


PMFs pX and qX defined over X is denoted ‖pX − qX‖1 =
1
2

∑

x∈X |pX(x)− qX(x)|.

Definition 1. Given a PMF pXY Z , a rate pair (R,C) is

achievable, if ∀ε > 0 and sufficiently large n, there exists a

collection of 2nC randomized encoders E(µ) : Xn → [Θ] for

µ ∈ [2nC ] and a corresponding collection of 2nC randomized

decoders D(µ) : Zn × [Θ] → Yn for µ ∈ [2nC ] such that

|pnXY Z − pXnY nZn |1 ≤ ε, 1
n
log2 Θ ≤ R+ ε, where

pXnY nZn(xn, yn, zn) =
∑

µ∈[2nC ]

2−nC
∑

m∈[Θ]

pnXZ(x
n, zn)

p
(µ)
M |Xn(m|xn)p

(µ)
Y n|Zn,M

(yn|zn,m),

p
(µ)
M |Xn , p

(µ)
Y n|ZnM

are the PMFs induced by encoder and de-

coder respectively, corresponding to shared random message

µ. We let Rs(pXY Z) denote the set of achievable rate pairs.

Cuff [3, Thm. II.1] provides a characterization for Rs(pXY )
when Z = φ is empty. Our first main result (Thm. 1) is a

characterization of Rs(pXY Z). Building on this, we address

the network scenario (Fig. 1) for which we state the problem

below. In the following, we let X = (X1, X2), x
n = (xn

1 , x
n
2 ).

Definition 2. Given a PMF pX1X2Y , a rate triple (R1, R2, C)
is achievable, if ∀ε>0 and sufficiently large n, there exists 2nC

randomized encoder pairs E
(µ)
j : Xn

j → [Θj ] : j ∈ [2], µ ∈

[2nC ], and a corresponding collection of 2nC randomized

decoders D(µ) : [Θ1] × [Θ2] → Yn for µ ∈ [2nC ] such that
∣

∣

∣
pnXY − pXnY n

∣

∣

∣

1
≤ ε, 1

n
log2 Θj ≤ Rj + ε : j ∈ [2], where

pXnY n(xn, yn) =
∑

µ∈[2nC ]

2−nC
∑

(m1,m2)∈
[Θ1]×[Θ2]

pnXY (x
n, yn)

p
(µ)
M1|Xn

1
(m1|x

n
1 )p

(µ)
M2|Xn

2
(m2|x

n
2 )p

(µ)
Y n|M1,M2

(yn|m1,m2)

p
(µ)
Mj |Xn

j
: j ∈ [2], p

(µ)
Y n|M1,M2

are the PMFs induced by the two

randomized encoders and decoder respectively, corresponding

to common randomness message µ. We let Rd(pXY ) denote

the set of achievable rate triples.

Our second main result is a characterization of Rd(pXY )
which is provided in Theorem (2).

III. SOFT COVERING WITH SIDE INFORMATION

In this section, we provide a characterization of Rs(pXY Z).

Theorem 1. (R,C) ∈ Rs(pXY Z) if and only if there

exists a PMF pWXY Z such that (i) pXY Z(x, y, z) =
∑

w∈W pWXY Z(w, x, y, z) for all (x, y, z) where W is the

alphabet of W , (ii) Z − X − W and X − (Z,W ) − Y
are Markov chains, (iii) |W| ≤ (|X ||Y||Z|)2, and R ≥
I(X;W )− I(W ;Z), R+ C ≥ I(XY Z;W )− I(W ;Z).

Proof. We provide the main elements (achievability in

Sec. III-A and converse in Sec. IV) of our proof here with

particular emphasis on the new elements. The reader is referred

to [8] for more technical details.

