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Abstract— In this work, we study two problems: three-user
Multiple-Access Channel (MAC) with correlated sources, and
MAC with Feedback (MAC-FB) with independent messages. For
the first problem, we identify a structure in the joint probability
distribution of discrete memoryless sources, and define a new
common information called “conferencing common information”.
We develop a multi-user joint-source channel coding methodology
based on structured mappings to encode this common informa-
tion efficiently and to transmit it over a MAC. We derive a
new set of sufficient conditions for this coding strategy using
single-letter information quantities for arbitrary sources and
channel distributions. Next, we make a fundamental connection
between this problem and the problem of communication of
independent messages over three-user MAC-FB. In the latter
problem, although the messages are independent to begin with,
they become progressively correlated given the channel out-
put feedback. Subsequent communication can be modeled as
transmission of correlated sources over MAC. Exploiting this
connection, we develop a new coding scheme for the problem.
We characterize its performance using single-letter information
quantities, and derive an inner bound to the capacity region.
For both problems, we provide a set of examples where these
rate regions are shown to be optimal. Moreover, we analytically
prove that this performance is not achievable using random
unstructured random mappings/codes.

Index Terms— MAC with feedback (MAC-FB), MAC with
correlated sources, joint-source channel coding, structured codes.

I. INTRODUCTION

MANY coding strategies for processing/transmitting
sources of information in a distributed fashion harness

structures in the statistical description of the sources. Common
information/randomness can be viewed as an example of such
a structure. Efforts in finding a measure of common infor-
mation among distributed sources led to several definitions
[1]–[4]. A noteworthy definition of common information is
due to Gács and Körner [1] and Witsenhausen [2], which is an
information-theoretic measure of the amount of common ran-
domness that can be extracted from two sources. Gács-Körner-
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Fig. 1. A schematic of a two-user MAC with correlated sources. In this setup,
the source sequences (Sn

1 , Sn
2 ) are observed by the corresponding encoders.

The encoders produce (Xn
1 , Xn

2 ) which are channel input sequences. Upon
observing the channel output Y n, the decoder produces an estimate for the
sources.

Witsenhausen (GKW) common part between two correlated
memoryless sources (S1, S2) is defined as a random variable
W with the largest entropy, for which there exist functions
f, g such that W = f(S1) = g(S2) with probability one.
The random variable f(S1) (or equivalently g(S2)) represents
the “common randomness” generated from the sources, and
the functions (f, g) represent the extraction process applied
on the sources.

GKW common part has been found useful in many prob-
lems such as transmission of distributed sources over channels
[5]–[8] and distributed key generation [9]. In MAC with
correlated sources, as shown in Figure 1, there are multi-
ple transmitters, each observing a source, and the sources
are correlated with each other. The transmitters wish to
send their observations in a distributed fashion via a MAC
to a central receiver. The receiver reconstructs the sources
losslessly. Cover-El Gamal-Salehi (CES) showed that joint
source-channel coding outperforms separation-based coding
approaches [10], [11]. This was done by introducing a novel
transmission scheme [7], which exploits the common infor-
mation between the sources. In this scheme, GKW common
part between the sources is first extracted distributively at
the encoders. The encoders can effectively ‘fully cooperate’
to send this information to the receiver, as it is done in
Point-to-Point (PtP) joint source-channel coding problem. The
rest of the sources are transmitted using distributed unstruc-
tured random mappings. In summary, it employs a two-stage
encoding strategy. CES also characterized a set of sufficient
conditions, in terms of single-letter information quantities,
for transmission of sources over a MAC. The scheme is
known to be suboptimal [12] in general. There are a set of
necessary conditions developed in [13] and [14]. However,
characterizing the optimal necessary and sufficient conditions
for transmission of discrete memoryless sources over MAC is
still an open problem.
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Fig. 2. A schematic of a two-user MAC with feedback setup. The output of
the channel is available, with one unit of delay, to the transmitters.

Another fundamental problem in which common infor-
mation plays a key role is communication of independent
messages over discrete memoryless MAC-FB. In a MAC-FB
setup (see Figure 2), after each channel use, the output of the
channel is received at each transmitter noiselessly. This prob-
lem has been studied extensively in the literature [15]–[22].
Gaarder and Wolf [15] showed that feedback can expand the
capacity region of discrete memoryless MAC. Cover-Leung
(CL) [16] studied two-user MAC-FB, developed a coding
strategy using unstructured random codes, and characterized
an achievable rate region in terms of single-letter information
quantities. Later, it was shown by Willems [19] that the CL
scheme achieves the feedback capacity for a class of MAC-FB.
However, this is not the case for general MAC-FB [22]. There
are several improvements over CL achievable region, namely
[23] and [18]. A multi-letter characterization of the feedback-
capacity of MAC-FB is given by Kramer [17]. However,
the characterization is not computable, since it is an infinite-
letter characterization. Finding a computable characterization
of the capacity region remains an open problem.

The main idea behind CL coding scheme is explained in the
following. The scheme operates in two stages. In stage one,
the transmitters send the messages with rates that lie outside
the no-feedback capacity region (i.e. higher rates than what is
achievable without feedback). The transmission rates are taken
such that each user can decode the other user’s message using
feedback. In this stage, the receiver is unable to decode the
messages reliably; however, is able to form a list of “highly
likely” pairs of messages. The transmitters can also recreate
this list. In the second stage, the encoders fully cooperate to
send the index of the correct message-pair in the list, and help
the receiver decode it.

There is a connection between CES scheme for transmission
of correlated sources over MAC and CL scheme for commu-
nications over MAC-FB. In a MAC-FB setup, after multiple
uses of the channel, conditioned on feedback, the messages
become statistically correlated. As explained above, at the end
of the first stage in CL scheme, the messages are decoded at
the transmitters. Hence, the decoded messages can be viewed
as a GKW common part available at the two transmitters after
the first stage. This common part is used in the second stage

to resolve the uncertainty of the receiver. In connection with
CES scheme, the common part is transmitted using identical
random unstructured codebooks.

In this work, we study three-user MAC with correlated
sources, and three-user MAC-FB with independent messages.
Motivated by the notion of common information and its imper-
ative role in these problems, we start by identifying common
information among a triplet of sources (say S1, S2, S3). One
can extend GKW common part to define a (mutual) common
part for (S1, S2, S3) in a straightforward way. In addition,
one can define the pairwise GKW common parts between
any pair (Si, Sj) as a part of the common information.
The mutual common part together with the pairwise com-
mon parts characterize a vector of four components of com-
mon information which we refer to as univariate common
parts.

We make the following contributions in this work. We, first,
identify a new additional structure in the joint probability dis-
tribution of the sources, called “conferencing common part”.
This common part can be viewed as the GKW common part
between a source (say S1) and a pair of sources (say S2, S3).
More explicitly, it is defined as the random variable T with
the largest entropy for which there exist a function f(·) and
a bivariate function g(·, ·) such that T = f(S1) = g(S2, S3)
with probability one. Therefore, for the triplet (S1, S2, S3),
there are three conferencing common parts, one between each
source and the other pair. We also refer to these as bivariate
common parts. Hence, in total, we identify the common parts
among a triplet of the sources as a vector of seven components,
including four univariate and three conferencing (bivariate)
common parts.

Next, we develop a new coding strategy to exploit a
particular form of the conferencing common parts among the
sources, one given by additive functions. Efficient encoding
of conferencing common parts is a more challenging task
as compared to the univariate ones — which is done using
identical random unstructured mappings/codebooks. This is
because conferencing common parts are not available at any
one transmitter— rather a conference among a subset of the
users is needed to extract these common parts. We develop a
multiuser joint-source channel coding methodology based on
structured mappings to encode these common parts efficiently
to be transmitted over a MAC.

In particular, we design coding strategies based on ran-
dom structured mappings for three-user MAC with correlated
sources and MAC-FB. For the former problem, our coding
strategy exploits the univariate and the conferencing common
information among the sources. We derive a new set of
sufficient conditions for this coding strategy using single-
letter information quantities for arbitrary sources and channel
distributions. For the latter problem, based on our notion for
common information, we develop a new coding scheme for
communications over three-user MAC-FB with independent
messages. We characterize its performance using single-letter
information quantities and derive an inner bound to the capac-
ity region. For both problems we provide a set of examples,
where these rate regions are shown to be optimal. Moreover,
we analytically prove that this performance is not achievable
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using random unstructured mappings/codes. The main results
of this paper are given in Proposition 2 and Theorem 1-4.

Prior works on structured codes for multiuser problems:
Structured codes have been used in many problems involving
either source coding or channel coding. For example, they
have been used in distributed source coding [24]–[27], com-
putation over MAC [28]–[31], MAC with side information
[25], [32]–[35], interference channels [36]–[41], and broadcast
channels [42].

Notations: In this paper, random variables are denoted using
capital letters such as X, Y , and their realizations are shown
using lower case letters such as x, y, respectively. Vectors are
shown using lowercase bold letters such as x,y. Calligraphic
letters are used to denote sets such as X ,Y . For any set A,
let SA = {Sa}a∈A. If A = ∅, then SA = ∅. As a shorthand,
we sometimes denote a triple (s1, s2, s3) by s. We also denote
a triple of sequences (s1, s2, s3) by s. Binary entropy function
is denoted by hb(·). By Fq, we denote the field of integers
modulo-q, where q is a prime number. Modulo-q addition
is denoted by ⊕q , and, when it is clear from the context,
the subscript q is removed. For any mapping Φ : A �→ B
and any integer n, define the mapping Φn : An �→ Bn such
that Φn(an) � (Φ(a1), Φ(a2), ..., Φ(an)) for all an ∈ An.
Given a probability distribution PX on a finite alphabet X ,
let A

(n)
ε (X) denote the set of strongly �-typical sequences of

length n. We follow the definition of typical sequences as
given in [43], [44].

The rest of the paper is organized as follows: Section II
contains problem formulation and known results for MAC
with correlated sources. We present our contributions for this
problem in Section III. Similarly, we present the problem
formulation and known results for MAC-FB in Section IV,
and provide our contributions for this problem in V. Lastly,
Section VI concludes the paper.

II. TRANSMISSION OF SOURCES

OVER MAC: PRELIMINARIES

A. Problem Formulation

As depicted in Figure 1, the problem of MAC with corre-
lated sources consists of multiple transmitters, each observing
a source sequence statistically correlated to others. The source
sequences are sent by the encoders via a MAC to a central
decoder. The objective of the receiver is to reconstruct the
source sequences losslessly. It is assumed that the channel
is a discrete memoryless MAC and the source sequences are
discrete and generated IID according to a known joint PMF.
In what follows, we formulate this problem more precisely.

Definition 1: A discrete memoryless MAC with 3 users is
defined by input alphabet X1 × X2 × X3, output alphabet Y ,
and a transition probability matrix PY |X1,X2,X3 . The input and
output alphabets are assumed to be finite sets. The MAC is
denoted by the triple (X ,Y, PY |X).

We assume that the channel is memoryless, stationary and
used without feedback, and, hence, the transition probability of
the n-length channel output vector given the n-length channel

input vectors is given by

n∏
i=1

PY |X1X2X3(yi|x1i, x2i, x3i),

for all x ∈ Xn and y ∈ Yn.
Definition 2: A discrete memoreless stationary source

(S1, S2, S3) is defined by alphabet S1 × S2 × S3 and a
distribution PS1,S2,S3 . The source is denoted by the pair
(S, PS)

The distribution of n-length source sequences is given by

n∏
i=1

PS1S2S3(s1i, s2i, s3i),

for all s ∈ Sn.
In this paper, the bandwidth expansion factor is assumed to

be unity, i.e., the channel is used n times for transmission of
n samples of the sources.

Definition 3: A coding scheme (without bandwidth expan-
sion) with parameter n for transmission of a source (S, PS)
over a MAC (X ,Y, PY |X) consists of encoding func-
tions ei : Sn

i → Xn
i , i = 1, 2, 3, and a decoding function

d : Yn → Sn
1 × Sn

2 × Sn
3 . The parameter n is called block-

length.
Definition 4: A source (S, PS) is said to be transmissible

over a MAC (X ,Y, PY |X), if for all � > 0 and for all suffi-
ciently large n, there exists a coding scheme with parameter
n such that∑
s∈Sn

Pn
S (s)

∑
y:d(y) �=s

Pn
Y |X

(
y | xi = ei(si), i = 1, 2, 3

)
≤ �.

B. CES Sufficient Conditions: Two-User Case

The two-user version of MAC with correlated sources was
investigated in [7] and CES scheme was proposed based on
unstructured random mappings. Further, a sufficient condition
for transmissibility is derived in terms of single-letter infor-
mation quantities. In this scheme the notion of GKW common
part plays an important role. The formal definition of such
common part and the CES sufficient conditions are given
below.

Definition 5 (GKW Common part): A common part
between random variables (S1, S2) is a random variable W12

with the largest entropy for which there exist functions f, g
such that W12 = f(S1), and W12 = g(S2) with probability
one. In this work, such a random variable W12 is called a
univariate common part.

Fact 1 (CES sufficient conditions): A source (S1,S2,
PS1S2) is transmissible over a MAC (X1,X2,Y, PY |X1X2),
if there exist distributions PU12 , PX1|S1,U12 and PX2|S2,U12

such that,

H(S1|S2) ≤ I(X1; Y |X2, S2, U12),
H(S2|S1) ≤ I(X2; Y |X1, S1, U12),

H(S1, S2|W12) ≤ I(X1X2; Y |W12, U12),
H(S1, S2) ≤ I(X1 X2; Y ),
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where, U12 is an auxiliary random variable with a finite
alphabet U12, and the joint distribution of all the random
variables factors as

PS1,S2,U12,X1,X2,Y

= PS1,S2PU12PX1|S1,U12PX2|S2,U12PY |X1,X2 .

C. A Sufficient Condition Based on Unstructured Mappings:
Three-User Case

One can extend CES sufficient conditions for three-user case
based on unstructured random codes. For that, first we need
to generalize the definition of GKW common part for more
than two random variables.

Definition 6: The common part among random variables
(S1, S2, S3) is the random variable W123 with the largest
entropy for which there exist functions fi, i = 1, 2, 3 such
that W123 = fi(Si) holds with probability one.

It is worth noting that for the triple (S1, S2, S3) there are
four common parts namely (W12, W13, W23, W123). For the
case of multiple sources, say (S1, S2, S3), a similar idea as
in CES can be used to encode the univariate common parts.
In what follows, we provide an extension of CES scheme to
the three-user case based on unstructured random mappings.

