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Abstract—In this paper we study codes with sparse generator
matrices. More specifically, codes with a certain constraint on
the weight of all the columns in the generator matrix are con-
sidered. The end result is the following. For any binary-input
memoryless symmetric (BMS) channel and any ε > 2ε∗, where
ε∗ = 1

6
− 5

3
log 4

3
≈ 0.085, we show an explicit sequence of

capacity-achieving codes with all the column weights of the gen-
erator matrix upper bounded by (logN)1+ε, where N is the
code block length. The constructions are based on polar codes.
Applications to crowdsourcing are also shown.

I. INTRODUCTION

Capacity-approaching error-correcting codes such as low-
density parity-check (LDPC) codes [1] and polar codes [2]
have been extensively studied for applications in wireless and
storage systems. Besides conventional applications of codes
for error correction, a surge of new applications has also
emerged in the past decade including crowdsourcing [3], [4],
distributed storage [5], and speeding up distributed machine
learning [6]. To this end, new motivations have arisen to
study codes with sparsity constraints in their encoding and/or
decoding processes. For instance, the stored data in a failed
server needs to be recovered by downloading data from a few
servers only, due to bandwidth constraints, imposing sparsity
constraints in the decoding process in a distributed storage
system. In crowdsourcing applications, e.g., when workers are
asked to label items in a dataset, each worker can be assigned
a few items only due to capability limitations imposing spar-
sity constraints in the encoding process. More specifically,
low-density generator matrix (LDGM) codes become relevant
for such applications [7], [8].

A. LDGM and Related Works

LDGM codes, often regarded as the dual of LDPC codes,
are associated with sparse factor graphs. The sparsity of the
generator matrices of LDGM codes implies low encoding com-
plexity. However, unlike LDPC and polar codes, LDGM code
has not received significant attention. In [9], [10] it is pointed
out that certain constructions of LDGM codes are not asymp-
totically good, a behavior which is also studied by an error
floor analysis in [11], [12]. Several prior works, e.g., [11]–[13],
adopt concatenation of two LDGM codes to construct sys-
tematic capacity-approaching LDGM codes with significantly
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lower error floors in simulations. As a sub-class of LDPC
codes, the systematic LDGM codes are advantageous for their
low encoding and decoding complexity.

In terms of the sparsity of the generator matrices, [14]
showed the existence of capacity achieving codes over binary
symmetric channels (BSC) using random linear coding argu-
ments when the column weights of the generator matrix are
upper bounded by εN , for any fixed ε > 0, where N is the
code block length. Also, it is conjectured in [14] that column
weights polynomially sublinear in N suffice to achieve the
capacity. For binary erasure channels (BEC), column weights
being O(logN) suffice for capacity achieving, again using
random linear coding arguments [14]. Furthermore, the scal-
ing exponent of such random linear codes are studied in
[15]. Later, in [16], the existence of capacity achieving sys-
tematic LDGM ensembles over any BMS channel with the
expected value of the weight of the entire generator matrix
upper bounded by εN2, for any ε > 0, is shown.

In [8], we formulated the problem of label learning through
asking queries from crowd workers as a coding theory prob-
lem. Due to practical constraints in such crowdsourcing sce-
narios, each query can only contain a small number of items.
When some workers do not respond, resembling a binary era-
sure channel, we showed that a combination of LDPC codes
and LDGM codes gives a query scheme where the number of
queries approaches information theoretic lower bound [8].

B. Our Contributions

In this paper, we focus on studying capacity achieving
LDGM codes over BMS channels with sparsity constraints
on column weights. Leveraging polar codes, invented by
Arıkan [2], and their extensions to large kernels, with errors
exponents studied in [17], we show that capacity-achieving
polar codes with column weights bounded by any polynomial
of N exist. However, a similar result can not be obtained
with any polynomial of logN as the constraint on column
weights. A new construction for LDGM codes is proposed
so that most of the column weights can be bounded by a
degree 1 + δ′′ polynomial of logN , where δ′′ > 0 can be
chosen arbitrarily small. One issue of the new construction
is the existence of, though only a few, heavy columns in
the generator matrix. In order to resolve this, we propose
a splitting algorithm which, roughly speaking, splits heavy
columns into several light columns, a process which will be
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clarified in the paper. The rate loss due to this modification
is characterized and is shown to approach zero as N grows
large. Hence, the proposed modification leads to capacity
achieving constructions with column wights of the generator
matrix upper bounded by (logN)1+ε, for any ε > 2ε∗, where
ε∗ = 1

