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Abstract—We consider a scenario wherein two parties Alice
and Bob are provided X' and X3 — samples that are IID from
a PMF px, x,. Alice and Bob can communicate to Charles over
(noiseless) communication links of rate R; and R: respectively.
Their goal is to enable Charles generate samples Y™ such that the
triple (XT', X7, Y™) has a PMF that is close, in total variation,
to [[ px, x,v. In addition, the three parties may posses shared
common randomness at rate C'. We address the problem of
characterizing the set of rate triples (R1, R2,C) for which the
above goal can be accomplished. We provide a set of sufficient
conditions, i.e., an achievable rate region for this three party
setup. Our work also provides a complete characterization of
a point-to-point setup wherein Bob is absent and Charles is
provided with side-information.

I. INTRODUCTION

The task of generating correlated randomness at different
terminals in a network has applications in several commu-
nication and computing scenarios. This task also serves as a
primitive in several cryptographic protocols. In this article, we
study the problem of characterizing fundamental information-
theoretic limits of generating such correlated randomness in
network scenarios.

We consider the scenario depicted in Fig 1. Three distributed
parties - Alice, Bob and Charles - have to generate samples
that are independent and identically distributed (IID) with a
target probability mass function (PMF) px, x,y. Alice and
Bob are provided with samples that are IID px,x, - the
corresponding marginal of the target PMF px, x,y. They have
access to unlimited private randomness and share noiseless
communication links of rates R, Ro with Charles. In addition,
the three parties share common randomness at rate C'. For what
rate triples (R, Re, C') can Alice and Bob enable Charles to
generate the required samples? In this article, we provide a set
of sufficient conditions, i.e., an achievable rate region. In the
process, we provide an alternate solution for the two-terminal
version wherein Charles is provided with side-information
and Bob is absent. This problem also stems out as a special
case from the problem setup described in [1], however, the
technique used here facilitates in characterizing the rate-region
for the scenario in Fig 1.

The problem of characterizing communication rates re-
quired to generate correlated randomness at distributed ter-
minals can be traced back to the work of Wyner [2]. Wyner
considered the scenario of distributed parties generating IID
samples distributed with PMF pxy, when fed with a common
information stream. In characterizing the minimum rate of this
common information stream, Wyner discovered a fundamental
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Fig. 1. Source Coding for Synthesizing Correlated Randomness

tool - the technique of soft covering. Soft covering has found
applications in diverse areas including computer science, clas-
sical and quantum information theory. As we illustrate in
the sequel, this work adds another dimension to our current
understanding of soft covering.

A renewed interest in soft covering led Cuff [3] to consider
a point-to-point (PTP) version of the scenario depicted in
Fig. 1, wherein Bob (or X3) is absent. Leveraging [2], [4],
Cuff [3] provided a characterization of the minimum rate R;
for all values of the common randomness rate C. Cuff’s work
shares an interesting connection with an analogous problem
in quantum information. Prior to [3], Winter [5] considered
the problem of simulating quantum measurements with limited
common randomness. This work was generalized in [6] where
the authors characterized a complete trade-off between com-
munication and common randomness rates. Building on this,
[7] studied a distributed scenario consisting of three distributed
parties and derived inner and outer bounds.

Cuff’s [3] findings rely on the use of a likelihood encoder
that maps the observed sequence and common random bits
into a codebook of sufficient rate. Essentially, the encoder
performs a MAP decoding of the observed sequence into
the chosen codebook. While this choice greatly simplifies
the analysis, it permits little room for generalization. Our
experience in network information theory suggests that en-
coding and decoding via joint-typicality can be naturally
generalized to diverse multi-terminal scenarios. Motivated by
this, we propose joint-typicality based encoding and decoding
to perform soft covering. In view of the general applicability
of typicality-based coding schemes, we regard the typicality-
based soft covering we propose as an important step.

II. PRELIMINARIES AND PROBLEM STATEMENT

We supplement standard information theory notation with
the following. For a PMF px, we let p% = []\_; px. For an
integer n > 1, [n] : = {1,--- ,n}. The total variation between
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PMFs px and ¢x defined over X is denoted ||px — gx|1 =
3 Yowex IPx () — ax(2)].