Definition 7: Given a source (S, PS) and a MAC
(X ,Y, PY |X1X2X3), let PCES be the set of conditional dis-
tributions PU,X|S defined on U × X which factors as

PU123

[ ∏
b∈{12,13,23}

PUb|WbU123

][ ∏
i,j,k∈{1,2,3}
j<k,i�=j,i�=k

PXi|SiU123UijUik

]
,

(1)

where, with a slight abuse of notation, U �
(U123, U12, U13, U23) and its alphabet is a finite set denoted
by U .

Proposition 1: A source (S, PS1S2S3) is transmissible over
a (X ,Y, PY |X1X2X3), if there exists a conditional distribution
PU,X|S ∈ PCES such that for any distinct i, j, k ∈ {1, 2, 3}
and any B ⊆ {12, 13, 23} the following inequalities hold

H(Si|SjSk)≤I(Xi; Y |SjSkXjXkU123U12U13U23),
H(SiSj |Sk)≤I(XiXj; Y |SkU123UikUjkXk),

H(SiSj |SkWij)≤I(XiXj; Y |SkWijU123U12U13U23Xk),
H(S1S2S3|W123WB)≤I(X1X2X3; Y |W123WBU123UB),

H(S1S2S3)≤I(X1X2X3; Y ),

where we have identified Uij = Uji and Wij = Wji.
The three-user extension of CES involves three layers of

coding. In the first layer W123 is encoded at each transmitter
to U123. Next, based on the output of the first layer, Wij ’s are
encoded to Uij . Finally, based on the output of the first and
the second layers, S1, S2 and S3 are encoded. Figure 3 shows
the random variables involved in the extension of CES.

Outline of the proof: Fix a conditional distribution
PU,X|S ∈ PCES . Let the sequence si ∈ Sn

i be a realization
of the ith source, where i = 1, 2, 3.

Codebook Generation: The construction of the codebooks
at each transmitter is given below:

Fig. 3. The random variables involved in the three-user extension of CES.

1) For each realization w123 of the mutual common
part, a sequence U123 is generated randomly accord-
ing to

∏
l∈[1,n] PU123 . Such a sequence is indexed by

U123(w123).
2) Given b ∈ {12, 13, 23}, and for each u123 and wb,

a sequence Ub is generated randomly according to∏
l∈[1,n] PUb|WbU123 . Such a sequence is indexed by

Ub(wb,u123).
3) Given distinct elements i, j, k ∈ {1, 2, 3}, any

realization si of the source, the common parts
(w123,wij ,wik), and the corresponding sequences
U123(w123),Uij(wij ,U123) and Uik(wik,U123),
a sequence Xi is generated randomly according
to

∏
l∈[1,n] PXi|SiU123UijUik

. For shorthand, such a
sequence is denoted by Xi(si,U123,Uij ,Uik).

Encoding: Upon observing a realization si of the ith source,
transmitter i first calculates the common part sequences
(w123,wij ,wik), where i, j, k ∈ {1, 2, 3} are distinct. Then,
the transmitter finds the corresponding sequences

(U123(w123),Uij(wij ,U123),Uik(wik,U123))

and sends Xi(si,U123,Uij ,Uik) over the channel.
Decoding: Upon receiving the channel output sequence y,

the decoder finds a unique triple (s̃1, s̃2, s̃3) such that

(s̃, Ũ123,Ũ12, Ũ13, Ũ23, X̃1, X̃2, X̃3,y)

∈ A(n)
ε (S, U123, U12, U13, U23, X1, X2, X3, Y ),

where Ũ123 = u123(w̃123), Ũij = uij(w̃ij , Ũ123),
X̃i = Xi(s̃i, Ũ123, Ũij , Ũik), and i, j, k ∈ {1, 2, 3} are dis-
tinct. Note that (w̃123, w̃12, w̃13, w̃23) are the corresponding
common parts sequences of (s̃1, s̃2, s̃3).

A decoding error occurs, if no unique (s̃1, s̃2, s̃3) is found.
Using a standard argument as in [7], it can be shown that the
probability of error can be made sufficiently small for large
enough n, if the conditions in Proposition 1 are satisfied.

III. TRANSMISSION OF SOURCES OVER MAC:
STRUCTURED MAPPINGS

In this section, we provide a new sufficient condition charac-
terized using single-letter information quantities for transmis-
sibility of the sources over MAC using structured mappings.
The main results of this section are given in Proposition 2,
Theorem 1 and 2.

A. Conferencing Common Information

The joint distribution of triple (S1, S2, S3) also has an
additional structure which is not captured by the univariate
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common parts defined previously. This will be addressed by
defining a new common part as follows.

Definition 8: The conferencing common part of a triple
of random variables (S1, S2, S3) is the triple of random
variables (T1, T2, T3) with the largest joint entropy, for which
there exist functions fi, gi, i ∈ {1, 2, 3} such that Ti =
fi(Si) = gi(Sj , Sk) hold with probability one for all distinct
i, j, k ∈ {1, 2, 3}1.

From definitions 5 and 8, the common parts
among the three random variables (S1, S2, S3) are
(W12, W13, W23, W123, T1, T2, T3), where Wij is the pairwise
common part between (Si, Sj), W123 is the mutual common
part (all in the sense of Definition 5 ), and (T1, T2, T3)
are conferencing common parts (as in Definition 8) among
(S1, S2, S3). In this work, we focus on a special class of
conferencing common part which is defined as follows.

Definition 9: The additive common part of a triple of ran-
dom variables (S1, S2, S3) is the triple of random variables
(T1, T2, T3) with the largest entropy for which there exist a
finite field Fq and functions fi : Si �→ Fq, i = 1, 2, 3 such that
Ti = fi(Si) and T1 ⊕q T2 ⊕q T3 = 0.

The following example provides a triplet of binary sources
with additive common part where the associated finite field
is F2.

Example 1: Let S1, S2 and S3 be three Bernoulli ran-
dom variables. Suppose S1 and S2 are independent, with
biases p1 and p2, respectively, and S3 = S1 ⊕2 S2 with
probability one. It is not difficult to show that univariate
common parts (the pairwise as well as the mutual) are
trivial, i.e., (W12, W13, W23, W123) is a constant. As for
the conferencing common parts, set Ti = Si, i = 1, 2, 3.
Then (T1, T2, T3) satisfies the conditions in Definition 9 for
q = 2. Therefore, (T1, T2, T3) is the additive common part of
(S1, S2, S3).

Unlike univariate common information, conferencing com-
mon parts are not available at any terminal. This is due to the
fact that conferencing common parts are bivariate functions
of the sources. As a result, to exploit conferencing common
information, a new coding technique needs to be developed.
For this purpose, we use affine maps. The key concepts are
described in the following.

We construct three affine maps for encoding of such
common parts. Let G be a n by n matrix with elements
in Fq. We, also, select vectors b1,b2,b3 ∈ F

n
q such that

b1 ⊕ b2 ⊕ b3 = 0. The additive common parts are encoded
as Vn

i = Tn
i G ⊕ bi, for i = 1, 2, 3, and hence, the equality

Vn
1 ⊕ Vn

2 ⊕ Vn
3 = 0 holds with probability one. One may

adopt a randomized affine map to encode the additive common
parts. For that, we can select the matrix G and the vectors
b1,b2,b3 randomly and uniformly from the set of all matrices
and vectors with elements in Fq.

B. Sub-Optimality of Unstructured Mappings

In what follows, we show that applications of affine maps
for transmission of additive common parts improves upon the

1 Note that the conferencing common part random variables are unique upto
a relabeling.

scheme based on unstructured random mappings given in the
previous section.

Example 2: Suppose (S1, S2, S3) are as in Example 1. The
sources are to be transmitted via a MAC with binary inputs
X1 × X2 × X3, binary outputs Y1 × Y2, and a conditional
probability distribution that satisfies

(Y1, Y2) =

{
(X1 ⊕ Nδ, X2 ⊕ N ′

δ), if X3 = X1 ⊕ X2,

(X1 ⊕ N1/2, X2 ⊕ N ′
1/2), if X3 	= X1 ⊕ X2,

(2)

where Nδ, N
′
δ, N1/2 and N ′

1/2 are independent Bernoulli ran-
dom variables with parameter δ, δ, 1

2 , and 1
2 , respectively.

As explained in Example 1, the univariate common parts
are trivial, and the 2-additive common parts are Ti = Si, i =
1, 2, 3. For such a setup, we use random affine maps explained
above. The following lemma provides a necessary and suffi-
cient condition for reliable transmission of (S1, S2, S3). The
achievability is obtained using the above approach.

Proposition 2: Consider the source given in Example 1
with p1 = p2 = p. Such a source is transmissible over the
MAC given in Example 2, if and only if hb(p) ≤ 1−hb(δ), i =
1, 2. Moreover, the source with parameter p = h−1

b (1−hb(δ))
does not satisfy the sufficient condition in Proposition 1.

Proof: The proof for the direct part follows using random
affine maps. For that, set Xn

i = Sn
i G ⊕ Bi, i = 1, 2, 3,

where G,B1,B2,B3 are selected randomly, and uniformly
with elements from Fq and satisfying B1 ⊕B2 ⊕B3 = 0. In
this case, Xn

3 = Xn
1 ⊕Xn

2 which implies that Y n
1 = Xn

1 ⊕Nn
δ

and Y n
2 = Xn

2 ⊕ Nn
δ′ . Hence, from the properties of random

linear maps for the point-to-point joint source-channel setting,
(S1, S2) can be decoded with arbitrary small error probability,
if hb(pi) ≤ 1 − hb(δ), i = 1, 2.

For the converse part, suppose (S1, S2, S3) are transmissi-
ble. Therefore, for any � > 0 there exists a coding scheme
with error probability at most �. Suppose (e1, e2, e3) are the
encoders and d is the decoder of such a scheme. Then, from
Fano’s inequality,

2hb(p) =
1
n

H(Sn
1 , Sn

2 )

≤ 1
n

I(Sn
1 , Sn

2 ; Y n
1 , Y n

2 ) + 2� +
1
n

hb(�)

(a)

≤ 1
n

I(Xn
1 , Xn

2 , Xn
3 ; Y n

1 , Y n
2 ) + 2� +

1
n

hb(�)

(b)

≤ 2 − 2hb(δ) + 2� +
1
n

hb(�),

where (a) follows because of the Markov chain
(S1, S2, S3) ↔ (X1, X2, X3) ↔ (Y1, Y2). Inequality (b)
holds as the mutual information does not exceed the sum-
capacity of the MAC which equals to 2 − 2hb(δ). The proof
for the converse is complete as the inequalities hold for
arbitrary � > 0.

Next, we prove the last statement of the proposition by
contradiction. Suppose the sources with parameter p1 =
p2 = h−1

b (1 − hb(δ)) satisfy the conditions in Proposition 1.
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Then, from the fourth inequality in Proposition 1,

2 − 2hb(δ) ≤ max
PU,X|S∈PCES

I(X1, X2, X3; Y |U)

= max
PU PX|US

I(X1X2 X3; Y |U),

where PX|US =
∏3

i=1 PXi|Si,U . The equality holds as there
is no univariate common part, and hence, U is independent
of the sources. Since, U appears in the conditioning in the
mutual information term, the above inequality is equivalent to

2 − 2hb(δ) ≤ max
PX1|S1PX2|S2PX3|S3

I(X1X2X3; Y ). (3)

One can verify that I(X1, X2, X3; Y ) ≤ 2 − 2hb(δ), with
equality, if and only if, X3 = X1 ⊕ X2 with probability
one, and X1 and X2 are uniform over {0, 1}. However,
we show that such distribution cannot be generated by taking
the marginal of PSPX1|S1PX2|S2PX3|S3 . This is because,
to get X1 and X2 to be uniform over {0, 1}, we need to set
PX1|S1(x|s) = PX2|S2(x|s) = 1

2 for all x, s ∈ {0, 1}. This
implies that, X1 and X2 are independent of each other and of
S1 and S2, respectively. Hence, PS,X = PSPX1PX2PX3|S3 ,
which means that (X1, X2) are independent of X3. This
contradicts with the condition that X3 = X1 ⊕ X2.

C. New Sufficient Condition

We use the intuition behind the argument in
Subsection III-B and propose a new coding strategy in which
a combination of random linear codes (as in Example 2) and
the extension of CES scheme is used. The coding scheme uses
both univariate and additive common information among the
sources. In the next Theorem, we derive sufficient conditions
for transmission of correlated sources over three-user MAC.

Definition 10: Given a source (S, PS) with an additive
common part (T1, T2, T3), and a MAC (X ,Y, PY |X1X2X3),
let P be the set of conditional distributions PU,V ,X|S defined
on U × F

3
q ×X which can be factored as

PU123

[ ∏
b∈{12,13,23}

PUb|WbU123

]
PV1V2V3

×
[ ∏

i,j,k∈{1,2,3}
j<k,i�=j,i�=k

PXi|SiU123UijUikVi

]
, (4)

where Fq is the finite field associated with the additive
common part, the random variables (W123, W12, W13, W23)
are the univariate common parts of the sources,

PV1V2V3 =
1
q2
�{V3 ⊕q V1 ⊕q V2 = 0},

and with slight abuse of notation U � (U123, U12, U13, U23). U
and V are finite alphabets associated with the auxiliary random
variables U and V , respectively.

Theorem 1: A source (S, PS) with an additive com-
mon part (T1, T2, T3) is reliably transmissible over a MAC
(X ,Y, PY |X1X2X3), if there exists a conditional distribution
PU,V ,X|S ∈ P such that for all a, b ∈ Fq , any distinct
i, j, k ∈ {1, 2, 3}, and for any B ⊆ {12, 13, 23} the set of
inequalities in (5), shown at the bottom of the page, hold.

Remark 1: Via a choice of Xi, i = 1, 2, 3, that is indepen-
dent of Vi, one obtains an extension of the CES scheme for
the three user case (Proposition 1), i.e., the set of conditions
given in Theorem 1 is weaker than that in Proposition 1.

Outline of the proof: We use a new approach which
is based on affine maps to encode additive common parts.
Suppose the random variables (S, X, U123, U12, U13, U23, V )
are distributed according to a joint distribution that factors as
in (4).

Codebook Generation: At each transmitter five differ-
ent codebooks are defined, one codebook for the additive
common part Ti, three codebooks for univariate common
parts (W123, Wij , Wik), where i, j, k are distinct elements of
{1, 2, 3}, and one codebook for generating the total output
Xn

i . Fix � > 0.

1) The codebooks for encoding of univariate common parts
are as in the proof of Proposition 1.