A. Achievability

Throughout, µ ∈ [2nC ] denotes the C bits of common

randomness shared between the encoder and decoder. For each

µ ∈ [2nC ], we shall design a randomized encoder E(µ) :
Xn → [Θ] and a randomized decoders D(µ) : Zn× [Θ] → Yn

that induce PMFs p
(µ)
M |Xn and p

(µ)
Y n|ZnM

respectively, for which

Q : =
1

2

∑

xn,yn,zn

∣

∣

∣

∣

∣

Pn
XY Z(x

n, yn, zn)−
∑

µ∈[2nC ]

∑

m∈[Θ]

pnXZ(x
n, zn)

2nC

p
(µ)
M |Xn(m|xn)p

(µ)
Y n|Zn,M

(yn|zn,m)

∣

∣

∣

∣

∣

≤ ε. (1)

The design of these randomized encoders and decoders in-

volves building a codebook C = (C(µ) : µ ∈ [2nC ]) where

C(µ) = (wn(l, µ) ∈ Wn : l ∈ [2nR̃]) for µ ∈ [2nC ], W being

the alphabet of W as in the theorem statement. Specifically,

we let the codewords of C to be IID with distribution

p̃Wn(wn) =
pnW (wn)

∑

wn∈Tδ(W ) p
n
W (wn)

if wn ∈ Tδ(W ) (2)

and 0 otherwise. On observing xn, µ the randomized encoder

chooses an index L in [2nR̃] according to a PMF E
(µ)
L|Xn(·|·).

The chosen index is then mapped to an index in [2nR] which

is communicated to the decoder. Before we specify the PMF

E
(µ)
L|Xn(·|·), let us describe how the chosen index is mapped to

an index in [2nR]. In doing this, our first task is to identify and

index the unique codewords in C. Firstly, for C(µ), we let Θ(µ)

denote the number of distinct codewords in C(µ). Secondly,

we let I
(µ)
C : [2nR̃] → [Θ(µ)] be defined such that I

(µ)
C (l) =

I
(µ)
C (l̃) if and only if w(l, µ) = w(l̃, µ). Lastly, we define a

binning map b(µ) : [Θ(µ)] → [2nR]. On observing xn, the

encoder chooses L ∈ [2nR̃] with respect to PMF E
(µ)
L|Xn(·|x

n)

and then communicates b(µ)(I
(µ)
C (L)) to the decoder.

Before we specify E
(µ)
L|Xn(·|·) and characterize the induced

PMF pM |Xn let us relate to the above three elements that make

up the encoder. The PMF E
(µ)
L|Xn is analogous to the likelihood

encoder ΓJ|Xn,K of Cuff [3] but with important changes to

incorporate typicality-based encoding that permits use of side-

information at the decoder. The map I
(µ)
C eliminates dupli-

cation of indices with identical codewords and is employed

for simplifying the analysis. The map b(µ) performs standard

information-theoretic binning [9] to utilize side-information.

We now specify E
(µ)
L|Xn(·|·). For xn ∈ Tδ(X), let

E
(µ)
L|Xn(l|x

n) =
(1− ε)pnX|W (xn|wn(l, µ))

(1 + η)2nR̃pnX(xn)
(3)

if l 6= 0, wn(l, µ) ∈ Tδ(W |xn), and

E
(µ)
L|Xn(l|x

n) = 1−

2nR̃

∑

l=1

E
(µ)
L|Xn(l|x

n) if l = 0,

and E
(µ)
L|Xn(l|x

n) = 1{l=0} for all xn /∈ Tδ(X). In specifying

E
(µ)
L|Xn , we have relaxed the requirement that E

(µ)
L|Xn(·|x

n)
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be a PMF. This relaxation - a novelty of our work - yields

analytical tractability of a random coding ensemble to be

described in the sequel. However, note that these maps depend

on the choice of the codebook C. We prove in Appendix A that

with high probability, E
(µ)
L|Xn(·|x

n) : [2nC ] → R is a PMF for

every xn ∈ Xn. This will form a part of our random codebook

analysis and in fact, as we see in Lemma 2, one of the rate

constraints is a consequence of the conditions necessary for

the above definition of E
(µ)
L|Xn(·|·) to be a PMF. We also note

that E
(µ)
L|Xn being a PMF guarantees pM |Xn is a PMF.

