as
continuous state space [3]-[5]. This technique could be potentially
used for control policy optimization in the CAA and SMP layers.

In this work, we will focus on the CAA and SMP layers
and discuss how their function can be learned and implement-
ed using deep neural network models.

II. LEARNING EFFICIENT TRAJECTORY GENERATION

A. Problem Formulation

In this part, we focus on trajectory generation for multi-rotor
UAVs. These UAVs have fixed plane of rotors that actuate the
vehicle in three-dimensional transnational and rotational motion,
hence they have the property of under-actuation. Given a closed
environment, the UAV takes off from an arbitrary position and
reaches a target position which is preassigned, without colliding
with obstacles. As stated before, the first step is to select waypoints
based on the environment. The entire 3D environment is divided
into N X N X N grids. The environment is described by a function
M () maps a grid (x,y,z) to a real value M: (x,y,z) = R. A
grid, g, that contains obstacle will be mapped to -10, M(g) =
—10. The destination grid that the agent needs to reach is mapped
to 10, and the grid where the UAV is currently located is mapped
to 1. All other grids are mapped to zeros in the discretized
environment block. Let Wy, W;, ..., Wy_, be the sequence of
generated waypoints, where each one is a 3D vector corresponding
to a grid in the environment. Let f(W;, W;) denote the control
thrust for the UAV to follow the trajectory between waypoints W;
andW; generated by the lower level optimizer. Also, let G(W;, W;)
denote the set of grids that the generated trajectory between W;
and W; will pass through. The total thrust cost along the trajectory
is denoted as F. The problem of waypoints generation can be
formulated as the following:

PROBLEM 1 (Optimal Obstacle Avoidance Waypoints
Planning). Minimize

F = L5 f(w, W) 1)
subject to
(1) reaching the target position from current position,
M(WO) = 1> M(WN—I) = 10 > (2)

(2) reaching the target position without colliding with ob-
stacles,

M(g) # —10,g e GW;,Wiyq), 0<si<N-2 (3)

To find the set of W;, 0 <i < N —1 is a combinatorial
problem. The goal is to achieve minimum control thrust without
obstacle collision if the UAV flies along the waypoints and
trajectory. A large reward will be received at the end of the flight if
the UAV reaches the destination. While this is the problem
formulation of the upper level optimizer, the functions f'(W;, W;)
and G(W;,W;) are determined by the lower level optimizer.
Reinforcement learning provides a way to solve such constrained
optimization problem with delayed reward.

Incorporating with deep neural network, an optimal policy is
learned to guide the UAV to the next selected actions (i.e.
waypoints) that can lead to maximum future rewards.



Convelution C1
16@7 77T
Poaling P1 Pooling P2
15@2 2 sz@ﬂ 22

T 0 r L
o ede |,
-»H»D
el

L
FC1 FC2
128 1024

Convolution €2
328333

Input
30730730

7

Figure 2. Network structure of proposed deep Q network.

B. Network Structure

A deep Q network is used to solve the problem and the
detailed structure of the model is shown in Fig. 2. The inputs
contain two parts. First, a 3D matrix with size N X N X N is used
to represent the current known knowledge of the surroundings.
Each entry (x, y, z) of the matrix is the mapped value M (x, y, z)
of the corresponding grid in the 3D environment previously
discussed. It has the information about the relative position
between agent and obstacles. In addition, a 1 X 9 vector is used to
indicate the dynamic configuration of the UAV, where b, v, a
represent the current position, current velocity and current
acceleration of the UAV respectively. At each decision episode, a
UAV can choose any of the 3 X 3 X 3 grids around its current
location as the waypoint. Therefore, there are 26 possible actions.
The matrix input is fed into two 3D convolutional layers and each
is followed by a pooling layer. The intermediate output of the
second pooling layer is fed into a fully-connected layers with the
size 1024. The configuration vector input is fed into two fully-
connected layers. The intermediate outputs of FC2 and FC3 are
fed into two fully-connected layers with the size 1024 and 256
respectively. The output is a fully-connected layer with the size 26.
Each output neuron estimates the Q (state, action) values for
one of the 26 actions at the given state.