2) The codebook for encoding of (T1, T2, T3) is defined
using affine maps. Generate two vectors B1,B2 of
length n, and an n×n matrix G with elements selected
randomly, uniformly and independently from Fq. Set
B3 = −(B1 ⊕q B2). For each sequence ti ∈ F

n
q , define

Vi(ti) = tiG ⊕ Bi, where i = 1, 2, 3, and all the
additions and multiplications are modulo-q.

3) Given distinct i, j, k ∈ {1, 2, 3}, any realization si of
the source, the common parts (w123,wij ,wik, ti), and
the corresponding sequences

(
U123(w123),Uij(wij ,U123),Uik(wik,U123),Vi(ti)

)

H(Si|Sj , Sk) ≤ I(Xi; Y |Sj , SkU123, U12, U13, U23, V1, V2, V3, Xj, Xk) (5a)

H(Si, Sj |Sk, WB) ≤ I(Xi, Xj ; Y |Sk, WB, U123, Uik, UjkUB, Vk, Xk) (5b)

H(Si, Sj |Sk, WB, T ) ≤ I(Xi, Xj ; Y |Sk, WB, U123, Uik, UjkUB, T , V , Xk) (5c)

H(S1, S2, S3|W123, WB, T ) ≤ I(X1, X2, X3; Y |W123, WB, U123, UB, T , V ) (5d)

H(S1, S2, S3|T ) ≤ I(X1, X2, X3; Y |T , V ) (5e)

H(S1, S2, S3|aT1 ⊕q bT2) ≤ I(X1, X2, X3; Y |aT1 ⊕q bT2, a V1 ⊕q bV2) (5f)

H(S1, S2, S3|W123, WB, aT1 ⊕q bT2) ≤ I(X1, X2, X3; Y |W123, WB, U123, UB, aT1 ⊕q bT2, aV1 ⊕q bV2) (5g)
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generate a random IID sequence Xi according to∏
l∈[1,n] PXi|SiU123UijUikVi

. For shorthand, such a
sequence is denoted by Xi(si,U123,Uij ,Uik,Vi).

Encoding: Assume si is a realization of the ith source,
where i = 1, 2, 3. Transmitter i first calculates the common
part sequences (w123,wij ,wik, ti), where i, j, k ∈ {1, 2, 3}
are distinct. Next, the transmitter finds the corresponding
sequences(
U123(w123),Uij(wij ,U123),Uik(wik,U123),Vi(ti)

)
and sends Xi(si,U123,Uij ,Uik,Vi) to the channel.

Decoding: Upon receiving the channel output vector y from
the channel, the decoder finds sequences s̃i ∈ Sn

i , i = 1, 2, 3,
such that

(s̃, Ũ123, Ũ12,Ũ13, Ũ23, ṽ, X̃,y)

∈ A(n)
ε (S, U123, U12, U13, U23, V , X, Y ), (6)

where Ũ123 = u123(w̃123), Ũij = uij(w̃ij , Ũ123), ṽi =
vi(t̃i), X̃i = Xi(s̃i, Ũ123, Ũij , Ũik, t̃i), and i, j, k ∈ {1, 2, 3}
are distinct. Note that (w̃123, w̃12, w̃13, w̃23) and (t̃1, t̃2, t̃3)
are the univariate and additive common part sequences of
(s̃1, s̃2, s̃3), respectively.

A decoding error will be occurred, if no unique (s̃1, s̃2, s̃3)
is found. It is shown in Appendix A that the probability of
error approaches zero as n → ∞, if the inequalities in (5) are
satisfied.

Remark 2: The coding strategy explained in the proof of
Theorem 1 subsumes the extension of CES scheme and
identical random linear coding strategy.

D. Example With Structural Mismatch

In Example 2, the structure in the sources matches with
that of the channel. In other words, the source correlation
is captured via the relation given by S3 = S1 ⊕ S2, and
when X3 = X1 ⊕ X2, the channel behaved obligingly.
In this section, we consider an example where there is a
mismatch between the structures of the source and the channel.
In other words, the source correlation is still governed by
S3 = S1⊕S2, whereas, the channel fuses X3 and X1⊕X2 in a
nonlinear fashion. In what follows, we provide an application
of our coding scheme in scenarios where there is a structural
mismatch between the sources and the channel.

Example 3: Consider the sources denoted by (S1, S2, S3),
where S1 and S3 are independent Bernoulli random vari-
ables with parameter σ, γ ∈ [0, 1

2 ], respectively. Suppose
that the second source satisfies S2 = S1 ⊕2 S3 with
probability one. For shorthand we associate such sources
with the parameters (σ, γ). The sources are to be transmitted
trough a MAC with binary inputs as shown in Figure 4.
In this channel the noise random variable N is assumed to
be independent of other random variables. The PMF of N is
given in Table I, where the parameter δ ∈ (0, 1

4 ]. As a result,
H(N) = 1 + 1

2hb(2δ).
For this setup, we show that there exist parameters (σ, γ)

whose corresponding sources in Example 3 cannot be trans-
mitted reliably using the CES scheme. However, according

Fig. 4. The diagram the setup introduced in Example 3. Note the input
alphabets of this MAC are restricted to {0, 1}.

TABLE I

DISTRIBUTION OF N

to Theorem 1, such sources can be reliably transmitted. This
emphasizes the fact that efficient encoding of conferencing
common information contributes to improvements upon cod-
ing schemes solely based on univariate common information.
In what follows, we explain the steps to show the existence
of such parameters.

Remark 3: For the special case in which σ = 0, the equal-
ities S1 = 0 and S2 = S3 hold with probability one. From
Proposition 1, such (S1, S2, S3) can be transmitted using CES
scheme, if hb(γ) ≤ 2 − H(N) holds.

Let γ∗ ∈ [h−1
b (0.5), 1

2 ) be such that γ∗ = h−1
b (2−H(N)).

Such a γ∗ exists as 2 − H(N) = 1 − 1
2hb(2δ) and, thus, is a

number between 1
2 to 1. By Remark 3, the sources (S1, S2, S3)

with parameter (σ = 0, γ = γ∗) can be transmitted reliably
using CES scheme. However, we argue that for small enough
� > 0, the sources with parameter (σ = �, γ = γ∗ − �) cannot
be transmitted using this scheme. Whereas, from Theorem 1,
this source can be transmitted reliably. This is formally stated
as follows.

Theorem 2: There exist σ ∈ (0, 1
2 ] and γ ∈ (0, γ∗] such that

the triplet sources (S1, S2, S3) with these parameters satisfies
the sufficient condition of Theorem 1, thus, transmissible over
the channel in Example 3, but does not satisfy the sufficient
condition in Proposition 1.

Proof: The proof is in Appendix B.

IV. COMMUNICATIONS OVER MAC WITH

FEEDBACK: PRELIMINARIES

The problem of three user MAC with noiseless feedback
is depicted in Figure 5. This communication channel consists
of one receiver and multiple transmitters. After each channel
use, the output of the channel is received at each transmitter
noiselessly. Gaarder and Wolf [15] showed that the capacity
region of the MAC can be expanded through the use of the
feedback. This was shown in a binary erasure MAC. Cover
and Leung [16] studied the two-user MAC with feedback, and
developed a coding strategy using unstructured random codes.
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Fig. 5. The three-user MAC with noiseless feedback. If the switch Si is
closed, the feedback is available at the ith encoder, where i = 1, 2, 3.

A. Model and Problem Formulation

In what follows, we formulate the problem of commu-
nications over MAC-FB. We restrict ourselves to three-user
MAC with noiseless feedback in which all or a subset of the
transmitters have access to the feedback perfectly. Consider a
three-user MAC identified by a transition probability matrix
PY |X1,X2,X3 as in Definition 1. Let yn be a realization of
the output of the channel after n uses, where xn

i is the ith
input sequence of the channel, i ∈ [1, 3]. Then, the conditional
probability distribution of the channel output yn given the
current and past input and output vectors is given by

PYn|Yn−1,Xn
1 ,Xn

2 ,Xn
3
(yn|yn−1,xn

1 ,xn
2 ,xn

3 )

= PY |X1,X2,X3(yn|x1n, x2n, x3n). (7)

It is assumed that noiseless feedback is made available, with
one unit of delay, to a subset T ⊆ [1, 3] of the transmitters.
In Figure 5, the switches Si, i = 1, 2, 3 determine which
transmitter receives the feedback. A formal definition of a
MAC-FB setup is given in the following.

Definition 11: A 3-user MAC-FB setup is characterized
by a 3-user MAC (X ,Y, PY |X1X2X3) and a subset T ⊆
[1, 3] determining the transmitters which have access to the
feedback. It is assumed that at least one transmitter has access
to the feedback, i.e., |T | ≥ 1. Such a MAC-FB is denoted by
(X ,Y, PY |X , T ).

Definition 12: For a 3-user MAC-FB (X ,Y, PY |X , T ),
an (N, Θ1, Θ2, Θ3) coding scheme consists of 3 sequences
of encoding functions defined as,

ei,n : [1, Θi] × Yn−1 → Xi,

for i ∈ T , and

ej,n : [1, Θj] → Xj ,

for j ∈ T c, with n ∈ [1, N ] and a decoding function denoted
by

d : YN → [1, Θ1] × [1, Θ2] × [1, Θ3].

We use a unified notation ei,n(m, yn−1) to denote the
encoders, as it is understood that for i /∈ T the encoder ei,n is
only a function of the message m. Moreover, for shorthand,
the encoders of the coding scheme are denoted by e.

It is assumed that, transmitter i receives a message
index Mi which is drawn randomly and uniformly from
[1, Θi], where i ∈ [1, 3]. Furthermore, the message indexes
(M1, M2, M3) are assumed to be mutually independent.
Moreover, the timeline of the random variables are in the
following order

(M1, M2, M3), (X11, X21, X31), Y1, (X12, X22, X32), Y2, · · ·

We assume that the channel does not have access to the
messages, i.e., the Markov chain2,

(M1, M2, M3) − (Yn−1,Xn
1 ,Xn

2 ,Xn
3 ) − Yn,

holds for all n ∈ [1, N ]. For this setup, the average probability
of error is defined as

Perr(e) � P{d(Y N ) 	= (M1, M2, M3)}, (8)

where e denotes the encoders of the coding scheme.
Definition 13: For a 3-user MAC-FB, a rate-tuple

(R1, R2, R3) is said to be achievable, if for any � > 0 there
exists, for all sufficiently large N , an (N, Θ1, Θ2, Θ3) coding
scheme such that

Perr(e) < �,
1
N

log2 Θi ≥ Ri − �, i = 1, 2, 3.

B. CL Achievable Region: Unstructured Coding Approach

The main idea behind the CL scheme is to use superposition
block-Markov encoding. The scheme operates in two stages.
In stage one, the transmitters send the messages with rates
outside the no-feedback capacity region, but small enough
that each user can decode the other user’s message using
feedback. In the second stage, the encoders fully cooperate
to send the messages to disambiguate the information at the
receiver. Using this approach, the following rate-region is
achievable for communications over a MAC with noiseless
feedback available at at least on of the transmitters [16].

Fact 2: Given a two-user MAC-FB (X1,X2,Y, PY |X1,X2 ,
T ⊆ {1, 2}), a rate pair (R1, R2) is achievable, if there exist
distributions PU , PX1|U , and PX2|U such that

R1 ≤ I(X1; Y |X2, U),
R2 ≤ I(X2; Y |X1, U),

R1 + R2 ≤ I(X1, X2; Y ),

where U takes values from a finite set U , and the joint
distribution of all the random variables factors as

PUPX1|UPX2|UPY |X1,X2 .

It was shown in [20] that, in a two-user MAC-FB, the CL
rate region is achievable even if only one of the transmitters
has access to the feedback ( |T | = 1).

2This is the standard formulation of channel coding problem with feedback
following [45].
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As explained in CL scheme, the decoded sub-messages
(M1,b, M2,b) are used as a common information for the next
block of transmission. One can extend this scheme for a
multi-user MAC-FB setup (say a three-user MAC-FB) using
unstructured codes. In this setup, the transmitters send the
messages with rates outside the no-feedback capacity region.
Hence, the receiver is not able to decode the messages.
However, the transmission rates are taken to be sufficiently
low so that each user can decode the sub-messages of the other
users. The decoded sub-messages at the end of each block b
are used as uni-variate common parts for the next block of
transmission. One can derive a single-letter characterization
of an achievable rate region based on such a scheme in a
straightforward fashion. For conciseness we do not state this
rate region in this paper.

V. THREE-USER MAC-FB: STRUCTURED CODES

In this section, we propose a new coding scheme for
three-user MAC-FB, and derive a computable single-letter
achievable rate region (an inner bound to the capacity region)
using structured codes – in particular, quasi-linear codes
that were introduced in [46]. Note that prior to the start of
the communication, the messages are mutually independent;
whereas after multiple uses of the channel, they become
statistically correlated conditioned on the feedback. Based on
this observation, we make a connection to the problem of
MAC with correlated sources to design coding strategies that
exploit the statistical correlation among the messages. We use
the notion of conferencing common information to propose a
new coding strategy for 3-user MAC-FB. The main results of
this section are given in Theorem 3 and 4.

A. New Achievable Rate Region

In what follows, we give the intuition behind the use of
conferencing common information in MAC-FB. Consider a
three-user MAC-FB setup as depicted in Figure 6. Similar to
the two-user version of the problem, the communications take
place in B blocks each of length n. Moreover, the message
at Transmitter i is divided into B sub-messages denoted by
(Mi,1, Mi,2, ..., Mi,B), where i = 1, 2, 3. Suppose, the trans-
mission rates are such that neither the decoder nor the trans-
mitters can decode the messages. However, at each block b,
the rates are sufficiently low so that each transmitter is able to
decode the modulo-q sum of the other two sub-messages3. For
instance, Transmitter 1 can decode M2,b ⊕q M3,b with high
probability. Let Ti,b denote the decoded sum at Transmitter i,
where i = 1, 2, 3. Then, for binary messages,

T1,b ⊕ T2,b ⊕ T3,b = 0

with high probability. As a result, (T1, T2, T3) can be
interpreted as additive conferencing common parts (see
Definition 9). Building upon this intuition, in what follows,
we propose a coding strategy for communications over 3-user
MAC-FB, and we derive a new computable achievable rate
region.

3 It is understood that the messages belong to a finite field Fq .

Fig. 6. Applications of conferencing common information for communica-
tions over MAC-FB. The new sub-messages at block b are denoted by Mi,b.
At the end of block b − 1, each transmitter decodes the modulo-two sum of
the other two transmitters. The decoded sums are denoted by Ti,b, i = 1, 2, 3.
Note that T1,b ⊕ T2,b ⊕ T3,b = 0 with probability close to one.

We start by the following definition to characterize an
achievable rate region.