Having specified E
(µ)
L|Xn(·|·), we now characterize pM |Xn .

p
(µ)
M |Xn(m|xn)=

∑

wn

2nR̃

∑

l=1

E
(µ)
L|Xn(w

n|xn)1{

wn=w
n(l,µ)

b(µ)(I
(µ)
C

(l))=m

}

=
∑

wn∈
Tδ(W |xn)

2nR̃

∑

l=1

(1− ε)pnX|W (xn|wn)

2nR̃(1 + η)pnX(xn)
1{

wn=w
n(l,µ)

b(µ)(I
(µ)
C

(l))=m

} (4)

for m 6= 0 and p
(µ)
M |Xn(0|x

n) = 1−
∑2nR

m=1 p
(µ)
M |Xn(m|xn). We

have thus described the encoder and pM |Xn .

We now describe the decoder. On observing zn ∈ Zn, µ
and the index m ∈ [2nR] communicated by the encoder,

the decoder populates D(µ)(zn,m) = {wn ∈ Wn : wn =

w
n(l, µ), b(µ)(I

(µ)
c (l)) = m, (wn, zn) ∈ Tδ(W,Z)}. Let

f (µ)(m, zn) =

{

wn if D(µ)(zn,m) = {wn}

w0 otherwise, i.e., |D(µ)(zn,m)| 6= 1
.

The decoder chooses zn according to PMF

pnY |ZW (yn|zn, f(m, zn)). This implies we have the decoder

given by

p
(µ)
Y n|ZnM

(·|zn,m) = pnY |WZ(y
n|f (µ)(m, zn), zn). (5)

We refer the reviewers to [8] for the remaining analysis.

IV. CONVERSE

The proof for the converse follows from [1].

V. DISTRIBUTED SOFT COVERING

Our main result is the following inner bound to Rd(pXY ).
In the following, we let X = (X1, X2),W = (W1,W2), x =
(x1, x2) and w = (w1, w2).

Theorem 2. Given a PMF pX1X2Y , let P(pX1X2Y ) de-

note the collection of all PMFs pQW1W2XY defined on

Q × W1 × W2 × X × Y such that (i) pXY (x, y) =
∑

(q,w)∈Q×W pQWXY (q, w, x, y) for all (x, y) ∈ (X ,Y), (ii)

W1−QX1−QX2−W2 and X−QW−Y are Markov chains,

(iii) |W1| ≤ |X1|, |W2| ≤ |X2|. Further, let β(pQWXY ) denote

the set of rates and common randomness triple (R1, R2, C)
that satisfy

R1 ≥ I(X1;W1|Q)− I(W1;W2|Q)

R2 ≥ I(X2;W2|Q)− I(W1;W2|Q)

R1 +R2 ≥ I(X1;W1|Q)+I(X2;W2|Q)−I(W1;W2|Q)

R1 +R2 + C ≥ I(X1X2W2Y ;W1|Q) + I(X1X2Y ;W2|Q)

− I(W1;W2|Q) (6)

where the mutual information terms are evaluated with the

PMF pQW1W2XY . We have

Closure





⋃

pQWXY ∈P(pX1X2Y )

β(pQWXY )



 ⊆ Rd(PXY ). (7)

In other words, (R1, R2, C) is achievable if (R1, R2, C) ∈
(

⋃

pQWXY ∈P(pX1X2Y ) β(pQWXY )
)

.

In the interest of brevity, we only highlight the novelty in

the design of random encoders and random decoder used. We

refer the reader to [8] for a complete proof.

Proof. Having designed a randomized encoding scheme based

on typicality, we are in a position to employ the same encoder

for this distributed scenario. Let µ ∈ [2nC ] denote the common

randomness shared amidst all terminals. The first encoder

uses a part of the total common randomness available to it,

say C1 bits out of the C bits, denoted by µ1 ∈ [2nC1 ].
Similarly, let µ2 ∈ [2nC2 ] denote the common randomness

used by the second encoder. Our goal is to prove the existence

of PMFs p
(µ1)
M1|Xn

1
(m1|x

n
1 ) : xn

1 ∈ Xn
1 ,m1 ∈ [Θ1], µ1 ∈

[2nC1 ], pµ2

M2|Xn
2
(m2|x

n
2 ) : x

n
2 ∈ Xn

2 ,m2 ∈ [Θ2], µ2 ∈ [2nC2 ],

and pY n|M1,M2
(yn|m1,m2) : yn ∈ Yn, (m1,m2) ∈ [Θ1] ×

[Θ2] such that

Q : =
1

2

∑

xn
1 ,x

n
2 ,y

n

∣

∣

∣

∣

∣

pnX1X2Y
(xn

1 , x
n
2 , y

n)−

∑

µ∈[2nC ]