Our goal is to generate trajectory for the UAV with minimum
control thrust under the premise of reaching target position
without hitting any obstacle. Therefore, our reward function is
defined as the combination of position reward and control reward
as following:

R(state, action) = aR,(state,action) +
BR.(state, action) 4
where a and B are the coefficients of position reward and control
reward respectively, a = B = 0.5 in our experiment.
R, (state, action) is the position reward of taking action in
current state. It is defined as following:

10 reach target position
—10 collide with obstacles (5)
0  others

And R_(state, action) indicates the control reward. It is cal-
culated as the negative L1 norm of thrust cost, which is calculated
by LQR trajectory generation scheme proposed in [7].

C. Learning of DON

Since the problem complexity, i.e. the total number of state
action pairs, is 0(26 X N3) which is relatively larger than many
other existing problems [8]-[10], it is crucial to maximize explo-
ration at the beginning of learning. Therefore e-greedy [17] is

R, (state, action) =

applied during the learning. Based on e-greedy, more random
actions (i.e. exploration) are taken at the beginning of learning and
more actions with maximum Q(state,action) values (i.e.
exploitation) are chosen as learning progresses.

To improve the learning, we also decrease the learning rate Ir
gradually because it becomes harder to improve performance with
large learning rate as the gradient reaches plateau. In our
approach, there are 30,000 learning episodes in total. Instead of
using a fixed learning rate, the learning rate starts from le-4 and
decreases every 5,000 episodes based on Ir,, = (Ir —

epoch)epoc’l i€{5e +3,1e + 4,1.5¢ + 4,2e + 4,2.5¢e + 4}

and i is the i, learning episode. This helps to prevent the learning
from over correct after 5,000 iterations, which allows to maximize
the exploitation.

Instead of randomly initializing model weights based on a
uniform distribution, we initialize the weights of model based on a
normal distribution. It initializes weights with relatively small
values and prevents outputs of the model from being either too
large or too small. Batch normalization is used before the second
convolutional layer and the first fully-connected layer to reshape
the input of those hidden layers. In order to bound the training
time, for every single training episode, the maximum steps W,
that the UAV can take is fixed. If the UAV has taken W, ., steps
but has not reached the target position, it will be forced to start a
new learning episode. The start and target positions are randomly
selected. So do the locations of obstacles. In this way the
environment configuration of every episode is different, therefore
each learmning episode is independent. During learning, an
experience replay is used to save last thousand times of
performance and a randomly sampled mini-batch of size 32 is used
to train the network. At each time step within an episode, the
UAV takes an action and receives a +10 position reward if it
reaches the target position and -10 if colliding with obstacles.
Otherwise the position reward is 0. The control reward is
determined based on the current and next position, velocity and
acceleration of the UAV. The weighted sum of these two rewards
and corresponding UAV state and action is saved in experience
replay buffer.

D. Gain Selection through Genetic Algorithm

The control thrust is the feedback reward for higher level
waypoints planner during learning. It is necessary to mention that
in the lower level of our module, LQR trajectory generation
scheme, Q, R and S are three positive definite gain matrices. Each
of these gain matrices penalize different aspects while generating
the trajectory. Q is a matrix penalizing high values of position,
velocity and acceleration. The higher the values in Q, the harder
these parameters are penalized. The input jerk is penalized when R
matrix has large eigenvalues and how much the waypoints will
affect the trajectory is weighted by S matrix. We can see that these
three gain matrices have significant impact on the performance
index /¢ of the trajectory. Their values need to be tuned in order to
minimize the control thrust f. In our experiment, f is calculated
from the lower level scheme, while it will be measured by sensors
in real field learning. We apply genetic algorithm (GA) [13] to
optimize the gain matrices. The best set of (R, Q, S) satisfies
Ir?nér; f(W;, Wena, vi,a;) where W;, v;, a; are initial position,

Velbcity and acceleration of the UAV and W,,,,4 are the destination
for UAV.