Definition 14: For a prime q and a given set U and a three-
user MAC-FB (X ,Y, PY |X , T ), define P as the collection of
all distributions on U × F

6
q ×X ,Y factoring as

PUPV1V2V3

3∏
i=1

PTiPXi|UTiVi
PY |X1X2X3 , (9)

where (T1, T2, T3) are mutually independent with uniform
distribution over a finite field Fq, (V1, V2, V3) are pairwise
independent each with uniform distribution over Fq , and

PV1V2V3(v1, v2, v3) =
1
q2
�{v1 ⊕ v2 ⊕ v3 = 0},

and for any i ∈ T c, we have PXi|UTiVi
= PXi for some

distribution on Xi.
We follow a block Markov coding approach with one step

memory. To ensure stationarity we impose the following con-
ditions. Fix a distribution P ∈ P that factors as in (9). Denote
Si = (Xi, Ti, Vi) for i = 1, 2, 3. Consider two sets of random
variables (U, S1, S2, S3, Y ) and (Ũ , S̃1, S̃2, S̃3, Ỹ ). Here the
first set corresponds to the current block and the second set
corresponds to the previous block in the block Markov coding
strategy. The distribution of each set of the random variables
is P, i.e.,

PUS1 S2 S3Y = PŨ S̃1S̃2S̃3Ỹ = P.

In addition, conditioned on (Ũ , S̃1, S̃2, S̃3, Ỹ ), we have that

PUS1S2S3Y |ŨS̃1S̃2S̃3Ỹ = PUPV1V2V3|T̃1T̃2T̃3

×
3∏

i=1

PTiPXi|UTiVi
PY |X1X2X3 , (10)

and V = T̃A with probability one, where A is a 3×3 matrix
with elements in Fq and the multiplications are modulo q.
Further, A is chosen such that PV1V2V3 = PṼ1,Ṽ2,Ṽ3

. These
random variables are described in Fig. 7.

Definition 15: Given a MAC-FB (X ,Y, PY |X , T ), let
RMAC-FB be the set of triplets (R1, R2, R3) for which there
exist α ∈ (0, 1), random variables (U, S1, S2, S3, Y ) and
(Ũ , S̃1, S̃2, S̃3, Ỹ ) distributed according to (10) for some
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Fig. 7. The random variables involved in the block Markov coding strategy.
Here, the new message at encoder i is represented by a pair (Wi, Ti), where
Wi’s are to be decoded at the receiver after two blocks and Ti’s are used to
construct the next block’s conferencing common information. Conferencing
common information random variables (V1, V2, V3) satisfy the relation V =
T̃A, where A is a 3 × 3 matrix and T̃i’s are from the previous block.

P ∈ P and matrix A ∈ F
3×3
q and mutually independent

random variables (W1, W2, W3) which are also independent
of other random variables such that the following inequalities
hold for any subset B ⊆ {1, 2, 3} and any distinct elements
i, j, k ∈ {1, 2, 3}:

αH(Wi) = Ri,

αH(WAi |Wi) ≤ I(TAi ; Y |UTiViXi),

αH(Wj , Wk|WAi , Wi) ≤ I(T̃jX̃jT̃kX̃k; Y Ỹ |Ũ S̃iUSiṼj Ṽk),

αH(WB) ≤ I(XB; Y |USBc Ṽ1, Ṽ2, Ṽ3)
+ I(U ; Y ),

where WAi and TAi , i = 1, 2, 3, are the ith element of the
vector WA and TA, respectively.

Theorem 3: For a MAC-FB (X ,Y, PY |X , T ), the rate-
region RMAC-FB is achievable.

Proof: The proof is given in Appendix C.

B. Necessity of Structured Codes for MAC-FB

In this section, we show that coding strategies based on
structured codes are necessary for certain instances of MAC
with feedback. We first provide an example of a MAC with
feedback. Then, we apply Theorem 3 and show that the inner
bound achieves optimality.

Example 4: Consider the three-user MAC-FB problem
depicted in Figure 8. In this setup, there is a MAC with three
pairs of binary inputs, where the ith input is denoted by the
pair (Xi1, Xi2) for i = 1, 2, 3. The output of the channel
is denoted by a binary vector (Y1, Y21, Y22). Assume that
noiseless feedback is available only at the third transmitter.

The MAC in this setup consists of two parallel channels.
The first channel is a three-user binary additive MAC with

Fig. 8. The MAC with feedback setup for Example 4.

Fig. 9. The second channel for Example 4. If the condition X32 = X12 ⊕
X22 holds, the channel would be the one on the left; otherwise it would be
the right channel.

inputs (X11, X21, X31), and output Y1. The transition prob-
ability matrix of this channel is described by the following
relation:

Y1 = X11 ⊕ X21 ⊕ X31 ⊕ Ñδ,

where Ñδ is a Bernoulli random variable with bias δ, and
is independent of the inputs. The second channel is a MAC
with (X12, X22, X32) as the inputs, and (Y21, Y22) as the
output. The conditional probability distribution of this channel
satisfies

(Y21, Y22)

=

{
(X12 ⊕ Nδ, X22 ⊕ N ′

δ), if X32 = X12 ⊕ X22,

(X12 ⊕ N1/2, X22 ⊕ N ′
1/2), if X32 	= X12 ⊕ X22,

(11)

where Nδ, N
′
δ, N1/2 and N ′

1/2 are independent Bernoulli ran-
dom variables with parameter δ, δ, 1

2 , and 1
2 , respectively. The

relation between the output and the input of the channel is
depicted in Figure 9. The channel operates in two states. If the
condition X32 = X12 ⊕ X22 holds, the channel would be in
the first state (the left channel in Figure 9); otherwise it would
be in the second state (the right channel in Figure 9). In this
channel, Nδ and N ′

δ are Bernoulli random variables with iden-
tical bias δ. Whereas, N1/2 and N ′

1/2 are Bernoulli random

variables with bias 1
2 . We assume that Ñδ, Nδ, N

′
δ, N1/2, and

N ′
1/2 are mutually independent, and are independent of all the

inputs.
We use linear codes to propose a new coding strategy for the

setup given in Example 4. The scheme uses a large number L
of blocks, each of length n. Each encoder has two outputs,
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one for each channel. We use identical linear codes with
length n and rate k

n for each transmitter. The coding scheme
at each block is performed in two stages. In the first stage,
each transmitter encodes the fresh message at the beginning
of the block l, where 1 ≤ l ≤ L. The encoding process is
performed using identical linear codes. At the end of block l,
feedback is received by the third user. In stage 2, the third user
uses the feedback from the first channel (that is Y1) to decode
the binary sum of the messages of the other encoders. Then,
it encodes the summation, and sends it through its second
output. If the decoding process is successful at the third user,
then the relation X32 = X12⊕X22 holds with probability one.
This is because identical linear codes are used to encode the
messages. As a result of this equality, the channel in Figure 9 is
in the first state with probability one. In the following theorem,
we show that the rate

(1 − h(δ), 1 − h(δ), 1 − h(δ))

is achievable using this strategy. Further, we prove in the
followng theorem that any coding scheme achieving these
rates must have codebooks that are almost closed under the
binary addition. Since unstructured random codes do not have
this property, any coding scheme solely based in them is
suboptimal.

Theorem 4: For the channel given in Example 4, the rate
triple (1−h(δ), 1−h(δ), 1−h(δ)) is achievable if and only if
1) user 3 decodes X1 ⊕ X2 with average probability of error
approaching zero, and 2) the codebooks in user 1 and 2 must
satisfy

lim
N→∞

1
N

∣∣ log ||C12 ⊕ C22|| − log ||C12||
∣∣ = 0, for i = 1, 2.

Proof: The proof is given in Appendix D.

VI. CONCLUSION

A new form of common information, called “conferencing
common information”, is defined among triplets of random
variables. Based on this notion, two coding strategies are
proposed for three-user version of two problems: transmission
of correlated sources over MAC, and MAC with feedback.
Further, achievable rate regions of such strategies are char-
acterized in terms of single-letter information quantities. It
is shown analytically that the proposed strategies outperform
conventional unstructured random coding approaches in terms
of achievable rates.

APPENDIX A
PROOF OF THEOREM 1

Proof: There are two error events, E0 and E1. E0 occurs
if no triple s̃ was found. E1 occurs if there exists s̃ 	= s such
that equation (6) is satisfied. We consider a special case in
which all the uni-variate common parts are trivial and that
Ti = Si, i = 1, 2, 3. This implies that S1 ⊕q S2 ⊕q S3 = 0
with probability one. The proof for the general case follows
by adopting this proof and the standard arguments as in [7].

Suppose vi(·) and xi(·) are the realizations of random
functions generated as in the outline of the proof of Theorem 1.

Using standard arguments one can show that E0 → 0 as
n → ∞. We find the condition under which P (E1∩Ec

0) → 0.
For a given s ∈ Aε1(S), using the definition of E1 and the
union bound we obtain,

P (E1

⋂
Ec

0|s) ≤∑
(v,x,y)∈

Aε2 (V ,X,Y |s)

�

{
vi =vi(si),xi =xi(si,vi), i=1, 2, 3

}
Pn

Y |X(y|x)

∑
(̃s,ṽ,x̃)∈Aε3 (S,V ,X|y)

s̃ �=s

�

{
ṽj = vj(s̃j), x̃j = xj(s̃j , ṽj), j = 1, 2, 3

}

Taking expectation over random vector functions Xi(, ) and
Vi() gives,

pe(s) = E{P (E1|s)}

≤
∑

(v,x,y)∈
Aε2 (V ,X,Y |s)

Pn
Y |X(y|x)

∑
(̃s,ṽ,x̃)∈Aε3 (S,V ,X|y)

s̃ �=s

P
{
vl = Vl(sl),xl = Xl(sl,vl),

ṽl = Vl(s̃l), x̃l = Xl(s̃l, ṽl) for l = 1, 2, 3
}
.

(12)

Let
� = max

i∈[1,3]
�i, (13)

where �i is as in the above summations. Note that Vi(·) and
Xi(·, ·) are generated independently. So the most inner term
in (12) is simplified to

P
{
vj = Vj(sj), ṽj = Vj(s̃j) j = 1, 2

}
×

P
{
xl = Xl(sl,vl), x̃l = Xl(s̃l, ṽl) l = 1, 2, 3

}
. (14)

Note that j = 3 is redundant because, v3⊕q v1⊕q v2 = 0 and
ṽ3 ⊕q ṽ1 ⊕q ṽ2 = 0. By definition, Vj(sj) = sjG + Bj, j =
1, 2, where B1,B2 are uniform and independent of G. Then

P
{
vj = Vj(sj), ṽj = Vj(s̃j), j = 1, 2

}
=

1
q2n

P
{
(s̃j − sj)G = ṽj − vj , j = 1, 2

}
. (15)

The following lemma determines the above term.
Lemma 1: Suppose G is a n × m matrix with elements

generated randomly and uniformly from Fq . If s1 or s2 is
nonzero, the following holds:

P{sjG = vj , j = 1, 2} =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�{vj = 0, l = 1, 2}, if s1 = 0, s2 = 0.
q−n

�{vj = 0}, if sj = 0, sjc 	= 0.
q−n

�{v1 = av2}, if s1 	= 0, s2 	= 0,
s1 = as2, a ∈ Fq.

q−2n, if otherwise.

Proof: We can write

sjG =
n∑

i=1

sjiGi, j = 1, 2,

where sji is the ith component of sj and Gi is the ith row
of G. Not that Gi are independent random variables with
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uniform distribution over F
n
q . Hence, if sj 	= 0, then sjG is

uniform over F
n
q . Then, given the condition sj = 0, sjc 	= 0,

we obtain that

P{sjG = vj , j = 1, 2} = q−n
�{vj = 0}.

If s1 = as2 with a ∈ Fq, then s1G = as2G, with probability
one and, thus,

P{sjG = vj , j = 1, 2} = q−n
�{v1 = av2}.

If s1 	= as2 for any a ∈ Fq , then (s1, s2) are linearly
independent. This implies that there exist indices (l, k) such
that the 2 × 2 matrix A with elements a11 = s1l, a12 =
s1,k, a21 = s2l and a22 = s2k is full rank. As a result,
s1lGl ⊕ s1kGk and s2lGl ⊕ s2kGk are independent random
vectors with uniform distribution over F

k
q . In this case, one

can show that s1G is independent of s2G. The proof follows
by arguing that if a random variables X is independent of Y
and is uniform over Fq , then X ⊕q Y is also uniform over Fq

and is independent of Y .
Finally, we are ready to characterize the conditions under

which pe → 0. Let L(s) denote the set of all the variables
(v,x,y, s̃, ṽ, x̃) included in the summations in (12); more
precisely,

L(s) �
{
(v,x,y,̃s, ṽ, x̃) : (v,x,y) ∈ Aε2(V , X, Y |s),

(̃s, ṽ, x̃) ∈ Aε3(S, V , X|y), s̃ 	= s
}
. (16)

Based on the conditions in Lemma 1, we partition this set into
five subsets Li(s), i = 1, 2, ..., 5. Hence, if pei(s), i ∈ [1, 5]
represents the contribution of each subset, then

pe(s) =
5∑

i=1

pei(s).

In what follows, we characterize these subsets and provide an
upper bound to each term pei(s), i ∈ [1, 5].
Case 1, s̃1 	= s1, s̃2 = s2:

In this case, using Lemma 1, the right-hand side of (15)
equals to q−3n

�{ṽ2 = v2}. As s2 = s̃2 and v2 = ṽ2, then
X2(s̃2, ṽ2) = X2(s2,v2). Therefore, we define

L1(s) �
{
(v,x,y, s̃, ṽ, x̃) ∈ L(s) : s̃1 	= s1, s̃2 = s2,

ṽ2 = v2,x2 = x̃2

}
,

where L(s) is defined as in (16). Thus, the contribution of this
case equals to

pe1(s) �
∑
L1(s)

Pn
Y |X(y|x) q−3n×

P
{
xl = Xl(sl,vl), x̃l = Xl(s̃l, ṽl), l = 1, 2, 3

}
.