6 −
5
3 log 4

3 ≈ 0.085.
In crowdsourcing applications, building upon the model in

[8], we consider a scenario where some workers are not re-
liable, i.e., their reply to the query is not correct, each with
a certain probability independent of others. We show that the
LDGM codes presented in this paper in concatenation with
LDPC codes can be used as query schemes where the num-
ber of queries approaches information theoretic lower bound
and the number of items in each query is polylogarithmic in
the number of items.

The organization of this paper is as follows. Section II pro-
vides the necessary background. Section III contains the spar-
sity results for both polar codes with general kernels and the
proposed new construction of LDGM codes. Section IV con-
siders the query schemes for crowdsourced labelling based on
the concatenation of the LDGM codes with LDPC codes.

II. PRELIMINARIES

A. Channel Polarization and Polar Codes

The channel polarization phenomenon was discovered by
Arıkan [2] and is based on a 2×2 polarization transform as the
building block. For N = 2n, the polarization transform is ob-

tained from the N ×N matrix G⊗n2 , where G2 =

[
1 0
1 1

]
[2].

Polar codes of length N are constructed by selecting certain
rows of G⊗n2 . More specifically, let K denote the code dimen-
sion. Then sort all the N bit-channels, resulting from the polar-
ization transform, with respect to their probability of error, se-
lect the best K of them with the lowest probability of error, and
then select the corresponding rows from G⊗n2 . In other words,
the generator matrix of an (N,K) polar code is a K×N sub-
matrix of G⊗n2 . The probability of error of this code, under
successive cancellation decoding, is upper bounded by the sum
of probabilities of error of the selected K best bit-channels
[2]. Polar codes and polarization phenomenon have been suc-
cessfully applied to a wide range of problems including data
compression [18], [19], broadcast channels [20], [21], multi-
ple access channels [22], [23], physical layer security [24],
[25], and coded modulations [26].

B. General Kernels and Error Exponent

It is shown in [17] that if G2 is replaced by an l× l polar-
ization kernel G, then polarization still occurs if and only if
G is an invertible matrix in F2 and none of its column permu-
tations is upper triangular. Furthermore, the authors of [17]
provided a general formula for the error exponent of polar
codes constructed based on an arbitrary l× l polarization ma-
trix G. More specifically, let N = ln denote the block length
and C denote the capacity of the channel. For any β < E(G),

specified next, the rate K
N of the polar code with probability

of error Pe upper bounded by

Pe(n) 6 2−N
β

approaches C as n grows large. The rate of polarization (de-
fined in [17, Definition 7]), E(G), is given by

E(G) =
1

l

l∑
i=1

loglDi, (1)

where {Di}li=1 are the partial distances of G. Formally, for
G = [gT1 , g

T
2 , . . . , g

T
l ]T , the partial distances Di are defined

as follows:

Di
def
= dH(gi, span(gi+1, . . . , gl)), i = 1, 2, . . . , l − 1 (2)

Dl
def
= dH(gl, 0) = wH(gl), (3)

where dH(a, b) is the Hamming distance between two vectors
a and b, and dH(a, U) is the minimum distance between a vec-
tor a and a subspace U , i.e., dH(a, U) = minu∈U dH(a, u).

III. CONSTRUCTIONS AND MAIN RESULTS

The main results of this paper are stated in this section. We
refer to [27] for a longer version of this paper with all the
proofs.

A. Sparsity Study

Leveraging results in polar coding theory, we first show the
existence of capacity achieving polar codes with generator ma-
trices of which all column weights are polynomial in the block
length N , hence validating the conjecture in [14]. Second, we
show that, for any polar code, almost all of the column weights
of the generator matrix are larger than polylogarithmic in N .

