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Abstract—Unmanned aerial vehicle (UAV) technology is a 
rapidly growing field with tremendous opportunities for 
research and applications. To achieve true autonomy for UAVs 
in the absence of remote control, external navigation aids like 
global navigation satellite systems and radar systems, a 
minimum energy trajectory planning that considers obstacle 
avoidance and stability control will be the key. Although this can 
be formulated as a constrained optimization problem, due to the 
complicated non-linear relationships between UAV trajectory 
and thrust control, it is almost impossible to be solved 
analytically. While deep reinforcement learning is known for its 
ability to provide model free optimization for complex system 
through learning, its state space, actions and reward functions 
must be designed carefully. This paper presents our vision of 
different layers of autonomy in a UAV system, and our effort in 
generating and tracking the trajectory both using deep 
reinforcement learning (DRL). The experimental results show 
that compared to conventional approaches, the learned 
trajectory will need 20% less control thrust and 18% less time to 
reach the target. Furthermore, using the control policy learning 
by DRL, the UAV will achieve 58.14% less position error and 
21.77% less system power. 

Index Terms--Deep reinforcement learning, continuous trajecto-
ry tracking, actor-critic algorithm, unmanned aerial vehicles. 

I. INTRODUCTION 

Unmanned aerial vehicle (UAV) technology is a rapidly 
growing field with tremendous opportunities for research and 
applications. According to PricewaterhouseCoopers LLP con-
sulting group, the global market for commercial applications 
of the UAV technology will rise to as much as $127 billion by 
2020 with more than 6,000% increase by the end of the decade 
[1]. Currently, there is no technology that integrates UAV in 
the National Airspace System (NAS) with complete airworthi-
ness. According to Mark Bathrick, Director of the Office of 
Aviation Services (OAS) in the Department of the Interior 
(DOI), “The biggest challenge to safely integrating UAV into 
the national airspace – with the ability to fly beyond the line of 
sight of the operator – is developing a system that enables 
UAV to “sense and avoid” other stationary or moving objects. 
Sense and avoid systems rely on radar, onboard transponders, 
or other active means. They suffer the same vulnerabilities as 
the two–way radio links used to control most drones” [2]. This 
calls for true onboard autonomy in real time for UAVs in the 

absence of remote control, external navigation aids like global 
navigation satellite systems (GNSS) and radar systems. The 
nonlinearly stable guidance, navigation and control will solely 
rely on vision and other inputs from low cost and low power 
onboard sensors, and be achieved through real-time detection, 
perception and control algorithms running on onboard hard-
ware.  

The term “UAV” refers to wide range of systems, from 
airplane-sized combat drones to insect-sized micro-drones. In 
this project, we will focus on small UAVs with take-off 
weights 2~20 lbs. This is not only because such small UAVs 
are commercially available and have the most civilian usage, 
but also because they impose more stringent constraints on the 
size and energy dissipation of the onboard system. Without 
loss of generality, motivating applications are remote monitor-
ing and observation of a species in the wild, possibly under 
forest cover, reconnaissance missions, and search and rescue 
operations.  

From autonomous obstacle avoidance to mission planning 
incorporating machine intelligence, we divide the autonomy of 
a UAV into four levels shown in Fig. 1. The lowest level is the 
reactive control (RC), which monitors the gyroscope and ac-
celerometer data, and dynamically adjusts the motor to react to 
the changing airflow. The reactive control is important to sta-
bilize the drone in a changing environment. The second level 
is trajectory generation (TG), where the drone dynamically 
calculates a sequence of waypoints and the trajectory that 
leads to a (changing) destination with the consideration of its 
current speed, acceleration, flight condition and potential ob-
stacles. The third level is context aware adaptation (CAA), 
where the drone perceives its environment and adapts to a 
flight pattern or operation mode that gives the highest efficien-
cy and safety. Image/video processing algorithms are usually 
employed in this layer across multiple modalities to accurately 
detect targets, objects of interest or obstacles. Based on the 
detection results, optimal decisions on flight and sensor con-
trol are searched and forwarded to the TG layer. The top level 
is strategic mission planning (SMP). At this level, the long-
term mission goal is considered together with the availability 
of local resources, such as the remaining battery energy, to 
calculate a sequence of short term objectives and constraints 
that guide the lower level optimization and lead to best return. 
The local resources may include the status of neighbor drones 
if in a swarm environment. 
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Figure 1. The four nested control loops in an autonomous UAV. 