Definition 1. Given a PMF pxyyz, a rate pair (R,C) is
achievable, if Ye > 0 and sufficiently large n, there exists a
collection of 2"C randomized encoders EW™ : X™ — (0] for
w € [2"C] and a corresponding collection of 2"C randomized
decoders D) : Z" x [Q] — Y™ for pu € [2"C] such that
—pxrynzn|; <€ %log2 O < R + ¢, where

=Y 27" phala, 2"
pne[2™C] me[e]

Do (mla™)piE) o (07" ),

m}YZ

Pxnynzgn (In7 yn, Zn)

pg\‘}) xns pgﬁﬁz‘ gn g are the PMFs induced by encoder and de-

coder respectively, corresponding to shared random message
. We let Rs(pxyz) denote the set of achievable rate pairs.

Cuff [3, Thm. II.1] provides a characterization for R(pxy)
when Z = ¢ is empty. Our first main result (Thm. 1) is a
characterization of R,(pxyz). Building on this, we address
the network scenario (Fig. 1) for which we state the problem
below. In the following, we let X = (X1, X5), 2" = (27, z%).

Definition 2. Given a PMF px, x,y, a rate triple (R, Ry, C)
is achievable, if Ve >0 and suﬁ‘iczently large n, there exists 2"¢
randomized encoder pairs E; () C A = [04] 15 e2pe
[Q”C], and a correspondmg collecnon of 2n¢ randomlzed

decoders DWW - [©1] x [©3] — Y™ for p € [2"C] such that
Py — Pxryn ) <e Llog,©; <Rj+e:j€ 2], where
pxryn (2™, y") Z 27 "¢ Z Pxy (" y")
p€E2"C]  (my,m2)€
[©1]%[O2]

P e (ma 2P g (mal23)pE gy, (07, o)

pg\’;)lxn JjE€[2], p$2|M11M2 are the PMFs induced by the two
randomized encoders and decoder respectively, corresponding
to common randomness message . We let Rq4(pxy) denote
the set of achievable rate triples.

Our second main result is a characterization of R4(pxy)
which is provided in Theorem (2).

III. SOFT COVERING WITH SIDE INFORMATION
In this section, we provide a characterization of Rs(pxy z)-

Theorem 1. (R,C) € Rs(pxyyz) if and only if there
exists a PMF pwxyyz such that (i) pxvz(z,y,z) =
Y wew Pwxyz(w,x,y,2) for all (x,y,z) where W is the
alphabet of W, (ii) Z — X — W and X — (Z,W) —
are Markov chains, (iii) [W| < (|X||V||Z])% and R >
I(X;W) = I(W;Z2),R+C > (XY Z,W) — I(W; Z).

Proof. We provide the main elements (achievability in
Sec. III-A and converse in Sec. IV) of our proof here with
particular emphasis on the new elements. The reader is referred
to [8] for more technical details.

A. Achievability

Throughout, 1 € [2"¢] denotes the C bits of common
randomness shared between the encoder and decoder. For each
p € [2"C], we shall design a randomized encoder E(*) :
X™ — [©] and a randomized decoders D(*) : Z" x [Q] — V"

that induce PMFs pgg)l xn and pgfn),‘ Zn 0 respectively, for which

Zn) - Z Z pXZQnC’ Zn

ue[2nC1mele

1
2: :5 E Py z(",y",
g

P (M2 )P g (02" m)| < e (D)

The design of these randomized encoders and decoders in-
volves building a codebook C = (CW : y € [2"C]) where
CW = (w(l,pu) € W™ i 1 € [27F]) for pu € [2"C], W being
the alphabet of W as in the theorem statement. Specifically,
we let the codewords of C to be IID with distribution

Py (w™)
2w ers(w) Py (w™)

and 0 otherwise. On observing z", v the randomized encoder

chooses an index L in [2"] according to a PMF El(; ;(n (-]

pwn (W) = if w™ € Ts(W) 2)