Proposition 1. For any fixed s > 0, there are capacity-
achieving polar codes with generator matrices having column
weights upper bounded by Ns.

Proposition 2. Given l > 2 and an l × l polarizing kernel
G, the ratio of columns in G⊗n with O((logN)

r
) Hamming

weight vanishes for any r > 0 as n grows large.

B. New Approach: Construction

We propose a new construction of codes with even sparser
generator matrices than those given in section III-A. In partic-
ular, almost all the column weights of the generator matrices
of such codes are logarithmic in the code block length, and
there is an upper bound wu.b., polynomial in the logarithm of
the block length, on all the column weights.

Formally, let G = G⊗nl ⊗In′ , where Gl is an l× l polariza-
tion kernel and In′ is the n′ × n′ identity matrix. The matrix
has the following form:

G =


G⊗nl 0ln 0ln . . . 0ln

0ln G⊗nl 0ln . . . 0ln

0ln 0ln G⊗nl . . . 0ln
...

...
...

. . .
...

0ln 0ln 0ln . . . G⊗nl

 . (4)
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Let N = ln, N ′ = N×n′ be the block length, and K ′ = n′K
be the code dimension. Then K′

N ′ = K
N is the code rate. To

construct the polar-based code, we use the K ′ bit-channels
with the lowest probability of error and the generator matrix
of an (N ′,K ′) code based on G is a K ′ ×N ′ sub-matrix of
G.

When all columns are required to have low Hamming
weights, a splitting algorithm is applied. Given a column
weight threshold wu.b., the splitting algorithm splits any col-
umn in G with weight exceeding wu.b. into columns that
sum to the original column both in F2 and in R, and that
have weights no larger than wu.b.. That is, for a column in G
with weight W , if W 6 wu.b., keep the column as it is. If
W = m ·wu.b. + r for some m ∈ N and some 0 6 r < wu.b.,
replace the column with m + 1 columns, such that each
column has no more than wu.b. ones. Denote the resulting
N ′ × N ′(1 + R) matrix by G′. A new code based on G′

selects the same K ′ rows as the code based on G to form
the generator matrix, whose column weights are uniformly
bounded by wu.b..

We give a toy example for the splitting algorithm: assume
the threshold wu.b. is chosen to be 1, and the first column
of an N -column matrix G is (1, 1, 0, . . . , 0)T . Then this col-
umn will be split into two new columns, (1, 0, 0, . . . , 0)T and
(0, 1, 0, . . . , 0)T , called v′1 and v′′1 here. If all the other columns
of G have weights 0 or 1, then resulting G′ will be

G′ = [v′1, v
′′
1 , v2, . . . , vN ],

where vi denotes the ith column of G.

C. New Approach: Analysis of Error Probability

First, we show that, for an appropriate choice of n′, codes
based on G have vanishing probability of error as n grows
large. Let β < E(Gl) be given, there are polar codes with ker-
nel Gl such that the probability of error is bounded by 2−N

β

.
For the code based on G, the probability of error is bounded
above, through union bound, by n′ · 2−Nβ . Throughout this
paper, we choose

n′ = 2N
(1−δ)E(Gl)

, (5)

for an arbitrarily small constant δ > 0. We then have the fol-
lowing lemma.

Lemma 3. Let G be as in (4) and n′ be as in (5). Then for
any β < E(Gl), the rate of the code based on G with the
probability of error upper bounded by 2−N

β

approaches C
as n grows large.

When the splitting algorithm is applied, we show in the fol-
lowing proposition that the probabilities of error of the code
based on G′ and G can be bounded in the same way.

Proposition 4. For any β < E(Gl), there is a decoding
scheme based on successive cancellation(SC) decoding such
that the probability of error of the code based on G′, with di-
mension K ′ < N ′C, can be bounded by 2−N

β

for sufficiently
large n.