As shown in Fig. 1, the four layers of autonomy form four 
nested control loops. From RC to SMP, the layers process 
different sensory signals with an increasing complexity. The 
goal of each control layer is to generate a set of objective and 
constraint functions for the lower layer based on its sensor 
inputs with the consideration of the objectives and constraints 
that itself receives from the upper layer. For instance, given 
the image of an occluded object, the CAA controller will de-
cide whether to move to a different angle to have a better view 
or to continue in the current direction depending on overall 
mission being searching specifically for a certain target and 
tracking its behavior or performing general surveillance. The 
decision and new destination will be sent to the TG layer and 
the new trajectory will be generated accordingly. 

The two lower layers (i.e. RC and TG layers) work at the 
highest abstraction level (i.e. altitude, speed, etc.) with the least 
amount of information, however require the fastest response. The 
two upper layers (CAA and SMP) of system have relatively more 
relaxed constraints with respect to response time. Yet, they operate 
at the lowest abstraction level and deal with the most complex 
inputs and very large amounts of data (i.e. images, videos or IR 
scan images). Being able to process multiple channels of sensor 
inputs at higher granularity at each layer of the control loop, means 
safer and more efficient operation. The key enabling factor of the 
autonomous UAV is the capability to perform optimization, 
information fusion, detection and decision making rapidly in real 
time. In addition to computing hardware, new computing models 
and software framework need to be developed to enable 
multimodal sensor fusion, hierarchical perception, decision 
making and optimization. 

The existing hardware and software solutions are not adequate 
to meet the requirements of fully autonomous UAV with real-
time performance. First of all, the overall control optimization 
problem, especially the upper two layers in Fig. 1, has an 
extremely large solution space. A UAV needs to decide when to 
be at which location, and what type of sensing to perform and 
which data to collect in order to maximize the return of a particular 
mission while satisfying the resource and safety constraints. The 
typical mission duration is around 20 minutes and the range is up 
to 4~5 miles. There is no immediate rewards or penalties for the 
actions taken by the UAV. A final (delayed) reward/penalty is 
usually received at the end when the mission goal is 
accomplished/failed. Therefore, traditional reactive or predictive 
control cannot be applied to solve this problem. On the other hand, 
the emerging deep reinforcement learning (DRL) technique is 

data-driven and can potentially solve complicated control 
problems with extremely large state and action spaces, as well as 
continuous state space [3]-[5]. This technique could be potentially 
used for control policy optimization in the CAA and SMP layers.  

In this work, we will focus on the CAA and SMP layers 
and discuss how their function can be learned and implement-
ed using deep neural network models. 

II. LEARNING EFFICIENT TRAJECTORY GENERATION 

A. Problem Formulation 

In this part, we focus on trajectory generation for multi-rotor 
UAVs. These UAVs have fixed plane of rotors that actuate the 
vehicle in three-dimensional transnational and rotational motion, 
hence they have the property of under-actuation. Given a closed 
environment, the UAV takes off from an arbitrary position and 
reaches a target position which is preassigned, without colliding 
with obstacles. As stated before, the first step is to select waypoints 
based on the environment. The entire 3D environment is divided 
into � × � × � grids. The environment is described by a function 
M () maps a grid (�, �, �) to a real value �: (�, �, �) →  � . A 
grid, g, that contains obstacle will be mapped to -10, �(g)  =
 −10. The destination grid that the agent needs to reach is mapped 
to 10, and the grid where the UAV is currently located is mapped 
to 1. All other grids are mapped to zeros in the discretized 
environment block. Let �� , �� , …, ����  be the sequence of 
generated waypoints, where each one is a 3D vector corresponding 
to a grid in the environment. Let �(��, ��) denote the control 
thrust for the UAV to follow the trajectory between waypoints �� 
and�� generated by the lower level optimizer. Also, let �(��, ��) 
denote the set of grids that the generated trajectory between �� 
and �� will pass through. The total thrust cost along the trajectory 
is denoted as �. The problem of waypoints generation can be 
formulated as the following:  