∑

m1∈[Θ1]

∑

m2∈[Θ2]

pnX1X2
(xn

1 , x
n
2 )

2nC
p
(µ1)
M1|Xn

1
(m1|x

n
1 )

p
(µ2)
M2|Xn

2
(m2|x

n
2 )p

(µ)
Y n|M1,M2

(yn|m1,m2)

∣

∣

∣

∣

∣

≤ ε,

logΘj

n
≤ Rj + ε : j ∈ [2] (8)

for sufficiently large n. Consider the collections C1 = (C
(µ1)
1 :

1 ≤ µ1 ≤ 2nC1) where C
(µ1)
1 = (w1(l1, µ1) : 1 ≤ l1 ≤

2nR̃1) and C2 = (C
(µ2)
2 : 1 ≤ µ2 ≤ 2nC2) where C

(µ2)
2 =

(w2(l2, µ2) : 1 ≤ l2 ≤ 2nR̃2). For this collection, we let

E
(µ1)
L1|Xn

1
(l1|x

n
1 )

=
1

2nR̃1

1− ε1

1 + η

∑

wn
1 ∈Tδ(W1|xn

1 )

1{wn(l1,µ1)=wn
1 }

pnX1|W1
(xn

1 |w
n
1 )

pnX1
(xn

1 )

E
(µ2)
L2|Xn

2
(l2|x

n
2 )

=
1

2nR̃2

1− ε2

1 + η

∑

wn
2 ∈Tδ(W2|xn

2 )

1{wn(l2,µ2)=wn
2 }

pnX2|W2
(xn

2 |w
n
2 )

pnX2
(xn

2 )

Further, we define maps b
(µ1)
1 : [2nR̃1 ] → [2nR1 ] and

b
(µ2)
2 : [2nR̃2 ] → [2nR2 ] performing standard information-

theoretic binning, with 0 < R1 ≤ R̃1 and 0 < R2 ≤ R̃2.
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Using these maps, we induce the PMF p
(µ1)
M1|Xn

1
on the message

to be transmitted by the first encoder as

p
(µ1)
M1|Xn

1
(m1|x

n
1 )

=























1{m1=0} if s
(µ1)
1 (xn

1 ) > 1,

1− s
(µ1)
1 (xn

1 ) if m1 = 0 and s
(µ1)
1 (xn

1 ) ∈ [0, 1],
∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
(l1|x

n
1 )1{b

(µ1)
1 (l1)=m1}

if m1 6= 0 and s
(µ1)
1 (xn

1 ) ∈ [0, 1]

for all xn
1 ∈ Tδ(X1) and s

(µ1)
1 (xn

1 ) defined as

s
(µ1)
1 (xn

1 ) =
∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
(l1|x

n
1 ). For xn

1 /∈ Tδ(X1),

we let p
(µ1)
M1|Xn

1
(m1|x

n
1 ) = 1{m1=0}. Similarly, we define

PMF p
(µ2)
M2|Xn

2
for the second encoder as

p
(µ2)
M2|Xn

2
(m2|x

n
2 )

=























1{m2=0} if s
(µ2)
2 (xn

2 ) > 1,

1− s
(µ2)
2 (xn

2 ) if m2 = 0 and s
(µ2)
2 (xn

2 ) ∈ [0, 1],
∑2nR̃2

l2=1 E
(µ2)
L2|Xn

2
(l2|x

n
2 )1{b2(l2)=m2}

if m2 6= 0 and s
(µ2)
2 (xn

2 ) ∈ [0, 1].

for all xn
2 ∈ Tδ(X2) and s

(µ2)
2 (xn

2 ) defined as

s
(µ2)
2 (xn

2 ) =
∑2nR̃2

l2=1 E
(µ2)
L2|Xn

2
(l2|x

n
2 ). For xn

2 /∈ Tδ(X2),

we let p
(µ2)
M2|Xn

2
(m2|x

n
2 ) = 1{m2=0}.