The block length of the code based on G is

N ′ = n′N = 2N
(1−δ)E(Gl)

N. (6)

We use log(N ′) as sparsity benchmark in this paper, which
can be bounded by

NE(Gl) > log(N ′) = N (1−δ)E(Gl) + logN

= N (1−δ)E(Gl)+o(1) > N (1−δ)E(Gl), (7)

for sufficiently large n.

D. Geometric Mean and Maximum Column Weight

The column weights of G compared to log(N ′) can be an-
alyzed in two scenarios: (1) geometric mean column weight,
and (2) maximum column weight.

Definition 1. For a binary matrix G with m columns, whose
weights are denoted by w1, w2, . . . , wm, the geometric mean
column weight wGM (G) and the maximum column weight
wmax(G) are defined as follows:

wGM (G)
def
= (w1 × w2 × . . .× wl)

1
l , (8)

wmax(G)
def
= max

i
wi. (9)

Let w1, w2, . . . , wl denote the column weights of the l ×
l binary matrix Gl. The geometric mean column weight of
G = G⊗nl ⊗ In′ equals to that of G⊗nl , which is denoted by
wGM (n,Gl) and defined as follows:

wGM (n,Gl)
def
=wGM (G⊗nl ⊗ In′). (10)

The maximum column weight of G is the same as that of
G⊗nl , which is denoted by wmax(n,Gl) and defined as fol-
lows:

wmax(n,Gl)
def
= wmax(G). (11)

Note that wGM (n,Gl) = [(w1 × w2 × . . . × wl)
1
l ]n =

wGM (Gl)
n. Also, wmax(n,Gl) = (maxi(wi))

n 6 ln.

E. Sparsity with Kernel G2

Let G = G⊗n2 ⊗ In′ with n′ chosen as in (5). We show two
things in this subsection: wGM (n,G2) ≈ logN ′ and, after
careful splitting we get a matrix G′ such that wmax(G′) 6
(logN ′)1+2ε∗ for a constant ε∗ ≈ 0.085 with vanishing loss
of rate compared to G.

Proposition 5. There is a sequence of capacity achieving
codes over any BMS channel with the geometric mean col-
umn weight almost logarithmic in the block length. More
specifically, for any fixed δ′ > 0, n′ in (5) can be chosen
such that

wGM (n,G2) = [log(N ′)]1+δ
′+o(1) (12)

for sufficiently large n.

By the central limit theorem, the column weights concen-
trate around the geometric mean column weight, the ratio of
columns with weights exceeding [log(N ′)]1+δ

′′+o(1) is van-
ishing as n grows large for any δ′′ > δ′.
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Although the geometric mean column weight of G and the
weights of most columns are almost logarithmic in N ′, the
maximum column weight is wmax(G) = 2n = [wGM (G)]2

and is approximately (logN ′)
2. However, we show next that

a matrix G′ can be obtained from the splitting algorithm such
that all column weights are below some threshold wu.b. which
would be much smaller than wmax(G).

Since polar codes and the code based on G are capacity-
achieving, as shown in lemma 3, and that the code rates of
the codes based on G and G′ differ by a ratio 1 + R, the
latter is capacity achieving if R vanishes as n grows large.
In the following, we will explore appropriate choices of the
column weight threshold for the splitting algorithm that allow
the value R goes to 0 exponentially fast.

Let ε > 0 be given and

wu.b. = (logN ′)1+ε = N
1
2+ε

′
, (13)

be the upper bound for the column weights, where

ε′ = (1 + ε)(
1− δ

2
+ o(1))− 1

2
, (14)

for large n. To estimate the multiplicative rate loss of 1 +R,
we may study the effect on G⊗n2 , since that is equivalent to
the overall effect on G.

First note that R is the ratio of the number of extra columns
resulting from the splitting algorithm to the number of columns
N of G⊗n2 . Let w1, w2, . . . , wN denote the column weights of
G⊗n2 . R can be characterized as follows:

R =
1

N

kmax∑
k=1

|{i : kwu.b. 6 wi < (k + 1)wu.b.}| × k, (15)

where kmax = b2n/wu.b.c.
In fact, with G2 as the polarization kernel, each wi is an

integer power of 2. By grouping the kmax terms in (15), the
ratio R can be expressed as a sum of log kmax terms. Let
λ(x, y)

def
= −D( 1

2 +x+ y|| 12 ) + y for x, y > 0 and x+ y 6 1
2 ,

where D(p1||p2) is the Kullback–Leibler divergence between
two distributions Ber(p1) and Ber(p2). We characterize the
asymptotic behaviour of the rate R in the following theorem.