PROBLEM 1 (Optimal Obstacle Avoidance Waypoints 
Planning). Minimize 

 � =  ∑ �(��, ��)���
���  

subject to 

(1) reaching the target position from current position, 

 �(��)  =  1 �(����)  =  10 

(2) reaching the target position without colliding with ob-
stacles, 

 �(�)  ≠  −10, � � �(��, ����), 0 ≤ � ≤ � − 2 

To find the set of �� , 0 ≤ � ≤ � − 1  is a combinatorial 
problem. The goal is to achieve minimum control thrust without 
obstacle collision if the UAV flies along the waypoints and 
trajectory. A large reward will be received at the end of the flight if 
the UAV reaches the destination. While this is the problem 
formulation of the upper level optimizer, the functions �(��, ��) 
and �(��, ��)  are determined by the lower level optimizer. 
Reinforcement learning provides a way to solve such constrained 
optimization problem with delayed reward. 

Incorporating with deep neural network, an optimal policy is 
learned to guide the UAV to the next selected actions (i.e. 
waypoints) that can lead to maximum future rewards.  



 

Figure 2. Network structure of proposed deep Q network. 

B. Network Structure 

A deep Q network is used to solve the problem and the 
detailed structure of the model is shown in Fig. 2. The inputs 
contain two parts. First, a 3D matrix with size � × � × � is used 
to represent the current known knowledge of the surroundings. 
Each entry (�, �, �) of the matrix is the mapped value �(�, �, �) 
of the corresponding grid in the 3D environment previously 
discussed. It has the information about the relative position 
between agent and obstacles. In addition, a 1 × 9 vector is used to 
indicate the dynamic configuration of the UAV, where �, � , � 
represent the current position, current velocity and current 
acceleration of the UAV respectively. At each decision episode, a 
UAV can choose any of the 3 × 3 × 3 grids around its current 
location as the waypoint. Therefore, there are 26 possible actions. 
The matrix input is fed into two 3D convolutional layers and each 
is followed by a pooling layer. The intermediate output of the 
second pooling layer is fed into a fully-connected layers with the 
size 1024. The configuration vector input is fed into two fully-
connected layers. The intermediate outputs of FC2 and FC3 are 
fed into two fully-connected layers with the size 1024 and 256 
respectively. The output is a fully-connected layer with the size 26. 
Each output neuron estimates the �(�����, ������)  values for 
one of the 26 actions at the given state. 

Our goal is to generate trajectory for the UAV with minimum 
control thrust under the premise of reaching target position 
without hitting any obstacle. Therefore, our reward function is 
defined as the combination of position reward and control reward 
as following: 

�(�����, ������)  =  ���(�����, ������)  +
 ���(�����, ������) 

where α and β are the coefficients of position reward and control 
reward respectively, α = β = 0.5 in our experiment. 
��(�����, ������)  is the position reward of taking action in 
current state. It is defined as following: 

 ��(�����, ������)  =  �
10    reach target position

−10   collide with obstacles
0       others

 

And ��(�����, ������) indicates the control reward. It is cal-
culated as the negative L1 norm of thrust cost, which is calculated 
by LQR trajectory generation scheme proposed in [7]. 