III. LEARNING ACCURATE TRAJECTORY CONTROL

A. Problem Definition

In this section, we consider the trajectory tracking for under-
actuated aerial vehicles through a set of given desired way points.
We aim at quadrotor fixed-wing UAVs with four control inputs,
one degree of translation motion and three degrees of rotation
motion (i.e. pitch, roll and yaw.) It is extremely difficult to
integrate detailed mechanistic model of complicated dynamics
with classic control theory, a model-free solution for the control
problem is preferred. Because actions of the tracking problem are
continuous variables (e.g. turning force, thrust etc.), the actor-critic
reinforcement learning is adopted, which learns to find the optimal
set of actuations that move the UAV towards desired trajectory.
The technique presented in [11] is used to generate C? trajectory
based on a given set of predefined waypoints T; where each
waypoint gives the desired position of the UAV at time t.
Meanwhile, desired velocity vd;, desired acceleration dvd, and
desired attitude Rd; are extracted from T,; based on kinematics.
The positions and attitudes together form the pose of the UAV.
The goal of our model is to minimize the differences between
desired poses and actual poses during tracking. We define sd, =
{pd;, vd;, dvd;,Rd;} as desired state and s; =
{pe, vy, dvg, R, }Yas actual state of UAV at time step t. Each of
first three variables in the sd; and s; are 3-dimensional vectors
and the last one in the sd, and s, is 3x3-dimension, hence the
desired state and the actual state are variables in 18- dimensional
space.

The concatenation of sd; and s, forms the agent state St.
Furthermore, we define action at time t as A, = {f m;; t.}, where
the translational force fm, and torques 7, are applied to UAV.
The translational force fm, is a force perpendicular to the top
surface of UAV and the three components in 7, are applied to roll,
pitch and yaw directions respectively. The reward Reward (At) at
time t is defined as the Manhattan distance between the desired
pose and the actual pose, i.e. Reward(At) = f(|pt — pdt| +
vt — vdt] + |Rt — Rdt]).

B. Network Structure

Since the control variables (i.e. fm;,7;) of UAV are in a
continuous space which are infinitely large, we build an actor-
critic reinforcement learning model instead of discretizing the
action space. The actor model is a feed-forward deep neural
network of three fully-connected hidden layers with rectified linear
units (ReLU) as the activation function. It is used to predict the
optimal action based on current state S;. The number of neurons in
fully-connected hidden layers are 64, 128 and 128 respectively.
The size of output layer is 4 and LeakyReLU activation function is
used in the output layer. The critic model is another feed-forward
neural network that computes an evaluation of the action and that
evaluation is used by actor model to update its control policy in
particular gradient direction. The critic model has two hidden
layers, where the first layer contains two separate fully-connected
structures and the number of hidden neurons in each is 32. The
addition of outputs from the first hidden layer is fed into the
second layer which has 64 hidden neurons. The inputs of critic
model are S; and A, and the output is a single value Q(S;, 4;).
The size of the critic and actor is optimized as hyper-parameters
through cross-validation. The detailed networks of actor model and
critic model are shown in Fig. 3a and Fig. 3b. The overall

framework is shown in Fig. 3c. During training, the actor model is
pre-trained using labeled pair data (S;,A;) generated from
simulation [11] to predict the optimal action A; based on current
agent state S; . Next agent state Sy, is calculated through
environment simulation based on A, and is used to predict optimal
Aiyq by actor model. The critic model evaluates the resulting
{St+1,At4+1} pair by predicting a Q-value to fine-tune action
prediction. Therefore, the weights in actor model are updated by
the gradient between actor and critic model, using chain rule

daQ daQ AWeritic 7 3
= X . aw, and dW_,;;. indicate the
AWactor AW critic AWactor actor critic

weights of actor and critic models respectively.

C. Reward Definition

Our goal is to actuate the UAV to be closer to desired pose T
along the desired trajectory, i.e. minimizing the value of AP, =
|p: — pd;|. Besides position error, the stability of the UAV should
also be taken into consideration. Therefore the values of velocity
errors (i.e. AV, = |v; — vd,;|.) and attitude errors (AR = |R; —
Rd,|.) must also be minimized. However, our experiments show
that simply using a linear combination of AP,, AV,, and AR; as the
reward function will make convergence difficult in learning
process. According to [12], using geometrically discounted reward
will prevent the accumulated reward to become infinite and make
the model more tractable. Therefore, we define the reward at each
time step following a standard normal distribution, guaranteeing
the largest reward is accepted when the total differences between
desired trajectory and actual trajectory at time t (i.e. At = AP, +
AV, + AR,) reaches zero and closing to zero reward is obtained
when At increases. The total discounted reward is denoted as R.

Reward(a0) = ——exp (- 25)
ewar = —¢€X —_
V2 P73
R = Y2,y Reward(At)
where At = AP, + AV, + AR,.