The chosen index is then mapped to an index in [2"*] which
is communicated to the decoder. Before we specify the PMF
ng ;(n( -), let us describe how the chosen index is mapped to
an index in [2"f]. In doing this, our first task is to identify and
index the unique codewords in C. Firstly, for C(*), we let ©(*)
denote the number of distinct codewords in cm, Secondly,
we let 70V : [2"R] — [©W)] be defined such that " (1) =
I(”)(i) if and only if w(l, 1) = w(l, ;). Lastly, we define a
binning map b : [©W] — [2"F]. On observing z", the
encoder chooses L € [2"F] with respect to PMF Eg&n (-]z™)

and then communicates b(* )(Ié“ )(L)) to the decoder.
Before we specify Eg&n (') and characterize the induced

PMF pps x~ let us relate to the above three elements that make

up the encoder. The PMF E(L’& is analogous to the likelihood
encoder I'jxn x of Cuff [3] but with important changes to
incorporate typicality-based encoding that permits use of side-
information at the decoder. The map I((:“ eliminates dupli-
cation of indices with identical codewords and is employed
for simplifying the analysis. The map b(*) performs standard
information-theoretic binning [9] to utilize side-information.

We now specify Eélg(ﬂ (+]). For z™ € T5(X), let

E(“) (l|xn) _ (1 B e)p}‘w(fgan(l’M))
if 1 #0,w"(l, 1) € Ts(Wlz"), and

gnR

B, (lla") = I—ZELW (l]z™) if L =0,

3)

and E(L*&w (™) = 1=y for all 2™ ¢ T5(X). In specifying
Eg&n, we have relaxed the requirement that E(L’&( |z™)
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be a PMF. This relaxation - a novelty of our work - yields
analytical tractability of a random coding ensemble to be
described in the sequel. However, note that these maps depend
on the choice of the codebook C. We prove in Appendix A that
with high probability, E{/\.,. (-}a") : [2"C] — R is a PMF for
every " € X", This will form a part of our random codebook
analysis and in fact, as we see in Lemma 2, one of the rate
constraints is a consequence of the conditions necessary for
the above definition of E*) (+|-) to be a PMF. We also note

LIXn
that E(Llr;(n being a PMF guarantees py x» is a PMF.

Having specified ng ;(n (

zné

)=23 Eiljx(w"la") I

w™ =1

/|-), we now characterize pys|xn.

(w)

Dprixn (m[z"™)

w™=w"(l,1n)
bz (1)=m
2nR

S

w™e =1
Ts(Wlz™)

— )P (@™ |w")

2nR(1 +n)p

=" ()

w “)
K (27) {b<“><zé“><l>>:m}

for m # 0 and pg\‘;)Xn (0]z™) = 1—2727:21 p%xn (m|z™). We
have thus descrlbed the encoder and ppsjxn.

We now describe the decoder. On observing 2z € Z™, u
and the index m € [2"F] communicated by the encoder,
the decoder populates D™ (2", m) = {w" € W" : w" =
W (1, 1), bW (I (1)) = m, (w™, 2") € T5(W, Z)}. Let
f(”)(m,z") _ {wn if D(#)'(Zn,.m) — {wn} |

wo otherwise, i.e., [P (2" m)| # 1
The decoder chooses =z according to PMF
Py zw (2", f(m,2")). This implies we have the decoder
given by

n

P zaar G125 m) = Dy 2 (7190 (m, 27),27). (5)
We refer the reviewers to [8] for the remaining analysis.

IV. CONVERSE
The proof for the converse follows from [1]. O

V. DISTRIBUTED SOFT COVERING

Our main result is the following inner bound to R4(p
In the following, we let X = (X1, X3), W = (W, Wa),
(z1,22) and w = (wy,ws).