C. Learning of DQN 

Since the problem complexity, i.e. the total number of state 
action pairs, is �(26 × ��) which is relatively larger than many 
other existing problems [8]-[10], it is crucial to maximize explo-
ration at the beginning of learning. Therefore ϵ-greedy [17] is 

applied during the learning. Based on ϵ-greedy, more random 
actions (i.e. exploration) are taken at the beginning of learning and 
more actions with maximum  �(�����, ������)  values (i.e. 
exploitation) are chosen as learning progresses. 

To improve the learning, we also decrease the learning rate �� 
gradually because it becomes harder to improve performance with 
large learning rate as the gradient reaches plateau. In our 
approach, there are 30,000 learning episodes in total. Instead of 
using a fixed learning rate, the learning rate starts from 1e-4 and 
decreases every 5,000 episodes based on ����� =  (�� −

��

�����
)�������, ��{5� + 3, 1� + 4,1.5� + 4,2� + 4,2.5� + 4}  

and � is the ��� learning episode. This helps to prevent the learning 
from over correct after 5,000 iterations, which allows to maximize 
the exploitation. 

Instead of randomly initializing model weights based on a 
uniform distribution, we initialize the weights of model based on a 
normal distribution. It initializes weights with relatively small 
values and prevents outputs of the model from being either too 
large or too small. Batch normalization is used before the second 
convolutional layer and the first fully-connected layer to reshape 
the input of those hidden layers. In order to bound the training 
time, for every single training episode, the maximum steps ����  
that the UAV can take is fixed. If the UAV has taken ����  steps 
but has not reached the target position, it will be forced to start a 
new learning episode. The start and target positions are randomly 
selected. So do the locations of obstacles. In this way the 
environment configuration of every episode is different, therefore 
each learning episode is independent. During learning, an 
experience replay is used to save last thousand times of 
performance and a randomly sampled mini-batch of size 32 is used 
to train the network. At each time step within an episode, the 
UAV takes an action and receives a +10 position reward if it 
reaches the target position and -10 if colliding with obstacles. 
Otherwise the position reward is 0. The control reward is 
determined based on the current and next position, velocity and 
acceleration of the UAV. The weighted sum of these two rewards 
and corresponding UAV state and action is saved in experience 
replay buffer.  

D. Gain Selection through Genetic Algorithm 

The control thrust is the feedback reward for higher level 
waypoints planner during learning. It is necessary to mention that 
in the lower level of our module, LQR trajectory generation 
scheme, Q, R and S are three positive definite gain matrices. Each 
of these gain matrices penalize different aspects while generating 
the trajectory. Q is a matrix penalizing high values of position, 
velocity and acceleration. The higher the values in Q, the harder 
these parameters are penalized. The input jerk is penalized when R 
matrix has large eigenvalues and how much the waypoints will 
affect the trajectory is weighted by S matrix. We can see that these 
three gain matrices have significant impact on the performance 
index �� of the trajectory. Their values need to be tuned in order to 
minimize the control thrust �. In our experiment, � is calculated 
from the lower level scheme, while it will be measured by sensors 
in real field learning. We apply genetic algorithm (GA) [13] to 
optimize the gain matrices. The best set of (R, Q, S) satisfies 
min
�,�,�

�(��, ����, ��, ��)  where �� , �� , ��  are initial position, 

velocity and acceleration of the UAV and ���� are the destination 
for UAV. 