Note that Xl(sl,vl) is independent of Xk(s̃k, ṽk), if l 	=
k or sl 	= s̃l or vl 	= ṽl. Moreover, since Xl(sl,vl) is
generated IID according to PXl|Sl,Vl

, then for jointly typical
sequences (xl, sl,vl),

−1
n

log2 P{xl = Xl(sl,vl)} ≥ H(Xl|SlVl)) − δ1(�),

where � is defined as in (13) and δ1(�) ≥ 0 is a continuous
function satisfying limε→0 δ1(�) = 0. Therefore,

P
{
xl = Xl(sl,vl), x̃l = Xl(s̃l, ṽl) l = 1, 2, 3

}
≤

2−n[2H(X1|S1V1)+H(X2|S2V2)+2H(X3|S3V3)−δ2(ε)]
�{x̃2 = x2},

where δ2 is a non-negative and continuous function with
limε→0 δ2(�) = 0. Note that for jointly typical sequences
(y,x), the conditional probability Pn

Y |X(y|x) is upper
bounded by 2−n(H(Y |X)−δ3(ε)). Hence, we have:

pe1(s) ≤|L1(s)| × 2−nH(Y |X) 1
q3n

×

2−n[2H(X1|S1V1)+H(X2|S2V2)+2H(X3|S3V3)−δ4(ε)],

where δ4(�) → 0 as � → 0 and |L1(s)| is the cardinality
of L1(s). Note that for �1-typical sequences s, the following
inequality holds:

1
n

log2|L1(s)| ≤ H(V , X, Y |S)+

H(S1, V1, X1, S3, V3, X3|Y S2 V2 X2) + δ5(�),

where δ5(�) → 0 as � → 0. Note that

H(V , X,Y |S) = H(V |S) + H(X |S, V ) + H(Y |X)

= 2 log2 q +
3∑

i=1

H(Xi|Si, Vi) + H(Y |X), (17)

where the first equality holds by chain rule and the Markov
chain (S, V ) ↔ X ↔ Y . The second equality holds, because,
from (4), V are independent of the other random variables
and PV1V2V3 = 1

q2�{V3 = V1 ⊕q V2}. Therefore, pe1 → 0 as
n → ∞, if

H(S1, V1, X1, S3, V3,X3|Y S2V2X2) ≤ log2 q

+ H(X1|S1V1) + H(X3|S3V3). (18)

Next, we simplify the right-hand side terms in (18). From (4),
the Markov chain (Sic , Vic , Xic) ↔ Si ↔ Xi holds for all
i ∈ {1, 2, 3}, where ic � {1, 2, 3}/{i}. Therefore, the right-
hand side above equals to

log2 q + H(X1X3|S, V1V3X2V2) = H(X1X3V1V3|SX2V2),
(19)

where the equality holds by chain rule and the following
argument:

H(V1V3|SX2V2) = H(V1|SX2V2) = H(V1|SV2)
= H(V1|V2) = H(V1) = log2 q.

We simplify the left-hand side in (18). Using the chain rule
we obtain that

H(S1, V1, X1, S3, V3, X3|Y S2 V2 X2)
= H(V1, X1, V3, X3|Y S2 V2 X2) + H(S1 S3|Y S2V X)
= H(V1, X1, V3, X3|Y S2 V2 X2) + H(S1|S2V X),

where the second equality holds due to the Markov chain S ↔
X ↔ Y and the assumption that S1 ⊕q S2 ⊕q S3 = 0. Note
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that

H(S1|S2V X) = H(S1|S2X2V2)
− I(S1; X1V1X3V3|S2V2X2)
= H(S1|S2) − I(S1; X1V1X3V3|S2V2X2),

where, the last equality holds because V2 is independent of S1

and X2 is a function of (S2, V2). Therefore, using the above
arguments, the inequality in (18) is simplified to

H(S1|S2) ≤ I(S1; X1V1X3V3|S2V2X2)
− H(V1, X1, V3, X3|Y S2 V2 X2) + H(X1X3V1V3|SX2V2)
= I(X1V1X3V3; Y |S2V2X2)
= I(X1X3; Y |S2V2X2).

As a result, pe1(s) can be made sufficiently small for large
enough n, if the inequality

H(S1|S2) ≤ I(X1X3; Y |S2V2X2)

is satisfied.

Case 2, s̃1 = s1, s̃2 	= s2:
This case corresponds to pe2(s) which is defined using

a similar expression as for pe1(s); but with the conditions in
the second summation replaced with s̃ 	= s, s̃1 = s1, ṽ1 = v1.
Therefore, we have

L2(s) �
{
(v,x,y, s̃, ṽ, x̃) ∈ L(s) : s̃1 = s1, s̃2 	= s2,

ṽ1 = v1, x̃1 = x1

}
.

By symmetry and using a similar argument as in the first case,
we can show that pe2(s) → 0 as n → ∞ if the following
inequality holds

H(S2|S1) ≤ I(X2X3; Y |S1V1X1).

Case 3, s̃1 	= s1, s̃2 	= s2, s̃1 ⊕q s̃2 = s1 ⊕q s2:
In this case, we have

P
{
vj = Vj(sj), ṽj =Vj(s̃j), j = 1, 2

}
=

q−3n
�

{
ṽ1 ⊕q ṽ2 = v1 ⊕q v2

}
Further, we obtain that

P
{
xl = Xl(sl,vl), x̃l = Xl(s̃l, ṽl), l = 1, 2, 3

}
≤

2−n[2H(X1|S1V1)+2H(X2|S2V2)+H(X3|S3V3)−δ6(ε)]
�{x̃3 = x3}.

By assumption s1 ⊕q s2 ⊕q s3 = 0 and v1 ⊕q v2 ⊕q v3 = 0.
Therefore, the first probability is nonzero only when ṽ3 = v3.
Hence, as s3 = s̃3, we get X3(s̃3, ṽ3) = X3(s3,v3). As a
result, we can define

L3(s) �
{
(v,x,y, s̃, ṽ, x̃) ∈ L(s) : s̃1 	= s1, s̃2 	= s2,

s̃1 ⊕q s̃2 = s1 ⊕q s2, ṽ1 ⊕q ṽ2 = v1 ⊕q v2, x̃3 = x3

}
.

As a result, the contribution of this case (pe3 ) is bounded by

pe3(s) ≤ |L3(s)|2−nH(Y |X) 1
q3n

×

2−n[2H(X1|S1V1)+2H(X2|S2V2)+H(X3|S3V3)−δ7(ε)],

Note that for �1-typical s, we have

1
n

log2 |L3(s)| ≤ H(V , X, Y |S)

+ H(S1, V1, X1, S2, V2, X2|Y S3 V3 X3) + δ8(�).

Therefore, from (17) and the above inequality, pe3(s) → 0, if

H(S1, V1, X1, S2, V2, X2|Y S3 V3 X3) ≤ log2 q+
H(X1|S1V1) + H(X2|S2V2)

= H(X1, X2, V1, V2|S1S2S3V3X3),

where the inequality above holds using a similar argument
applied in (19). By symmetry and using a similar argument as
in the first case, this inequality is equivalent to

H(S1S2|S3) ≤ I(X1, X2; Y |S3V3X3).

Case 4, s̃1 ⊕ as̃2 = s1 ⊕ as2, a ∈ Fq/{0, 1}:
From Lemma 1,

P
{
vj = Vj(sj), ṽj = Vj(s̃j), j = 1, 2

}
= q−3n×

�

{
ṽ1 ⊕q aṽ2 = v1 ⊕q av2

}
.

Therefore, the error probability in this case, i.e., pe4(s),
satisfies

pe4(s) �
q−1∑
a=1

∑
L4(a,s)

Pn
Y |X(y|x)q−3n×

P
{
xl = Xl(sl,vl), x̃l = Xl(s̃l, ṽl), l = 1, 2, 3

}
,

where

L4(a, s) �
{
(v,x,y, s̃, ṽ, x̃) ∈ L(s) : s̃1 ⊕ as̃2 =s1 ⊕ as2,

ṽ1 ⊕ aṽ2 =v1 ⊕ av2

}
.

Also, observe that

P
{
xl = Xl(sl,vl), x̃l = Xl(s̃l,ṽl), l = 1, 2, 3

}
≤

2−2n[
�3

i=1 H(Xi|SiVi)]−δ9(ε).

where δ9(·) is a continuous function of � with limε→0 δ9(�) =
0. Consequently, for any typical sequences s, the following
upper bound holds:

pe4(s) ≤
q−1∑
a=1

|L4(a, s)|×2−nH(Y |X)q−3n×

2−2n[
�3

i=1 H(Xi|SiVi)]2nδ10(ε).

Note that for any non-zero a ∈ Fq and any typical sequence
s, the cardinality of L4 satisfies the inequality

1
n

log2 |L4(a, s)| ≤ H(V , X, Y |S)

+ H(S, V , X|Y, S1 ⊕q aS2, V1 ⊕q aV2) + δ11(�).

Note that

H(V , X, Y |S) = 2 log2 q +
3∑

i=1

H(Xi|Si, Vi) + H(Y |X).
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Therefore, from the above inequalities, pe4(s) → 0 as n → ∞,
if

H(S, V , X |Y, S1 ⊕q aS2, V1 ⊕q aV2)

< log q +
3∑

i=1

H(Xi|Si, Vi). (20)

From the joint probability distribution given in (4), conditioned
on (S, V ) the random variables (X1, X2, X3) are mutually
independent. Hence,

3∑
i=1

H(Xi|Si, Vi) = H(X |S, V )

and the right-hand side of the above inequality simplifies to
log q + H(X|S, V ). Next, we simplify the left-hand side of
the above inequality. For that we have

H(S, V , X|Y, S1 ⊕q aS2, V1 ⊕q aV2)
= H(V , X|Y, S1 ⊕q aS2, V1 ⊕q aV2)

+ H(S|S1 ⊕q aS2, X, V )
= H(S|S1 ⊕q aS2, V1 ⊕q aV2)
− I(X, V ; Y |S1 ⊕q aS2, V1 ⊕q aV2)
+ H(X, V |S, S1 ⊕q aS2, V1 ⊕q aV2)

= H(S|S1 ⊕q aS2)
− I(X, V ; Y |S1 ⊕q aS2, V1 ⊕q aV2)
+ H(X, V |S, V1 ⊕q aV2),

where the first equality holds by chain rule and the Markov
chain S ↔ X ↔ Y . The second equality holds by the
definition of the mutual information. The last equality holds
as (V1, V2, V3) are independent of (S1, S2, S3). As a result of
the above argument, the inequality in (20) is equivalent to the
following inequality:

H(S|S1 ⊕q aS2) < I(X, V ; Y |S1 ⊕q aS2, V1 ⊕q aV2)

− H(X, V |S, V1 ⊕q aV2) + log q + H(X |S, V )

= I(X, V ; Y |S1 ⊕q aS2, V1 ⊕q aV2) − H(V |V1 ⊕q aV2)

− H(X|S, V , V1 ⊕q aV2) + log q + H(X |S, V )

= I(X, V ; Y |S1 ⊕q aS2, V1 ⊕q aV2) − H(V |V1 ⊕q aV2)

+ log q,

where the first equality holds by the chain rule and the fact
that V is independent of S. In what follows, we show that
the last two terms above cancel each other. Since V1 and V2

are independent random variables with uniform distribution
over Fq , then so is V1 and V1 ⊕q aV2 for any a ∈ F1/{0}.
Therefore, as V3 ⊕q V1 ⊕q V2 = 0, we have that

H(V |V1 ⊕q aV2) = H(V1, V2|V1 ⊕q aV2)

= H(V1, V1 ⊕q aV2|V1 ⊕q aV2)

= H(V1|V1 ⊕q aV2) = log q.

As a result, we showed that pe4(s) → 0 as n → ∞, if

H(S|S1 ⊕q aS2) ≤ I(X, V ; Y |S1 ⊕q aS2, V1 ⊕q aV2).

Case 5, s̃i 	= si, i = 1, 2, 3 and s̃1 ⊕ as̃2 	= s1 ⊕ as2, ∀ ∈ Fq:
Observe that,

L5(s) �
{
(v,x,y, s̃, ṽ, x̃) ∈ L(s) : s̃1 	= s1, s̃2 	= s2,

s̃1 ⊕ as̃2 	= s1 ⊕ as2, ∀a ∈ Fq

}
.

In addition, we obtain that

P
{
vj = Vj(sj), ṽj = Vj(s̃j), j = 1, 2

}
= q−4n,

and that

P
{
xl = Xl(sl,vl), x̃l = Xl(s̃l, ṽl), l = 1, 2, 3

}
≤ 2−2n[

�3
l=1 H(Xl|SlVl)−δ9(ε)].

Therefore, the contribution of this case is simplified to

pe5(s) ≈ q−2n2nH(S,V ,X|Y )2−n
�3

l=1 H(Xl |SlVl).

As a result, one can show that Pe5 → 0, if

H(S1S2S3) ≤ I(X1X2X3; Y ).

Finally, note that Pe(s) =
∑5

i=1 Pei(s). Moreover, Pei(s)
depends on s only through its PMF. Therefore, for any typical
s, Pe approaches zero as n → ∞, if the following bounds are
satisfied:

H(S1|S2) ≤ I(X1 X3; Y |S2 V2 X2)
H(S2|S1) ≤ I(X2 X3; Y |S1 V1 X1)

H(S1S2|S1 ⊕q S2) ≤ I(X1 X2; Y |S1 ⊕q S2, V3 X3)
H(S1S2|S1 ⊕q aS2) ≤ I(X1,X2,X3;Y |S1 ⊕q aS2,V1⊕qaV2)

H(S1, S2) ≤ I(X1 X2 X3; Y ).

APPENDIX B
PROOF OF THEOREM 2

Lemma 2: For the MAC in Example 3, it holds that

I(X1, X2, X3; Y ) ≤ 2 − H(N),

with equality if and only if X3 = X1⊕2 X2, with probability
one, and X3 is uniform over {0, 1}.

Proof: Note that

I(X1, X2, X3; Y ) = H(Y ) − H(N).

We proceed by finding all the necessary and sufficient con-
ditions on PX1,X2,X3 for which Y is uniform over Z4. From
Figure 4,

Y = (X1 ⊕2 X2) ⊕4 X3 ⊕4 N.

Let X ′
2 = X1 ⊕2 X2 and P (X ′

2 ⊕4 X3 = i) = q(i), where
i = 1, 2, 3, 4. Since X ′

2 and X3 are binary, the q(3) = 0.
Given the distribution of N is Table I, the distribution of Y
is as follows:

P (Y = 0) = q(0)(
1
2
− δ) + q(2)δ, (21a)

P (Y = 1) = q(0)
1
2

+ q(1)(
1
2
− δ), (21b)

P (Y = 2) = q(0)δ + q(1)
1
2

+ q(2)(
1
2
− δ), (21c)

P (Y = 3) = q(2)
1
2

+ q(1)δ. (21d)
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It’s not difficult to check that the only solution for the
equations in (21) is

q(0) = q(2) =
1
2
, q(1) = 0.

Note that by definition

q(1) = P (X ′
2 = 0, X3 = 1) + P (X ′

2 = 1, X3 = 0).