Theorem 6. For G = G⊗n2 ⊗ In′ , where n′, N ′, wu.b., and
ε′ are given by (5), (6), (13), and (14), apply the splitting al-
gorithm to form a matrix G′ ∈ {0, 1}N ′×N ′(1+R) such that
wmax(G′) 6 wu.b.. Then R has the following asymptotic ex-
pression:

R
.
=

{
2n(ε

∗−ε′) → 0, if ε′ > ε∗

2λ(ε
′,αmax) →∞, if ε′ < ε∗

, (16)

where ε∗def= 1
6 −

5
3 log 4

3 ≈ 0.085, αmax = maxi αi, and an
.
=

bn means that 1
n log an

bn
→ 0 as n→∞.

We can express the conditions in (16) in terms of the rela-
tion between ε and ε∗ leading to the following corollary.

Corollary 7. Let n′, N ′, ε′, ε∗, wu.b., and αmax be as in the-
orem 6. Then

R
.
=

{
2n(ε

∗−ε′) → 0, if ε > 2ε∗

2λ(ε
′,αmax) →∞, if ε < 2ε∗

.

The rate loss 1 + R of the code based on G′ to the code
based on G can thus be made arbitrarily close to 1 when the
column weight upper bound wu.b. is properly chosen. Com-
bining results in subsection III-C and the corollary 7, we have
the following corollary:

Corollary 8. Let β < E(G2) = 0.5 and ε > 2ε∗be given.
Then there exists a sequence of codes based on G′, generated
by applying the splitting algorithm to G = G⊗n2 ⊗ In′ , with
the following properties:

1) The error probability is upper bounded by 2−N
β

.
2) The Hamming weight of each column of the generator

matrix is upper bounded by wu.b. = (logN ′)1+ε.
3) The rate approaches C as n grows large.

F. Sparsity with General Kernels

In this subsection we consider l×l kernels Gl with l > 2 and
show the existence of Gl with wGM (n,Gl) = O((logN ′)λ)
for some λ < 1. However, we do not bound wmax(., .) as
in the case with the G2 kernel. To characterize the geometric
mean column weight and the maximum column weight, the
sparsity order is defined as follows:

Definition 2. The sparsity order of the geometric mean col-
umn weight is

λGM (n,Gl)
def
= loglog(N ′) wGM (n,Gl) =

logwGM (n,Gl)

log log(N ′)
,

(17)
where n′ and N ′ are defined in (5) and (6), respectively.

Definition 3. the sparsity order of the maximum column
weight

λmax(n,Gl)
def
= loglog(N ′) wmax(n,Gl) =

logwmax(n,Gl)

log log(N ′)
.

(18)

For example, if wGM (n,Gl) (or wmax(n,Gl)) can be
expressed in the Landau notations as Θ([logN ′]r), then
λGM (n,Gl) (or λmax(n,Gl) ) goes to r as n grows large.

We give Table I1 for

G∗3 =

0 1 0
1 1 0
1 0 1

 , G∗4 =


1 0 0 0
0 1 0 1
0 0 1 1
1 1 1 1

 ,
and G∗16 (the smallest l with El > 0.5; see [17] for explicit
construction), the kernels achieving E3, E4 and E16, the max-
imal error exponents for l = 3, 4, 16, respectively.