III. LEARNING ACCURATE TRAJECTORY CONTROL 

A. Problem Definition 

In this section, we consider the trajectory tracking for under- 
actuated aerial vehicles through a set of given desired way points. 
We aim at quadrotor fixed-wing UAVs with four control inputs, 
one degree of translation motion and three degrees of rotation 
motion (i.e. pitch, roll and yaw.) It is extremely difficult to 
integrate detailed mechanistic model of complicated dynamics 
with classic control theory, a model-free solution for the control 
problem is preferred. Because actions of the tracking problem are 
continuous variables (e.g. turning force, thrust etc.), the actor-critic 
reinforcement learning is adopted, which learns to find the optimal 
set of actuations that move the UAV towards desired trajectory. 
The technique presented in [11] is used to generate �� trajectory 
based on a given set of predefined waypoints ��  where each 
waypoint gives the desired position of the UAV at time � . 
Meanwhile, desired velocity ��� , desired acceleration ����  and 
desired attitude ���  are extracted from ��  based on kinematics. 
The positions and attitudes together form the pose of the UAV. 
The goal of our model is to minimize the differences between 
desired poses and actual poses during tracking. We define ���  =
 {���, ���, ����, ���}  as desired state and �� =
 {��, ��, ���, �� }as actual state of UAV at time step �. Each of 
first three variables in the ���  and ��  are 3-dimensional vectors 
and the last one in the ���  and ��  is 3x3-dimension, hence the 
desired state and the actual state are variables in 18- dimensional 
space.  

The concatenation of ���  and ��  forms the agent state St. 
Furthermore, we define action at time � as �� = {���; ��}, where 
the translational force ���  and torques ��  are applied to UAV. 
The translational force ���  is a force perpendicular to the top 
surface of UAV and the three components in �� are applied to roll, 
pitch and yaw directions respectively. The reward Reward(∆t) at 
time t is defined as the Manhattan distance between the desired 
pose and the actual pose, i.e. Reward(∆t)  =  f (|pt −  pdt|  +
 |vt −  vdt|  + |Rt −  Rdt|). 

B. Network Structure 

Since the control variables (i.e. ���, �� ) of UAV are in a 
continuous space which are infinitely large, we build an actor- 
critic reinforcement learning model instead of discretizing the 
action space. The actor model is a feed-forward deep neural 
network of three fully-connected hidden layers with rectified linear 
units (ReLU) as the activation function. It is used to predict the 
optimal action based on current state ��. The number of neurons in 
fully-connected hidden layers are 64, 128 and 128 respectively. 
The size of output layer is 4 and LeakyReLU activation function is 
used in the output layer. The critic model is another feed-forward 
neural network that computes an evaluation of the action and that 
evaluation is used by actor model to update its control policy in 
particular gradient direction. The critic model has two hidden 
layers, where the first layer contains two separate fully-connected 
structures and the number of hidden neurons in each is 32. The 
addition of outputs from the first hidden layer is fed into the 
second layer which has 64 hidden neurons. The inputs of critic 
model are ��  and ��  and the output is a single value �(��, ��). 
The size of the critic and actor is optimized as hyper-parameters 
through cross-validation. The detailed networks of actor model and 
critic model are shown in Fig. 3a and Fig. 3b. The overall 

framework is shown in Fig. 3c. During training, the actor model is 
pre-trained using labeled pair data (��, ��)  generated from 
simulation [11] to predict the optimal action �� based on current 
agent state �� . Next agent state ����  is calculated through 
environment simulation based on �� and is used to predict optimal 
����  by actor model. The critic model evaluates the resulting 
{����, ����}  pair by predicting a Q-value to fine-tune action 
prediction. Therefore, the weights in actor model are updated by 
the gradient between actor and critic model, using chain rule 

��

�������
=

��

��������
×  

��������

�������
.  ������� and ��������  indicate the 

weights of actor and critic models respectively. 

C. Reward Definition 

Our goal is to actuate the UAV to be closer to desired pose �� 
along the desired trajectory, i.e. minimizing the value of ∆P� =
|�� − ���|. Besides position error, the stability of the UAV should 
also be taken into consideration. Therefore the values of velocity 
errors (i.e. ∆V� = |�� − ���|.) and attitude errors (∆R� = |�� −
���|.) must also be minimized. However, our experiments show 
that simply using a linear combination of ∆P�, ∆V�, and ∆R� as the 
reward function will make convergence difficult in learning 
process. According to [12], using geometrically discounted reward 
will prevent the accumulated reward to become infinite and make 
the model more tractable. Therefore, we define the reward at each 
time step following a standard normal distribution, guaranteeing 
the largest reward is accepted when the total differences between 
desired trajectory and actual trajectory at time t (i.e. ∆t = ∆P� +
∆V� + ∆R�) reaches zero and closing to zero reward is obtained 
when ∆t increases. The total discounted reward is denoted as R. 