Therefore, q(1) = 0 implies that X3 = X ′
2 with probability

one. If this condition is satisfied, then q(0) = P (X3 = 0)
and q(2) = P (X3 = 1). Since q(0) = q(2) = 1

2 then X3 is
uniform over {0, 1}. To sum up, we proved that Y is uniform,
if and only if

1) X3 = X1 ⊕2 X2, 2) X3 is uniform over {0, 1}.

Lemma 3: Let P1 be the set of all distributions P ∗
X1,X2,X3

that satisfies the conditions in Lemma 2. Let P2 be the set of
all distributions PX1,X2,X3 which is the marginal of

PS1,S2,S3PX1,X2,X3|S1,S2,S3

for some source triplet (S1, S2, S3) in Example 3 with para-
meters σ ∈ (0, 1

2 ], γ ∈ (0, γ∗] and conditional distribution of
the form

PX1,X2,X3|S1,S2,S3 =
3∏

i=1

PXi|Si
.

Then the total variation distance between P1 and P2 satisfies

TV (P1, P2) ≥
1
6
− γ∗

3
.

Moreover, there exists α(γ∗) > 0 such that ∀PX1,X2,X3 ∈ P2

I(X1, X2, X3; Y ) ≤ 2 − H(N) − α(γ∗).

Proof: Let γ∗ � 1− γ∗ and assume for some � ≥ 0 there
exist sources with parameters σε ∈ (0, 1

2 ] and γε ∈ (0, γ∗] and
conditional distributions P ε

Xi|Si
, i = 1, 2, 3 and a distribution

P ∗
X1,X2,X3

satisfying the conditions in Lemma 2 such that total
variation distance between the resulted PMF P ε

X1,X2,X3
and

P ∗
X1,X2,X3

is equal to �. Then, for P ε
X1,X2,X3

, the following
inequalities hold:

P ε(X3 	= X1⊕X2) ≤ �, and
∣∣∣P ε(X3 = 1)− 1

2

∣∣∣ ≤ �. (22)

The second inequality implies

γε P ε
X3|S3

(1|1) + γε P ε
X3|S3

(1|0) ∈ [
1
2
− �,

1
2

+ �], (23a)

γε P ε
X3|S3

(0|1) + γε P ε
X3|S3

(0|0) ∈ [
1
2
− �,

1
2

+ �]. (23b)

Since the first terms in (23a) and (23b) are non-negative and
γε ≤ γ∗, then

1
2

+ � ≥ γε P ε
X3|S3

(1|0) ≥ γ∗ P ε
X3|S3

(1|0),

1
2

+ � ≥ γε P ε
X3|S3

(0|0) ≥ γ∗ P ε
X3|S3

(0|0).

Since P ε
X3|S3

(0|0)+P ε
X3|S3

(1|0) = 1, then the above inequal-
ities imply the following

1
2

+ � ≥ γ∗ P ε
X3|S3

(1|0) ≥ γ∗ − 1
2
− � (24a)

1
2

+ � ≥ γ∗ P ε
X3|S3

(0|0) ≥ γ∗ − 1
2
− � (24b)

From the law of total probability, the first condition in (22) is
equivalent to
�

s

�
x1,x2

P �
S(s)P �

X1|S1(x1|s1)P
�
X2|S2(x2|s2)P

�
X3|S3(x1 ⊕ x2|s3)≤ε,

where P ε
S is the joint PMF of the sources with parameters

σε, γε, and

x1 ⊕2 x2 � 1 ⊕2 x1 ⊕2 x2.

By considering the case in which s1 = s2 = s3 = 0, the above
inequality implies that

� ≥
∑

x1,x2

γε σε P ε
X1|S1

(x1|0)P ε
X2|S2

(x2|0)P ε
X3|0(x1 ⊕2 x2|0)

≥
∑

x1,x2

γ∗ 1
2

P ε
X1|S1

(x1|0)P ε
X2|S2

(x2|0)P ε
X3|0(x1 ⊕2 x2|0)

≥
∑

x1,x2

1
2

(γ∗ − 1
2
− �)P ε

X1|S1
(x1|0)P ε

X2|S2
(x2|0)

=
1
2

(γ∗ − 1
2
− �),

where the third inequality holds from the bounds in (24). As a
result, these inequalities imply that � ≥ 1

3 (γ∗ − 1
2 ). From

Lemma 2 and the continuity of the mutual information in total
variation distance [43], the second statement of the lemma
follows.

Lemma 4: For the setup in Example 3, there exists
� > 0 such that any source triple (S1, S2, S3) with parameters
(σ > 0, γ ≥ γ∗ − �) does not satisfy the sufficient conditions
stated in Proposition 1.

Proof: We prove the lemma by a contradiction. Suppose
∀� > 0 there exist σ > 0 and γ ≥ γ∗−� such that the sufficient
conditions in Proposition 1 are satisfied. Consider the fourth
inequality in Proposition 1. Since σ > 0 there is no common
part. Let U ′ = U123U12U13U23. Then, the following holds

h(γ) + h(σ) ≤ max
p(u′)p(x|u′s)

I(X1X2X3; Y |U ′), (25)

where

p(s, x, u′) = p(s)p(u′)p(x1|s1, u
′)p(x2|s2, u

′)p(x3|s3, u
′).

Since U ′ is independent of the sources, and appears in the
conditioning in the mutual information term, the inequality
in (25) is equivalent to

h(γ) + h(σ) ≤ max
p(x|s)

I(X1X2X3; Y ), (26)

where p(s, x) = p(s)p(x1|s1)p(x2|s2)p(x3|s3). From
Lemma 3, the right-hand side in (26) is less than 2−H(N)−α,
for some α > 0 (which depends only on γ∗ which is a function
of δ). As h(γ∗) = 2 − H(N), by the bound above,

h(γ) + h(σ) ≤ h(γ∗) − α.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 14:07:01 UTC from IEEE Xplore.  Restrictions apply. 



4218 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

Thus, as h(σ) > 0, we get that h(γ) < h(γ∗) − α. By the
continuity and monotonicity of the binary entropy function,

γ < h−1(h(γ∗) − α) = γ∗ − λ(α),

where λ(α) > 0. Hence, as γ ≥ γ∗− �, then � must be greater
than λ(α) which is a contradiction.

Lemma 5: There exists a non-negative function σ0(γ) such
that 1) σ0(γ) > 0 for all γ ∈ [0, γ∗), and 2) any source with
parameters (γ, σ) satisfying 0 ≤ γ ≤ γ∗, and 0 ≤ σ ≤ σ0(γ)
is transmissible.

Proof: For the setup in Example 3, the bounds given in
Theorem 1 are simplified to

h(γ) ≤ I(X2X3; Y |X1S1V1) (27a)

h(σ) ≤ I(X1X2; Y |X3S3V3) (27b)

h(γ) + h(σ) − h(σ ∗ γ) ≤ I(X1X3; Y |X2S2V2) (27c)

h(γ) + h(σ) ≤ I(X1X2X3; Y ). (27d)

Let E1 ∼ Ber(α), and set X1 = V1 ⊕ E1 and X2 =
V2, X3 = V3, where (V1, V2, V3) are as in Theorem 1; that is
they are pairwise independent Bernoulli random variables with
joint PMF PV1,V2,V3 = 1

4�{V3 = V1⊕2 V2}. Next, using these
random variables, we further simplify the conditions in (27).

We start by the first condition given in (27a). The right-hand
side is simplified to

I(X2X3; Y |X1S1V1) = H((X1 ⊕2 X2) ⊕4 X3 ⊕4 N |X1V1)
− H(N)

= H((E1 ⊕2 V1 ⊕2 V2) ⊕4 (V1 ⊕2 V2) ⊕4 N |E1, V1)
− H(N)

= P (E1 = 0)
[
H((V1 ⊕2 V2) ⊕4 (V1 ⊕2 V2) ⊕4 N |V1)

− H(N)
]

= (1 − α)(2 − H(N)), (28)

where the first equality holds as

Y = (X1 ⊕2 X2) ⊕4 X3 ⊕4 N

and Xi, i = 1, 2, 3 are independent of the sources. The fourth
equality holds as H(X ⊕4 X ⊕4 N) = 2 and

H((1 ⊕2 X) ⊕4 X ⊕4 N) = H(N)

when X is uniform over {0, 1}. Therefore, from (28), the first
condition gives hb(γ) ≤ 2 − H(N). This condition is always
satisfied for any γ ≤ γ∗. This is due to the monotonicity of
the binary entropy function.

Next, we evaluate the second condition given by (27b).
Using a similar argument, the right-hand side of (27b) is
simplified to

I(X1X2; Y |X3S3V3) = H((X1 ⊕2 X2) ⊕4 N |X3V3)
− H(N)

= H(E1 ⊕4 N) − H(N). (29)

Hence, the second condition gives hb(σ) ≤ η1(α), where
η1(α) � H(E1 ⊕4 N) − H(N). We show that η1(α) is

strictly positive for all α ∈ (0, 1
2 ]. For that we have H(N) =

1 + 1
2hb(2δ) and

H(E1 ⊕4 N) = 1 +
1
2
[hb(2αδ) + hb(2(1 − α)δ + α)]

≥ 1 +
1
2
[hb(2αδ) + (1 − α)hb(2δ)],

where the first inequality holds due to the convexity of binary
entropy function and the fact that hb(1) = 0. Hence,

η1(α) ≥ 1
2
[hb(2αδ) − αhb(2δ)].

When δ ∈ (0, 1
4 ], the equality hb(2αδ) = αhb(2δ) holds if and

only if α ∈ {0, 1}. As a result of this and due to the convexity
of binary entropy, the strict inequality hb(2αδ) > αhb(2δ)
holds.

For the third condition, the right-hand side of (27c) equals
to

I(X1 X3; Y |X2 S2 V2) = H
(
(V1⊕2E1)⊕4V1⊕4N

)
−H(N).

As for the fourth condition, the right-hand side of (27d) is
simplified to

I(X1 X2 X3; Y )=H((E1 ⊕2 V1 ⊕2 V2) ⊕4(V1 ⊕2 V2) ⊕4 N)
− H(N).

Since V1 and V1 ⊕2 V2 are both uniform over {0, 1}, then the
above two terms are equal. Let

η2(α) � 2 − H((V1 ⊕2 E1) ⊕4 V1 ⊕4 N).

Note that 0 ≤ η2(α) ≤ 2−H(N). Moreover, from Lemma 2,
η2(α) is strictly positive for any α ∈ (0, 1

2 ]. With this
argument, the third and fourth conditions become

h(γ) + h(σ) − h(σ ∗ γ) ≤ 2 − H(N) − η2(α),
h(γ) + h(σ) ≤ 2 − H(N) − η2(α).

Since the right-hand sides are equal and h(σ∗γ) ≥ 0, the third
condition is trivial.

As a result of the above argument, we obtain the following
sufficient conditions:

h(γ) ≤ (1 − α)[2 − H(N)] (30a)

h(σ) ≤ η1(α) (30b)

h(γ) + h(σ) ≤ 2 − H(N) − η2(α) (30c)

For any γ ≤ γ∗, inequality (30a) holds if

α ≤ 1 − hb(γ)
hb(γ∗)

.

Note that η1(α) > 0 and η2(α) > 0 for all α ∈ (0, 1
2 ], and

η1(0) = η2(0) = 0. Further, they are continuous functions of
α with limα→0 ηi(α) = 0, i = 1, 2. Therefore, for any γ < γ∗,
there exists α0 > 0 such that for any α ∈ (0, α0), inequality
(30a) holds and

hb(γ∗) − hb(γ) − η2(α) > 0.
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TABLE II

THE DECODING AND ENCODING PROCESSES FOR USER 1 IN BLOCKS l = 1, 2, 3

Fig. 10. The parameters σ and γ described in Lemma 5.

For any γ ≤ γ∗, define

σ0(γ) � h−1
b

(
max

0≤α≤1− hb(γ)
hb(γ∗)

min
{
η1(α),

hb(γ∗) − η2(α) − hb(γ)
})

.

Note that the inequalities in (30) are satisfied for γ ≤ γ∗

and σ = σ0(γ). Hence, from the monotonicity of binary
entropy function, these inequalities are also satisfied for σ ≤
σ0(γ). This implies that any source with such parameters are
transmissible.

The final step in our argument is as follows. Fix γ ∈
(γ∗ − �, γ∗), where � is as in Lemma 4. From Lemma 5,
the source with such γ and the parameter σ = σ0(γ) > 0 is
transmissible; whereas from Lemma 4 it is not transmissible
using CES. Figure 10 shows the set of parameters whose
sources are transmissible.

APPENDIX C
PROOF OF THEOREM 3

A. Codebook Construction

We build upon a class of codes called Quasi Linear Codes
(QLCs) [46]. A QLC is defined as a subset of a linear code.
By definition, any linear codebook can be viewed as the image
of a linear transformation φ : F

k
q �→ F

n
q , where q is a prime

number. In another words, the codewords of such a linear code
are φ(uk),uk ∈ F

k
q . In this representation, a QLC over a finite

field Fq is defined as

C � {φ(u) : u ∈ U}, (31)

where U is a given subset of F
k
q . If U = F

k
q , then C is a linear

codebook.
We begin the proof by generating a QLC for each user. Let

(W1, W2, W3) be the random variables as in the statement
of the theorem. For a fixed � ∈ (0, 1), consider the set of all

�-typical sequences wk
i . Without loss of generality assume that

the new message at the ith encoder is a sequence wk
i which is

selected randomly and uniformly from A
(k)
ε (Wi). In this case

Mi = |A(k)
ε (Wi)|, i = 1, 2, 3.

We generate three codebooks for each user at each block
l ∈ [1, L]. The codebook generations are described in the
following:

Codebook 1: For each block l ∈ [1, L] generate M0,[l]

sequences randomly and independently according to Pn
U . The

parameter M0,[l] is to be defined later. Denote such sequences
by U[l](m), where m ∈ [1, M0,[l]].

Codebook 2: At each user i = 1, 2, 3 and for any vector
wk

i ∈ F
k
q , denote

ti(wk
i ) � wk

i G⊕q bn
i , i = 1, 2, 3,

where G is a k × n matrix with elements chosen randomly
and uniformly from Fq, and bn

i is a vector selected randomly
and uniformly from F

n
q .