1The limits of the sparsity orders when n → ∞ are shown, hence o(1)
terms are neglected.
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Table I
λGM AND λmax FOR G2, G∗3, G

∗
4 AND G∗16 AS n→∞

E(Gl) λGM (n,Gl) λmax(n,Gl)

G2 0.5 1 + δ′ 2(1 + δ′)

G∗3
2
3
log3 2 ≈ 0.42 1 + δ′ 1.5(1 + δ′)

G∗4 0.5 ≈ 1.15(1 + δ′) log 3(1 + δ′)

G∗16 ≈ 0.5183 ≈ 1.443(1 + δ′) omitted

Table II
λGM AND λmax FOR G′3 AND G′4 AS n→∞

E(Gl) λGM (n,Gl) λmax(n,Gl)

G′3
2
3
log3 2 ≈ 0.42 ≈ 0.79(1 + δ′) ≈ 2.38(1 + δ′)

G′4
3
8
= 0.375 2

3
(1 + δ′) 8

3
(1 + δ′)

However, the error exponent is not the only factor that de-
termines the sparsity orders. For example, for l = 3 and l = 4,
the matrices

G′3 =

1 0 0
1 1 0
1 0 1

 , G′4 =


1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

 ,
instead of G∗3 and G∗4, have the smallest sparsity orders of
the geometric mean column weight (found through exhaustive
search), as shown in table II. By central limit theorem, most
column weights have similar orders over the logarithm of the
block length. Therefore, if sparsity constraint is only required
for almost all of the columns of the generator matrix, G′3 and
G′4 are the more preferable polarization kernels over G∗3 and
G∗4, respectively.

For a given Gl, we may relate the two terms E(Gl)
and wGM (n), or, more specifically, the partial distances
D1, . . . , Dl and the column weights w1, . . . , wl as follows.

Lemma 9. The ratio of λGM (n,Gl) to
∑l
i=1 logl wi∑l
i=1 loglDi

lies be-

tween 1 and 1
1−δ for sufficiently large n.

The following theorem shows that an arbitrarily small order
can be achieved with a large l and some Gl.

Theorem 10. For any fixed constant 0 < r 6 1, there exist
an l × l polarizing kernel Gl, where l = l(r, δ), such that
λGM (n,Gl) < r for sufficiently large n.

Let r < 1 and η > 0 be fixed. For a proper choice of Gl
with λGM (n,Gl) < r, concentration of the column weights,
i.e., the central limit theorem, implies only vanishing fraction
of columns in G have weight larger than [logN ′](1+η)r.

IV. APPLICATION TO CROWDSOURCING

A. Recap of Coding for Crowdsourced Label Learning

The problem model considered in [8] is the following. There
are n items, each of which is associated with a binary label
Xi unknown to a taskmaster and Xi is i.i.d. ∼ Ber(p),∀i.

Let Hb(·) denote the binary entropy function. From [8],
when workers in the crowd are perfect, there exists a XOR-
querying scheme using

m = n[Hb(p) + ζ(1−Hb(p))]

queries, each involving no more than (Hb(p)
−1−1)K1−K2ln(ζ)

1−ζ
items for some ζ ∈ (0, 1), that achieves perfect recovery.

In the case where queries are not responded, each with a
probability r independent of others, the number of queries is
lower bounded by mBER = n(Hb(p))/(1− r) [8]. Also, ex-
istence of a XOR-querying scheme with

m = n[Hb(p) + ζ(1−Hb(p))]/(1− r)

queries, each with O(log 1
ζ log n) items, that guarantees per-

fect recovery of the labels as n grows large is shown in [8].

B. BSC scenario

The case when some queries are answered incorrectly is
widely observed in crowdsourced label learning in the real
world [4], [28]. When the queries are answered correctly with
probability 1− q for some q ∈ [0, 0.5), referred to here as the
BSC(q) model, the information-theoretic lower bound on the
number of queries is

mBSC(n, p, q) =
nHb(p)

1−Hb(q)
.

We can apply corollary 8 to design a query scheme with num-
ber of queries, m′, arbitrarily close to mBSC and small number
of items in each query.

Theorem 11. For the BSC(q) model, for any ζ ∈ (0, 1) and
ε > 2ε∗, there is a query scheme using

m′ = (1 + o(1))
Hb(p) + ζ(1−Hb(p))

1−Hb(q)
(19)

queries, each involving no more than O(log 1
ζ [log n]

1+ε
)

items, that achieves perfect recovery.
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