������(∆t) =
1

√2�
exp (−

∆�
�

2
)

 � = ∑ ��������(∆t)�
���  

where ∆t = ∆P� + ∆V� + ∆R�. 

IV. EXPERIMENTAL RESULTS 

In this section, we demonstrate the performance of our 
proposed model. The training and testing were done on NVIDIA 
TitanX (Pascal). In the experiments, the environment is divided 
into 10 × 10 × 10 and the unit distance �� is 10 meters. Within 
each testing scenario, the number of obstacles is randomly 
generated, and obstacles are placed randomly within the 
environment boundary. Besides, the start and target positions are 
also randomly selected. We report the results compared with some 
existing approaches. 

A. Results Comparison for Trajectory Generation 

As a baseline of reference, we also implement a control 
scheme based on PID theory [14] to estimate the control thrust 
consumption along waypoints and use it to replace LQR trajectory 
generation scheme in [7] as the lower level optimizer. We define 
position as measurable variables and velocities when reaching 
each waypoints are regarded as controllable variables. Every time 
the position of the agent is updated by the feedback of the 
environment, and the feedback is calculated by the environment 
simulation based on Kinematic theory [15]. 

We compare the DRL based waypoints selection with four 
traditional waypoints selection approaches in aspects of average 
number of steps needed to reach target, and the average control 



thrust cost along the trajectory. These four approaches include 
maze routing, shortest path, DLite algorithm and voronoi path. To 
make it more convincing, the size of discretized environment is set 
as 30 × 30 × 30. We generated 1000 different test scenarios by 
randomly select different start positions, destination positions, 
types and locations of obstacles. Fig. 4 compares the average 
number of selected waypoints to reach destination and the average 
control thrust cost for the UAV to go through these waypoints. For 
all waypoints selection approaches, LQR trajectory generation 
scheme in [7] is used for trajectory generation. In Fig. 4a, the 
results show that our approach only needs an average 19.55 
waypoints which is 16.91% less than other approaches. In Fig. 4b, 
the comparison of average control thrust consumption is reported. 
As indicated in the figure, our approach uses least control thrust 
which has 18.87% reduction than other approaches. According to 
these results, our purposed scheme with fewer selected waypoints 
is less possible to be over constrained and less times of lower level 
scheme invocation is needed. 

   
(a) actor model structure  (b) critic model structure 

 
(c) overall framework 

Figure 3. Architecture of actor and critic model, and framework. 

 

 (a) Average number of waypoints         (b) Average control thrust  

Figure 4. Comparison with existing approaches proposed DQN scheme, 
routing, shortest path, DLite and Voronoi. 

B. Environment Setup for Actor-critic Network 

We trained the actor-critic network and implemented the 
simulation on Nvidia GeForce GTX1070 using Keras [16]. The 
data that we use to train and test our model is generated using 
simulator described in [11]. Our dataset consists one thousand 
different 3-D trajectories of four different shapes, including 
straight lines, z-shape curves, spiral curves and circles. Each 
desired trajectory has one thousand desired waypoints, giving 
enough time for UAV to track it. All desired waypoints are defined 
by mathematical equations parameterized by time. Eight hundred 
different trajectories of four different shapes are evaluated in total. 

The mass of UAV used is 4.34kg, and its inertial properties Ʝ is a 
3x3 diagonal matrix (i.e. diag[0.820 0.0845 0.1377]����) which 
determines the required magnitude of force to accelerate the UAV 
in each rotation direction respectively. The goal is to minimize the 
power consumption and time used from trajectory deviated to 
tracked. 

C. Results Comparison on Tracking Aspect 

All test samples of desired trajectories are generated the same 
way. We report the results from four aspects: (1) L1- norm of 
position tracking error; (2) L1-norm of velocity tracking error; (3) 
Time used to complete tracking; (4) Power consumption. 