Codebook 3: For each user i = 1, 2, 3 and given
un ∈ Un and tn,vn ∈ F

n
q generate Mi sequences

randomly and independently according to the conditional
distribution

∏n
j=1 P (·|uj , tj , vj). Denote such sequences by

xi(un, tn,vn, mi), where mi ∈ [1 : Mi], i = 1, 2, 3.
Initialization: Note that we are using the following nota-

tion: the subscript with bracket [·] denotes the index of a
block, subscript without a bracket denotes the index of a user,
and in line bracket (·) denotes the index of a codeword in a
corresponding codebook. When it is clear from the context,
we drop the index of the codewords.

For block l = 0, set M0,[0] = 1. For block l = 1, set
M0,[1] = 1,vi,[1] = 0 for i = 1, 2, 3. For block l = 2, set
M0,[2] = 1. Let A ∈ F

3×3
q , and by aij denote the element

in ith row and jth column. By Ai, i = 1, 2, 3, denote the ith
column of A. At each block User i intends to decode a linear
combination of the messages with coefficients determined
by Ai.

B. Encoding and Decoding

Block l = 1: At block l = 1, a new message
wi,[1] ∈ A

(k)
ε (Wi), i = 1, 2, 3, is observed by the ith

user. Given the message, the ith encoder calculates ti(wi,[1]).
This sequence is denoted by ti,[1]. Next, the encoder sends
xi(u[1], ti,[1],vi,[1],wi,[1]) over the channel. For shorthand,
we denote such sequence by xi,[1]. The encoding and decoding
processes in this block are shown in Table II.

Block l = 2:
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At the beginning of this block, each user receives Y[1] as
feedback from the channel. User i, i = 1, 2, 3, wishes to
decode the linear combination

wAi,[1] � a1iw1,[1] ⊕ a2iw2,[1] ⊕ a3iw3,[1].

Since, wi,[1] is known at User i, then it finds a sequence

ŵAi,[1] ∈ A(k)
ε (WAi

|wi,[1])

such that

(ŵAi,[1]G⊕ bAi , Y[1]) ∈ A(n)
ε (TAi , Y |u[1], t1,[1],x1,[1]),

(32)
where

WAi � a1iW1 ⊕ a2iW2 ⊕ a3iW3,

bAi � a1ib1 ⊕ a2ib2 ⊕ a3ib3,

TAi � a1iT1 ⊕ a2iT2 ⊕ a3iT3.

A decoding error Ei,[2], i = 1, 2, 3, is declared if ŵAi,[1] is
not found or is not unique. If it is unique, the encoder sets

vi,[2] = ŵAi,[1]G ⊕ bAi .

Otherwise, vi,[2] is generated at random from F
n
q .

Next, a new message wi,[2], i = 1, 2, 3, is observed
at the ith encoder. Similar to the encoding process at
the first block, the ith encoder calculates ti,[2] and sends
xi(u[2], ti,[2],vi,[2],wi,[2]). For shorthand, such sequence is
denoted by xi,[2]. The encoding and decoding processes in
this block are shown in Table II.

Block l > 2: Each user performs two decoding and three
encoding processes in this block. It is assumed that each
encoder knows the common information given by u[l−2] and
u[l−1]. For l = 3, this is clear because M0,[1]] = M0,[2] = 1.
We will explain how this knowledge is acquired, and how u[l]

is generated after describing the decoding process.
The first decoding process is the same as the decoding

process in block l = 2. At the beginning of the block l > 2,
User i observes Y[l−1] as feedback from the channel and
wishes to decode the linear combination

wAi,[l−1] � a1iw1,[l−1] ⊕ a2iw2,[l−1] ⊕ a3iw3,[l−1].

This decoding process is the same as the one in block l = 2;
it is successful, if the sequences ŵAi,[l−1] is unique. Then,
the codeword vi,[l] is generated at User i, where i = 1, 2, 3.
If the decoding process at User i, i = 1, 2, 3, is not successful,
an error event Ei,[l] is declared and a codeword vi,[l] is
generated at random.

Next, we explain the second decoding process. Given
(Y[l−2],Y[l−1]), User i decodes the messages of the other

two encoders from block l − 2. For that, User 1 finds unique
ŵ2,[l−2] ∈ A

(k)
ε (W2) and ŵ3,[l−2] ∈ A

(k)
ε (W3) such that the

conditions in (33), shown at the bottom of the page, hold,
where u[l−1],u[l−2],vi,[l−2] are known at the encoder from
the previous blocks and

t̂i,[l−2] �ti(ŵi,[l−2]),

x̂i,[l−2] �xi

(
u[l−2], t̂i,[l−2],vi,[l−2], ŵi,[l−2]

)
,

x̂i,[l−2] �xi

(
u, t̂i,[l−2],vi,[l−2], ŵi,[l−2]

)
,

v̂2,[l−1] �
(
a1,2w1,[l−2]⊕a2,2ŵ2,[l−2]⊕a3,2ŵ3,[l−2]

)
G⊕bA2,

v̂3,[l−1] �
(
a1,3w1,[l−2]⊕a2,3ŵ2,[l−2]⊕a3,3ŵ3,[l−2]

)
G⊕bA3.

If the messages are not unique, an error event will be declared.
This decoding process is repeated for User 2 and 3. With
these decoding processes each user obtains an estimate of the
messages of the other two users. By Ẽi,[l] denote the error
event in the second phase of the decoding process at User i
and block l.

Next, the transmitters and the receiver generate a common
list of highly likely messages for block l − 2. In what
follows, we define this list. For any triplet of the messages
(w̃1, w̃2, w̃3) let

x̃i,[l−2](w̃i) � xi

(
u[l−2], ti(w̃i),vi,[l−2], w̃i

)
where u[l−2] and vi,[l−2], i = 1, 2, 3, are known from previous
block. For shorthand denote

x̃[l−2](w̃) �
(
x̃i,[l−2](w̃i)

)
i=1,2,3

,

t̃(w̃) �
(
ti(w̃i)

)
i=1,2,3

.

Next, given the channel output Y[l−2], define the list of highly
likely messages corresponding to block l − 2 as

L[l − 2] �
�
w̃ ∈ A(n)

� (W1, W2, W3) :
�
Y[l−2],u[l−2], x̃[l−2](w̃),

t̃(w̃)
)
∈ A(n)

ε (Ỹ , Ũ , X̃, T̃ )
}

(34)

where w̃ � (w̃1, w̃2, w̃3), X̃ � (X̃1, X̃2, X̃3) and T̃ �
(T̃1, T̃2, T̃3). Note that the set L[l − 2] represents the uncer-
tainty of the receiver about the transmitted messages at block
l− 2. This list can be calculated at the transmitters as well as
the receiver. Set M0,[l] = |L[l− 2]| as the size of codebook 1.
Index all members of L[l − 2] by m ∈ [1, M0,[l]].

Suppose the decoding processes in the transmitters are
successful, which means the messages are estimated cor-
rectly. Suppose ŵ2,[l−2], ŵ3,[l−2] are the estimated messages
at User 1. If (w1,[l−2], ŵ2,[l−2], ŵ3,[l−2]) ∈ L[l − 2], then the
first encoder finds its index (say m1) in L[l − 2]. Similarly,
User 2 and 3 find the index of their estimated messages (say
m2 and m3). Since the decoding processes are assumed to be

a1,1w1,[l−2] ⊕ a2,1ŵ2,[l−2] ⊕ a3,1ŵ3,[l−2] = ŵA1,[l−1], (33a)

(
t̂2,[l−2], x̂2,[l−2], t̂3,[l−2], x̂3,[l−2], v̂2,[l−1], v̂3,[l−1],Y[l−2],Y[l−1]

)
∈ A(n)

ε

(
T̃2X̃2T̃3X̃3V2V3Ỹ Y |s1,[l−2], s1,[l−1],v2,[l−2],

v3,[l−2],u[l−1],u[l−2]

)
(33b)
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TABLE III

THE DECODING AND ENCODING PROCESSES FOR USER I IN BLOCK l

successful, these indices are equal, i.e., m1 = m2 = m3 = m.
Therefore, the transmitters can calculate the corresponding
codeword in codebook 1, i.e., u[l](m). Note that the receiver
is not able to find m. This is because each transmitter knows
its own message and has less uncertainty comparing to the
receiver. The objective of Codebook 1 is to resolve the
uncertainty at the decoder.

The next step is the encoding process for block l which is
similar to the previous blocks. Given a new message wi,[2], i =
1, 2, 3, at User i, the sequence ti,[l] is calculated and the
codeword xi(u[l], ti,[l],vi,[l],wi,[l]) is sent to the channel. For
shorthand, the transmitted codeword is denoted by xi,[l]. The
encoding and decoding processes in this block are shown
in Table II and III.

Decoding at block l: The decoder knows the list of highly
likely messages. This list is L[l− 2] as defined in (34). Given
Y[l] the decoder wishes to decode U[l] using which it can find
the transmitted messages at block l−2. This decoding process
is performed by finding an index m ∈ [1 : M0,[l]] such that

(U[l,m], Y[l]) ∈ A(n)
ε (U, Y ).

If the index is not found or is not unique, then an error event
Ed,[l] is declared.

C. Error Analysis

There are three types of decoding errors:
1) Error in decoding the linear combination of the mes-

sages, i.e., Ei,[l], i = 1, 2, 3, l ≥ 2.
2) Error in the decoding of the messages of the other

encoders, i.e., Ẽi,[l], i = 1, 2, 3, l ≥ 3.
3) Error at the decoder, i.e. Ed,[l], l ≥ 3.

The total error probability is the probability of the union of
above error events:

Pe = P

⎧⎨
⎩

⋃
l≥2

(
Ed,[l]

⋃ [⋃3
i=1Ei,[l]

⋃
Ẽi,[l]

])⎫⎬
⎭

≤ B P

{
Ed,[3]

⋃ [⋃3
i=1Ei,[3]

⋃
Ẽi,[3]

]}
≤ B P

{⋃3
i=1Ei,[3]

⋃
Ẽi,[3]

}
+ B P

{
Ed,[3]

∣∣∣ ⋂3
i=1 Ec

i,[3]

⋂
Ẽc

i,[3]

}

≤ B
3∑

i=1

[
P{Ei,[3]} + P{Ẽi,[3]

∣∣ Ec
i,[3]}

]

+ B P

{
Ed,[3]

∣∣∣ ⋂3
i=1 Ec

i,[3]

⋂
Ẽc

i,[3]

}
, (35)

where B is the number of blocks. The first inequality holds due
to the union bound on l and the fact that l does not change the
probability of the error events. The second and third inequality
hold because P (A

⋃
B) ≤ P (A) + P (B|Ac) and the union

bound on i. Using standard arguments for each type of the
errors we get the following bounds:

The probability of the first type of the errors (P{Ei,[3]})
can be made arbitrary small for sufficiently large n, if for any
distinct i, j, k ∈ {1, 2, 3} the following bound holds:

k

n
H(WAi |Wi) ≤ I(TAi ; Y |UTiViXi) − δ1(�). (36)

The argument follows by standard error analysis for decoding
wAi at User i. At User i, with probability sufficiently close
to 1, wAi satisfies (32). Hence, to analyze Ei,[3], it suffices
to find the probability that a codewrod ŵAi 	= wAi satis-
fies (32). Note that wi is known at User i. Hence, there are
approximately 2kH(WAi

|Wi) �-typical sequences ŵAi . From
standard arguments, one can show that the probability that
each of such sequences satisfies (32) is approximately equals
to 2−nI , where I is the mutual information on the right-
hand side of (36). Therefore, the error probability P{E1,[3]}
approaches zero, if (36) is satisfied.

The probability of the second type of the errors given by
P{Ẽi,[3]|Ec

i,[3]} approaches zero for sufficiently large n, if

k

n
H(Wj , Wk|Wi, WAi) ≤ I(T̃jX̃j T̃kX̃k; Y Ỹ |Ũ S̃iUSiṼj Ṽk)

− δ2(�). (37)

For this type of error it is assumed that the linear combi-
nation wAi is decoded correctly. Hence, one needs to find
the probability that (33) is satisfied for a pair (ŵj , ŵk) 	=
(wj ,wk). There are approximately 2kH(Wj ,Wk|Wi,WAi

) such
jointly typical pairs satisfying (33a). The probability that any
of such pairs satisfies (33b) is sufficiently small for large
enough n if the following inequality holds

k

n
H(Wj , Wk|Wi, WAi) ≤ I(T̃jX̃j T̃kX̃kVjVk; Y Ỹ |Ũ S̃iUSiṼj Ṽk)

− δ3(�).

The mutual information above equals to the one in (37). This
is due to the fact that Vi = T̃Ai , as stated below the equation
in (10).

The third type of error (P{Ed,[3]|
⋂3

i=1 Ec
i,[3]

⋂
Ẽc

i,[3]})
approaches zero, if |L[l]| < 2nI(U ;Y ). It can be shown that
for sufficiently large n,

P

{
|L[l]| < 2n maxB⊆{1,2,3} FB+o(ε)

}
> 1 − �,

where for any B ⊆ {1, 2, 3}

FB � k

n
H(WB) − I(XB; Y |USBc Ṽ1, Ṽ2, Ṽ3). (38)

Therefore, the probability of third type of the errors
approaches zero with rate 2−nδ for δ ∈ (0, 1) and sufficiently
large n, if the following bounds hold for any subset B ⊆
{1, 2, 3}:

FB ≤ I(U ; Y ) − δ − o(�),
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Using the definition of FB in (38), the above bounds are
equivalent to the following:

k

n
H(WB) ≤ I(XB; Y |USBc Ṽ1, Ṽ2, Ṽ3) + I(U ; Y )

− δ − o(�), ∀B ⊆ {1, 2, 3} (39)

Consequently, if the bounds in (36), (37), and (39) are satisfied
for a fixed δ > 0, then, from the inequality in (35), we obtain

Pe ≤ 7 × B × 2−nδ

Hence, if B grows sub-exponentially as a function of n, then
Pe → 0 as n → ∞. Note that the effective rate of our coding
scheme is

Ri � 1
n

log2 Mi =
k

n
H(Wi), i = 1, 2, 3.

Therefore, from the bounds in (36), (37), and (39), a rate triplet
(R1, R2, R3) is achievable if there exist α ∈ (0, 1) and random
variables Wr, Tr, Vr, Xr, T̃r, Ṽr, X̃r, r = 1, 2, 3, distributed as
described in Theorem 2, such that

αH(Wi)=Ri,

αH(WAi |Wi) ≤I(TAi ; Y |UTiViXi),

αH(Wj ,Wk|WAi ,Wi)≤I(T̃jX̃j T̃kX̃k; Y Ỹ |Ũ S̃iUSiṼj Ṽk),

αH(WB)≤I(XB; Y |USBc Ṽ1, Ṽ2, Ṽ3)+I(U ; Y )

APPENDIX D
PROOF OF THEOREM 4

We begin the proof by the following lemma.
Lemma 6: For the channel given in Example 4, the rate

triple (1 − h(δ), 1 − h(δ), 1 − h(δ)) is achievable.
Proof: The proof is given in Appendix E-A.