With this definition note that,
∑2nR1

m1=0 p
(µ1)
M1|Xn

1
= 1 for all

µ1 ∈ [2nC1 ] and xn
1 ∈ Xn

1 and similarly,
∑2nR2

m2=0 p
(µ2)
M2|Xn

2
= 1

for all µ2 ∈ [2nC2 ] and xn
2 ∈ Xn

2 .

We now describe the decoder. On observing µ and the in-

dices m1,m2 ∈ [2nR1 ]×[2nR2 ] communicated by the encoder,

the decoder first deduces (µ1, µ2) from µ and then populates

D(µ1,µ2)(m1,m2) = {(wn
1 , w

n
2 ) ∈ Wn

1 × Wn
2 : wn

1 =

w
n
1 (l1, µ1), w

n
2 = w

n
2 (l2, µ2), b

(µ1)
1 (l1) = m1, b

(µ2)
2 (l2) =

m2, (w
n
1 , w

n
2 ) ∈ Tδ(W1,W2)}. Let

f (µ)(m1,m2)

=

{

(wn
1 , w

n
2 ) if D(µ1,µ2)(m1,m2) = {(wn

1 , w
n
2 )}

(w̃n
1 , w̃

n
2 ) o.w. i.e., |D(µ1,µ2)(m1,m2)| 6= 1

.

The decoder chooses yn according to PMF

pnY |W1W2
(yn|f (µ)(m1,m2)). This implies the PMF

p
(µ1)
Y n|M1M2

(·|·) is given by

p
(µ)
Y n|M1M2

(·|m1,m2) = pnY |W1W2
(yn|f (µ)(m1,m2)). (9)

We now begin our analysis of (8). Our goal is to prove

the existence of a collections c1, c2 for which (8) holds.

We do this via random coding. Specifically, we prove that

E[Q] ≤ ε where the expectation is over the ensemble of

codebooks. The PMF induced on the ensemble of codebooks

is as specified below. The codewords of the random codebook

C
(µ1)
1 = (W1(l1, µ1) : 1 ≤ l1 ≤ 2nR̃1) for each µ1 ∈ 2nC1 are

mutually independent and distributed with PMF

P(W1(l1, µ1) = wn
1 ) =

pnW1
(wn

1 )

(1− ε1)
1{wn

1 ∈Tn
δ
(W1)}

Similarly, C
(µ2)
2 = (W2(l2, µ2) : 1 ≤ l2 ≤ 2nR̃2) for each

µ2 ∈ [2nC2 ] are mutually independent and distributed as

P(W2(l2, µ2) = wn
2 ) =

pnW2
(wn

2 )

(1− ε2)
1{wn

2 ∈Tn
δ
(W2)}

where εi = 1 − P(Tδ(Wi)); i = 1, 2. We split Q into two

terms using an indicator function 1{PMF(C1,C2)} as

EQ = E
[

Q · 1{PMF(C1,C2)}

]

+ E
[

Q · 1c
{PMF(c1,c2)}

]

≤ E
[

Q · 1{PMF(C1,C2)}

]

+ 2 · P
{

1{PMF(C1,C2)} = 0
}

(10)

where 1{PMF(C1,C2)} is defined as

1{PMF(C1,C2)}

=



















1 if s
(µ1)
1 (xn

1 ) ∈ [0, 1] and s
(µ2)
2 (xn

2 ) ∈ [0, 1]

for all xn
1 ∈ Tδ(X1), x

n
2 ∈ Tδ(X2),

and for all µ1 ∈ [2nC1 ], µ2 ∈ [2nC2 ]