Fig. 5 shows the L1-norm of position tracking error, where the 
first four columns are comparison results of trajectories with dif-
ferent shapes respectively and the fifth column is average L1-
norm of position error of all testing trajectories. According to the 
figure, our approach has lower average position error especially 
when the trajectory is more complicated. 

Compared to PID based baseline control, 22.94% less position 
error is achieved for straight line trajectory tracking and 25.07% 
less position error is achieved for circular trajectory tracking. The 
position tracking error reduction increases to 85.32% for spiral 
shape tracking and 87.81% for z-shape trajectories tracking 
respectively. On average, our approach outperforms 58.14% better 
than PID based control in position tracking of different shapes of 
trajectories. 

 
Figure 5. Tracking result comparison between proposed DRL- based 

framework and PID-based baseline in terms of L1-norm of position error. 

 
Figure 6. Tracking result comparison between proposed DRL- based 

framework and PID-based baseline in terms of L1-norm of velocity error. 

Fig. 6 shows the average of L1-norm of velocity tracking error. 
Similar to Fig. 5, the first four columns are comparison results of 
each type of trajectory with different shapes, and the last column 
shows trajectories. It shows 29.79% error reduction is achieved for 
line trajectory and 67.22% error reduction is achieved for circle 
trajectory. Up to 91.64% and 93.17% error reductions are achieved 
for z-shape and spiral trajectories. On average, our approach 
outperforms 58.15% than PID control with respect to velocity 
tracking error. Again, our learning-based approach performs better 
for the more complicated trajectories. 



 

Figure 7. Tracking result comparison between proposed DRL-based 
framework and PID-based baseline in terms of used tracking time steps. 

 
Figure 8. Tracking result comparison between proposed DRL- based 

framework and PID-based baseline in terms of power consumption. 

Fig. 7 compares the total time steps used for UAV to follow 
each shape of desired trajectory and the average time steps used in 
total to reach stability. We report the number of time steps used for 
UAV to completely track the desired trajectory. The total time 
steps for each testing trajectory is one thousand. The time step 
when trajectory is tracked is regarded as the time �� after which 
the L1-norm of position error between ���  and ��  is less than 
0.0001. The average tracking time for different types of 
trajectories, and the average tracking time over all testing 
trajectories are reported. Our approach is 9.23% faster than PID-
based control to achieve stable pose on average. It is especially 
13.86% faster for line trajectory and up to 15.58% faster for z-
shape trajectory. Moreover, PID has lags in responding current 
dynamics in all three directions of velocity. Therefore, PID-based 
controller is not optimally adapted for non-linearity situations, 
especially not robust in fast dynamic control. It trades off the 
control performance and time. 

Fig. 8 reports average total power consumption after one 
trajectory is completely tracked using our approach and baseline 
PID controller. As indicated in the figure, our approach achieves 
11.04% less power consumption when tracking shape trajectory 
and consumes 18.64% less power for line trajectory tracking. Fur-
thermore, up to 21.63% and 29.11% power consumption 
improvements have been achieved for circle and spiral trajectories 
tracking respectively. An average of 21.77% less power is 
consumed using our approach for tracking all different trajectories. 
The noticeable result explains that PID control consumes more 
power because of oscillations of controllable variables during 
tracking process. 

V. CONLUSIONS 

A two-level framework to generate navigation trajectory for 
UAVs to follow in a complex environment is introduced. The 
framework's construction, processing and analysis are presented. 
The proposed waypoints planning framework effectively avoids 
obstacles in complex indoor environment and reduces the control 
thrust consumption during flight. Also, it is general enough to be 

applied in other robotics tasks such as parcel delivery and 
conflicting routing of high-density UAVs. 

We also introduced a framework for UAV trajectory tracking 
based on deep reinforcement learning. The system structure, 
processing algorithm and software/hardware performance are 
presented. In our approach, the UAV tracks a desired trajectory 
through a set of given waypoints, tolerating random Gaussian 
noise within considerable range. The hardware consumption of the 
implementation of this scheme is also provided. The proposed 
scheme is general and applicable to be applied in real UAVs for 
fast and accurate trajectory tracking system. 