(6)

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our
proposed model. The training and testing were done on NVIDIA
TitanX (Pascal). In the experiments, the environment is divided
into 10 X 10 X 10 and the unit distance §4 is 10 meters. Within
each testing scenario, the number of obstacles is randomly
generated, and obstacles are placed randomly within the
environment boundary. Besides, the start and target positions are
also randomly selected. We report the results compared with some
existing approaches.

A. Results Comparison for Trajectory Generation

As a baseline of reference, we also implement a control
scheme based on PID theory [14] to estimate the control thrust
consumption along waypoints and use it to replace LQR trajectory
generation scheme in [7] as the lower level optimizer. We define
position as measurable variables and velocities when reaching
each waypoints are regarded as controllable variables. Every time
the position of the agent is updated by the feedback of the
environment, and the feedback is calculated by the environment
simulation based on Kinematic theory [15].

We compare the DRL based waypoints selection with four
traditional waypoints selection approaches in aspects of average
number of steps needed to reach target, and the average control



thrust cost along the trajectory. These four approaches include
maze routing, shortest path, DLite algorithm and voronoi path. To
make it more convincing, the size of discretized environment is set
as 30 x 30 x 30. We generated 1000 different test scenarios by
randomly select different start positions, destination positions,
types and locations of obstacles. Fig. 4 compares the average
number of selected waypoints to reach destination and the average
control thrust cost for the UAV to go through these waypoints. For
all waypoints selection approaches, LQR trajectory generation
scheme in [7] is used for trajectory generation. In Fig. 4a, the
results show that our approach only needs an average 19.55
waypoints which is 16.91% less than other approaches. In Fig. 4b,
the comparison of average control thrust consumption is reported.
As indicated in the figure, our approach uses least control thrust
which has 18.87% reduction than other approaches. According to
these results, our purposed scheme with fewer selected waypoints
is less possible to be over constrained and less times of lower level
scheme invocation is needed.

G Q(S:,4:)
A ! z
= ¥
128, relu 64, relu
A
128, relu | |
A
.o 32,relu || 32 relu

(a) actor model structure (b) critic model structure

Agent(UAV) S = [sd,, s,]
&
Environment

Reward

~ critic model |

Emrmb

actor model |

A = [fm,1] ‘g

(c) overall framework

Figure 3. Architecture of actor and critic model, and framework.

13.4152

11.4815
o8 10.0388

proposed  maze  shortest  Dlite
scheme  routing  path

13.3524
% 2514

.37
i
nn 2a
n
8 s I

'}
proposed  mare  shortest  Dlite
sheme  routing  path

12.8701

ta reach destination

Average number of selected

waypaint

voronoi voranal

(a) Average number of waypoints (b) Average control thrust

Figure 4. Comparison with existing approaches proposed DQN scheme,
routing, shortest path, DLite and Voronoi.

B. Environment Setup for Actor-critic Network

We trained the actor-critic network and implemented the
simulation on Nvidia GeForce GTX1070 using Keras [16]. The
data that we use to train and test our model is generated using
simulator described in [11]. Our dataset consists one thousand
different 3-D trajectories of four different shapes, including
straight lines, z-shape curves, spiral curves and circles. Each
desired trajectory has one thousand desired waypoints, giving
enough time for UAV to track it. All desired waypoints are defined
by mathematical equations parameterized by time. Eight hundred
different trajectories of four different shapes are evaluated in total.

The mass of UAV used is 4.34kg, and its inertial properties J is a
3x3 diagonal matrix (i.e. diag[0.820 0.0845 0.1377]kgm?) which
determines the required magnitude of force to accelerate the UAV
in each rotation direction respectively. The goal is to minimize the
power consumption and time used from trajectory deviated to
tracked.

C. Results Comparison on Tracking Aspect

All test samples of desired trajectories are generated the same
way. We report the results from four aspects: (1) L1- norm of
position tracking error; (2) L1-norm of velocity tracking error; (3)
Time used to complete tracking; (4) Power consumption.

Fig. 5 shows the L1-norm of position tracking error, where the
first four columns are comparison results of trajectories with dif-
ferent shapes respectively and the fifth column is average L1-
norm of position error of all testing trajectories. According to the
figure, our approach has lower average position error especially
when the trajectory is more complicated.