0 otherwise,

and (10) follows from the upper bound of 1 over the total

variation. Using the Lemma below, we prove that by con-

straining R̃1 ≥ I(X1;W1) + 4δ and R̃2 ≥ I(X2;W2) + 4δ,

P
{

1{PMF(C1,C2)} = 0
}

can be made arbitrarily small. In other

words, with high probability, we will have E
(µ1)
L1|Xn

1
and

E
(µ2)
L2|Xn

2
such that 0 ≤

∑2nR̃1

l1=1 E
(µ1)
L1|Xn

1
≤ 1 for all µ1 ∈ [2nC1 ]

and xn
1 ∈ Tδ(X1) , and 0 ≤

∑2nR̃2

l2=1 E
(µ2)
L2|Xn

2
≤ 1 for all

µ2 ∈ [2nC2 ] and xn
2 ∈ Tδ(X2) ,

Lemma 1. For any δ, η ∈ (0, 1/2), if R̃1 > I(X1 : W1)+4δ1
and R̃2 > I(X2 : W2) + 4δ2, where δ1(δ), δ2(δ) ↘ 0 as

δ ↘ 0, then

P









2nC1
⋂

µ=1

⋂

xn∈Tδ(X1)

(

E
(µ1)
L1|Xn

1
(l1|x

n
1 ) ≤ 1

)





⋂





2nC2
⋂

µ2=1

⋂

xn
2 ∈Tδ(X2)

(

E
(µ2)
L2|Xn

2
(l2|x

n
2 ) ≤ 1

)







→ 1 as n → ∞

Proof. Using the lemma 2 from Appendix (A) twice, we get

P





2nC

⋂

µ1=1

⋂

xn
1 ∈Tδ(X1)





2nR̃1
∑

l1=1

E
(µ1)
L1|Xn

1
(l1|x

n
1 )



 ≤ 1





≥ 1− 2 · 2nC1 |Tδ(X1)| exp

(

−
η22n(R̃1−I(X1,W1)−4δ1)

4 ln 2

)

,

P





2nC2
⋂

µ=2

⋂

xn
2 ∈Tδ(X2)





2nR̃2
∑

l2=1

E
(µ2)
L2|Xn

2
(l2|x

n
2 )



 ≤ 1





≥ 1− 2 · 2nC2 |Tδ(X2)| exp

(

−
η22n(R̃2−I(X2,W2)−4δ2)

4 ln 2

)

.
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Applying union bound to the above inequalities gives,

P









2nC

⋂

µ=1

⋂

xn∈Tδ(X1)

(

E
(µ1)
L1|Xn

1
(l1|x

n
1 ) ≤ 1

)





⋂





2nC2
⋂

µ2=1

⋂

xn
2 ∈Tδ(X2)

(

E
(µ2)
L2|Xn

2
(l2|x

n
2 ) ≤ 1

)









≥ 1− 2 · 2nC1 |Tδ(X1)|2 exp

(

−
η22n(R̃1−I(X1,W1)−4δ1)

4 ln 2

)

− 2 · 2nC2 |Tδ(X2)| exp

(

−
η22n(R̃2−I(X2,W2)−4δ2)

4 ln 2

)

and hence the result follows.

For the sake of brevity, we refer the readers to [8] where the

complete details of the proof are provided.

APPENDIX A

E
(µ)
L|Xn(·|·) IS A PMF WITH HIGH PROBABILITY

Lemma 2. For any δ, η ∈ (0, 1), if R̃ > I(X : W )+4δ, then

P





2nC

⋂

µ=1

⋂

xn∈Tδ(X)







2nR̃

∑

l=1

E
(µ)
L|Xn(l|x

n) ≤ 1









→ 1 as n → ∞

Proof. From the definition of E
(µ)
L|Xn(l|x

n), we have for

xn ∈ Tδ(X),
∑2nR̃

l=1 E
(µ)
L|Xn(l|x

n) =

1

2nR̃

(

1− ε

1 + η

)

∑

wn∈
Tδ(W |xn)

2nR̃

∑

l=1

1{wn(l,µ)=wn}

pnX|W (xn|wn)

pnX(xn)
.