REFERENCES 

[1] "Global Market for Commercial Applications of Drone Technology 
Valued at over $127 bn," PWC, May 2016. [Online]. Available: 
http://press.pwc.com/News-releases. [Accessed March 2017].  

[2] H. Swan, "UNMANNED AIRCRAFT SYSTEMS: GREAT 
CHALLENGES; GREAT POSSIBILITIES," StartupGrind, 2015. 
[Online]. Available: https://www.startupgrind.com/blog/unmanned-
aircraft-systems-great-challenges-great-possibilities/. [Accessed March 
2017].  

[3] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez and Y. Tassa, 
"Learning continuous control policies by stochastic value gradients," in 
Advances in Neural Information Processing Systems, 2015.  

[4] Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. 
Silver and a. D. Wierstra, "Continuous control with deep reinforcement 
learning," arXiv:1509.02971, 2015.  

[5] G. Dulac-Arnold, R. Evans, H. v. Hasselt, P. Sunehag, T. Lillicrap, J. 
Hunt, T. Mann, T. Weber, T. Degris and B. Coppin, "Deep reinforce-
ment learning in large discrete action spaces," arXiv:1512.07679, 2015.  

[6] Q. Chen and Q. Qiu, "Enhancing bidirectional association between deep 
image representations and loosely correlated texts," in International 
Joint Conference on Neural Networks (IJCNN), 2016.  

[7] Hossein Eslamiat, Yilan Li, Ningshan Wang, Sanyal Amit, and Qinru 
Qiu. 2019 Autonomous Waypoint Planning, Optimal Trajectory Gener-
ation and Nonlinear Tracking Control for Multi-rotor UAVs. Accepted 
by 2019 European Control Conference.  

[8] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav 
Gupta, Li FeiFei, and Ali Farhadi. 2017. Target-driven visual naviga-
tion in indoor scenes using deep reinforcement learning. In Robotics 
and Automation (ICRA), 2017 IEEE International Conference on. 
IEEE, 3357–3364.  

[9] Juan Wu, Seabyuk Shin, Cheong-Gil Kim, and Shin-Dug Kim. 2017. 
Effective lazy training method for deep q-network in obstacle avoid-
ance and path planning. In Systems, Man, and Cybernetics (SMC), 
2017 IEEE International Conference on. IEEE, 1799–1804.  

[10] Riccardo Polvara, Massimiliano Patacchiola, Sanjay Sharma, Jian Wan, 
Andrew Manning, Robert Sutton, and Angelo Cangelosi. 2018. Toward 
End-to-End Control for UAV Autonomous Landing via Deep Rein-
forcement Learning. In 2018 International Conference on Unmanned 
Aircraft Systems (ICUAS). IEEE, 115–123.  

[11] S. P. Viswanathan, A. K. Sanyal, and E. Samiei, “Integrated guidance 
and feedback control of underactuated robotics system in se (3),” Jour-
nal of Intelligent & Robotic Systems, 2018..  

[12] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement 
learning: A survey,” Journal of artificial intelligence research, vol. 4,pp. 
237–285, 1996  

[13] Agoston E Eiben, James E Smith, et al. 2003. Introduction to evolu-
tionary computing. Vol. 53. Springer  

[14] Lluis Pacheco and Ningsu Luo. 2015. Testing PID and MPC perfor-
mance for mobile robot local path-following. International Journal of 
Advanced Robotic Systems 12, 11 (2015), 155.  

[15] Sandeep Kumar Malu and Jharna Majumdar. 2014. Kinematics, locali-
zation and control of differential drive mobile robot. Global Journal of 
Research In Engineering (2014).  

[16] F. Chollet et al., “Keras.” https://github.com/fchollet/keras, 2015.  
[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, 

Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013.  
 