Compared to PID based baseline control, 22.94% less position
error is achieved for straight line trajectory tracking and 25.07%
less position error is achieved for circular trajectory tracking. The
position tracking error reduction increases to 85.32% for spiral
shape tracking and 87.81% for z-shape trajectories tracking
respectively. On average, our approach outperforms 58.14% better
than PID based control in position tracking of different shapes of
trajectories.

1.2

ESOO'T

] 2 e
o 5
E o ~
@ & & o
c =i £
S o8 ° 3
= - 1
] P
g 0.6 2
‘s 04 oo =2
] £ ;
E a2 § E .3.- Il
‘6 3 o 8 -
£ o L
-
-4 spiral line r-shape circle  AVERAGE

® DRL learning approach = PID approach

Figure 5. Tracking result comparison between proposed DRL- based
framework and PID-based baseline in terms of L1-norm of position error.

M
~
w
w
n

g 3 "
o 2
el @
225 w
& -
8 2 i
T g of
= 15 ot &=
-~ @
21 = 2 ot
E =2 =
= g2 =
g 0s sy 5|
- —y A,

o
=

spiral line r-shape circle AVERAGE

m DAL learning approach @ PID approach

Figure 6. Tracking result comparison between proposed DRL- based
framework and PID-based baseline in terms of L1-norm of velocity error.

Fig. 6 shows the average of L1-norm of velocity tracking error.
Similar to Fig. 5, the first four columns are comparison results of
each type of trajectory with different shapes, and the last column
shows trajectories. It shows 29.79% error reduction is achieved for
line trajectory and 67.22% error reduction is achieved for circle
trajectory. Up to 91.64% and 93.17% error reductions are achieved
for z-shape and spiral trajectories. On average, our approach
outperforms 58.15% than PID control with respect to velocity
tracking error. Again, our learning-based approach performs better
for the more complicated trajectories.



N oW & W
g B © 9
8 8 & 8
IT'ElE
pL9RE
95'10v
SSOFE
BT'SLE

Time steps used for
complete tracking
5
8

o

cirdde  AVERAGE
® PID approach

spiral line
® DRL learning approach

r-shape

Figure 7. Tracking result comparison between proposed DRL-based
framework and PID-based baseline in terms of used tracking time steps.

£ &
= ¥as o B =1
1= i ¥
o 3 & = =
i , &I = &3 £

= 2 in 2
§ ] G- w

2 £
25 2 o
8 2os i
= E
s 8
z L =
o 0
a

spiral line z-shape  circle  AVERAGE

® DRL learning approach  ® PID approach

Figure 8. Tracking result comparison between proposed DRL- based
framework and PID-based baseline in terms of power consumption.

Fig. 7 compares the total time steps used for UAV to follow
each shape of desired trajectory and the average time steps used in
total to reach stability. We report the number of time steps used for
UAV to completely track the desired trajectory. The total time
steps for each testing trajectory is one thousand. The time step
when trajectory is tracked is regarded as the time t. after which
the L1-norm of position error between pd; and p; is less than
0.0001. The average tracking time for different types of
trajectories, and the average tracking time over all testing
trajectories are reported. Our approach is 9.23% faster than PID-
based control to achieve stable pose on average. It is especially
13.86% faster for line trajectory and up to 15.58% faster for z-
shape trajectory. Moreover, PID has lags in responding current
dynamics in all three directions of velocity. Therefore, PID-based
controller is not optimally adapted for non-linearity situations,
especially not robust in fast dynamic control. It trades off the
control performance and time.

Fig. 8 reports average total power consumption after one
trajectory is completely tracked using our approach and baseline
PID controller. As indicated in the figure, our approach achieves
11.04% less power consumption when tracking shape trajectory
and consumes 18.64% less power for line trajectory tracking. Fur-
thermore, up to 21.63% and 29.11% power consumption
improvements have been achieved for circle and spiral trajectories
tracking respectively. An average of 21.77% less power is
consumed using our approach for tracking all different trajectories.
The noticeable result explains that PID control consumes more
power because of oscillations of controllable variables during
tracking process.