Let us define Z
(µ)
l (xn), for xn ∈ Tδ(X) and µ ∈ [2nC ] as

Z
(µ)
l (xn) = (1− ε)

∑

wn∈Tδ(W |xn)

1{wn(l,µ)=wn}p
n
X|W (xn|wn)

and let D = 2n(H(X|W )−δ1), where δ1(δ) ↘ 0 as δ ↘ 0. This

gives us the following bound on the expectation of the empiri-

cal average of {Z
(µ)
l (xn)}l∈[2nR̃] as E

[

1

N

∑N
l=1 DZ

(µ)
l (xn)

]

= 2n(H(X|W )−δ)
∑

wn∈Tδ(W |xn)

p̃nW (wn)pnX|W (xn|wn)(1− ε)

≥ 2n(H(X|W )−δ)2−n(H(X,W )+2δ)2n(H(W |X)−δ)

≥ 2−n(I(X,W )+4δ) (11)

Further, we also have

DZ
(µ)
l (xn) ≤ 2n(H(X|W )−δ)2−n(H(X|W )−δ)(1− ε)

∑

wn∈Tδ(W |xn)

1{Wn(l,µ)=wn} ≤ 1 (12)

Since, for every xn ∈ Tδ(X) and µ ∈ [2nC ], we have

{Z
(µ)
l (xn)}l to be a sequence of IID Random variables, we

can approximate its empirical average, using a more refined

Chernoff-Hoeffding bound given by

Lemma 3. Let {Zn}
N
n=1 be a sequence of N IID random

variables bounded as Zn ∈ [0, 1] ∀n ∈ [N ], and suppose

E

[

1

N

∑N
n=1 Zn

]

= µ be lower bounded by a positive constant

θ as µ ≥ θ where θ ∈ (0, 1), then for every η ∈ (0, 1/2) and

(1+ η)θ < 1, we can bound the probability that the ensemble

average of the sequence {Zn}
N
n=1 lies in (1± η)µ as

P

(

1

N

N
∑

n=1

Zn ∈[(1− η)µ, (1 + η)µ]

)

≥ 1− 2 exp

(

−
Nη2θ

4 ln 2

)

Proof. Follows from Operator Chernoff Bound [10].

Note that, from (11 and 12), {DZ
(µ)
l (xn)}l satisfies the

constraints needed in the above lemma . Thus applying Lemma

(3) to {DZ
(µ)
l (xn)}l gives

P

(

1

N

N
∑

l=1

Z
(µ)
l (xn) ∈ [(1− η)E [Z(xn)] , (1 + η)E [Z(xn)]]

)

≥ 1− 2 exp

(

−
η22n(R−I(X,W )−4δ)

4 ln 2

)

(13)

where Z(µ)(xn) denotes the generic random variable from

the IID sequence {Z
(µ)
l (xn)}l. Substituting the following

simplification

1

2nR̃

2nR̃

∑

l=1

Z
(µ)
l (xn) = (1 + η)pnX(xn)

2nR̃

∑

l=1

E
(µ)
L|Xn(l|x

n)

which follows from the definition of Zn
l (x

n), into (13) gives

P



(1 + η)pnX(xn)

2nR̃

∑

l=1

E
(µ)
L|Xn(l|x

n) ≤ (1 + η)E[Z(µ)(xn)]





≥ 1− 2 exp

(

−
η22n(R̃−I(X,W )−4δ1)

4 ln 2

)

Further we can bound E[Z(µ)(xn)] as

E[Z(µ)(xn)]

pnX(xn)
≤

(1− ε)

pnX(xn)

∑

wn∈Tδ(W |xn)

p̃nW (wn)pnX|W (xn|wn) ≤ 1

where the last inequality above is obtained by adding more

terms in the summation This simplifies as

P





2nR̃

∑

l=1

E
(µ)
L|Xn(l|x

n)≤1



≥1− 2 exp

(

−
η22n(R̃−I(X,W )−4δ1)

4 ln 2

)

Using union bound, for all µ ∈ [2nC ] and xn ∈ Tδ(X) gives,

P





2nC

⋂

µ=1

⋂

xn∈Tδ(X)





2nR̃

∑

l=1

E
(µ)
L|Xn(l|x

n)



 ≤ 1





≥ 1− 2 · 2nC |Tδ(X)| exp

(

−
η22n(R̃−I(X,W )−4δ1)

4 ln 2

)

and hence the proof completes.
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