PXY)-

where the mutual information terms are evaluated with the
PMF PQW WL XY - We have

Closure U

PQwxy €EP(Px; x5v)

Blrewxy) | € Ra(Pxy). (1)

In other words, (R1, R, C) is achievable if (R1,R2,C) €
UPQMYEP(PXIXQY) 6(10@@}’) :

In the interest of brevity, we only highlight the novelty in

the design of random encoders and random decoder used. We
refer the reader to [8] for a complete proof.
Proof. Having designed a randomized encoding scheme based
on typicality, we are in a position to employ the same encoder
for this distributed scenario. Let p € [2"“] denote the common
randomness shared amidst all terminals. The first encoder
uses a part of the total common randomness available to it,
say C) bits out of the C bits, denoted by u; € [27¢1].
Similarly, let gy € [2"¢2] denote the common randomness
used by the second encoder. Our goal is to prove the existence
of PMFs pi;' | o (mile}) @ af € XP,mi € (O], €
2], Ph7, xp (Malal) © 28 € X5 ma € [O2], pa € 2777,
and pynan (Y M, me) 2 Y™ € Y7, (my,me) € [O1] x
[O2] such that

3:25 Z

o el iy

PEDIEDS

pe2nC]m1€[O1] m2€[O2]

n n n n
lexzy(xu%ay )—

P, x, (a1, z3)
= e (mala)

pg\lg\)x (mﬂmﬁ)p% i, (Y Ima, ma) | <€,

log ©

OgnJ<R tejel? (8)
for sufficiently large n. Consider the collections C; = (C{“ )
1 < py < 27€1) where C(’“) = (wi(ly,pe1) =

1< 11 <
2nfi) and Cy = (C2) 11 < py < 27C2) where O =
(wa(ly, o) 1 1<y < Q"Rz) For this collection, we let

Theorem 2. Given a PMF px,x,v, let P(px,x,v) de- Eé“lﬁm(lﬂx?)
note the collection of all PMFs pow,w,xy defined on | N I
Q X Wi x Wy x X x Y such that (i) pxv(z,y) = — 1~ l—a Z Lryng . pX1|W1(x1|w1)
> (g e 0w Powxy (¢, w,z,y) for all (z,y) € (X, V), (ii) T A A T )
— QX1 —QXo—Wy and X —QW —Y are Markov chains, ! !
(iii) (Wi | < | X4, | < |Xy|. Further, let 5(pow xv ) denote
the set f)f rates and common randomness triple (R1, R, C) Egﬁ;;(bmg)
that satzsfy L1 n (28w
— €2 Px, \w, (T2 W2
1> I( X1 Wh|Q) — I(Wy; Wa|Q) = ok 1 s Z Lgun (13, p2)=wp } zp?: (@3)
2 > I(Xo; Wa|Q) — I(W1; W2|Q) wg €T5(Welzz) :
Ry +R2 > (X Wh|Q)+1(X2; Wa|Q) —1(Wr; W2 Q) Further, we define maps b(‘“) [2”R1] — [2"f1] and
B+ R + C 2 I(X1 Xo W2V W1|Q) + I(X1 Xo Y W2 |@Q) b(“Z) : [2nf2] — [272] performing standard information-
— I(Wy; Ws|Q) (6) theoretlc binning, with 0 < R; < R1 and 0 < Ry < R2
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Using these maps, we induce the PMF pgw |)X” on the message

to be transmitted by the first encoder as

P p (mafa)

]l{m1=0} if s “1)( ) > 1,
1- S(W( ™) if my =0 and s(‘“)( my e [0, 1],
(p1
le 1 EL“‘X” (l1|x1) {b(ﬂl)(ll) 7”1}
if m1 # 0 and 5(“1)( ™) € [0,1]

for all zp € Tg(Xl) and s\ (27) defined as

sgm ny = le 1 E(L’ﬁxn(ll\x '). For zp ¢ T5(Xq),
we let pg\gll)Xiz(mﬂml) = l{m,—0}. Similarly, we define
PMF pgw |)X" for the second encoder as

P2y (mala)

1 (a0} if 592 () > 1,
1— s(”g)(xg) if mo =0 and s(‘”)( n) e

gnlia

2= E(L’ﬁxn(sz)ﬂ{bQ(zz) ma}
if ma # 0 and s(’“)( 5) € [0,1].

for all z5 € Ts(Xo) sé”z)(xg) defined as

2nf2 n n
s$(ag) = Yo_i Bk, (llag). For af ¢ T(Xa),

we let pg\ljz‘)xn (mQ‘IQ) = ]]-{m2 =0}-
(Ml)

With this definition note that, Zml —0 M1| xp = =1 for all

p1 € [27¢1] and 27 € AT and similarly, an;:zo ngﬁfx; =1
for all py € [27¢2] and 2% € X3