V. CONLUSIONS

A two-level framework to generate navigation trajectory for
UAVs to follow in a complex environment is introduced. The
framework's construction, processing and analysis are presented.
The proposed waypoints planning framework effectively avoids
obstacles in complex indoor environment and reduces the control
thrust consumption during flight. Also, it is general enough to be

applied in other robotics tasks such as parcel delivery and
conflicting routing of high-density UAVs.

We also introduced a framework for UAV trajectory tracking
based on deep reinforcement learning. The system structure,
processing algorithm and software/hardware performance are
presented. In our approach, the UAV tracks a desired trajectory
through a set of given waypoints, tolerating random Gaussian
noise within considerable range. The hardware consumption of the
implementation of this scheme is also provided. The proposed
scheme is general and applicable to be applied in real UAVs for
fast and accurate trajectory tracking system.

REFERENCES

[1] "Global Market for Commercial Applications of Drone Technology
Valued at over $127 bn," PWC, May 2016. [Online]. Available:
http://press.pwc.com/News-releases. [Accessed March 2017].

[2] H. Swan, "UNMANNED AIRCRAFT SYSTEMS: GREAT
CHALLENGES; GREAT POSSIBILITIES," StartupGrind, 2015.
[Online]. Awvailable: https://www.startupgrind.com/blog/unmanned-
aircraft-systems-great-challenges-great-possibilities/. [Accessed March
2017].

[3] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez and Y. Tassa,
"Learning continuous control policies by stochastic value gradients," in
Advances in Neural Information Processing Systems, 2015.

[4] Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver and a. D. Wierstra, "Continuous control with deep reinforcement
learning," arXiv:1509.02971, 2015.

[51 G. Dulac-Arnold, R. Evans, H. v. Hasselt, P. Sunehag, T. Lillicrap, J.
Hunt, T. Mann, T. Weber, T. Degris and B. Coppin, "Deep reinforce-
ment learning in large discrete action spaces," arXiv:1512.07679, 2015.

[6] Q. Chen and Q. Qiu, "Enhancing bidirectional association between deep
image representations and loosely correlated texts," in International
Joint Conference on Neural Networks (IJCNN), 2016.

[7] Hossein Eslamiat, Yilan Li, Ningshan Wang, Sanyal Amit, and Qinru
Qiu. 2019 Autonomous Waypoint Planning, Optimal Trajectory Gener-
ation and Nonlinear Tracking Control for Multi-rotor UAVs. Accepted
by 2019 European Control Conference.

[8] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav
Gupta, Li FeiFei, and Ali Farhadi. 2017. Target-driven visual naviga-
tion in indoor scenes using deep reinforcement learning. In Robotics
and Automation (ICRA), 2017 IEEE International Conference on.
IEEE, 3357-3364.

[9]1 Juan Wu, Seabyuk Shin, Cheong-Gil Kim, and Shin-Dug Kim. 2017.

Effective lazy training method for deep g-network in obstacle avoid-

ance and path planning. In Systems, Man, and Cybemetics (SMC),

2017 IEEE International Conference on. IEEE, 1799-1804.

Riccardo Polvara, Massimiliano Patacchiola, Sanjay Sharma, Jian Wan,

Andrew Manning, Robert Sutton, and Angelo Cangelosi. 2018. Toward

End-to-End Control for UAV Autonomous Landing via Deep Rein-

forcement Learning. In 2018 International Conference on Unmanned

Aircraft Systems (ICUAS). IEEE, 115-123.

S. P. Viswanathan, A. K. Sanyal, and E. Samiei, “Integrated guidance

and feedback control of underactuated robotics system in se (3),” Jour-

nal of Intelligent & Robotic Systems, 2018..

L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement

learning: A survey,” Journal of artificial intelligence research, vol. 4,pp.

237-285, 1996

Agoston E Eiben, James E Smith, et al. 2003. Introduction to evolu-

tionary computing. Vol. 53. Springer

Lluis Pacheco and Ningsu Luo. 2015. Testing PID and MPC perfor-

mance for mobile robot local path-following. International Journal of

Advanced Robotic Systems 12, 11 (2015), 155.

Sandeep Kumar Malu and Jharna Majumdar. 2014. Kinematics, locali-

zation and control of differential drive mobile robot. Global Journal of

Research In Engineering (2014).

F. Chollet et al., “Keras.” https://github.com/fchollet/keras, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,

Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013.

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]