Remark 4: The triple (1−h(δ), 1−h(δ), 1−h(δ)) is a cor-
ner point in the capacity region of the channel in Example 4.
This implies the optimality of the above coding strategy in
terms of achievable rates.

The above coding strategy is different from known schemes
in two ways: 1) Identical linear codes are used to encode the
messages, 2) The third user uses feedback to decode only the
binary sum of others’ messages.

One implication of Remark 4 is that the proposed coding
scheme achieves optimality. We show a stronger result in this
Subsection. We prove that every coding scheme that achieves
(1 − h(δ), 1 − h(δ), 1 − h(δ)), should carry certain algebraic
structures such as closeness under the binary addition.

Suppose there exists a (N, M1, M2, M3) transmission sys-
tem with rates close to Ri = 1−h(δ), and average probability
of error close to 0, in particular

P̄ < �,
1
n

log2 Mi ≥ 1 − h(δ) − �, i = 1, 2, 3,

where � > 0 is sufficiently small. Since there is no feedback
at the first and second encoder, the transmission system
predetermines a codebook for user 1 and 2. Note that there
are two outputs for encoder 1 and 2. Suppose C12 and C22 are
the codebooks assigned to the second output of encoder 1 and
encoder 2, respectively.

Let XN
i2 be the second output of encoder i, where

i = 1, 2, 3. Let Xi2,l denote the lth component of XN
i2 , where

1 ≤ l ≤ N, i = 1, 2, 3. The following lemmas hold for this
transmission system.

Lemma 7: For any fixed c > 0, define

IN
c := {l ∈ [1 : N ] : P (X32,l 	= X12,l ⊕ X22,l) ≥ c}.

Then, the inequality |IN
c |

N ≤ η(ε)
2c(1−h(δ)) holds, where η(�) is a

function such that, η(�) → 0, as � → 0.
Proof: The proof is given in Appendix E-B.

The Lemma implies that in order to achieve (1 − h(δ),
1−h(δ), 1−h(δ)), the third user needs to decode X12,l⊕X22,l

for “almost all” l ∈ [1 : N ]. This requirement is necessary to
insure that the channel given in Figure 9 is in the first state.

In the next step, we use the results of Lemma 7, and drive
two necessary conditions for decoding X12 ⊕ X22.

Lemma 8: The following holds

1
N

∣∣ log ||C12 ⊕ C22|| − log ||C12||
∣∣ ≤ λ1(�),

1
N

∣∣ log ||C12 ⊕ C22|| − log ||C22||
∣∣ ≤ λ2(�),

where λj(�) → 0, as � → 0, j = 1, 2.
Proof: The proof is given in Appendix E-C.

As a result of this lemma, log ||C12 ⊕ C22|| needs to be
close to log ||C12|| and log ||C22||. This implies that C12 and C22

possesses an algebraic structure, and are almost close under the
binary addition. Not that for the case of unstructured random
codes ||C12 ⊕ C22|| ≈ ||C12|| × ||C22||. Hence, unstructured
random coding schemes are suboptimal in this example.

Remark 5: The three-user extension of CL scheme is sub-
optimal. Because, the conditions in Lemma 8 are not satisfied.

APPENDIX E
PROOF OF LEMMA 6 TO 8

A. Proof of Lemma 6

Outline of the proof: We start by proposing a coding
scheme. There are L blocks of transmissions in this scheme,
with new messages available at each user at the beginning of
each block. The scheme sends the messages with n uses of the
channel. Let Wk

i,[l] denotes the message of the ith transmitter
at the lth block, where i = 1, 2, 3, and 1 ≤ l ≤ L. Let Wk

i,[l]

take values randomly and uniformly from F
k
2 . In this case,

the transmission rate of each user is Ri = k
n , i = 1, 2, 3. The

first and the second outputs of the ith encoder in block l is
denoted by Xn

i1,[l] and Xn
i2,[l], respectively.

Codebook Construction: Select a k×n matrix G randomly
and uniformly from F

k×n
2 . This matrix is used as the generator

matrix of a linear code. Each encoder is given the matrix G.
Therefore, the encoders use an identical linear code generated
by G.

Encoder 1 and 2: For the first block set Xn
i2,[1] = 0, for

i = 1, 2, 3. For the block l, encoder 1 sends Xn
11,[l] = Wk

1,[l]G
through its first output. For the second output, encoder 1 sends
Xn

11,[l−1] from block l − 1, that is Xn
12,[l] = Xn

11,[l−1].
Similarly, the outputs of the second encoder are Xn

21,[l] =
Wk

2,[l]G, and Xn
22,[l] = Xn

21,[l−1].
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Encoder 3: The third encoder sends Xn
31,[l] = Wk

3,[l]G
though its first output. This encoder receives the feedback
from the block l − 1 of the channel. This encoder wishes to
decode Wk

1,[l−1]⊕Wk
2,[l−1] using Yn

1,[l−1]. For this purpose, it
subtracts Xn

31,[l−1] from Yn
1,[l−1]. Denote the resulting vector

by Zn. Then, it finds a unique vector w̃k ∈ F
k
2 such that

(w̃kG,Zn) is �-typical with respect to PXZ , where X is
uniform over F2 , and Z = X ⊕ Ñδ . If the decoding process
is successful, the third encoder sends Xn

32,[l] = w̃k
[l−1]G.

Otherwise, an event E1,[l] is declared.
Decoder: The decoder receives the outputs of the channel

from the lth block, that is Yn
1,[l] and Yn

2,[l]. The decoding
is performed in three steps. First, the decoder uses Yn

2,[l] to
decode Wk

1,[l−1], and Wk
2,[l−1]. In particular, it finds unique

w̃k
1 , w̃k

2 ∈ F
k
2 such that (w̃k

1G, w̃k
2G,Yn

2,[l]) are jointly
�-typical with respect to PX12X22Y2 . Otherwise, an error event
E2,[l] will be declared.

Suppose the first part of the decoding process is successful.
At the second step, the decoder calculates Xn

11,[l−1], and
Xn

21,[l−1]. This is possible, because Xn
11,[l−1], and Xn

21,[l−1]

are functions of the messages. The decoder then subtracts
Xn

11,[l−1] ⊕ Xn
21,[l−1] from Yn

1,[l−1]. The resulting vector is

Ỹn = Xn
31,[l−1] ⊕ Ñn

δ .

In this situation, the channel from X31 to Ỹ is a binary additive
channel with δ as the bias of the noise. At the third step,
the decoder uses Ỹn to decode the message of the third user,
i.e., Wk

3,[l−1]. In particular, the decoder finds unique w̃k
3 ∈

F
k
2 such that (w̃k

3G, Ỹn) are jointly �-typical with respect to
PX31Ỹ . Otherwise, an error event E3,[l] is declared.

Error Analysis: We can show that this problem is equiv-
alent to a point-to-point channel coding problem, where the
channel is described by Z = X⊕ Ñδ. The average probability
of error approaches zero, if k

n ≤ 1 − hb(δ).
Suppose there is no error in the decoding process of the

third user. That is Ec
1,[l] occurs. Therefore, with probability

one,

Xn
32,[l] = Xn

22,[l] ⊕ Xn
12,[l].

As a result, the channel in Fig. 9 is in the first state. This
implies that the corresponding channel consists of two parallel
binary additive channel with independent noises and bias
δ. Similar to the argument for E1, it can be shown that
P (E2,[l]|E1,[l]) → 0, if k

n ≤ 1 − hb(δ). Lastly, we can show
that conditioned on Ec

1,[l] and Ec
2,[l], the probability of E3,[l]

approaches zero, if k
n ≤ 1 − hb(δ).

As a result of the above argument, the average probability
of error approaches 0, if k

n ≤ 1− hb(δ). This implies that the
rates Ri = 1− hb(δ), i = 1, 2, 3 are achievable, and the proof
is completed.

B. Proof of Lemma 7

Proof: Let Ri be the rate of the ith encoder. We have
Ri ≥ 1−hb(δ)−�. We apply the generalized Fano’s inequality
(Lemma 4.3 in [17]) for decoding of the messages. More

precisely, as P̄ ≤ �, we have

1
Θ1Θ2Θ3

H(M1, M2, M3|YN ) ≤ h(P̄ ) ≤ h(�)

By the definition of the rate we have

R1 + R2 + R3 =
1
N

H(M1, M2, M3)

≤ 1
N

I(M1, M2, M3;YN ) + o(�)

=
1
N

H(YN ) − 1
N

N∑
l=1

H(Yl|Yl−1, M1, M2, M3) + o(�)

(a)
=

1
N

H(YN )

− 1
N

N∑
l=1

H(Yl|Yl−1,Xl
1,X

l
2,X

l
3, M1, M2, M3) + o(�)

(b)
=

1
N

H(YN ) − 1
N

N∑
l=1

H(Yl|Yl−1,Xl
1,X

l
2,X

l
3) + o(�)

(c)
=

1
N

H(YN ) − 1
N

N∑
l=1

H(Yl|X1,l, X2,l, X3,l) + o(�)

(d)

≤ 3 − 1
N

N∑
l=1

H(Yl|X1,l, X2,l, X3,l) + o(�), (40)

where (a) holds as Xl
j is a function of (Y l−1, Mj), j =

1, 2, 3, equality (b) is due to the fact that conditioned on
(Yl−1,Xl

1,X
l
2,X

l
3) the random variable Yl is independent

of (M1, M2, M3), equality (c) is because of (7), and lastly,
inequality (d) holds as Y is a vector of three binary random
variables which implies that

1
N

H(Y N ) ≤ 3.

Let P (X32,l 	= X12,l ⊕ X12,l) = ql, for l ∈ [1 : N ]. Denote
q̄l = 1 − ql. We can show that,

H(Yl|X1,l, X2,l, X3,l) = (1 + 2q̄l)hb(δ) + 2ql.

We use the above argument, and the last inequality in (40) to
give the following bound

R1 + R2 + R3 ≤ 3 − 1
N

N∑
l=1

[(1 + 2q̄l)hb(δ) + 2ql] + o(�)

= 3 − 3 hb(δ) +
1
N

2(1 − hb(δ))
N∑

l=1

ql + o(�)

By assumption R1 + R2 + R3 ≥ 3(1− hb(δ)− �). Therefore,
using the above bound we obtain,

3� + o(�)
2(1 − hb(δ))

≥ 1
N

N∑
l=1

ql

(a)

≥ 1
N

∑
l∈IN

c

ql,

where (a) holds, because we remove the summation over all
l /∈ IN

c . We defined IN
c as in the statement of this Lemma.

Note that if l ∈ IN
c , then ql ≥ c. Finally, we obtain

|IN
c |
N

≤ 3� + o(�)
2 c(1 − hb(δ))
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C. Proof of Lemma 8

Proof: Let IN
c be as in Lemma 7. The average probability

of error for decoding XN
12 ⊕ XN

22 is bounded as

P̄e =
1
N

N∑
l=1

P (X32,l 	= X12,l ⊕ X22,l)

=
1
N

∑
l∈IN

c

P (X32,l 	= X12,l ⊕ X22,l)

+
1
N

∑
l/∈LN

c

P (X32,l 	= X12,l ⊕ X22,l)

≤ |IN
c |
N

+ c(1 − |IN
c |
N

)

= (1 − c)
|IN

c |
N

+ c

≤ (1 − c)
η(�)

2c(1 − h(δ))
+ c

As a result as � → 0, then P̄e → c. Since c > 0 is arbitrary, P̄e

can be made arbitrary small. Hence, for any �′ > 0, and there
exist � > 0 and large enough N such that P̄e < �′. Note that
XN

32 is a function of M3, Y
N
1 , Y N

12 and Y N
22 . Next we argue

that to get P̄e < �′, it is enough for XN
32 to be a function of

M3, Y
N
1 . More precisely, given X32,l, the random variables

Y12,l and Y22,l are independent of X12,l ⊕ X22,l. To see this,
we need to consider two cases. If X32,l = X12,l ⊕ X22,l then
the argument follows trivially. Otherwise,

Y12,l = X12,l ⊕ N1/2,

where N1/2 ∼ Ber(1/2), and it is independent of X12,l.
Hence in this case, Y12,l is independent of X12,l. Similarly,
Y22,l is independent of X22,l. By subtracting XN

31 from Y N
1 ,

we get

ZN � XN
11 ⊕ XN

21 ⊕ NN
δ .

Next, we argue that the third encoder uses ZN to decode XN
12⊕

XN
22. Since M3 is independent of M1 and M2, it is independent

of XN
1j , X

N
j2 for j = 1, 2. Therefore ZN is independent of M3.

Hence, XN
32 is function of ZN . Intuitively, we convert the

problem of decoding XN
11 ⊕ XN

21 to a point to point channel
coding problem. The channel in this case is a binary additive
channel with noise Nδ ∼ Ber(δ). In this channel coding
problem the codebook at the encoder is C12⊕C22. The capacity
of this channel equals 1−hb(δ). Since the average probability
of error is small, we can use the generalized Fano’s inequality
to bound the rate of the encoder. As a result, it can be shown
that

1
N

log2 ||C12 ⊕ C22|| ≤ 1 − hb(δ) + η(�), (41)

where η(�) → 0 as � → 0.
Lemma 9: The following bound holds

1
N

log2 ||Cj2|| ≥ 1 − hb(δ) − γj(�), (42)

where j = 1, 2 and γj(�) → 0 as � → 0.
Outline of the proof: First, we show that the decoder must

decode M3 from Y N
1 . We argued in the above that XN

32 is
independent of M3. Hence, the message M3 is encoded only to

XN
31. Since XN

31 is sent though the first channel in Example 1,
the decoder must decode M3 from Y N

1 . Next, we argue that
the receiver must decode M1 and M2 from Y N

21 and Y N
22 ,

respectively. Note that the rate of the third encoder is 1−hb(δ),
which equals to the capacity of the first channel given XN

11 ⊕
XN

21. Therefore, the decoder can decode M3, if it has XN
11 ⊕

XN
21. Hence, the decoder must reconstruct XN

11 ⊕ XN
21 from

the second channel. It can be shown that this is possible, if the
decoder can decode M1 and M2 from the second channel. As a
result, from Fano’s inequality, the bounds in the Claim hold.

Finally, using (41) and (42) we get

0 ≤ 1
N

log2 ||C12 ⊕ C22|| −
1
N

log2 ||Cj2|| ≤ η(�) + γj(�),

where j = 1, 2. This completes the proof.
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