We now describe the decoder. On observing p and the in-
dices m1, my € [27%1] x[2"52] communicated by the encoder,
the decoder first deduces (p1, p2) from g and then populates
DWsk2) (my my) = {(wP,wh) € WP x W§ : wp =
iy, ), wg = wh(l, ), bY (L) = ma, b (1) =
ma, (W, wy) € Ts(Wy, Wa)}. Let

£ (my,mo

[0,1],

and

)
_ {(wzzw;l) if D42) (my, ma) = {(w, wh)}
| (@, @8)  ow. ie., [DWLH2) (my my)| # 1
The  decoder chooses  y"
Py i, (U1 FU9 (ma,mo)). This
P 0, (1) is given by

p§52|M1M2( |my,me) = p%wlm (yn|f(“)(m1,m2)). 9

We now begin our analysis of (8). Our goal is to prove
the existence of a collections ci,cy for which (8) holds.
We do this via random coding. Specifically, we prove that
E[2] < e where the expectation is over the ensemble of
codebooks. The PMF induced on the ensemble of codebooks
is as specified below. The codewords of the random codebook
C{’“) = (Wi (I, p1) 2 1 <1y <278 for each py € 27C1 are
mutually independent and distributed with PMF

n p’vﬁq(w{‘)]1
wy) = 7(1 —e) {wneTy (W)}

PMF
PMF

according  to
implies  the

P(Wy(ly, p1) =

Similarly, C{"?) = (Wy(lg,pi2) : 1 < I < 2"F2) for each
o € [272] are mutually independent and distributed as

]DW2 (wy )

(1—-e)

where ¢, = 1 — P(T5(W;)); @ = 1,2. We split 2 into two
terms using an indicator function 1 pur(c,,c,)} a8

P(Wa(l2, p2) = wy) = Liwgery (wa)}

Ec@ = E[o@ . ]]'{PMF(CI7CZ)}:| + E[Q : ]]'?PMF(CDCZ)}]
<E[2 Lpwe(c,,c0)1] + 2 P{Lipur(cy,c0)y =0} (10)

where 1 pyr(cy,cs)} is defined as

Lipur(cy,c2)}
1 if s (@7) €[0,1] and s (22) € [0, 1]
for all o7 € T5(X1), 25 € Ts(X2),
and for all y; € [2"1], uy € [27C2]
0 otherwise,

and (10) follows from the upper bound of 1 over the total
variation. Using the Lemma below, we prove that by con-
straining Ry > I(X1;W1) + 49 and Ry > I(Xq; Wa) + 46,
P {L{pur(c,c5)} = 0} can be made arbitrarily small. In other

(k1)

words, Lilxp and

with high probability, we will have F
Eé’j;@ such that 0 < Zz _1 Ey |;(n S 1 for all py € [27¢1]

and 27 € Ta(Xl) ,and 0 < le . L’”&w < 1 for all
po € [27°2] and 28 € T5(Xa) ,

Lemma 1. For any 6,1 € (0,1/2), if Ry > I(X; : W1)+46;
and Ry > I(Xo : W) + 462, where 61(0),02(0) N\, 0 as
0\ 0, then

2nC1

PN N (B wln<) |0

p=1 zneTs(X1)

on Co

N N

pme=1z2eTs(X2)

(E(L’fl;(n(lﬂzg) < 1) —lasn— oo

Proof. Using the lemma 2 from Appendix (A) twice, we get

2nC 271,1%1

(p1) n
AR AR I AU
p1=127€Ts(x,y \l1=1

7]22n(R171(X1,W1)7461)
212~2"01|T5(X1)|exp( )

41n2
onCa on Ry
NN (3 e ) <
n=2 x5 €T5(xy) \l2=1

n22n(R21(X2,W2)462))

21—2~2”C2|T5(X2)|6XP(_ 41n2
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Applying union bound to the above inequalities gives,
2nC

LN N (B 0k <)
p=1 I"ET,;(Xl)

2nC2

NN N

pe=1aleTs(X2)

(B (alag) < 1)

>1-2-2"NT5(X1)[2exp < _ WQQ"(RII(X17W1)451)>
- 41In2
— 2. 2"C2|T5(Xy)| exp < _ n22"<R2I<X21W2>462>>
4In2
and hence the result follows. 0

For the sake of brevity, we refer the readers to [8] where the

complete details of the proof are provided. O
APPENDIX A
E(L’T;(n (:]') 1S A PMF WITH HIGH PROBABILITY

Lemma 2. For any 6, € (0,1), if R > I(X : W)+ 40, then

27LC

BI ()

p=1zneTs(X)

27LR

Z ELan (ljz™) < 1

Proof. From the definition of EW

L|xn
2 e Ty(X), Y21 BY,. (llam) =

—lasn— o0

(l]z™), we have for

nR
1 1—¢ 2 PX|W( "w™)
2 <1+n> 2t

w" e

Ts (Wl ")

Let us define Zl(“)(z”), for 2™ € T5(X) and p € [27C] as

(1 — E) Z ]l{w"(l,p):w"}p?(‘w(xn|wn)
wnr€Ts(W|z™)

ZZ(H) (xn) —

and let D = 2"(H(XIW)=01) "where §;(8) N\, 0 as § \, 0. This
gives us the following bound on the expectation of the empiri-

1
cal average of {Zl(”)(x”)}le[zm] as E {NZ;\LI DZI(“) (33”)]

>

wn €T (Wlz™)
> 2n(H(X\W)fé)27n(H(X,W)+25)2n(H(W\X)76)

_ on(H(X|W)-9)

Py (W )pxpw (2" [w"™) (1 =€)

> 2—n(I(X,W)+46)

(11)
Further, we also have

DZI(“) (z") < 2n(H(X\W)—6)2—7L(H(X|W)—6)(1 — )

>

wn€Ts(Wlz™)

]l{W""(l,p,):’LU”} S 1 (12)

Since, for every " € T5(X) and p € [2"C], we have
{Zl(” )(x")}l to be a sequence of IID Random variables, we

can approximate its empirical average, using a more refined
Chernoff-Hoeffding bound given by

Lemma 3. Let {Z,}N_, be a sequence of N IID random
variables bounded as Z, € [0,1] Vn € [N], and suppose
L~
]E NZH=1 Z"

0 as > 0 where 6 € (0,1), then for every n € (0,1/2) and
(1+n)0 < 1, we can bound the probability that the ensemble
average of the sequence {Z,}N_, lies in (1£n)u as

= p be lower bounded by a positive constant

1 Nn?6

_ _ >1_ _
1P’<Nn§_12n €[(1 n)u7(1+n)u]) >1 2exp( 4ln2>
Proof. Follows from Operator Chernoff Bound [10]. O

Note that, from (11 and 12), {DZ" (2")}, satisfies the
constraints needed in the above lemma . Thus applying Lemma
(3) to {DZZ(“) (x™)}; gives

P (zle Z(@") € (1L~ mE[Z@")]. (1 + E [Z(m"m>

=1

p22n(R=I(X,W)—43)
(13)

Zl—Zexp(— 12
n

where Z()(2™) denotes the generic random variable from
the IID sequence {Zl(“ )(m")}l. Substituting the following
simplification

2711? 2711"?.

Z EL|X"

which follows from the definition of Z}' (x

2nR = (1+n)pk(z

), into (13) gives

271[?‘,
P((t+np ZEQ&H (lJa") < (14 n)E[Z® (@")]
,'7221'7,(R—I(X,W)—4(51)
>1_ _
>1-—2exp ( 12 )
Further we can bound E[Z () (z")] as
EZW(@m)] _ (1-¢ _
— < — P (W™ )P w (2" |w™) <1
px(@n) = px(a) 2. Py xw

wn€Ts(Wlz™)

where the last inequality above is obtained by adding more
terms in the summation This simplifies as

2n}5£

P ZELan I|lz")

n22n(RI(X,W)461))

Zl_zeXp(_ 4102

Using union bound, for all 1 € [2"] and 2™ € T5(X) gives,

on C

A

p=lz"€Tsx) =1

ann(R—I(X,W)—461)
41In2

and hence the proof completes. O

>1—2-2"YT5(X)| exp (—
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